xref: /openbmc/linux/drivers/bluetooth/hci_h5.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI Three-wire UART driver
5  *
6  *  Copyright (C) 2012  Intel Corporation
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/of_device.h>
15 #include <linux/serdev.h>
16 #include <linux/skbuff.h>
17 
18 #include <net/bluetooth/bluetooth.h>
19 #include <net/bluetooth/hci_core.h>
20 
21 #include "btrtl.h"
22 #include "hci_uart.h"
23 
24 #define HCI_3WIRE_ACK_PKT	0
25 #define HCI_3WIRE_LINK_PKT	15
26 
27 /* Sliding window size */
28 #define H5_TX_WIN_MAX		4
29 
30 #define H5_ACK_TIMEOUT	msecs_to_jiffies(250)
31 #define H5_SYNC_TIMEOUT	msecs_to_jiffies(100)
32 
33 /*
34  * Maximum Three-wire packet:
35  *     4 byte header + max value for 12-bit length + 2 bytes for CRC
36  */
37 #define H5_MAX_LEN (4 + 0xfff + 2)
38 
39 /* Convenience macros for reading Three-wire header values */
40 #define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
41 #define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
42 #define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
43 #define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
44 #define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
45 #define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
46 
47 #define SLIP_DELIMITER	0xc0
48 #define SLIP_ESC	0xdb
49 #define SLIP_ESC_DELIM	0xdc
50 #define SLIP_ESC_ESC	0xdd
51 
52 /* H5 state flags */
53 enum {
54 	H5_RX_ESC,	/* SLIP escape mode */
55 	H5_TX_ACK_REQ,	/* Pending ack to send */
56 };
57 
58 struct h5 {
59 	/* Must be the first member, hci_serdev.c expects this. */
60 	struct hci_uart		serdev_hu;
61 
62 	struct sk_buff_head	unack;		/* Unack'ed packets queue */
63 	struct sk_buff_head	rel;		/* Reliable packets queue */
64 	struct sk_buff_head	unrel;		/* Unreliable packets queue */
65 
66 	unsigned long		flags;
67 
68 	struct sk_buff		*rx_skb;	/* Receive buffer */
69 	size_t			rx_pending;	/* