1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Bluetooth HCI UART driver for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 #include "hci_uart.h"
26 #include "btintel.h"
27
28 #define STATE_BOOTLOADER 0
29 #define STATE_DOWNLOADING 1
30 #define STATE_FIRMWARE_LOADED 2
31 #define STATE_FIRMWARE_FAILED 3
32 #define STATE_BOOTING 4
33 #define STATE_LPM_ENABLED 5
34 #define STATE_TX_ACTIVE 6
35 #define STATE_SUSPENDED 7
36 #define STATE_LPM_TRANSACTION 8
37
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46
47 #define LPM_SUSPEND_DELAY_MS 1000
48
49 struct hci_lpm_pkt {
50 __u8 opcode;
51 __u8 dlen;
52 __u8 data[];
53 } __packed;
54
55 struct intel_device {
56 struct list_head list;
57 struct platform_device *pdev;
58 struct gpio_desc *reset;
59 struct hci_uart *hu;
60 struct mutex hu_lock;
61 int irq;
62 };
63
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66
67 struct intel_data {
68 struct sk_buff *rx_skb;
69 struct sk_buff_head txq;
70 struct work_struct busy_work;
71 struct hci_uart *hu;
72 unsigned long flags;
73 };
74
intel_convert_speed(unsigned int speed)75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 switch (speed) {
78 case 9600:
79 return 0x00;
80 case 19200:
81 return 0x01;
82 case 38400:
83 return 0x02;
84 case 57600:
85 return 0x03;
86 case 115200:
87 return 0x04;
88 case 230400:
89 return 0x05;
90 case 460800:
91 return 0x06;
92 case 921600:
93 return 0x07;
94 case 1843200:
95 return 0x08;
96 case 3250000:
97 return 0x09;
98 case 2000000:
99 return 0x0a;
100 case 3000000:
101 return 0x0b;
102 default:
103 return 0xff;
104 }
105 }
106
intel_wait_booting(struct hci_uart * hu)107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 struct intel_data *intel = hu->priv;
110 int err;
111
112 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 TASK_INTERRUPTIBLE,
114 msecs_to_jiffies(1000));
115
116 if (err == -EINTR) {
117 bt_dev_err(hu->hdev, "Device boot interrupted");
118 return -EINTR;
119 }
120
121 if (err) {
122 bt_dev_err(hu->hdev, "Device boot timeout");
123 return -ETIMEDOUT;
124 }
125
126 return err;
127 }
128
129 #ifdef CONFIG_PM
intel_wait_lpm_transaction(struct hci_uart * hu)130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132 struct intel_data *intel = hu->priv;
133 int err;
134
135 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 TASK_INTERRUPTIBLE,
137 msecs_to_jiffies(1000));
138
139 if (err == -EINTR) {
140 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 return -EINTR;
142 }
143
144 if (err) {
145 bt_dev_err(hu->hdev, "LPM transaction timeout");
146 return -ETIMEDOUT;
147 }
148
149 return err;
150 }
151
intel_lpm_suspend(struct hci_uart * hu)152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 struct intel_data *intel = hu->priv;
156 struct sk_buff *skb;
157
158 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 test_bit(STATE_SUSPENDED, &intel->flags))
160 return 0;
161
162 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 return -EAGAIN;
164
165 bt_dev_dbg(hu->hdev, "Suspending");
166
167 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 if (!skb) {
169 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 return -ENOMEM;
171 }
172
173 skb_put_data(skb, suspend, sizeof(suspend));
174 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178 /* LPM flow is a priority, enqueue packet at list head */
179 skb_queue_head(&intel->txq, skb);
180 hci_uart_tx_wakeup(hu);
181
182 intel_wait_lpm_transaction(hu);
183 /* Even in case of failure, continue and test the suspended flag */
184
185 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 bt_dev_err(hu->hdev, "Device suspend error");
189 return -EINVAL;
190 }
191
192 bt_dev_dbg(hu->hdev, "Suspended");
193
194 hci_uart_set_flow_control(hu, true);
195
196 return 0;
197 }
198
