xref: /openbmc/linux/drivers/bluetooth/hci_h5.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI Three-wire UART driver
5  *
6  *  Copyright (C) 2012  Intel Corporation
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/of_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/serdev.h>
17 #include <linux/skbuff.h>
18 
19 #include <net/bluetooth/bluetooth.h>
20 #include <net/bluetooth/hci_core.h>
21 
22 #include "btrtl.h"
23 #include "hci_uart.h"
24 
25 #define SUSPEND_TIMEOUT_MS	6000
26 
27 #define HCI_3WIRE_ACK_PKT	0
28 #define HCI_3WIRE_LINK_PKT	15
29 
30 /* Sliding window size */
31 #define H5_TX_WIN_MAX		4
32 
33 #define H5_ACK_TIMEOUT	msecs_to_jiffies(250)
34 #define H5_SYNC_TIMEOUT	msecs_to_jiffies(100)
35 
36 /*
37  * Maximum Three-wire packet:
38  *     4 byte header + max value for 12-bit length + 2 bytes for CRC
39  */
40 #define H5_MAX_LEN (4 + 0xfff + 2)
41 
42 /* Convenience macros for reading Three-wire header values */
43 #define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
44 #define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
45 #define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
46 #define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
47 #define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
48 #define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
49 
50 #define SLIP_DELIMITER	0xc0
51 #define SLIP_ESC	0xdb
52 #define SLIP_ESC_DELIM	0xdc
53 #define SLIP_ESC_ESC	0xdd
54 
55 /* H5 state flags */
56 enum {
57 	H5_RX_ESC,		/* SLIP escape mode */
58 	H5_TX_ACK_REQ,		/* Pending ack to send */
59 	H5_WAKEUP_DISABLE,	/* Device cannot wake host */
60 	H5_HW_FLOW_CONTROL,	/* Use HW flow control */
61 };
62 
63 struct h5 {
64 	/* Must be the first member, hci_serdev.c expects this. */
65 	struct hci_uart		serdev_hu;
66 
67 	struct sk_buff_head	unack;		/* Unack'ed packets queue */
68 	struct sk_buff_head	rel;		/* Reliable packets queue */
69 	struct sk_buff_head	unrel;		/* Unreliable packets queue */
70 
71 	unsigned long		flags;
72 
73 	struct sk_buff		*rx_skb;	/* Receive buffer */
74 	size_t			rx_pending;	/* Expecting more bytes */
75 	u8			rx_ack;		/* Last ack number received */
76 
77 	int			(*rx_func)(struct hci_uart *hu, u8 c);
78 
79 	struct timer_list	timer;		/* Retransmission timer */
80 	struct hci_uart		*hu;		/* Parent HCI UART */
81 
82 	u8			tx_seq;		/* Next seq number to send */
83 	u8			tx_ack;		/* Next ack number to send */
84 	u8			tx_win;		/* Sliding window size */
85 
86 	enum {
87 		H5_UNINITIALIZED,
88 		H5_INITIALIZED,
89 		H5_ACTIVE,
90 	} state;
91 
92 	enum {
93 		H5_AWAKE,
94 		H5_SLEEPING,
95 		H5_WAKING_UP,
96 	} sleep;
97 
98 	const struct h5_vnd *vnd;
99 	const char *id;
100 
101 	struct gpio_desc *enable_gpio;
102 	struct gpio_desc *device_wake_gpio;
103 };
104 
105 enum h5_driver_info {
106 	H5_INFO_WAKEUP_DISABLE = BIT(0),
107 };
108 
109 struct h5_vnd {
110 	int (*setup)(struct h5 *h5);
111 	void (*open)(struct h5 *h5);
112 	void (*close)(struct h5 *h5);
113 	int (*suspend)(struct h5 *h5);
114 	int (*resume)(struct h5 *h5);
115 	const struct acpi_gpio_mapping *acpi_gpio_map;
116 };
117 
118 struct h5_device_data {
119 	uint32_t driver_info;
120 	struct h5_vnd *vnd;
121 };
122 
123 static void h5_reset_rx(struct h5 *h5);
124 
125 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
126 {
127 	struct h5 *h5 = hu->priv;
128 	struct sk_buff *nskb;
129 
130 	nskb = alloc_skb(3, GFP_ATOMIC);
131 	if (!nskb)
132 		return;
133 
134 	hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT;
135 
136 	skb_put_data(nskb, data, len);
137 
138 	skb_queue_tail(&h5->unrel, nskb);
139 }
140 
141 static u8 h5_cfg_field(struct h5 *h5)
142 {
143 	/* Sliding window size (first 3 bits) */
