xref: /openbmc/linux/drivers/bluetooth/hci_h5.c (revision 71501859)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI Three-wire UART driver
5  *
6  *  Copyright (C) 2012  Intel Corporation
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/of_device.h>
15 #include <linux/serdev.h>
16 #include <linux/skbuff.h>
17 
18 #include <net/bluetooth/bluetooth.h>
19 #include <net/bluetooth/hci_core.h>
20 
21 #include "btrtl.h"
22 #include "hci_uart.h"
23 
24 #define HCI_3WIRE_ACK_PKT	0
25 #define HCI_3WIRE_LINK_PKT	15
26 
27 /* Sliding window size */
28 #define H5_TX_WIN_MAX		4
29 
30 #define H5_ACK_TIMEOUT	msecs_to_jiffies(250)
31 #define H5_SYNC_TIMEOUT	msecs_to_jiffies(100)
32 
33 /*
34  * Maximum Three-wire packet:
35  *     4 byte header + max value for 12-bit length + 2 bytes for CRC
36  */
37 #define H5_MAX_LEN (4 + 0xfff + 2)
38 
39 /* Convenience macros for reading Three-wire header values */
40 #define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
41 #define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
42 #define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
43 #define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
44 #define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
45 #define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
46 
47 #define SLIP_DELIMITER	0xc0
48 #define SLIP_ESC	0xdb
49 #define SLIP_ESC_DELIM	0xdc
50 #define SLIP_ESC_ESC	0xdd
51 
52 /* H5 state flags */
53 enum {
54 	H5_RX_ESC,	/* SLIP escape mode */
55 	H5_TX_ACK_REQ,	/* Pending ack to send */
56 };
57 
58 struct h5 {
59 	/* Must be the first member, hci_serdev.c expects this. */
60 	struct hci_uart		serdev_hu;
61 
62 	struct sk_buff_head	unack;		/* Unack'ed packets queue */
63 	struct sk_buff_head	rel;		/* Reliable packets queue */
64 	struct sk_buff_head	unrel;		/* Unreliable packets queue */
65 
66 	unsigned long		flags;
67 
68 	struct sk_buff		*rx_skb;	/* Receive buffer */
69 	size_t			rx_pending;	/* Expecting more bytes */
70 	u8			rx_ack;		/* Last ack number received */
71 
72 	int			(*rx_func)(struct hci_uart *hu, u8 c);
73 
74 	struct timer_list	timer;		/* Retransmission timer */
75 	struct hci_uart		*hu;		/* Parent HCI UART */
76 
77 	u8			tx_seq;		/* Next seq number to send */
78 	u8			tx_ack;		/* Next ack number to send */
79 	u8			tx_win;		/* Sliding window size */
80 
81 	enum {
82 		H5_UNINITIALIZED,
83 		H5_INITIALIZED,
84 		H5_ACTIVE,
85 	} state;
86 
87 	enum {
88 		H5_AWAKE,
89 		H5_SLEEPING,
90 		H5_WAKING_UP,
91 	} sleep;
92 
93 	const struct h5_vnd *vnd;
94 	const char *id;
95 
96 	struct gpio_desc *enable_gpio;
97 	struct gpio_desc *device_wake_gpio;
98 };
99 
100 struct h5_vnd {
101 	int (*setup)(struct h5 *h5);
102 	void (*open)(struct h5 *h5);
103 	void (*close)(struct h5 *h5);
104 	int (*suspend)(struct h5 *h5);
105 	int (*resume)(struct h5 *h5);
106 	const struct acpi_gpio_mapping *acpi_gpio_map;
107 };
108 
109 static void h5_reset_rx(struct h5 *h5);
110 
111 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
112 {
113 	struct h5 *h5 = hu->priv;
114 	struct sk_buff *nskb;
115 
116 	nskb = alloc_skb(3, GFP_ATOMIC);
117 	if (!nskb)
118 		return;
119 
120 	hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT;
121 
122 	skb_put_data(nskb, data, len);
123 
124 	skb_queue_tail(&h5->unrel, nskb);
125 }
126 
127 static u8 h5_cfg_field(struct h5 *h5)