intel_lpm_resume(struct hci_uart * hu)199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201 struct intel_data *intel = hu->priv;
202 struct sk_buff *skb;
203
204 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 !test_bit(STATE_SUSPENDED, &intel->flags))
206 return 0;
207
208 bt_dev_dbg(hu->hdev, "Resuming");
209
210 hci_uart_set_flow_control(hu, false);
211
212 skb = bt_skb_alloc(0, GFP_KERNEL);
213 if (!skb) {
214 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 return -ENOMEM;
216 }
217
218 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222 /* LPM flow is a priority, enqueue packet at list head */
223 skb_queue_head(&intel->txq, skb);
224 hci_uart_tx_wakeup(hu);
225
226 intel_wait_lpm_transaction(hu);
227 /* Even in case of failure, continue and test the suspended flag */
228
229 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 bt_dev_err(hu->hdev, "Device resume error");
233 return -EINVAL;
234 }
235
236 bt_dev_dbg(hu->hdev, "Resumed");
237
238 return 0;
239 }
240 #endif /* CONFIG_PM */
241
intel_lpm_host_wake(struct hci_uart * hu)242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 struct intel_data *intel = hu->priv;
246 struct sk_buff *skb;
247
248 hci_uart_set_flow_control(hu, false);
249
250 clear_bit(STATE_SUSPENDED, &intel->flags);
251
252 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 if (!skb) {
254 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 return -ENOMEM;
256 }
257
258 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261 /* LPM flow is a priority, enqueue packet at list head */
262 skb_queue_head(&intel->txq, skb);
263 hci_uart_tx_wakeup(hu);
264
265 bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267 return 0;
268 }
269
intel_irq(int irq,void * dev_id)270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272 struct intel_device *idev = dev_id;
273
274 dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276 mutex_lock(&idev->hu_lock);
277 if (idev->hu)
278 intel_lpm_host_wake(idev->hu);
279 mutex_unlock(&idev->hu_lock);
280
281 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 pm_runtime_get(&idev->pdev->dev);
283 pm_runtime_mark_last_busy(&idev->pdev->dev);
284 pm_runtime_put_autosuspend(&idev->pdev->dev);
285
286 return IRQ_HANDLED;
287 }
288
intel_set_power(struct hci_uart * hu,bool powered)289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291 struct intel_device *idev;
292 int err = -ENODEV;
293
294 if (!hu->tty->dev)
295 return err;
296
297 mutex_lock(&intel_device_list_lock);
298
299 list_for_each_entry(idev, &intel_device_list, list) {
300 /* tty device and pdev device should share the same parent
301 * which is the UART port.
302 */
303 if (hu->tty->dev->parent != idev->pdev->dev.parent)
304 continue;
305
306 if (!idev->reset) {
307 err = -ENOTSUPP;
308 break;
309 }
310
311 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
312 hu, dev_name(&idev->pdev->dev), powered);
313
314 gpiod_set_value(idev->reset, powered);
315
316 /* Provide to idev a hu reference which is used to run LPM
317 * transactions (lpm suspend/resume) from PM callbacks.
318 * hu needs to be protected against concurrent removing during
319 * these PM ops.
320 */
321 mutex_lock(&idev->hu_lock);
322 idev->hu = powered ? hu : NULL;
323 mutex_unlock(&idev->hu_lock);
324
325 if (idev->irq < 0)
326 break;
327
328 if (powered && device_can_wakeup(&idev->pdev->dev)) {
329 err = devm_request_threaded_irq(&idev->pdev->dev,
330 idev->irq, NULL,
331 intel_irq,
332 IRQF_ONESHOT,
333 "bt-host-wake", idev);
334 if (err) {
335 BT_ERR("hu %p, unable to allocate irq-%d",
336 hu, idev->irq);
337 break;
338 }
339
340 device_wakeup_enable(&idev->pdev->dev);
341
342 pm_runtime_set_active(&idev->pdev->dev);
343 pm_runtime_use_autosuspend(&idev->pdev->dev);
344 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
