xref: /openbmc/linux/drivers/bluetooth/hci_intel.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21 
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24 
25 #include "hci_uart.h"
26 #include "btintel.h"
27 
28 #define STATE_BOOTLOADER	0
29 #define STATE_DOWNLOADING	1
30 #define STATE_FIRMWARE_LOADED	2
31 #define STATE_FIRMWARE_FAILED	3
32 #define STATE_BOOTING		4
33 #define STATE_LPM_ENABLED	5
34 #define STATE_TX_ACTIVE		6
35 #define STATE_SUSPENDED		7
36 #define STATE_LPM_TRANSACTION	8
37 
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42 
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46 
47 #define LPM_SUSPEND_DELAY_MS 1000
48 
49 struct hci_lpm_pkt {
50 	__u8 opcode;
51 	__u8 dlen;
52 	__u8 data[0];
53 } __packed;
54 
55 struct intel_device {
56 	struct list_head list;
57 	struct platform_device *pdev;
58 	struct gpio_desc *reset;
59 	struct hci_uart *hu;
60 	struct mutex hu_lock;
61 	int irq;
62 };
63 
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66 
67 struct intel_data {
68 	struct sk_buff *rx_skb;
69 	struct sk_buff_head txq;
70 	struct work_struct busy_work;
71 	struct hci_uart *hu;
72 	unsigned long flags;
73 };
74 
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 	switch (speed) {
78 	case 9600:
79 		return 0x00;
80 	case 19200:
81 		return 0x01;
82 	case 38400:
83 		return 0x02;
84 	case 57600:
85 		return 0x03;
86 	case 115200:
87 		return 0x04;
88 	case 230400:
89 		return 0x05;
90 	case 460800:
91 		return 0x06;
92 	case 921600:
93 		return 0x07;
94 	case 1843200:
95 		return 0x08;
96 	case 3250000:
97 		return 0x09;
98 	case 2000000:
99 		return 0x0a;
100 	case 3000000:
101 		return 0x0b;
102 	default:
103 		return 0xff;
104 	}
105 }
106 
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 	struct intel_data *intel = hu->priv;
110 	int err;
111 
112 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 				  TASK_INTERRUPTIBLE,
114 				  msecs_to_jiffies(1000));
115 
116 	if (err == -EINTR) {
117 		bt_dev_err(hu->hdev, "Device boot interrupted");
118 		return -EINTR;
119 	}
120 
121 	if (err) {
122 		bt_dev_err(hu->hdev, "Device boot timeout");
123 		return -ETIMEDOUT;
124 	}
125 
126 	return err;
127 }
128 
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132 	struct intel_data *intel = hu->priv;
133 	int err;
134 
135 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 				  TASK_INTERRUPTIBLE,
137 				  msecs_to_jiffies(1000));
138 
139 	if (err == -EINTR) {
140 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 		return -EINTR;
142 	}
143 
144 	if (err) {
145 		bt_dev_err(hu->hdev, "LPM transaction timeout");
146 		return -ETIMEDOUT;
147 	}
148 
149 	return err;
150 }
151 
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 	struct intel_data *intel = hu->priv;
156 	struct sk_buff *skb;
157 
158 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 	    test_bit(STATE_SUSPENDED, &intel->flags))
160 		return 0;
161 
162 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 		return -EAGAIN;
164 
165 	bt_dev_dbg(hu->hdev, "Suspending");
166 
167 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 	if (!skb) {
169 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 		return -ENOMEM;
171 	}
172 
173 	skb_put_data(skb, suspend, sizeof(suspend));
174 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175 
176 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177 
178 	/* LPM flow is a priority, enqueue packet at list head */
179 	skb_queue_head(&intel->txq, skb);
180 	hci_uart_tx_wakeup(hu);
181 
182 	intel_wait_lpm_transaction(hu);
183 	/* Even in case of failure, continue and test the suspended flag */
184 
185 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186 
187 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 		bt_dev_err(hu->hdev, "Device suspend error");
189 		return -EINVAL;
190 	}
191 
192 	bt_dev_dbg(hu->hdev, "Suspended");
193 
194 	hci_uart_set_flow_control(hu, true);
195 
196 	return 0;
197 }
198 
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201 	struct intel_data *intel = hu->priv;
202 	struct sk_buff *skb;
203 
204 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 	    !test_bit(STATE_SUSPENDED, &intel->flags))
206 		return 0;
207 
208 	bt_dev_dbg(hu->hdev, "Resuming");
209 
210 	hci_uart_set_flow_control(hu, false);
211 
212 	skb = bt_skb_alloc(0, GFP_KERNEL);
213 	if (!skb) {
214 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 		return -ENOMEM;
216 	}
217 
218 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219 
220 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221 
222 	/* LPM flow is a priority, enqueue packet at list head */
223 	skb_queue_head(&intel->txq, skb);
224 	hci_uart_tx_wakeup(hu);
225 
226 	intel_wait_lpm_transaction(hu);
227 	/* Even in case of failure, continue and test the suspended flag */
228 
229 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230 
231 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 		bt_dev_err(hu->hdev, "Device resume error");
233 		return -EINVAL;
234 	}
235 
236 	bt_dev_dbg(hu->hdev, "Resumed");
237 
238 	return 0;
239 }
240 #endif /* CONFIG_PM */
241 
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 	struct intel_data *intel = hu->priv;
246 	struct sk_buff *skb;
247 
248 	hci_uart_set_flow_control(hu, false);
249 
250 	clear_bit(STATE_SUSPENDED, &intel->flags);
251 
252 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 	if (!skb) {
254 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 		return -ENOMEM;
256 	}
257 
258 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260 
261 	/* LPM flow is a priority, enqueue packet at list head */
262 	skb_queue_head(&intel->txq, skb);
263 	hci_uart_tx_wakeup(hu);
264 
265 	bt_dev_dbg(hu->hdev, "Resumed by controller");
266 
267 	return 0;
268 }
269 
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272 	struct intel_device *idev = dev_id;
273 
274 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
275 
276 	mutex_lock(&idev->hu_lock);
277 	if (idev->hu)
278 		intel_lpm_host_wake(idev->hu);
279 	mutex_unlock(&idev->hu_lock);
280 
281 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 	pm_runtime_get(&idev->pdev->dev);
283 	pm_runtime_mark_last_busy(&idev->pdev->dev);
284 	pm_runtime_put_autosuspend(&idev->pdev->dev);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291 	struct list_head *p;
292 	int err = -ENODEV;
293 
294 	if (!hu->tty->dev)
295 		return err;
296 
297 	mutex_lock(&intel_device_list_lock);
298 
299 	list_for_each(p, &intel_device_list) {
300 		struct intel_device *idev = list_entry(p, struct intel_device,
301 						       list);
302 
303 		/* tty device and pdev device should share the same parent
304 		 * which is the UART port.
305 		 */
306 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
307 			continue;
308 
309 		if (!idev->reset) {
310 			err = -ENOTSUPP;
311 			break;
312 		}
313 
314 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
315 			hu, dev_name(&idev->pdev->dev), powered);
316 
317 		gpiod_set_value(idev->reset, powered);
318 
319 		/* Provide to idev a hu reference which is used to run LPM
320 		 * transactions (lpm suspend/resume) from PM callbacks.
321 		 * hu needs to be protected against concurrent removing during
322 		 * these PM ops.
323 		 */
324 		mutex_lock(&idev->hu_lock);
325 		idev->hu = powered ? hu : NULL;
326 		mutex_unlock(&idev->hu_lock);
327 
328 		if (idev->irq < 0)
329 			break;
330 
331 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
332 			err = devm_request_threaded_irq(&idev->pdev->dev,
333 							idev->irq, NULL,
334 							intel_irq,
335 							IRQF_ONESHOT,
336 							"bt-host-wake", idev);
337 			if (err) {
338 				BT_ERR("hu %p, unable to allocate irq-%d",
339 				       hu, idev->irq);
340 				break;
341 			}
342 
343 			device_wakeup_enable(&idev->pdev->dev);
344 
345 			pm_runtime_set_active(&idev->pdev->dev);
346 			pm_runtime_use_autosuspend(&idev->pdev->dev);
347 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
348 							 LPM_SUSPEND_DELAY_MS);
349 			pm_runtime_enable(&idev->pdev->dev);
350 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
351 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
352 			device_wakeup_disable(&idev->pdev->dev);
353 
354 			pm_runtime_disable(&idev->pdev->dev);
355 		}
356 	}
357 
358 	mutex_unlock(&intel_device_list_lock);
359 
360 	return err;
361 }
362 
363 static void intel_busy_work(struct work_struct *work)
364 {
365 	struct list_head *p;
366 	struct intel_data *intel = container_of(work, struct intel_data,
367 						busy_work);
368 
369 	if (!intel->hu->tty->dev)
370 		return;
371 
372 	/* Link is busy, delay the suspend */
373 	mutex_lock(&intel_device_list_lock);
374 	list_for_each(p, &intel_device_list) {
375 		struct intel_device *idev = list_entry(p, struct intel_device,
376 						       list);
377 
378 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
379 			pm_runtime_get(&idev->pdev->dev);
380 			pm_runtime_mark_last_busy(&idev->pdev->dev);
381 			pm_runtime_put_autosuspend(&idev->pdev->dev);
382 			break;
383 		}
384 	}
385 	mutex_unlock(&intel_device_list_lock);
386 }
387 
388 static int intel_open(struct hci_uart *hu)
389 {
390 	struct intel_data *intel;
391 
392 	BT_DBG("hu %p", hu);
393 
394 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
395 	if (!intel)
396 		return -ENOMEM;
397 
398 	skb_queue_head_init(&intel->txq);
399 	INIT_WORK(&intel->busy_work, intel_busy_work);
400 
401 	intel->hu = hu;
402 
403 	hu->priv = intel;
404 
405 	if (!intel_set_power(hu, true))
406 		set_bit(STATE_BOOTING, &intel->flags);
407 
408 	return 0;
409 }
410 
411 static int intel_close(struct hci_uart *hu)
412 {
413 	struct intel_data *intel = hu->priv;
414 
415 	BT_DBG("hu %p", hu);
416 
417 	cancel_work_sync(&intel->busy_work);
418 
419 	intel_set_power(hu, false);
420 
421 	skb_queue_purge(&intel->txq);
422 	kfree_skb(intel->rx_skb);
423 	kfree(intel);
424 
425 	hu->priv = NULL;
426 	return 0;
427 }
428 
429 static int intel_flush(struct hci_uart *hu)
430 {
431 	struct intel_data *intel = hu->priv;
432 
433 	BT_DBG("hu %p", hu);
434 
435 	skb_queue_purge(&intel->txq);
436 
437 	return 0;
438 }
439 
440 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
441 {
442 	struct sk_buff *skb;
443 	struct hci_event_hdr *hdr;
444 	struct hci_ev_cmd_complete *evt;
445 
446 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
447 	if (!skb)
448 		return -ENOMEM;
449 
450 	hdr = skb_put(skb, sizeof(*hdr));
451 	hdr->evt = HCI_EV_CMD_COMPLETE;
452 	hdr->plen = sizeof(*evt) + 1;
453 
454 	evt = skb_put(skb, sizeof(*evt));
455 	evt->ncmd = 0x01;
456 	evt->opcode = cpu_to_le16(opcode);
457 
458 	skb_put_u8(skb, 0x00);
459 
460 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
461 
462 	return hci_recv_frame(hdev, skb);
463 }
464 
465 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
466 {
467 	struct intel_data *intel = hu->priv;
468 	struct hci_dev *hdev = hu->hdev;
469 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
470 	struct sk_buff *skb;
471 	int err;
472 
473 	/* This can be the first command sent to the chip, check
474 	 * that the controller is ready.
475 	 */
476 	err = intel_wait_booting(hu);
477 
478 	clear_bit(STATE_BOOTING, &intel->flags);
479 
480 	/* In case of timeout, try to continue anyway */
481 	if (err && err != -ETIMEDOUT)
482 		return err;
483 
484 	bt_dev_info(hdev, "Change controller speed to %d", speed);
485 
486 	speed_cmd[3] = intel_convert_speed(speed);
487 	if (speed_cmd[3] == 0xff) {
488 		bt_dev_err(hdev, "Unsupported speed");
489 		return -EINVAL;
490 	}
491 
492 	/* Device will not accept speed change if Intel version has not been
493 	 * previously requested.
494 	 */
495 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
496 	if (IS_ERR(skb)) {
497 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
498 			   PTR_ERR(skb));
499 		return PTR_ERR(skb);
500 	}
501 	kfree_skb(skb);
502 
503 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
504 	if (!skb) {
505 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
506 		return -ENOMEM;
507 	}
508 
509 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
510 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
511 
512 	hci_uart_set_flow_control(hu, true);
513 
514 	skb_queue_tail(&intel->txq, skb);
515 	hci_uart_tx_wakeup(hu);
516 
517 	/* wait 100ms to change baudrate on controller side */
518 	msleep(100);
519 
520 	hci_uart_set_baudrate(hu, speed);
521 	hci_uart_set_flow_control(hu, false);
522 
523 	return 0;
524 }
525 
526 static int intel_setup(struct hci_uart *hu)
527 {
528 	struct intel_data *intel = hu->priv;
529 	struct hci_dev *hdev = hu->hdev;
530 	struct sk_buff *skb;
531 	struct intel_version ver;
532 	struct intel_boot_params params;
533 	struct list_head *p;
534 	const struct firmware *fw;
535 	char fwname[64];
536 	u32 boot_param;
537 	ktime_t calltime, delta, rettime;
538 	unsigned long long duration;
539 	unsigned int init_speed, oper_speed;
540 	int speed_change = 0;
541 	int err;
542 
543 	bt_dev_dbg(hdev, "start intel_setup");
544 
545 	hu->hdev->set_diag = btintel_set_diag;
546 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
547 
548 	/* Set the default boot parameter to 0x0 and it is updated to
549 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
550 	 * command while downloading the firmware.
551 	 */
552 	boot_param = 0x00000000;
553 
554 	calltime = ktime_get();
555 
556 	if (hu->init_speed)
557 		init_speed = hu->init_speed;
558 	else
559 		init_speed = hu->proto->init_speed;
560 
561 	if (hu->oper_speed)
562 		oper_speed = hu->oper_speed;
563 	else
564 		oper_speed = hu->proto->oper_speed;
565 
566 	if (oper_speed && init_speed && oper_speed != init_speed)
567 		speed_change = 1;
568 
569 	/* Check that the controller is ready */
570 	err = intel_wait_booting(hu);
571 
572 	clear_bit(STATE_BOOTING, &intel->flags);
573 
574 	/* In case of timeout, try to continue anyway */
575 	if (err && err != -ETIMEDOUT)
576 		return err;
577 
578 	set_bit(STATE_BOOTLOADER, &intel->flags);
579 
580 	/* Read the Intel version information to determine if the device
581 	 * is in bootloader mode or if it already has operational firmware
582 	 * loaded.
583 	 */
584 	err = btintel_read_version(hdev, &ver);
585 	if (err)
586 		return err;
587 
588 	/* The hardware platform number has a fixed value of 0x37 and
589 	 * for now only accept this single value.
590 	 */
591 	if (ver.hw_platform != 0x37) {
592 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
593 			   ver.hw_platform);
594 		return -EINVAL;
595 	}
596 
597         /* Check for supported iBT hardware variants of this firmware
598          * loading method.
599          *
600          * This check has been put in place to ensure correct forward
601          * compatibility options when newer hardware variants come along.
602          */
603 	switch (ver.hw_variant) {
604 	case 0x0b:	/* LnP */
605 	case 0x0c:	/* WsP */
606 	case 0x12:	/* ThP */
607 		break;
608 	default:
609 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
610 			   ver.hw_variant);
611 		return -EINVAL;
612 	}
613 
614 	btintel_version_info(hdev, &ver);
615 
616 	/* The firmware variant determines if the device is in bootloader
617 	 * mode or is running operational firmware. The value 0x06 identifies
618 	 * the bootloader and the value 0x23 identifies the operational
619 	 * firmware.
620 	 *
621 	 * When the operational firmware is already present, then only
622 	 * the check for valid Bluetooth device address is needed. This
623 	 * determines if the device will be added as configured or
624 	 * unconfigured controller.
625 	 *
626 	 * It is not possible to use the Secure Boot Parameters in this
627 	 * case since that command is only available in bootloader mode.
628 	 */
629 	if (ver.fw_variant == 0x23) {
630 		clear_bit(STATE_BOOTLOADER, &intel->flags);
631 		btintel_check_bdaddr(hdev);
632 		return 0;
633 	}
634 
635 	/* If the device is not in bootloader mode, then the only possible
636 	 * choice is to return an error and abort the device initialization.
637 	 */
638 	if (ver.fw_variant != 0x06) {
639 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
640 			   ver.fw_variant);
641 		return -ENODEV;
642 	}
643 
644 	/* Read the secure boot parameters to identify the operating
645 	 * details of the bootloader.
646 	 */
647 	err = btintel_read_boot_params(hdev, &params);
648 	if (err)
649 		return err;
650 
651 	/* It is required that every single firmware fragment is acknowledged
652 	 * with a command complete event. If the boot parameters indicate
653 	 * that this bootloader does not send them, then abort the setup.
654 	 */
655 	if (params.limited_cce != 0x00) {
656 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
657 			   params.limited_cce);
658 		return -EINVAL;
659 	}
660 
661 	/* If the OTP has no valid Bluetooth device address, then there will
662 	 * also be no valid address for the operational firmware.
663 	 */
664 	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
665 		bt_dev_info(hdev, "No device address configured");
666 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
667 	}
668 
669 	/* With this Intel bootloader only the hardware variant and device
670 	 * revision information are used to select the right firmware for SfP
671 	 * and WsP.
672 	 *
673 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
674 	 *
675 	 * Currently the supported hardware variants are:
676 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
677 	 *   12 (0x0c) for iBT 3.5 (WsP)
678 	 *
679 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
680 	 * variant, HW revision and FW revision, as these are dependent on CNVi
681 	 * and RF Combination.
682 	 *
683 	 *   18 (0x12) for iBT3.5 (ThP/JfP)
684 	 *
685 	 * The firmware file name for these will be
686 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
687 	 *
688 	 */
689 	switch (ver.hw_variant) {
690 	case 0x0b:      /* SfP */
691 	case 0x0c:      /* WsP */
692 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
693 			 le16_to_cpu(ver.hw_variant),
694 			 le16_to_cpu(params.dev_revid));
695 		break;
696 	case 0x12:      /* ThP */
697 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
698 			 le16_to_cpu(ver.hw_variant),
699 			 le16_to_cpu(ver.hw_revision),
700 			 le16_to_cpu(ver.fw_revision));
701 		break;
702 	default:
703 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
704 			   ver.hw_variant);
705 		return -EINVAL;
706 	}
707 
708 	err = request_firmware(&fw, fwname, &hdev->dev);
709 	if (err < 0) {
710 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
711 			   err);
712 		return err;
713 	}
714 
715 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
716 
717 	/* Save the DDC file name for later */
718 	switch (ver.hw_variant) {
719 	case 0x0b:      /* SfP */
720 	case 0x0c:      /* WsP */
721 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
722 			 le16_to_cpu(ver.hw_variant),
723 			 le16_to_cpu(params.dev_revid));
724 		break;
725 	case 0x12:      /* ThP */
726 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
727 			 le16_to_cpu(ver.hw_variant),
728 			 le16_to_cpu(ver.hw_revision),
729 			 le16_to_cpu(ver.fw_revision));
730 		break;
731 	default:
732 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
733 			   ver.hw_variant);
734 		return -EINVAL;
735 	}
736 
737 	if (fw->size < 644) {
738 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
739 			   fw->size);
740 		err = -EBADF;
741 		goto done;
742 	}
743 
744 	set_bit(STATE_DOWNLOADING, &intel->flags);
745 
746 	/* Start firmware downloading and get boot parameter */
747 	err = btintel_download_firmware(hdev, fw, &boot_param);
748 	if (err < 0)
749 		goto done;
750 
751 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
752 
753 	bt_dev_info(hdev, "Waiting for firmware download to complete");
754 
755 	/* Before switching the device into operational mode and with that
756 	 * booting the loaded firmware, wait for the bootloader notification
757 	 * that all fragments have been successfully received.
758 	 *
759 	 * When the event processing receives the notification, then the
760 	 * STATE_DOWNLOADING flag will be cleared.
761 	 *
762 	 * The firmware loading should not take longer than 5 seconds
763 	 * and thus just timeout if that happens and fail the setup
764 	 * of this device.
765 	 */
766 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
767 				  TASK_INTERRUPTIBLE,
768 				  msecs_to_jiffies(5000));
769 	if (err == -EINTR) {
770 		bt_dev_err(hdev, "Firmware loading interrupted");
771 		err = -EINTR;
772 		goto done;
773 	}
774 
775 	if (err) {
776 		bt_dev_err(hdev, "Firmware loading timeout");
777 		err = -ETIMEDOUT;
778 		goto done;
779 	}
780 
781 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
782 		bt_dev_err(hdev, "Firmware loading failed");
783 		err = -ENOEXEC;
784 		goto done;
785 	}
786 
787 	rettime = ktime_get();
788 	delta = ktime_sub(rettime, calltime);
789 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
790 
791 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
792 
793 done:
794 	release_firmware(fw);
795 
796 	if (err < 0)
797 		return err;
798 
799 	/* We need to restore the default speed before Intel reset */
800 	if (speed_change) {
801 		err = intel_set_baudrate(hu, init_speed);
802 		if (err)
803 			return err;
804 	}
805 
806 	calltime = ktime_get();
807 
808 	set_bit(STATE_BOOTING, &intel->flags);
809 
810 	err = btintel_send_intel_reset(hdev, boot_param);
811 	if (err)
812 		return err;
813 
814 	/* The bootloader will not indicate when the device is ready. This
815 	 * is done by the operational firmware sending bootup notification.
816 	 *
817 	 * Booting into operational firmware should not take longer than
818 	 * 1 second. However if that happens, then just fail the setup
819 	 * since something went wrong.
820 	 */
821 	bt_dev_info(hdev, "Waiting for device to boot");
822 
823 	err = intel_wait_booting(hu);
824 	if (err)
825 		return err;
826 
827 	clear_bit(STATE_BOOTING, &intel->flags);
828 
829 	rettime = ktime_get();
830 	delta = ktime_sub(rettime, calltime);
831 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
832 
833 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
834 
835 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
836 	 * until further LPM TX notification.
837 	 */
838 	mutex_lock(&intel_device_list_lock);
839 	list_for_each(p, &intel_device_list) {
840 		struct intel_device *dev = list_entry(p, struct intel_device,
841 						      list);
842 		if (!hu->tty->dev)
843 			break;
844 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
845 			if (device_may_wakeup(&dev->pdev->dev)) {
846 				set_bit(STATE_LPM_ENABLED, &intel->flags);
847 				set_bit(STATE_TX_ACTIVE, &intel->flags);
848 			}
849 			break;
850 		}
851 	}
852 	mutex_unlock(&intel_device_list_lock);
853 
854 	/* Ignore errors, device can work without DDC parameters */
855 	btintel_load_ddc_config(hdev, fwname);
856 
857 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
858 	if (IS_ERR(skb))
859 		return PTR_ERR(skb);
860 	kfree_skb(skb);
861 
862 	if (speed_change) {
863 		err = intel_set_baudrate(hu, oper_speed);
864 		if (err)
865 			return err;
866 	}
867 
868 	bt_dev_info(hdev, "Setup complete");
869 
870 	clear_bit(STATE_BOOTLOADER, &intel->flags);
871 
872 	return 0;
873 }
874 
875 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
876 {
877 	struct hci_uart *hu = hci_get_drvdata(hdev);
878 	struct intel_data *intel = hu->priv;
879 	struct hci_event_hdr *hdr;
880 
881 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
882 	    !test_bit(STATE_BOOTING, &intel->flags))
883 		goto recv;
884 
885 	hdr = (void *)skb->data;
886 
887 	/* When the firmware loading completes the device sends
888 	 * out a vendor specific event indicating the result of
889 	 * the firmware loading.
890 	 */
891 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
892 	    skb->data[2] == 0x06) {
893 		if (skb->data[3] != 0x00)
894 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
895 
896 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
897 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
898 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
899 
900 	/* When switching to the operational firmware the device
901 	 * sends a vendor specific event indicating that the bootup
902 	 * completed.
903 	 */
904 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
905 		   skb->data[2] == 0x02) {
906 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
907 			wake_up_bit(&intel->flags, STATE_BOOTING);
908 	}
909 recv:
910 	return hci_recv_frame(hdev, skb);
911 }
912 
913 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
914 {
915 	struct hci_uart *hu = hci_get_drvdata(hdev);
916 	struct intel_data *intel = hu->priv;
917 
918 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
919 
920 	if (value) {
921 		set_bit(STATE_TX_ACTIVE, &intel->flags);
922 		schedule_work(&intel->busy_work);
923 	} else {
924 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
925 	}
926 }
927 
928 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
929 {
930 	struct hci_lpm_pkt *lpm = (void *)skb->data;
931 	struct hci_uart *hu = hci_get_drvdata(hdev);
932 	struct intel_data *intel = hu->priv;
933 
934 	switch (lpm->opcode) {
935 	case LPM_OP_TX_NOTIFY:
936 		if (lpm->dlen < 1) {
937 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
938 			break;
939 		}
940 		intel_recv_lpm_notify(hdev, lpm->data[0]);
941 		break;
942 	case LPM_OP_SUSPEND_ACK:
943 		set_bit(STATE_SUSPENDED, &intel->flags);
944 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
945 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
946 		break;
947 	case LPM_OP_RESUME_ACK:
948 		clear_bit(STATE_SUSPENDED, &intel->flags);
949 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
950 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
951 		break;
952 	default:
953 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
954 		break;
955 	}
956 
957 	kfree_skb(skb);
958 
959 	return 0;
960 }
961 
962 #define INTEL_RECV_LPM \
963 	.type = HCI_LPM_PKT, \
964 	.hlen = HCI_LPM_HDR_SIZE, \
965 	.loff = 1, \
966 	.lsize = 1, \
967 	.maxlen = HCI_LPM_MAX_SIZE
968 
969 static const struct h4_recv_pkt intel_recv_pkts[] = {
970 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
971 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
972 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
973 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
974 };
975 
976 static int intel_recv(struct hci_uart *hu, const void *data, int count)
977 {
978 	struct intel_data *intel = hu->priv;
979 
980 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
981 		return -EUNATCH;
982 
983 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
984 				    intel_recv_pkts,
985 				    ARRAY_SIZE(intel_recv_pkts));
986 	if (IS_ERR(intel->rx_skb)) {
987 		int err = PTR_ERR(intel->rx_skb);
988 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
989 		intel->rx_skb = NULL;
990 		return err;
991 	}
992 
993 	return count;
994 }
995 
996 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
997 {
998 	struct intel_data *intel = hu->priv;
999 	struct list_head *p;
1000 
1001 	BT_DBG("hu %p skb %p", hu, skb);
1002 
1003 	if (!hu->tty->dev)
1004 		goto out_enqueue;
1005 
1006 	/* Be sure our controller is resumed and potential LPM transaction
1007 	 * completed before enqueuing any packet.
1008 	 */
1009 	mutex_lock(&intel_device_list_lock);
1010 	list_for_each(p, &intel_device_list) {
1011 		struct intel_device *idev = list_entry(p, struct intel_device,
1012 						       list);
1013 
1014 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1015 			pm_runtime_get_sync(&idev->pdev->dev);
1016 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1017 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1018 			break;
1019 		}
1020 	}
1021 	mutex_unlock(&intel_device_list_lock);
1022 out_enqueue:
1023 	skb_queue_tail(&intel->txq, skb);
1024 
1025 	return 0;
1026 }
1027 
1028 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1029 {
1030 	struct intel_data *intel = hu->priv;
1031 	struct sk_buff *skb;
1032 
1033 	skb = skb_dequeue(&intel->txq);
1034 	if (!skb)
1035 		return skb;
1036 
1037 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1038 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1039 		struct hci_command_hdr *cmd = (void *)skb->data;
1040 		__u16 opcode = le16_to_cpu(cmd->opcode);
1041 
1042 		/* When the 0xfc01 command is issued to boot into
1043 		 * the operational firmware, it will actually not
1044 		 * send a command complete event. To keep the flow
1045 		 * control working inject that event here.
1046 		 */
1047 		if (opcode == 0xfc01)
1048 			inject_cmd_complete(hu->hdev, opcode);
1049 	}
1050 
1051 	/* Prepend skb with frame type */
1052 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1053 
1054 	return skb;
1055 }
1056 
1057 static const struct hci_uart_proto intel_proto = {
1058 	.id		= HCI_UART_INTEL,
1059 	.name		= "Intel",
1060 	.manufacturer	= 2,
1061 	.init_speed	= 115200,
1062 	.oper_speed	= 3000000,