128 {
129 	/* Sliding window size (first 3 bits) */
130 	return h5->tx_win & 0x07;
131 }
132 
133 static void h5_timed_event(struct timer_list *t)
134 {
135 	const unsigned char sync_req[] = { 0x01, 0x7e };
136 	unsigned char conf_req[3] = { 0x03, 0xfc };
137 	struct h5 *h5 = from_timer(h5, t, timer);
138 	struct hci_uart *hu = h5->hu;
139 	struct sk_buff *skb;
140 	unsigned long flags;
141 
142 	BT_DBG("%s", hu->hdev->name);
143 
144 	if (h5->state == H5_UNINITIALIZED)
145 		h5_link_control(hu, sync_req, sizeof(sync_req));
146 
147 	if (h5->state == H5_INITIALIZED) {
148 		conf_req[2] = h5_cfg_field(h5);
149 		h5_link_control(hu, conf_req, sizeof(conf_req));
150 	}
151 
152 	if (h5->state != H5_ACTIVE) {
153 		mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
154 		goto wakeup;
155 	}
156 
157 	if (h5->sleep != H5_AWAKE) {
158 		h5->sleep = H5_SLEEPING;
159 		goto wakeup;
160 	}
161 
162 	BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
163 
164 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
165 
166 	while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
167 		h5->tx_seq = (h5->tx_seq - 1) & 0x07;
168 		skb_queue_head(&h5->rel, skb);
169 	}
170 
171 	spin_unlock_irqrestore(&h5->unack.lock, flags);
172 
173 wakeup:
174 	hci_uart_tx_wakeup(hu);
175 }
176 
177 static void h5_peer_reset(struct hci_uart *hu)
178 {
179 	struct h5 *h5 = hu->priv;
180 
181 	bt_dev_err(hu->hdev, "Peer device has reset");
182 
183 	h5->state = H5_UNINITIALIZED;
184 
185 	del_timer(&h5->timer);
186 
187 	skb_queue_purge(&h5->rel);
188 	skb_queue_purge(&h5->unrel);
189 	skb_queue_purge(&h5->unack);
190 
191 	h5->tx_seq = 0;
192 	h5->tx_ack = 0;
193 
194 	/* Send reset request to upper stack */
195 	hci_reset_dev(hu->hdev);
196 }
197 
198 static int h5_open(struct hci_uart *hu)
199 {
200 	struct h5 *h5;
201 	const unsigned char sync[] = { 0x01, 0x7e };
202 
203 	BT_DBG("hu %p", hu);
204 
205 	if (hu->serdev) {
206 		h5 = serdev_device_get_drvdata(hu->serdev);
207 	} else {
208 		h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
209 		if (!h5)
210 			return -ENOMEM;
211 	}
212 
213 	hu->priv = h5;
214 	h5->hu = hu;
215 
216 	skb_queue_head_init(&h5->unack);
217 	skb_queue_head_init(&h5->rel);
218 	skb_queue_head_init(&h5->unrel);
219 
220 	h5_reset_rx(h5);
221 
222 	timer_setup(&h5->timer, h5_timed_event, 0);
223 
224 	h5->tx_win = H5_TX_WIN_MAX;
225 
226 	if (h5->vnd && h5->vnd->open)
227 		h5->vnd->open(h5);
228 
229 	set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);
230 
231 	/* Send initial sync request */
232 	h5_link_control(hu, sync, sizeof(sync));
233 	mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
234 
235 	return 0;
236 }
237 
238 static int h5_close(struct hci_uart *hu)
239 {
240 	struct h5 *h5 = hu->priv;
241 
242 	del_timer_sync(&h5->timer);
243 
244 	skb_queue_purge(&h5->unack);
245 	skb_queue_purge(&h5->rel);
246 	skb_queue_purge(&h5->unrel);
247 
248 	kfree_skb(h5->rx_skb);
249 	h5->rx_skb = NULL;
250 
251 	if (h5->vnd && h5->vnd->close)
252 		h5->vnd->close(h5);
253 
254 	if (!hu->serdev)
255 		kfree(h5);
256 
257 	return 0;
258 }
259 
260 static int h5_setup(struct hci_uart *hu)
261 {
262 	struct h5 *h5 = hu->priv;
263 
264 	if (h5->vnd && h5->vnd->setup)
265 		return h5->vnd->setup(h5);
266 
267 	return 0;
268 }
269 