345 LPM_SUSPEND_DELAY_MS);
346 pm_runtime_enable(&idev->pdev->dev);
347 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
348 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
349 device_wakeup_disable(&idev->pdev->dev);
350
351 pm_runtime_disable(&idev->pdev->dev);
352 }
353 }
354
355 mutex_unlock(&intel_device_list_lock);
356
357 return err;
358 }
359
intel_busy_work(struct work_struct * work)360 static void intel_busy_work(struct work_struct *work)
361 {
362 struct intel_data *intel = container_of(work, struct intel_data,
363 busy_work);
364 struct intel_device *idev;
365
366 if (!intel->hu->tty->dev)
367 return;
368
369 /* Link is busy, delay the suspend */
370 mutex_lock(&intel_device_list_lock);
371 list_for_each_entry(idev, &intel_device_list, list) {
372 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
373 pm_runtime_get(&idev->pdev->dev);
374 pm_runtime_mark_last_busy(&idev->pdev->dev);
375 pm_runtime_put_autosuspend(&idev->pdev->dev);
376 break;
377 }
378 }
379 mutex_unlock(&intel_device_list_lock);
380 }
381
intel_open(struct hci_uart * hu)382 static int intel_open(struct hci_uart *hu)
383 {
384 struct intel_data *intel;
385
386 BT_DBG("hu %p", hu);
387
388 if (!hci_uart_has_flow_control(hu))
389 return -EOPNOTSUPP;
390
391 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
392 if (!intel)
393 return -ENOMEM;
394
395 skb_queue_head_init(&intel->txq);
396 INIT_WORK(&intel->busy_work, intel_busy_work);
397
398 intel->hu = hu;
399
400 hu->priv = intel;
401
402 if (!intel_set_power(hu, true))
403 set_bit(STATE_BOOTING, &intel->flags);
404
405 return 0;
406 }
407
intel_close(struct hci_uart * hu)408 static int intel_close(struct hci_uart *hu)
409 {
410 struct intel_data *intel = hu->priv;
411
412 BT_DBG("hu %p", hu);
413
414 cancel_work_sync(&intel->busy_work);
415
416 intel_set_power(hu, false);
417
418 skb_queue_purge(&intel->txq);
419 kfree_skb(intel->rx_skb);
420 kfree(intel);
421
422 hu->priv = NULL;
423 return 0;
424 }
425
intel_flush(struct hci_uart * hu)426 static int intel_flush(struct hci_uart *hu)
427 {
428 struct intel_data *intel = hu->priv;
429
430 BT_DBG("hu %p", hu);
431
432 skb_queue_purge(&intel->txq);
433
434 return 0;
435 }
436
inject_cmd_complete(struct hci_dev * hdev,__u16 opcode)437 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
438 {
439 struct sk_buff *skb;
440 struct hci_event_hdr *hdr;
441 struct hci_ev_cmd_complete *evt;
442
443 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
444 if (!skb)
445 return -ENOMEM;
446
447 hdr = skb_put(skb, sizeof(*hdr));
448 hdr->evt = HCI_EV_CMD_COMPLETE;
449 hdr->plen = sizeof(*evt) + 1;
450
451 evt = skb_put(skb, sizeof(*evt));
452 evt->ncmd = 0x01;
453 evt->opcode = cpu_to_le16(opcode);
454
455 skb_put_u8(skb, 0x00);
456
457 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
458
459 return hci_recv_frame(hdev, skb);
460 }
461
intel_set_baudrate(struct hci_uart * hu,unsigned int speed)462 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
463 {
464 struct intel_data *intel = hu->priv;
465 struct hci_dev *hdev = hu->hdev;
466 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
467 struct sk_buff *skb;
468 int err;
469
470 /* This can be the first command sent to the chip, check
471 * that the controller is ready.
472 */
473 err = intel_wait_booting(hu);
474
475 clear_bit(STATE_BOOTING, &intel->flags);
476
477 /* In case of timeout, try to continue anyway */
478 if (err && err != -ETIMEDOUT)
479 return err;
480
481 bt_dev_info(hdev, "Change controller speed to %d", speed);
482
483 speed_cmd[3] = intel_convert_speed(speed);
484 if (speed_cmd[3] == 0xff) {
485 bt_dev_err(hdev, "Unsupported speed");
486 return -EINVAL;
487 }
488
489 /* Device will not accept speed change if Intel version has not been
490 * previously requested.