144 	return h5->tx_win & 0x07;
145 }
146 
147 static void h5_timed_event(struct timer_list *t)
148 {
149 	const unsigned char sync_req[] = { 0x01, 0x7e };
150 	unsigned char conf_req[3] = { 0x03, 0xfc };
151 	struct h5 *h5 = from_timer(h5, t, timer);
152 	struct hci_uart *hu = h5->hu;
153 	struct sk_buff *skb;
154 	unsigned long flags;
155 
156 	BT_DBG("%s", hu->hdev->name);
157 
158 	if (h5->state == H5_UNINITIALIZED)
159 		h5_link_control(hu, sync_req, sizeof(sync_req));
160 
161 	if (h5->state == H5_INITIALIZED) {
162 		conf_req[2] = h5_cfg_field(h5);
163 		h5_link_control(hu, conf_req, sizeof(conf_req));
164 	}
165 
166 	if (h5->state != H5_ACTIVE) {
167 		mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
168 		goto wakeup;
169 	}
170 
171 	if (h5->sleep != H5_AWAKE) {
172 		h5->sleep = H5_SLEEPING;
173 		goto wakeup;
174 	}
175 
176 	BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
177 
178 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
179 
180 	while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
181 		h5->tx_seq = (h5->tx_seq - 1) & 0x07;
182 		skb_queue_head(&h5->rel, skb);
183 	}
184 
185 	spin_unlock_irqrestore(&h5->unack.lock, flags);
186 
187 wakeup:
188 	hci_uart_tx_wakeup(hu);
189 }
190 
191 static void h5_peer_reset(struct hci_uart *hu)
192 {
193 	struct h5 *h5 = hu->priv;
194 
195 	bt_dev_err(hu->hdev, "Peer device has reset");
196 
197 	h5->state = H5_UNINITIALIZED;
198 
199 	del_timer(&h5->timer);
200 
201 	skb_queue_purge(&h5->rel);
202 	skb_queue_purge(&h5->unrel);
203 	skb_queue_purge(&h5->unack);
204 
205 	h5->tx_seq = 0;
206 	h5->tx_ack = 0;
207 
208 	/* Send reset request to upper stack */
209 	hci_reset_dev(hu->hdev);
210 }
211 
212 static int h5_open(struct hci_uart *hu)
213 {
214 	struct h5 *h5;
215 	const unsigned char sync[] = { 0x01, 0x7e };
216 
217 	BT_DBG("hu %p", hu);
218 
219 	if (hu->serdev) {
220 		h5 = serdev_device_get_drvdata(hu->serdev);
221 	} else {
222 		h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
223 		if (!h5)
224 			return -ENOMEM;
225 	}
226 
227 	hu->priv = h5;
228 	h5->hu = hu;
229 
230 	skb_queue_head_init(&h5->unack);
231 	skb_queue_head_init(&h5->rel);
232 	skb_queue_head_init(&h5->unrel);
233 
234 	h5_reset_rx(h5);
235 
236 	timer_setup(&h5->timer, h5_timed_event, 0);
237 
238 	h5->tx_win = H5_TX_WIN_MAX;
239 
240 	if (h5->vnd && h5->vnd->open)
241 		h5->vnd->open(h5);
242 
243 	set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);
244 
245 	/* Send initial sync request */
246 	h5_link_control(hu, sync, sizeof(sync));
247 	mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
248 
249 	return 0;
250 }
251 
252 static int h5_close(struct hci_uart *hu)
253 {
254 	struct h5 *h5 = hu->priv;
255 
256 	del_timer_sync(&h5->timer);
257 
258 	skb_queue_purge(&h5->unack);
259 	skb_queue_purge(&h5->rel);
260 	skb_queue_purge(&h5->unrel);
261 
262 	kfree_skb(h5->rx_skb);
263 	h5->rx_skb = NULL;
264 
265 	if (h5->vnd && h5->vnd->close)
266 		h5->vnd->close(h5);
267 
268 	if (!hu->serdev)
269 		kfree(h5);
270 
271 	return 0;
272 }
273 
274 static int h5_setup(struct hci_uart *hu)
275 {
276 	struct h5 *h5 = hu->priv;
277 
278 	if (h5->vnd && h5->vnd->setup)
279 		return h5->vnd->setup(h5);
280 
281 	return 0;
282 }
283 
284 static void h5_pkt_cull(struct h5 *h5)
285 {
286 	struct sk_buff *skb, *tmp;
287 	unsigned long flags;
288 	int i, to_remove;
289 	u8 seq;
290 
291 	spin_lock_irqsave(&h5->unack.lock, flags);
292 
293 	to_remove = skb_queue_len(&h5->unack);
294 	if (to_remove == 0)
295 		goto unlock;
296 
297 	seq = h5->tx_seq;
298 
299 	while (to_remove > 0) {
300 		if (h5->rx_ack == seq)
301 			break;
302 
303 		to_remove--;
304 		seq = (seq - 1) & 0x07;
305 	}
306 
307 	if (seq != h5->rx_ack)
308 		BT_ERR("Controller acked invalid packet");
309 
310 	i = 0;
311 	skb_queue_walk_safe(&h5->unack, skb, tmp) {
312 		if (i++ >= to_remove)
313 			break;
314 
315 		__skb_unlink(skb, &h5->unack);
316 		kfree_skb(skb);
317 	}
318 
319 	if (skb_queue_empty(&h5->unack))
320 		del_timer(&h5->timer);
321 
322 unlock:
323 	spin_unlock_irqrestore(&h5->unack.lock, flags);
324 }
325 
326 static void h5_handle_internal_rx(struct hci_uart *hu)
327 {
328 	struct h5 *h5 = hu->priv;
329 	const unsigned char sync_req[] = { 0x01, 0x7e };
330 	const unsigned char sync_rsp[] = { 0x02, 0x7d };
331 	unsigned char conf_req[3] = { 0x03, 0xfc };
332 	const unsigned char conf_rsp[] = { 0x04, 0x7b };
333 	const unsigned char wakeup_req[] = { 0x05, 0xfa };
334 	const unsigned char woken_req[] = { 0x06, 0xf9 };
335 	const unsigned char sleep_req[] = { 0x07, 0x78 };
336 	const unsigned char *hdr = h5->rx_skb->data;
337 	const unsigned char *data = &h5->rx_skb->data[4];
338 
339 	BT_DBG("%s", hu->hdev->name);
340 
341 	if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
342 		return;
343 
344 	if (H5_HDR_LEN(hdr) < 2)
345 		return;
346 
347 	conf_req[2] = h5_cfg_field(h5);
348 
349 	if (memcmp(data, sync_req, 2) == 0) {
350 		if (h5->state == H5_ACTIVE)
351 			h5_peer_reset(hu);
352 		h5_link_control(hu, sync_rsp, 2);
353 	} else if (memcmp(data, sync_rsp, 2) == 0) {
354 		if (h5->state == H5_ACTIVE)
355 			h5_peer_reset(hu);
356 		h5->state = H5_INITIALIZED;
357 		h5_link_control(hu, conf_req, 3);
358 	} else if (memcmp(data, conf_req, 2) == 0) {
359 		h5_link_control(hu, conf_rsp, 2);
360 		h5_link_control(hu, conf_req, 3);
361 	} else if (memcmp(data, conf_rsp, 2) == 0) {
362 		if (H5_HDR_LEN(hdr) > 2)
363 			h5->tx_win = (data[2] & 0x07);
364 		BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
365 		h5->state = H5_ACTIVE;
366 		hci_uart_init_ready(hu);
367 		return;
368 	} else if (memcmp(data, sleep_req, 2) == 0) {
369 		BT_DBG("Peer went to sleep");
370 		h5->sleep = H5_SLEEPING;
371 		return;
372 	} else if (memcmp(data, woken_req, 2) == 0) {
373 		BT_DBG("Peer woke up");
374 		h5->sleep = H5_AWAKE;
375 	} else if (memcmp(data, wakeup_req, 2) == 0) {
376 		BT_DBG("Peer requested wakeup");
377 		h5_link_control(hu, woken_req, 2);
378 		h5->sleep = H5_AWAKE;
379 	} else {
380 		BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
381 		return;
382 	}
383 
384 	hci_uart_tx_wakeup(hu);
385 }
386 
387 static void h5_complete_rx_pkt(struct hci_uart *hu)
388 {
389 	struct h5 *h5 = hu->priv;
390 	const unsigned char *hdr = h5->rx_skb->data;
391 
392 	if (H5_HDR_RELIABLE(hdr)) {
393 		h5->tx_ack = (h5->tx_ack + 1) % 8;
394 		set_bit(H5_TX_ACK_REQ, &h5->flags);
395 		hci_uart_tx_wakeup(hu);
396 	}
397 
398 	h5->rx_ack = H5_HDR_ACK(hdr);
399 
400 	h5_pkt_cull(h5);
401 
402 	switch (H5_HDR_PKT_TYPE(hdr)) {
403 	case HCI_EVENT_PKT:
404 	case HCI_ACLDATA_PKT:
405 	case HCI_SCODATA_PKT:
406 	case HCI_ISODATA_PKT:
407 		hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr);
408 
409 		/* Remove Three-wire header */
410 		skb_pull(h5->rx_skb, 4);
411 
412 		hci_recv_frame(hu->hdev, h5->rx_skb);
413 		h5->rx_skb = NULL;
414 
415 		break;
416 
417 	default:
418 		h5_handle_internal_rx(hu);
419 		break;
420 	}
421 
422 	h5_reset_rx(h5);
423 }
424 
425 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
426 {
427 	h5_complete_rx_pkt(hu);
428 
429 	return 0;
430 }
431 
432 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
433 {
434 	struct h5 *h5 = hu->priv;
435 	const unsigned char *hdr = h5->rx_skb->data;
436 
437 	if (H5_HDR_CRC(hdr)) {
438 		h5->rx_func = h5_rx_crc;
439 		h5->rx_pending = 2;