270 static void h5_pkt_cull(struct h5 *h5)
271 {
272 	struct sk_buff *skb, *tmp;
273 	unsigned long flags;
274 	int i, to_remove;
275 	u8 seq;
276 
277 	spin_lock_irqsave(&h5->unack.lock, flags);
278 
279 	to_remove = skb_queue_len(&h5->unack);
280 	if (to_remove == 0)
281 		goto unlock;
282 
283 	seq = h5->tx_seq;
284 
285 	while (to_remove > 0) {
286 		if (h5->rx_ack == seq)
287 			break;
288 
289 		to_remove--;
290 		seq = (seq - 1) & 0x07;
291 	}
292 
293 	if (seq != h5->rx_ack)
294 		BT_ERR("Controller acked invalid packet");
295 
296 	i = 0;
297 	skb_queue_walk_safe(&h5->unack, skb, tmp) {
298 		if (i++ >= to_remove)
299 			break;
300 
301 		__skb_unlink(skb, &h5->unack);
302 		kfree_skb(skb);
303 	}
304 
305 	if (skb_queue_empty(&h5->unack))
306 		del_timer(&h5->timer);
307 
308 unlock:
309 	spin_unlock_irqrestore(&h5->unack.lock, flags);
310 }
311 
312 static void h5_handle_internal_rx(struct hci_uart *hu)
313 {
314 	struct h5 *h5 = hu->priv;
315 	const unsigned char sync_req[] = { 0x01, 0x7e };
316 	const unsigned char sync_rsp[] = { 0x02, 0x7d };
317 	unsigned char conf_req[3] = { 0x03, 0xfc };
318 	const unsigned char conf_rsp[] = { 0x04, 0x7b };
319 	const unsigned char wakeup_req[] = { 0x05, 0xfa };
320 	const unsigned char woken_req[] = { 0x06, 0xf9 };
321 	const unsigned char sleep_req[] = { 0x07, 0x78 };
322 	const unsigned char *hdr = h5->rx_skb->data;
323 	const unsigned char *data = &h5->rx_skb->data[4];
324 
325 	BT_DBG("%s", hu->hdev->name);
326 
327 	if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
328 		return;
329 
330 	if (H5_HDR_LEN(hdr) < 2)
331 		return;
332 
333 	conf_req[2] = h5_cfg_field(h5);
334 
335 	if (memcmp(data, sync_req, 2) == 0) {
336 		if (h5->state == H5_ACTIVE)
337 			h5_peer_reset(hu);
338 		h5_link_control(hu, sync_rsp, 2);
339 	} else if (memcmp(data, sync_rsp, 2) == 0) {
340 		if (h5->state == H5_ACTIVE)
341 			h5_peer_reset(hu);
342 		h5->state = H5_INITIALIZED;
343 		h5_link_control(hu, conf_req, 3);
344 	} else if (memcmp(data, conf_req, 2) == 0) {
345 		h5_link_control(hu, conf_rsp, 2);
346 		h5_link_control(hu, conf_req, 3);
347 	} else if (memcmp(data, conf_rsp, 2) == 0) {
348 		if (H5_HDR_LEN(hdr) > 2)
349 			h5->tx_win = (data[2] & 0x07);
350 		BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
351 		h5->state = H5_ACTIVE;
352 		hci_uart_init_ready(hu);
353 		return;
354 	} else if (memcmp(data, sleep_req, 2) == 0) {
355 		BT_DBG("Peer went to sleep");
356 		h5->sleep = H5_SLEEPING;
357 		return;
358 	} else if (memcmp(data, woken_req, 2) == 0) {
359 		BT_DBG("Peer woke up");
360 		h5->sleep = H5_AWAKE;
361 	} else if (memcmp(data, wakeup_req, 2) == 0) {
362 		BT_DBG("Peer requested wakeup");
363 		h5_link_control(hu, woken_req, 2);
364 		h5->sleep = H5_AWAKE;
365 	} else {
366 		BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
367 		return;
368 	}
369 
370 	hci_uart_tx_wakeup(hu);
371 }
372 
373 static void h5_complete_rx_pkt(struct hci_uart *hu)
374 {
375 	struct h5 *h5 = hu->priv;
376 	const unsigned char *hdr = h5->rx_skb->data;
377 
378 	if (H5_HDR_RELIABLE(hdr)) {
379 		h5->tx_ack = (h5->tx_ack + 1) % 8;
380 		set_bit(H5_TX_ACK_REQ, &h5->flags);
381 		hci_uart_tx_wakeup(hu);
382 	}
383 
384 	h5->rx_ack = H5_HDR_ACK(hdr);
385 
386 	h5_pkt_cull(h5);
387 
388 	switch (H5_HDR_PKT_TYPE(hdr)) {
389 	case HCI_EVENT_PKT:
390 	case HCI_ACLDATA_PKT:
391 	case HCI_SCODATA_PKT:
392 	case HCI_ISODATA_PKT:
393 		hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr);
394 
395 		/* Remove Three-wire header */
396 		skb_pull(h5->rx_skb, 4);
397 
398 		hci_recv_frame(hu->hdev, h5->rx_skb);
399 		h5->rx_skb = NULL;
400 
401 		break;
402 
403 	default:
404 		h5_handle_internal_rx(hu);
405 		break;
406 	}
407 
408 	h5_reset_rx(h5);
409 }
410 
411 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
412 {
413 	h5_complete_rx_pkt(hu);
414 
415 	return 0;
416 }
417 
418 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
419 {
420 	struct h5 *h5 = hu->priv;
421 	const unsigned char *hdr = h5->rx_skb->data;
422 
423 	if (H5_HDR_CRC(hdr)) {
424 		h5->rx_func = h5_rx_crc;
425 		h5->rx_pending = 2;
426 	} else {
427 		h5_complete_rx_pkt(hu);
428 	}
429 
430 	return 0;
431 }
432 
433 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
434 {
435 	struct h5 *h5 = hu->priv;
436 	const unsigned char *hdr = h5->rx_skb->data;
437 
438 	BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
439 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
440 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
441 	       H5_HDR_LEN(hdr));
442 
443 	if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
444 		bt_dev_err(hu->hdev, "Invalid header checksum");
445 		h5_reset_rx(h5);
446 		return 0;
447 	}
448 
449 	if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
450 		bt_dev_err(hu->hdev, "Out-of-order packet arrived (%u != %u)",
451 			   H5_HDR_SEQ(hdr), h5->tx_ack);
452 		h5_reset_rx(h5);
453 		return 0;
454 	}
455 
456 	if (h5->state != H5_ACTIVE &&
457 	    H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
458 		bt_dev_err(hu->hdev, "Non-link packet received in non-active state");
459 		h5_reset_rx(h5);
460 		return 0;
461 	}
462 
463 	h5->rx_func = h5_rx_payload;
464 	h5->rx_pending = H5_HDR_LEN(hdr);
465 
466 	return 0;
467 }
468 
469 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
470 {
471 	struct h5 *h5 = hu->priv;
472 
473 	if (c == SLIP_DELIMITER)
474 		return 1;
475 
476 	h5->rx_func = h5_rx_3wire_hdr;
477 	h5->rx_pending = 4;
478 
479 	h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
480 	if (!h5->rx_skb) {
481 		bt_dev_err(hu->hdev, "Can't allocate mem for new packet");
482 		h5_reset_rx(h5);
483 		return -ENOMEM;
484 	}
485 
486 	h5->rx_skb->dev = (void *)hu->hdev;
487 
488 	return 0;
489 }
490 
491 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
492 {
493 	struct h5 *h5 = hu->priv;
494 
495 	if (c == SLIP_DELIMITER)
496 		h5->rx_func = h5_rx_pkt_start;
497 
498 	return 1;
499 }
500 
501 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
502 {
503 	const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
504 	const u8 *byte = &c;
505 
506 	if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
507 		set_bit(H5_RX_ESC, &h5->flags);
508 		return;
509 	}
510 
511 	if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
512 		switch (c) {
513 		case SLIP_ESC_DELIM:
514 			byte = &delim;
515 			break;
516 		case SLIP_ESC_ESC:
517 			byte = &esc;
518 			break;
519 		default:
520 			BT_ERR("Invalid esc byte 0x%02hhx", c);
521 			h5_reset_rx(h5);
522 			return;
523 		}
524 	}
525 
526 	skb_put_data(h5->rx_skb, byte, 1);
527 	h5->rx_pending--;
528 