491 */
492 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
493 if (IS_ERR(skb)) {
494 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
495 PTR_ERR(skb));
496 return PTR_ERR(skb);
497 }
498 kfree_skb(skb);
499
500 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
501 if (!skb) {
502 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
503 return -ENOMEM;
504 }
505
506 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
507 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
508
509 hci_uart_set_flow_control(hu, true);
510
511 skb_queue_tail(&intel->txq, skb);
512 hci_uart_tx_wakeup(hu);
513
514 /* wait 100ms to change baudrate on controller side */
515 msleep(100);
516
517 hci_uart_set_baudrate(hu, speed);
518 hci_uart_set_flow_control(hu, false);
519
520 return 0;
521 }
522
intel_setup(struct hci_uart * hu)523 static int intel_setup(struct hci_uart *hu)
524 {
525 struct intel_data *intel = hu->priv;
526 struct hci_dev *hdev = hu->hdev;
527 struct sk_buff *skb;
528 struct intel_version ver;
529 struct intel_boot_params params;
530 struct intel_device *idev;
531 const struct firmware *fw;
532 char fwname[64];
533 u32 boot_param;
534 ktime_t calltime, delta, rettime;
535 unsigned long long duration;
536 unsigned int init_speed, oper_speed;
537 int speed_change = 0;
538 int err;
539
540 bt_dev_dbg(hdev, "start intel_setup");
541
542 hu->hdev->set_diag = btintel_set_diag;
543 hu->hdev->set_bdaddr = btintel_set_bdaddr;
544
545 /* Set the default boot parameter to 0x0 and it is updated to
546 * SKU specific boot parameter after reading Intel_Write_Boot_Params
547 * command while downloading the firmware.
548 */
549 boot_param = 0x00000000;
550
551 calltime = ktime_get();
552
553 if (hu->init_speed)
554 init_speed = hu->init_speed;
555 else
556 init_speed = hu->proto->init_speed;
557
558 if (hu->oper_speed)
559 oper_speed = hu->oper_speed;
560 else
561 oper_speed = hu->proto->oper_speed;
562
563 if (oper_speed && init_speed && oper_speed != init_speed)
564 speed_change = 1;
565
566 /* Check that the controller is ready */
567 err = intel_wait_booting(hu);
568
569 clear_bit(STATE_BOOTING, &intel->flags);
570
571 /* In case of timeout, try to continue anyway */
572 if (err && err != -ETIMEDOUT)
573 return err;
574
575 set_bit(STATE_BOOTLOADER, &intel->flags);
576
577 /* Read the Intel version information to determine if the device
578 * is in bootloader mode or if it already has operational firmware
579 * loaded.
580 */
581 err = btintel_read_version(hdev, &ver);
582 if (err)
583 return err;
584
585 /* The hardware platform number has a fixed value of 0x37 and
586 * for now only accept this single value.
587 */
588 if (ver.hw_platform != 0x37) {
589 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
590 ver.hw_platform);
591 return -EINVAL;
592 }
593
594 /* Check for supported iBT hardware variants of this firmware
595 * loading method.
596 *
597 * This check has been put in place to ensure correct forward
598 * compatibility options when newer hardware variants come along.
599 */
600 switch (ver.hw_variant) {
601 case 0x0b: /* LnP */
602 case 0x0c: /* WsP */
603 case 0x12: /* ThP */
604 break;
605 default:
606 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
607 ver.hw_variant);
608 return -EINVAL;
609 }
610
611 btintel_version_info(hdev, &ver);
612
613 /* The firmware variant determines if the device is in bootloader
614 * mode or is running operational firmware. The value 0x06 identifies
615 * the bootloader and the value 0x23 identifies the operational
616 * firmware.
617 *
618 * When the operational firmware is already present, then only
619 * the check for valid Bluetooth device address is needed. This
620 * determines if the device will be added as configured or
621 * unconfigured controller.
622 *
623 * It is not possible to use the Secure Boot Parameters in this
624 * case since that command is only available in bootloader mode.
625 */
626 if (ver.fw_variant == 0x23) {
627 clear_bit(STATE_BOOTLOADER, &intel->flags);
628 btintel_check_bdaddr(hdev);
629 return 0;
630 }
631
632 /* If the device is not in bootloader mode, then the only possible
633 * choice is to return an error and abort the device initialization.
634 */
635 if (ver.fw_variant != 0x06) {
636 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
637 ver.fw_variant);
638 return -ENODEV;
639 }
640
641 /* Read the secure boot parameters to identify the operating
642 * details of the bootloader.
643 */
644 err = btintel_read_boot_params(hdev, ¶ms);
645 if (err)
646 return err;
647
648 /* It is required that every single firmware fragment is acknowledged
649 * with a command complete event. If the boot parameters indicate
650 * that this bootloader does not send them, then abort the setup.