440 	} else {
441 		h5_complete_rx_pkt(hu);
442 	}
443 
444 	return 0;
445 }
446 
447 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
448 {
449 	struct h5 *h5 = hu->priv;
450 	const unsigned char *hdr = h5->rx_skb->data;
451 
452 	BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
453 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
454 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
455 	       H5_HDR_LEN(hdr));
456 
457 	if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
458 		bt_dev_err(hu->hdev, "Invalid header checksum");
459 		h5_reset_rx(h5);
460 		return 0;
461 	}
462 
463 	if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
464 		bt_dev_err(hu->hdev, "Out-of-order packet arrived (%u != %u)",
465 			   H5_HDR_SEQ(hdr), h5->tx_ack);
466 		h5_reset_rx(h5);
467 		return 0;
468 	}
469 
470 	if (h5->state != H5_ACTIVE &&
471 	    H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
472 		bt_dev_err(hu->hdev, "Non-link packet received in non-active state");
473 		h5_reset_rx(h5);
474 		return 0;
475 	}
476 
477 	h5->rx_func = h5_rx_payload;
478 	h5->rx_pending = H5_HDR_LEN(hdr);
479 
480 	return 0;
481 }
482 
483 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
484 {
485 	struct h5 *h5 = hu->priv;
486 
487 	if (c == SLIP_DELIMITER)
488 		return 1;
489 
490 	h5->rx_func = h5_rx_3wire_hdr;
491 	h5->rx_pending = 4;
492 
493 	h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
494 	if (!h5->rx_skb) {
495 		bt_dev_err(hu->hdev, "Can't allocate mem for new packet");
496 		h5_reset_rx(h5);
497 		return -ENOMEM;
498 	}
499 
500 	h5->rx_skb->dev = (void *)hu->hdev;
501 
502 	return 0;
503 }
504 
505 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
506 {
507 	struct h5 *h5 = hu->priv;
508 
509 	if (c == SLIP_DELIMITER)
510 		h5->rx_func = h5_rx_pkt_start;
511 
512 	return 1;
513 }
514 
515 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
516 {
517 	const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
518 	const u8 *byte = &c;
519 
520 	if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
521 		set_bit(H5_RX_ESC, &h5->flags);
522 		return;
523 	}
524 
525 	if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
526 		switch (c) {
527 		case SLIP_ESC_DELIM:
528 			byte = &delim;
529 			break;
530 		case SLIP_ESC_ESC:
531 			byte = &esc;
532 			break;
533 		default:
534 			BT_ERR("Invalid esc byte 0x%02hhx", c);
535 			h5_reset_rx(h5);
536 			return;
537 		}
538 	}
539 
540 	skb_put_data(h5->rx_skb, byte, 1);
541 	h5->rx_pending--;
542 
543 	BT_DBG("unslipped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
544 }
545 
546 static void h5_reset_rx(struct h5 *h5)
547 {
548 	if (h5->rx_skb) {
549 		kfree_skb(h5->rx_skb);
550 		h5->rx_skb = NULL;
551 	}
552 
553 	h5->rx_func = h5_rx_delimiter;
554 	h5->rx_pending = 0;
555 	clear_bit(H5_RX_ESC, &h5->flags);
556 }
557 
558 static int h5_recv(struct hci_uart *hu, const void *data, int count)
559 {
560 	struct h5 *h5 = hu->priv;
561 	const unsigned char *ptr = data;
562 
563 	BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
564 	       count);
565 
566 	while (count > 0) {
567 		int processed;
568 
569 		if (h5->rx_pending > 0) {
570 			if (*ptr == SLIP_DELIMITER) {
571 				bt_dev_err(hu->hdev, "Too short H5 packet");
572 				h5_reset_rx(h5);
573 				continue;
574 			}
575 
576 			h5_unslip_one_byte(h5, *ptr);
577 
578 			ptr++; count--;
579 			continue;
580 		}
581 
582 		processed = h5->rx_func(hu, *ptr);
583 		if (processed < 0)
584 			return processed;
585 
586 		ptr += processed;
587 		count -= processed;
588 	}
589 
590 	if (hu->serdev) {
591 		pm_runtime_get(&hu->serdev->dev);
592 		pm_runtime_mark_last_busy(&hu->serdev->dev);
593 		pm_runtime_put_autosuspend(&hu->serdev->dev);
594 	}
595 
596 	return 0;
597 }
598 
599 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
600 {
601 	struct h5 *h5 = hu->priv;
602 
603 	if (skb->len > 0xfff) {
604 		bt_dev_err(hu->hdev, "Packet too long (%u bytes)", skb->len);
605 		kfree_skb(skb);
606 		return 0;
607 	}
608 
609 	if (h5->state != H5_ACTIVE) {
610 		bt_dev_err(hu->hdev, "Ignoring HCI data in non-active state");
611 		kfree_skb(skb);
612 		return 0;
613 	}
614 
615 	switch (hci_skb_pkt_type(skb)) {
616 	case HCI_ACLDATA_PKT:
617 	case HCI_COMMAND_PKT:
618 		skb_queue_tail(&h5->rel, skb);
619 		break;
620 
621 	case HCI_SCODATA_PKT:
622 	case HCI_ISODATA_PKT:
623 		skb_queue_tail(&h5->unrel, skb);
624 		break;
625 
626 	default:
627 		bt_dev_err(hu->hdev, "Unknown packet type %u", hci_skb_pkt_type(skb));
628 		kfree_skb(skb);
629 		break;
630 	}
631 
632 	pm_runtime_get_sync(&hu->serdev->dev);
633 	pm_runtime_mark_last_busy(&hu->serdev->dev);
634 	pm_runtime_put_autosuspend(&hu->serdev->dev);
635 
636 	return 0;
637 }
638 
639 static void h5_slip_delim(struct sk_buff *skb)
640 {
641 	const char delim = SLIP_DELIMITER;
642 
643 	skb_put_data(skb, &delim, 1);
644 }
645 
646 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
647 {
648 	const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
649 	const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
650 
651 	switch (c) {
652 	case SLIP_DELIMITER:
653 		skb_put_data(skb, &esc_delim, 2);
654 		break;
655 	case SLIP_ESC:
656 		skb_put_data(skb, &esc_esc, 2);
657 		break;
658 	default:
659 		skb_put_data(skb, &c, 1);
660 	}
661 }
662 
663 static bool valid_packet_type(u8 type)
664 {
665 	switch (type) {
666 	case HCI_ACLDATA_PKT:
667 	case HCI_COMMAND_PKT:
668 	case HCI_SCODATA_PKT:
669 	case HCI_ISODATA_PKT:
670 	case HCI_3WIRE_LINK_PKT:
671 	case HCI_3WIRE_ACK_PKT:
672 		return true;
673 	default:
674 		return false;
675 	}
676 }
677 
678 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
679 				      const u8 *data, size_t len)
680 {
681 	struct h5 *h5 = hu->priv;
682 	struct sk_buff *nskb;
683 	u8 hdr[4];
684 	int i;
685 
686 	if (!valid_packet_type(pkt_type)) {
687 		bt_dev_err(hu->hdev, "Unknown packet type %u", pkt_type);
688 		return NULL;
689 	}
690 
691 	/*
692 	 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
693 	 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
694 	 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
695 	 * delimiters at start and end).
696 	 */
697 	nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
698 	if (!nskb)
699 		return NULL;
700 
701 	hci_skb_pkt_type(nskb) = pkt_type;
702 
703 	h5_slip_delim(nskb);
704 
705 	hdr[0] = h5->tx_ack << 3;
706 	clear_bit(H5_TX_ACK_REQ, &h5->flags);
707 
708 	/* Reliable packet? */
709 	if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
710 		hdr[0] |= 1 << 7;
711 		hdr[0] |= h5->tx_seq;
712 		h5->tx_seq = (h5->tx_seq + 1) % 8;
713 	}
714 
715 	hdr[1] = pkt_type | ((len & 0x0f) << 4);
716 	hdr[2] = len >> 4;
717 	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
718 
719 	BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
720 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
721 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
722 	       H5_HDR_LEN(hdr));
723 
724 	for (i = 0; i < 4; i++)
725 		h5_slip_one_byte(nskb, hdr[i]);
726 
727 	for (i = 0; i < len; i++)
728 		h5_slip_one_byte(nskb, data[i]);
729 
730 	h5_slip_delim(nskb);
731 
732 	return nskb;
733 }
734 
735 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
736 {
737 	struct h5 *h5 = hu->priv;
738 	unsigned long flags;
739 	struct sk_buff *skb, *nskb;
740 
741 	if (h5->sleep != H5_AWAKE) {
742 		const unsigned char wakeup_req[] = { 0x05, 0xfa };
743 
744 		if (h5->sleep == H5_WAKING_UP)
745 			return NULL;
746 
747 		h5->sleep = H5_WAKING_UP;
748 		BT_DBG("Sending wakeup request");
749 
750 		mod_timer(&h5->timer, jiffies + HZ / 100);
751 		return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
752 	}
753 
754 	skb = skb_dequeue(&h5->unrel);
755 	if (skb) {
756 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
757 				      skb->data, skb->len);
758 		if (nskb) {
759 			kfree_skb(skb);
760 			return nskb;
761 		}
762 
763 		skb_queue_head(&h5->unrel, skb);
764 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
765 	}
766 
767 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
768 
769 	if (h5->unack.qlen >= h5->tx_win)
770 		goto unlock;
771 
772 	skb = skb_dequeue(&h5->rel);
773 	if (skb) {
774 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
775 				      skb->data, skb->len);
776 		if (nskb) {
777 			__skb_queue_tail(&h5->unack, skb);
778 			mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
779 			spin_unlock_irqrestore(&h5->unack.lock, flags);
780 			return nskb;
781 		}
782 
783 		skb_queue_head(&h5->rel, skb);
784 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
785 	}
786 
787 unlock:
788 	spin_unlock_irqrestore(&h5->unack.lock, flags);
789 
790 	if (test_bit(H5_TX_ACK_REQ, &h5->flags))
791 		return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
792 
793 	return NULL;
794 }
795 
796 static int h5_flush(struct hci_uart *hu)
797 {
798 	BT_DBG("hu %p", hu);
799 	return 0;
800 }
801 
802 static const struct hci_uart_proto h5p = {
803 	.id		= HCI_UART_3WIRE,
804 	.name		= "Three-wire (H5)",
805 	.open		= h5_open,
806 	.close		= h5_close,
807 	.setup		= h5_setup,
808 	.recv		= h5_recv,
809 	.enqueue	= h5_enqueue,
810 	.dequeue	= h5_dequeue,
811 	.flush		= h5_flush,
812 };
813 
814 static int h5_serdev_probe(struct serdev_device *serdev)
815 {
816 	struct device *dev = &serdev->dev;
817 	struct h5 *h5;
818 	const struct h5_device_data *data;
819 
820 	h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL);
821 	if (!h5)
822 		return -ENOMEM;
823 
824 	h5->hu = &h5->serdev_hu;
825 	h5->serdev_hu.serdev = serdev;
826 	serdev_device_set_drvdata(serdev, h5);
827 
828 	if (has_acpi_companion(dev)) {
829 		const struct acpi_device_id *match;
830 
831 		match = acpi_match_device(dev->driver->acpi_match_table, dev);
832 		if (!match)
833 			return -ENODEV;
834 
835 		data = (const struct h5_device_data *)match->driver_data;
836 		h5->vnd = data->vnd;
837 		h5->id  = (char *)match->id;
838 
839 		if (h5->vnd->acpi_gpio_map)
840 			devm_acpi_dev_add_driver_gpios(dev,
841 						       h5->vnd->acpi_gpio_map);
842 	} else {
843 		data = of_device_get_match_data(dev);
844 		if (!data)
845 			return -ENODEV;
846 
847 		h5->vnd = data->vnd;
848 	}
849 
850 	if (data->driver_info & H5_INFO_WAKEUP_DISABLE)
851 		set_bit(H5_WAKEUP_DISABLE, &h5->flags);
852 
853 	h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
854 	if (IS_ERR(h5->enable_gpio))
855 		return PTR_ERR(h5->enable_gpio);
856 
857 	h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake",
858 						       GPIOD_OUT_LOW);
859 	if (IS_ERR(h5->device_wake_gpio))
860 		return PTR_ERR(h5->device_wake_gpio);
861 
862 	return hci_uart_register_device(&h5->serdev_hu, &h5p);
863 }
864 
865 static void h5_serdev_remove(struct serdev_device *serdev)
866 {
867 	struct h5 *h5 = serdev_device_get_drvdata(serdev);
868 
869 	hci_uart_unregister_device(&h5->serdev_hu);
870 }
871 
872 static int __maybe_unused h5_serdev_suspend(struct device *dev)
873 {
874 	struct h5 *h5 = dev_get_drvdata(dev);
875 	int ret = 0;
876 
877 	if (h5->vnd && h5->vnd->suspend)