529 	BT_DBG("unslipped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
530 }
531 
532 static void h5_reset_rx(struct h5 *h5)
533 {
534 	if (h5->rx_skb) {
535 		kfree_skb(h5->rx_skb);
536 		h5->rx_skb = NULL;
537 	}
538 
539 	h5->rx_func = h5_rx_delimiter;
540 	h5->rx_pending = 0;
541 	clear_bit(H5_RX_ESC, &h5->flags);
542 }
543 
544 static int h5_recv(struct hci_uart *hu, const void *data, int count)
545 {
546 	struct h5 *h5 = hu->priv;
547 	const unsigned char *ptr = data;
548 
549 	BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
550 	       count);
551 
552 	while (count > 0) {
553 		int processed;
554 
555 		if (h5->rx_pending > 0) {
556 			if (*ptr == SLIP_DELIMITER) {
557 				bt_dev_err(hu->hdev, "Too short H5 packet");
558 				h5_reset_rx(h5);
559 				continue;
560 			}
561 
562 			h5_unslip_one_byte(h5, *ptr);
563 
564 			ptr++; count--;
565 			continue;
566 		}
567 
568 		processed = h5->rx_func(hu, *ptr);
569 		if (processed < 0)
570 			return processed;
571 
572 		ptr += processed;
573 		count -= processed;
574 	}
575 
576 	return 0;
577 }
578 
579 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
580 {
581 	struct h5 *h5 = hu->priv;
582 
583 	if (skb->len > 0xfff) {
584 		bt_dev_err(hu->hdev, "Packet too long (%u bytes)", skb->len);
585 		kfree_skb(skb);
586 		return 0;
587 	}
588 
589 	if (h5->state != H5_ACTIVE) {
590 		bt_dev_err(hu->hdev, "Ignoring HCI data in non-active state");
591 		kfree_skb(skb);
592 		return 0;
593 	}
594 
595 	switch (hci_skb_pkt_type(skb)) {
596 	case HCI_ACLDATA_PKT:
597 	case HCI_COMMAND_PKT:
598 		skb_queue_tail(&h5->rel, skb);
599 		break;
600 
601 	case HCI_SCODATA_PKT:
602 	case HCI_ISODATA_PKT:
603 		skb_queue_tail(&h5->unrel, skb);
604 		break;
605 
606 	default:
607 		bt_dev_err(hu->hdev, "Unknown packet type %u", hci_skb_pkt_type(skb));
608 		kfree_skb(skb);
609 		break;
610 	}
611 
612 	return 0;
613 }
614 
615 static void h5_slip_delim(struct sk_buff *skb)
616 {
617 	const char delim = SLIP_DELIMITER;
618 
619 	skb_put_data(skb, &delim, 1);
620 }
621 
622 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
623 {
624 	const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
625 	const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
626 
627 	switch (c) {
628 	case SLIP_DELIMITER:
629 		skb_put_data(skb, &esc_delim, 2);
630 		break;
631 	case SLIP_ESC:
632 		skb_put_data(skb, &esc_esc, 2);
633 		break;
634 	default:
635 		skb_put_data(skb, &c, 1);
636 	}
637 }
638 
639 static bool valid_packet_type(u8 type)
640 {
641 	switch (type) {
642 	case HCI_ACLDATA_PKT:
643 	case HCI_COMMAND_PKT:
644 	case HCI_SCODATA_PKT:
645 	case HCI_ISODATA_PKT:
646 	case HCI_3WIRE_LINK_PKT:
647 	case HCI_3WIRE_ACK_PKT:
648 		return true;
649 	default:
650 		return false;
651 	}
652 }
653 
654 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
655 				      const u8 *data, size_t len)
656 {
657 	struct h5 *h5 = hu->priv;
658 	struct sk_buff *nskb;
659 	u8 hdr[4];
660 	int i;
661 
662 	if (!valid_packet_type(pkt_type)) {
663 		bt_dev_err(hu->hdev, "Unknown packet type %u", pkt_type);
664 		return NULL;
665 	}
666 
667 	/*
668 	 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
669 	 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
670 	 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
671 	 * delimiters at start and end).