651 */
652 if (params.limited_cce != 0x00) {
653 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
654 params.limited_cce);
655 return -EINVAL;
656 }
657
658 /* If the OTP has no valid Bluetooth device address, then there will
659 * also be no valid address for the operational firmware.
660 */
661 if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) {
662 bt_dev_info(hdev, "No device address configured");
663 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
664 }
665
666 /* With this Intel bootloader only the hardware variant and device
667 * revision information are used to select the right firmware for SfP
668 * and WsP.
669 *
670 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
671 *
672 * Currently the supported hardware variants are:
673 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
674 * 12 (0x0c) for iBT 3.5 (WsP)
675 *
676 * For ThP/JfP and for future SKU's, the FW name varies based on HW
677 * variant, HW revision and FW revision, as these are dependent on CNVi
678 * and RF Combination.
679 *
680 * 18 (0x12) for iBT3.5 (ThP/JfP)
681 *
682 * The firmware file name for these will be
683 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
684 *
685 */
686 switch (ver.hw_variant) {
687 case 0x0b: /* SfP */
688 case 0x0c: /* WsP */
689 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
690 ver.hw_variant, le16_to_cpu(params.dev_revid));
691 break;
692 case 0x12: /* ThP */
693 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
694 ver.hw_variant, ver.hw_revision, ver.fw_revision);
695 break;
696 default:
697 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
698 ver.hw_variant);
699 return -EINVAL;
700 }
701
702 err = request_firmware(&fw, fwname, &hdev->dev);
703 if (err < 0) {
704 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
705 err);
706 return err;
707 }
708
709 bt_dev_info(hdev, "Found device firmware: %s", fwname);
710
711 /* Save the DDC file name for later */
712 switch (ver.hw_variant) {
713 case 0x0b: /* SfP */
714 case 0x0c: /* WsP */
715 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
716 ver.hw_variant, le16_to_cpu(params.dev_revid));
717 break;
718 case 0x12: /* ThP */
719 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
720 ver.hw_variant, ver.hw_revision, ver.fw_revision);
721 break;
722 default:
723 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
724 ver.hw_variant);
725 return -EINVAL;
726 }
727
728 if (fw->size < 644) {
729 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
730 fw->size);
731 err = -EBADF;
732 goto done;
733 }
734
735 set_bit(STATE_DOWNLOADING, &intel->flags);
736
737 /* Start firmware downloading and get boot parameter */
738 err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
739 if (err < 0)
740 goto done;
741
742 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
743
744 bt_dev_info(hdev, "Waiting for firmware download to complete");
745
746 /* Before switching the device into operational mode and with that
747 * booting the loaded firmware, wait for the bootloader notification
748 * that all fragments have been successfully received.
749 *
750 * When the event processing receives the notification, then the
751 * STATE_DOWNLOADING flag will be cleared.
752 *
753 * The firmware loading should not take longer than 5 seconds
754 * and thus just timeout if that happens and fail the setup
755 * of this device.
756 */
757 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
758 TASK_INTERRUPTIBLE,
759 msecs_to_jiffies(5000));
760 if (err == -EINTR) {
761 bt_dev_err(hdev, "Firmware loading interrupted");
762 err = -EINTR;
763 goto done;
764 }
765
766 if (err) {
767 bt_dev_err(hdev, "Firmware loading timeout");
768 err = -ETIMEDOUT;
769 goto done;
770 }
771
772 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
773 bt_dev_err(hdev, "Firmware loading failed");
774 err = -ENOEXEC;
775 goto done;
776 }
777
778 rettime = ktime_get();
779 delta = ktime_sub(rettime, calltime);
780 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
781
782 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
783
784 done:
785 release_firmware(fw);
786
787 /* Check if there was an error and if is not -EALREADY which means the
788 * firmware has already been loaded.
789 */
790 if (err < 0 && err != -EALREADY)
791 return err;
792
793 /* We need to restore the default speed before Intel reset */
794 if (speed_change) {
795 err = intel_set_baudrate(hu, init_speed);
796 if (err)
797 return err;
798 }
799
800 calltime = ktime_get();
801
802 set_bit(STATE_BOOTING, &intel->flags);
803
804 err = btintel_send_intel_reset(hdev, boot_param);
805 if (err)
806 return err;
807
808 /* The bootloader will not indicate when the device is ready. This
809 * is done by the operational firmware sending bootup notification.