878 		ret = h5->vnd->suspend(h5);
879 
880 	return ret;
881 }
882 
883 static int __maybe_unused h5_serdev_resume(struct device *dev)
884 {
885 	struct h5 *h5 = dev_get_drvdata(dev);
886 	int ret = 0;
887 
888 	if (h5->vnd && h5->vnd->resume)
889 		ret = h5->vnd->resume(h5);
890 
891 	return ret;
892 }
893 
894 #ifdef CONFIG_BT_HCIUART_RTL
895 static int h5_btrtl_setup(struct h5 *h5)
896 {
897 	struct btrtl_device_info *btrtl_dev;
898 	struct sk_buff *skb;
899 	__le32 baudrate_data;
900 	u32 device_baudrate;
901 	unsigned int controller_baudrate;
902 	bool flow_control;
903 	int err;
904 
905 	btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id);
906 	if (IS_ERR(btrtl_dev))
907 		return PTR_ERR(btrtl_dev);
908 
909 	err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev,
910 				      &controller_baudrate, &device_baudrate,
911 				      &flow_control);
912 	if (err)
913 		goto out_free;
914 
915 	baudrate_data = cpu_to_le32(device_baudrate);
916 	skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data),
917 			     &baudrate_data, HCI_INIT_TIMEOUT);
918 	if (IS_ERR(skb)) {
919 		rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n");
920 		err = PTR_ERR(skb);
921 		goto out_free;
922 	} else {
923 		kfree_skb(skb);
924 	}
925 	/* Give the device some time to set up the new baudrate. */
926 	usleep_range(10000, 20000);
927 
928 	serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate);
929 	serdev_device_set_flow_control(h5->hu->serdev, flow_control);
930 
931 	if (flow_control)
932 		set_bit(H5_HW_FLOW_CONTROL, &h5->flags);
933 
934 	err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev);
935 	/* Give the device some time before the hci-core sends it a reset */
936 	usleep_range(10000, 20000);
937 
938 	btrtl_set_quirks(h5->hu->hdev, btrtl_dev);
939 
940 out_free:
941 	btrtl_free(btrtl_dev);
942 
943 	return err;
944 }
945 
946 static void h5_btrtl_open(struct h5 *h5)
947 {
948 	/*
949 	 * Since h5_btrtl_resume() does a device_reprobe() the suspend handling
950 	 * done by the hci_suspend_notifier is not necessary; it actually causes
951 	 * delays and a bunch of errors to get logged, so disable it.
952 	 */
953 	if (test_bit(H5_WAKEUP_DISABLE, &h5->flags))
954 		set_bit(HCI_UART_NO_SUSPEND_NOTIFIER, &h5->hu->flags);
955 
956 	/* Devices always start with these fixed parameters */
957 	serdev_device_set_flow_control(h5->hu->serdev, false);
958 	serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN);
959 	serdev_device_set_baudrate(h5->hu->serdev, 115200);
960 
961 	if (!test_bit(H5_WAKEUP_DISABLE, &h5->flags)) {
962 		pm_runtime_set_active(&h5->hu->serdev->dev);
963 		pm_runtime_use_autosuspend(&h5->hu->serdev->dev);
964 		pm_runtime_set_autosuspend_delay(&h5->hu->serdev->dev,
965 						 SUSPEND_TIMEOUT_MS);
966 		pm_runtime_enable(&h5->hu->serdev->dev);
967 	}
968 
969 	/* The controller needs up to 500ms to wakeup */
970 	gpiod_set_value_cansleep(h5->enable_gpio, 1);
971 	gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
972 	msleep(500);
973 }
974 
975 static void h5_btrtl_close(struct h5 *h5)
976 {
977 	if (!test_bit(H5_WAKEUP_DISABLE, &h5->flags))
978 		pm_runtime_disable(&h5->hu->serdev->dev);
979 
980 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
981 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
982 }
983 
984 /* Suspend/resume support. On many devices the RTL BT device loses power during
985  * suspend/resume, causing it to lose its firmware and all state. So we simply
986  * turn it off on suspend and reprobe on resume. This mirrors how RTL devices
987  * are handled in the USB driver, where the BTUSB_WAKEUP_DISABLE is used which
988  * also causes a reprobe on resume.