672 	 */
673 	nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
674 	if (!nskb)
675 		return NULL;
676 
677 	hci_skb_pkt_type(nskb) = pkt_type;
678 
679 	h5_slip_delim(nskb);
680 
681 	hdr[0] = h5->tx_ack << 3;
682 	clear_bit(H5_TX_ACK_REQ, &h5->flags);
683 
684 	/* Reliable packet? */
685 	if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
686 		hdr[0] |= 1 << 7;
687 		hdr[0] |= h5->tx_seq;
688 		h5->tx_seq = (h5->tx_seq + 1) % 8;
689 	}
690 
691 	hdr[1] = pkt_type | ((len & 0x0f) << 4);
692 	hdr[2] = len >> 4;
693 	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
694 
695 	BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
696 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
697 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
698 	       H5_HDR_LEN(hdr));
699 
700 	for (i = 0; i < 4; i++)
701 		h5_slip_one_byte(nskb, hdr[i]);
702 
703 	for (i = 0; i < len; i++)
704 		h5_slip_one_byte(nskb, data[i]);
705 
706 	h5_slip_delim(nskb);
707 
708 	return nskb;
709 }
710 
711 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
712 {
713 	struct h5 *h5 = hu->priv;
714 	unsigned long flags;
715 	struct sk_buff *skb, *nskb;
716 
717 	if (h5->sleep != H5_AWAKE) {
718 		const unsigned char wakeup_req[] = { 0x05, 0xfa };
719 
720 		if (h5->sleep == H5_WAKING_UP)
721 			return NULL;
722 
723 		h5->sleep = H5_WAKING_UP;
724 		BT_DBG("Sending wakeup request");
725 
726 		mod_timer(&h5->timer, jiffies + HZ / 100);
727 		return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
728 	}
729 
730 	skb = skb_dequeue(&h5->unrel);
731 	if (skb) {
732 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
733 				      skb->data, skb->len);
734 		if (nskb) {
735 			kfree_skb(skb);
736 			return nskb;
737 		}
738 
739 		skb_queue_head(&h5->unrel, skb);
740 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
741 	}
742 
743 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
744 
745 	if (h5->unack.qlen >= h5->tx_win)
746 		goto unlock;
747 
748 	skb = skb_dequeue(&h5->rel);
749 	if (skb) {
750 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
751 				      skb->data, skb->len);
752 		if (nskb) {
753 			__skb_queue_tail(&h5->unack, skb);
754 			mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
755 			spin_unlock_irqrestore(&h5->unack.lock, flags);
756 			return nskb;
757 		}
758 
759 		skb_queue_head(&h5->rel, skb);
760 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
761 	}
762 
763 unlock:
764 	spin_unlock_irqrestore(&h5->unack.lock, flags);
765 
766 	if (test_bit(H5_TX_ACK_REQ, &h5->flags))
767 		return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
768 
769 	return NULL;
770 }
771 
772 static int h5_flush(struct hci_uart *hu)
773 {
774 	BT_DBG("hu %p", hu);
775 	return 0;
776 }
777 
778 static const struct hci_uart_proto h5p = {
779 	.id		= HCI_UART_3WIRE,
780 	.name		= "Three-wire (H5)",
781 	.open		= h5_open,
782 	.close		= h5_close,
783 	.setup		= h5_setup,
784 	.recv		= h5_recv,
785 	.enqueue	= h5_enqueue,
786 	.dequeue	= h5_dequeue,
787 	.flush		= h5_flush,
788 };
789 
790 static int h5_serdev_probe(struct serdev_device *serdev)
791 {
792 	struct device *dev = &serdev->dev;
793 	struct h5 *h5;
794 
795 	h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL);
796 	if (!h5)
797 		return -ENOMEM;
798 
799 	h5->hu = &h5->serdev_hu;
800 	h5->serdev_hu.serdev = serdev;
801 	serdev_device_set_drvdata(serdev, h5);
802 
803 	if (has_acpi_companion(dev)) {
804 		const struct acpi_device_id *match;
805 
806 		match = acpi_match_device(dev->driver->acpi_match_table, dev);
807 		if (!match)
808 			return -ENODEV;
809 
810 		h5->vnd = (const struct h5_vnd *)match->driver_data;
811 		h5->id  = (char *)match->id;
812 
813 		if (h5->vnd->acpi_gpio_map)
814 			devm_acpi_dev_add_driver_gpios(dev,
815 						       h5->vnd->acpi_gpio_map);
816 	} else {
817 		const void *data;
818 