810 *
811 * Booting into operational firmware should not take longer than
812 * 1 second. However if that happens, then just fail the setup
813 * since something went wrong.
814 */
815 bt_dev_info(hdev, "Waiting for device to boot");
816
817 err = intel_wait_booting(hu);
818 if (err)
819 return err;
820
821 clear_bit(STATE_BOOTING, &intel->flags);
822
823 rettime = ktime_get();
824 delta = ktime_sub(rettime, calltime);
825 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
826
827 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
828
829 /* Enable LPM if matching pdev with wakeup enabled, set TX active
830 * until further LPM TX notification.
831 */
832 mutex_lock(&intel_device_list_lock);
833 list_for_each_entry(idev, &intel_device_list, list) {
834 if (!hu->tty->dev)
835 break;
836 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
837 if (device_may_wakeup(&idev->pdev->dev)) {
838 set_bit(STATE_LPM_ENABLED, &intel->flags);
839 set_bit(STATE_TX_ACTIVE, &intel->flags);
840 }
841 break;
842 }
843 }
844 mutex_unlock(&intel_device_list_lock);
845
846 /* Ignore errors, device can work without DDC parameters */
847 btintel_load_ddc_config(hdev, fwname);
848
849 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
850 if (IS_ERR(skb))
851 return PTR_ERR(skb);
852 kfree_skb(skb);
853
854 if (speed_change) {
855 err = intel_set_baudrate(hu, oper_speed);
856 if (err)
857 return err;
858 }
859
860 bt_dev_info(hdev, "Setup complete");
861
862 clear_bit(STATE_BOOTLOADER, &intel->flags);
863
864 return 0;
865 }
866
intel_recv_event(struct hci_dev * hdev,struct sk_buff * skb)867 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
868 {
869 struct hci_uart *hu = hci_get_drvdata(hdev);
870 struct intel_data *intel = hu->priv;
871 struct hci_event_hdr *hdr;
872
873 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
874 !test_bit(STATE_BOOTING, &intel->flags))
875 goto recv;
876
877 hdr = (void *)skb->data;
878
879 /* When the firmware loading completes the device sends
880 * out a vendor specific event indicating the result of
881 * the firmware loading.
882 */
883 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
884 skb->data[2] == 0x06) {
885 if (skb->data[3] != 0x00)
886 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
887
888 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
889 test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
890 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
891
892 /* When switching to the operational firmware the device
893 * sends a vendor specific event indicating that the bootup
894 * completed.
895 */
896 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
897 skb->data[2] == 0x02) {
898 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
899 wake_up_bit(&intel->flags, STATE_BOOTING);
900 }
901 recv:
902 return hci_recv_frame(hdev, skb);
903 }
904
intel_recv_lpm_notify(struct hci_dev * hdev,int value)905 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
906 {
907 struct hci_uart *hu = hci_get_drvdata(hdev);
908 struct intel_data *intel = hu->priv;
909
910 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
911
912 if (value) {
913 set_bit(STATE_TX_ACTIVE, &intel->flags);
914 schedule_work(&intel->busy_work);
915 } else {
916 clear_bit(STATE_TX_ACTIVE, &intel->flags);
917 }
918 }
919
intel_recv_lpm(struct hci_dev * hdev,struct sk_buff * skb)920 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
921 {
922 struct hci_lpm_pkt *lpm = (void *)skb->data;
923 struct hci_uart *hu = hci_get_drvdata(hdev);
924 struct intel_data *intel = hu->priv;
925
926 switch (lpm->opcode) {
927 case LPM_OP_TX_NOTIFY:
928 if (lpm->dlen < 1) {
929 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
930 break;
931 }
932 intel_recv_lpm_notify(hdev, lpm->data[0]);
933 break;
934 case LPM_OP_SUSPEND_ACK:
935 set_bit(STATE_SUSPENDED, &intel->flags);
936 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
937 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
938 break;
939 case LPM_OP_RESUME_ACK:
940 clear_bit(STATE_SUSPENDED, &intel->flags);
941 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