989  */
990 static int h5_btrtl_suspend(struct h5 *h5)
991 {
992 	serdev_device_set_flow_control(h5->hu->serdev, false);
993 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
994 
995 	if (test_bit(H5_WAKEUP_DISABLE, &h5->flags))
996 		gpiod_set_value_cansleep(h5->enable_gpio, 0);
997 
998 	return 0;
999 }
1000 
1001 struct h5_btrtl_reprobe {
1002 	struct device *dev;
1003 	struct work_struct work;
1004 };
1005 
1006 static void h5_btrtl_reprobe_worker(struct work_struct *work)
1007 {
1008 	struct h5_btrtl_reprobe *reprobe =
1009 		container_of(work, struct h5_btrtl_reprobe, work);
1010 	int ret;
1011 
1012 	ret = device_reprobe(reprobe->dev);
1013 	if (ret && ret != -EPROBE_DEFER)
1014 		dev_err(reprobe->dev, "Reprobe error %d\n", ret);
1015 
1016 	put_device(reprobe->dev);
1017 	kfree(reprobe);
1018 	module_put(THIS_MODULE);
1019 }
1020 
1021 static int h5_btrtl_resume(struct h5 *h5)
1022 {
1023 	if (test_bit(H5_WAKEUP_DISABLE, &h5->flags)) {
1024 		struct h5_btrtl_reprobe *reprobe;
1025 
1026 		reprobe = kzalloc(sizeof(*reprobe), GFP_KERNEL);
1027 		if (!reprobe)
1028 			return -ENOMEM;
1029 
1030 		__module_get(THIS_MODULE);
1031 
1032 		INIT_WORK(&reprobe->work, h5_btrtl_reprobe_worker);
1033 		reprobe->dev = get_device(&h5->hu->serdev->dev);
1034 		queue_work(system_long_wq, &reprobe->work);
1035 	} else {
1036 		gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
1037 
1038 		if (test_bit(H5_HW_FLOW_CONTROL, &h5->flags))
1039 			serdev_device_set_flow_control(h5->hu->serdev, true);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false };
1046 static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false };
1047 static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false };
1048 static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = {
1049 	{ "device-wake-gpios", &btrtl_device_wake_gpios, 1 },
1050 	{ "enable-gpios", &btrtl_enable_gpios, 1 },
1051 	{ "host-wake-gpios", &btrtl_host_wake_gpios, 1 },
1052 	{},
1053 };
1054 
1055 static struct h5_vnd rtl_vnd = {
1056 	.setup		= h5_btrtl_setup,
1057 	.open		= h5_btrtl_open,
1058 	.close		= h5_btrtl_close,
1059 	.suspend	= h5_btrtl_suspend,
1060 	.resume		= h5_btrtl_resume,
1061 	.acpi_gpio_map	= acpi_btrtl_gpios,
1062 };
1063 
1064 static const struct h5_device_data h5_data_rtl8822cs = {
1065 	.vnd = &rtl_vnd,
1066 };
1067 
1068 static const struct h5_device_data h5_data_rtl8723bs = {
1069 	.driver_info = H5_INFO_WAKEUP_DISABLE,
1070 	.vnd = &rtl_vnd,
1071 };
1072 #endif
1073 
1074 #ifdef CONFIG_ACPI
1075 static const struct acpi_device_id h5_acpi_match[] = {
1076 #ifdef CONFIG_BT_HCIUART_RTL
1077 	{ "OBDA0623", (kernel_ulong_t)&h5_data_rtl8723bs },
1078 	{ "OBDA8723", (kernel_ulong_t)&h5_data_rtl8723bs },
1079 #endif
1080 	{ },
1081 };
1082 MODULE_DEVICE_TABLE(acpi, h5_acpi_match);
1083 #endif
1084 
1085 static const struct dev_pm_ops h5_serdev_pm_ops = {
1086 	SET_SYSTEM_SLEEP_PM_OPS(h5_serdev_suspend, h5_serdev_resume)
1087 	SET_RUNTIME_PM_OPS(h5_serdev_suspend, h5_serdev_resume, NULL)
1088 };
1089 
1090 static const struct of_device_id rtl_bluetooth_of_match[] = {
1091 #ifdef CONFIG_BT_HCIUART_RTL
1092 	{ .compatible = "realtek,rtl8822cs-bt",
1093 	  .data = (const void *)&h5_data_rtl8822cs },
1094 	{ .compatible = "realtek,rtl8723bs-bt",
1095 	  .data = (const void *)&h5_data_rtl8723bs },
1096 	{ .compatible = "realtek,rtl8723ds-bt",
1097 	  .data = (const void *)&h5_data_rtl8723bs },
1098 #endif
1099 	{ },
1100 };
1101 MODULE_DEVICE_TABLE(of, rtl_bluetooth_of_match);
1102 
1103 static struct serdev_device_driver h5_serdev_driver = {
1104 	.probe = h5_serdev_probe,
1105 	.remove = h5_serdev_remove,
1106 	.driver = {
1107 		.name = "hci_uart_h5",
1108 		.acpi_match_table = ACPI_PTR(h5_acpi_match),
1109 		.pm = &h5_serdev_pm_ops,
1110 		.of_match_table = rtl_bluetooth_of_match,
1111 	},
1112 };
1113 
1114 int __init h5_init(void)
1115 {
1116 	serdev_device_driver_register(&h5_serdev_driver);
1117 	return hci_uart_register_proto(&h5p);
1118 }
1119 
1120 int __exit h5_deinit(void)
1121 {
1122 	serdev_device_driver_unregister(&h5_serdev_driver);
1123 	return hci_uart_unregister_proto(&h5p);
1124 }
1125