819 		data = of_device_get_match_data(dev);
820 		if (!data)
821 			return -ENODEV;
822 
823 		h5->vnd = (const struct h5_vnd *)data;
824 	}
825 
826 
827 	h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
828 	if (IS_ERR(h5->enable_gpio))
829 		return PTR_ERR(h5->enable_gpio);
830 
831 	h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake",
832 						       GPIOD_OUT_LOW);
833 	if (IS_ERR(h5->device_wake_gpio))
834 		return PTR_ERR(h5->device_wake_gpio);
835 
836 	return hci_uart_register_device(&h5->serdev_hu, &h5p);
837 }
838 
839 static void h5_serdev_remove(struct serdev_device *serdev)
840 {
841 	struct h5 *h5 = serdev_device_get_drvdata(serdev);
842 
843 	hci_uart_unregister_device(&h5->serdev_hu);
844 }
845 
846 static int __maybe_unused h5_serdev_suspend(struct device *dev)
847 {
848 	struct h5 *h5 = dev_get_drvdata(dev);
849 	int ret = 0;
850 
851 	if (h5->vnd && h5->vnd->suspend)
852 		ret = h5->vnd->suspend(h5);
853 
854 	return ret;
855 }
856 
857 static int __maybe_unused h5_serdev_resume(struct device *dev)
858 {
859 	struct h5 *h5 = dev_get_drvdata(dev);
860 	int ret = 0;
861 
862 	if (h5->vnd && h5->vnd->resume)
863 		ret = h5->vnd->resume(h5);
864 
865 	return ret;
866 }
867 
868 #ifdef CONFIG_BT_HCIUART_RTL
869 static int h5_btrtl_setup(struct h5 *h5)
870 {
871 	struct btrtl_device_info *btrtl_dev;
872 	struct sk_buff *skb;
873 	__le32 baudrate_data;
874 	u32 device_baudrate;
875 	unsigned int controller_baudrate;
876 	bool flow_control;
877 	int err;
878 
879 	btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id);
880 	if (IS_ERR(btrtl_dev))
881 		return PTR_ERR(btrtl_dev);
882 
883 	err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev,
884 				      &controller_baudrate, &device_baudrate,
885 				      &flow_control);
886 	if (err)
887 		goto out_free;
888 
889 	baudrate_data = cpu_to_le32(device_baudrate);
890 	skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data),
891 			     &baudrate_data, HCI_INIT_TIMEOUT);
892 	if (IS_ERR(skb)) {
893 		rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n");
894 		err = PTR_ERR(skb);
895 		goto out_free;
896 	} else {
897 		kfree_skb(skb);
898 	}
899 	/* Give the device some time to set up the new baudrate. */
900 	usleep_range(10000, 20000);
901 
902 	serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate);
903 	serdev_device_set_flow_control(h5->hu->serdev, flow_control);
904 
905 	err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev);
906 	/* Give the device some time before the hci-core sends it a reset */
907 	usleep_range(10000, 20000);
908 
909 	/* Enable controller to do both LE scan and BR/EDR inquiry
910 	 * simultaneously.
911 	 */
912 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &h5->hu->hdev->quirks);
913 
914 out_free:
915 	btrtl_free(btrtl_dev);
916 
917 	return err;
918 }
919 
920 static void h5_btrtl_open(struct h5 *h5)
921 {
922 	/* Devices always start with these fixed parameters */
923 	serdev_device_set_flow_control(h5->hu->serdev, false);
924 	serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN);
925 	serdev_device_set_baudrate(h5->hu->serdev, 115200);
926 
927 	/* The controller needs up to 500ms to wakeup */
928 	gpiod_set_value_cansleep(h5->enable_gpio, 1);
929 	gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
930 	msleep(500);
931 }
932 
933 static void h5_btrtl_close(struct h5 *h5)
934 {
935 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
936 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
937 }
938 
939 /* Suspend/resume support. On many devices the RTL BT device loses power during
940  * suspend/resume, causing it to lose its firmware and all state. So we simply
941  * turn it off on suspend and reprobe on resume.  This mirrors how RTL devices
942  * are handled in the USB driver, where the USB_QUIRK_RESET_RESUME is used which
943  * also causes a reprobe on resume.