942 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
943 break;
944 default:
945 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
946 break;
947 }
948
949 kfree_skb(skb);
950
951 return 0;
952 }
953
954 #define INTEL_RECV_LPM \
955 .type = HCI_LPM_PKT, \
956 .hlen = HCI_LPM_HDR_SIZE, \
957 .loff = 1, \
958 .lsize = 1, \
959 .maxlen = HCI_LPM_MAX_SIZE
960
961 static const struct h4_recv_pkt intel_recv_pkts[] = {
962 { H4_RECV_ACL, .recv = hci_recv_frame },
963 { H4_RECV_SCO, .recv = hci_recv_frame },
964 { H4_RECV_EVENT, .recv = intel_recv_event },
965 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
966 };
967
intel_recv(struct hci_uart * hu,const void * data,int count)968 static int intel_recv(struct hci_uart *hu, const void *data, int count)
969 {
970 struct intel_data *intel = hu->priv;
971
972 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
973 return -EUNATCH;
974
975 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
976 intel_recv_pkts,
977 ARRAY_SIZE(intel_recv_pkts));
978 if (IS_ERR(intel->rx_skb)) {
979 int err = PTR_ERR(intel->rx_skb);
980 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
981 intel->rx_skb = NULL;
982 return err;
983 }
984
985 return count;
986 }
987
intel_enqueue(struct hci_uart * hu,struct sk_buff * skb)988 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
989 {
990 struct intel_data *intel = hu->priv;
991 struct intel_device *idev;
992
993 BT_DBG("hu %p skb %p", hu, skb);
994
995 if (!hu->tty->dev)
996 goto out_enqueue;
997
998 /* Be sure our controller is resumed and potential LPM transaction
999 * completed before enqueuing any packet.
1000 */
1001 mutex_lock(&intel_device_list_lock);
1002 list_for_each_entry(idev, &intel_device_list, list) {
1003 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1004 pm_runtime_get_sync(&idev->pdev->dev);
1005 pm_runtime_mark_last_busy(&idev->pdev->dev);
1006 pm_runtime_put_autosuspend(&idev->pdev->dev);
1007 break;
1008 }
1009 }
1010 mutex_unlock(&intel_device_list_lock);
1011 out_enqueue:
1012 skb_queue_tail(&intel->txq, skb);
1013
1014 return 0;
1015 }
1016
intel_dequeue(struct hci_uart * hu)1017 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1018 {
1019 struct intel_data *intel = hu->priv;
1020 struct sk_buff *skb;
1021
1022 skb = skb_dequeue(&intel->txq);
1023 if (!skb)
1024 return skb;
1025
1026 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1027 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1028 struct hci_command_hdr *cmd = (void *)skb->data;
1029 __u16 opcode = le16_to_cpu(cmd->opcode);
1030
1031 /* When the 0xfc01 command is issued to boot into
1032 * the operational firmware, it will actually not
1033 * send a command complete event. To keep the flow
1034 * control working inject that event here.
1035 */
1036 if (opcode == 0xfc01)
1037 inject_cmd_complete(hu->hdev, opcode);
1038 }
1039
1040 /* Prepend skb with frame type */
1041 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1042
1043 return skb;
1044 }
1045
1046 static const struct hci_uart_proto intel_proto = {
1047 .id = HCI_UART_INTEL,
1048 .name = "Intel",
1049 .manufacturer = 2,
1050 .init_speed = 115200,
1051 .oper_speed = 3000000,
1052 .open = intel_open,
1053 .close = intel_close,
1054 .flush = intel_flush,
1055 .setup = intel_setup,
1056 .set_baudrate = intel_set_baudrate,
1057 .recv = intel_recv,
1058 .enqueue = intel_enqueue,
1059 .dequeue = intel_dequeue,
1060 };
1061
1062 #ifdef CONFIG_ACPI
1063 static const struct acpi_device_id intel_acpi_match[] = {
1064 { "INT33E1", 0 },
1065 { "INT33E3", 0 },
1066 { }
1067 };
1068 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1069 #endif
1070
1071 #ifdef CONFIG_PM
intel_suspend_device(struct device * dev)1072 static int intel_suspend_device(struct device *dev)
1073 {
1074 struct intel_device *idev = dev_get_drvdata(dev);
1075
1076 mutex_lock(&idev->hu_lock);
1077 if (idev->hu)
1078 intel_lpm_suspend(idev->hu);
1079 mutex_unlock(&idev->hu_lock);
1080
1081 return 0;
1082 }
1083
intel_resume_device(struct device * dev)1084 static int intel_resume_device(struct device *dev)