1063 	.open		= intel_open,
1064 	.close		= intel_close,
1065 	.flush		= intel_flush,
1066 	.setup		= intel_setup,
1067 	.set_baudrate	= intel_set_baudrate,
1068 	.recv		= intel_recv,
1069 	.enqueue	= intel_enqueue,
1070 	.dequeue	= intel_dequeue,
1071 };
1072 
1073 #ifdef CONFIG_ACPI
1074 static const struct acpi_device_id intel_acpi_match[] = {
1075 	{ "INT33E1", 0 },
1076 	{ },
1077 };
1078 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1079 #endif
1080 
1081 #ifdef CONFIG_PM
1082 static int intel_suspend_device(struct device *dev)
1083 {
1084 	struct intel_device *idev = dev_get_drvdata(dev);
1085 
1086 	mutex_lock(&idev->hu_lock);
1087 	if (idev->hu)
1088 		intel_lpm_suspend(idev->hu);
1089 	mutex_unlock(&idev->hu_lock);
1090 
1091 	return 0;
1092 }
1093 
1094 static int intel_resume_device(struct device *dev)
1095 {
1096 	struct intel_device *idev = dev_get_drvdata(dev);
1097 
1098 	mutex_lock(&idev->hu_lock);
1099 	if (idev->hu)
1100 		intel_lpm_resume(idev->hu);
1101 	mutex_unlock(&idev->hu_lock);
1102 
1103 	return 0;
1104 }
1105 #endif
1106 
1107 #ifdef CONFIG_PM_SLEEP
1108 static int intel_suspend(struct device *dev)
1109 {
1110 	struct intel_device *idev = dev_get_drvdata(dev);
1111 
1112 	if (device_may_wakeup(dev))
1113 		enable_irq_wake(idev->irq);
1114 
1115 	return intel_suspend_device(dev);
1116 }
1117 
1118 static int intel_resume(struct device *dev)
1119 {
1120 	struct intel_device *idev = dev_get_drvdata(dev);
1121 
1122 	if (device_may_wakeup(dev))
1123 		disable_irq_wake(idev->irq);
1124 
1125 	return intel_resume_device(dev);
1126 }
1127 #endif
1128 
1129 static const struct dev_pm_ops intel_pm_ops = {
1130 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1131 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1132 };
1133 
1134 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1135 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1136 
1137 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1138 	{ "reset-gpios", &reset_gpios, 1 },
1139 	{ "host-wake-gpios", &host_wake_gpios, 1 },
1140 	{ },
1141 };
1142 
1143 static int intel_probe(struct platform_device *pdev)
1144 {
1145 	struct intel_device *idev;
1146 	int ret;
1147 
1148 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1149 	if (!idev)
1150 		return -ENOMEM;
1151 
1152 	mutex_init(&idev->hu_lock);
1153 
1154 	idev->pdev = pdev;
1155 
1156 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1157 	if (ret)
1158 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1159 
1160 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1161 	if (IS_ERR(idev->reset)) {
1162 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1163 		return PTR_ERR(idev->reset);
1164 	}
1165 
1166 	idev->irq = platform_get_irq(pdev, 0);
1167 	if (idev->irq < 0) {
1168 		struct gpio_desc *host_wake;
1169 
1170 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1171 
1172 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1173 		if (IS_ERR(host_wake)) {
1174 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1175 			goto no_irq;
1176 		}
1177 
1178 		idev->irq = gpiod_to_irq(host_wake);
1179 		if (idev->irq < 0) {
1180 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1181 			goto no_irq;
1182 		}
1183 	}
1184 
1185 	/* Only enable wake-up/irq when controller is powered */
1186 	device_set_wakeup_capable(&pdev->dev, true);
1187 	device_wakeup_disable(&pdev->dev);
1188 
1189 no_irq:
1190 	platform_set_drvdata(pdev, idev);
1191 
1192 	/* Place this instance on the device list */
1193 	mutex_lock(&intel_device_list_lock);
1194 	list_add_tail(&idev->list, &intel_device_list);
1195 	mutex_unlock(&intel_device_list_lock);
1196 
1197 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1198 		 desc_to_gpio(idev->reset), idev->irq);
1199 
1200 	return 0;
1201 }
1202 
1203 static int intel_remove(struct platform_device *pdev)
1204 {
1205 	struct intel_device *idev = platform_get_drvdata(pdev);
1206 
1207 	device_wakeup_disable(&pdev->dev);
1208 
1209 	mutex_lock(&intel_device_list_lock);
1210 	list_del(&idev->list);
1211 	mutex_unlock(&intel_device_list_lock);
1212 
1213 	dev_info(&pdev->dev, "unregistered.\n");
1214 
1215 	return 0;
1216 }
1217 
1218 static struct platform_driver intel_driver = {
1219 	.probe = intel_probe,
1220 	.remove = intel_remove,
1221 	.driver = {
1222 		.name = "hci_intel",
1223 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1224 		.pm = &intel_pm_ops,
1225 	},
1226 };
1227 
1228 int __init intel_init(void)
1229 {
1230 	platform_driver_register(&intel_driver);
1231 
1232 	return hci_uart_register_proto(&intel_proto);
1233 }
1234 
1235 int __exit intel_deinit(void)
1236 {
1237 	platform_driver_unregister(&intel_driver);
1238 
1239 	return hci_uart_unregister_proto(&intel_proto);
1240 }
1241