944  */
945 static int h5_btrtl_suspend(struct h5 *h5)
946 {
947 	serdev_device_set_flow_control(h5->hu->serdev, false);
948 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
949 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
950 	return 0;
951 }
952 
953 struct h5_btrtl_reprobe {
954 	struct device *dev;
955 	struct work_struct work;
956 };
957 
958 static void h5_btrtl_reprobe_worker(struct work_struct *work)
959 {
960 	struct h5_btrtl_reprobe *reprobe =
961 		container_of(work, struct h5_btrtl_reprobe, work);
962 	int ret;
963 
964 	ret = device_reprobe(reprobe->dev);
965 	if (ret && ret != -EPROBE_DEFER)
966 		dev_err(reprobe->dev, "Reprobe error %d\n", ret);
967 
968 	put_device(reprobe->dev);
969 	kfree(reprobe);
970 	module_put(THIS_MODULE);
971 }
972 
973 static int h5_btrtl_resume(struct h5 *h5)
974 {
975 	struct h5_btrtl_reprobe *reprobe;
976 
977 	reprobe = kzalloc(sizeof(*reprobe), GFP_KERNEL);
978 	if (!reprobe)
979 		return -ENOMEM;
980 
981 	__module_get(THIS_MODULE);
982 
983 	INIT_WORK(&reprobe->work, h5_btrtl_reprobe_worker);
984 	reprobe->dev = get_device(&h5->hu->serdev->dev);
985 	queue_work(system_long_wq, &reprobe->work);
986 	return 0;
987 }
988 
989 static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false };
990 static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false };
991 static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false };
992 static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = {
993 	{ "device-wake-gpios", &btrtl_device_wake_gpios, 1 },
994 	{ "enable-gpios", &btrtl_enable_gpios, 1 },
995 	{ "host-wake-gpios", &btrtl_host_wake_gpios, 1 },
996 	{},
997 };
998 
999 static struct h5_vnd rtl_vnd = {
1000 	.setup		= h5_btrtl_setup,
1001 	.open		= h5_btrtl_open,
1002 	.close		= h5_btrtl_close,
1003 	.suspend	= h5_btrtl_suspend,
1004 	.resume		= h5_btrtl_resume,
1005 	.acpi_gpio_map	= acpi_btrtl_gpios,
1006 };
1007 #endif
1008 
1009 #ifdef CONFIG_ACPI
1010 static const struct acpi_device_id h5_acpi_match[] = {
1011 #ifdef CONFIG_BT_HCIUART_RTL
1012 	{ "OBDA0623", (kernel_ulong_t)&rtl_vnd },
1013 	{ "OBDA8723", (kernel_ulong_t)&rtl_vnd },
1014 #endif
1015 	{ },
1016 };
1017 MODULE_DEVICE_TABLE(acpi, h5_acpi_match);
1018 #endif
1019 
1020 static const struct dev_pm_ops h5_serdev_pm_ops = {
1021 	SET_SYSTEM_SLEEP_PM_OPS(h5_serdev_suspend, h5_serdev_resume)
1022 };
1023 
1024 static const struct of_device_id rtl_bluetooth_of_match[] = {
1025 #ifdef CONFIG_BT_HCIUART_RTL
1026 	{ .compatible = "realtek,rtl8822cs-bt",
1027 	  .data = (const void *)&rtl_vnd },
1028 	{ .compatible = "realtek,rtl8723bs-bt",
1029 	  .data = (const void *)&rtl_vnd },
1030 	{ .compatible = "realtek,rtl8723ds-bt",
1031 	  .data = (const void *)&rtl_vnd },
1032 #endif
1033 	{ },
1034 };
1035 MODULE_DEVICE_TABLE(of, rtl_bluetooth_of_match);
1036 
1037 static struct serdev_device_driver h5_serdev_driver = {
1038 	.probe = h5_serdev_probe,
1039 	.remove = h5_serdev_remove,
1040 	.driver = {
1041 		.name = "hci_uart_h5",
1042 		.acpi_match_table = ACPI_PTR(h5_acpi_match),
1043 		.pm = &h5_serdev_pm_ops,
1044 		.of_match_table = rtl_bluetooth_of_match,
1045 	},
1046 };
1047 
1048 int __init h5_init(void)
1049 {
1050 	serdev_device_driver_register(&h5_serdev_driver);
1051 	return hci_uart_register_proto(&h5p);
1052 }
1053 
1054 int __exit h5_deinit(void)
1055 {
1056 	serdev_device_driver_unregister(&h5_serdev_driver);
1057 	return hci_uart_unregister_proto(&h5p);
1058 }
1059