1085 {
1086 struct intel_device *idev = dev_get_drvdata(dev);
1087
1088 mutex_lock(&idev->hu_lock);
1089 if (idev->hu)
1090 intel_lpm_resume(idev->hu);
1091 mutex_unlock(&idev->hu_lock);
1092
1093 return 0;
1094 }
1095 #endif
1096
1097 #ifdef CONFIG_PM_SLEEP
intel_suspend(struct device * dev)1098 static int intel_suspend(struct device *dev)
1099 {
1100 struct intel_device *idev = dev_get_drvdata(dev);
1101
1102 if (device_may_wakeup(dev))
1103 enable_irq_wake(idev->irq);
1104
1105 return intel_suspend_device(dev);
1106 }
1107
intel_resume(struct device * dev)1108 static int intel_resume(struct device *dev)
1109 {
1110 struct intel_device *idev = dev_get_drvdata(dev);
1111
1112 if (device_may_wakeup(dev))
1113 disable_irq_wake(idev->irq);
1114
1115 return intel_resume_device(dev);
1116 }
1117 #endif
1118
1119 static const struct dev_pm_ops intel_pm_ops = {
1120 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1121 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1122 };
1123
1124 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1125 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1126
1127 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1128 { "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1129 { "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1130 { }
1131 };
1132
intel_probe(struct platform_device * pdev)1133 static int intel_probe(struct platform_device *pdev)
1134 {
1135 struct intel_device *idev;
1136 int ret;
1137
1138 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1139 if (!idev)
1140 return -ENOMEM;
1141
1142 mutex_init(&idev->hu_lock);
1143
1144 idev->pdev = pdev;
1145
1146 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1147 if (ret)
1148 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1149
1150 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1151 if (IS_ERR(idev->reset)) {
1152 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1153 return PTR_ERR(idev->reset);
1154 }
1155
1156 idev->irq = platform_get_irq(pdev, 0);
1157 if (idev->irq < 0) {
1158 struct gpio_desc *host_wake;
1159
1160 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1161
1162 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1163 if (IS_ERR(host_wake)) {
1164 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1165 goto no_irq;
1166 }
1167
1168 idev->irq = gpiod_to_irq(host_wake);
1169 if (idev->irq < 0) {
1170 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1171 goto no_irq;
1172 }
1173 }
1174
1175 /* Only enable wake-up/irq when controller is powered */
1176 device_set_wakeup_capable(&pdev->dev, true);
1177 device_wakeup_disable(&pdev->dev);
1178
1179 no_irq:
1180 platform_set_drvdata(pdev, idev);
1181
1182 /* Place this instance on the device list */
1183 mutex_lock(&intel_device_list_lock);
1184 list_add_tail(&idev->list, &intel_device_list);
1185 mutex_unlock(&intel_device_list_lock);
1186
1187 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1188 desc_to_gpio(idev->reset), idev->irq);
1189
1190 return 0;
1191 }
1192
intel_remove(struct platform_device * pdev)1193 static int intel_remove(struct platform_device *pdev)
1194 {
1195 struct intel_device *idev = platform_get_drvdata(pdev);
1196
1197 device_wakeup_disable(&pdev->dev);
1198
1199 mutex_lock(&intel_device_list_lock);
1200 list_del(&idev->list);
1201 mutex_unlock(&intel_device_list_lock);
1202
1203 dev_info(&pdev->dev, "unregistered.\n");
1204
1205 return 0;
1206 }
1207
1208 static struct platform_driver intel_driver = {
1209 .probe = intel_probe,
1210 .remove = intel_remove,
1211 .driver = {
1212 .name = "hci_intel",
1213 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1214 .pm = &intel_pm_ops,
1215 },
1216 };
1217
intel_init(void)1218 int __init intel_init(void)
1219 {
1220 int err;
1221
1222 err = platform_driver_register(&intel_driver);
1223 if (err)
1224 return err;
1225
1226 return hci_uart_register_proto(&intel_proto);
1227 }
1228
intel_deinit(void)1229 int __exit intel_deinit(void)
1230 {
1231 platform_driver_unregister(&intel_driver);
1232
1233 return hci_uart_unregister_proto(&intel_proto);
1234 }
1235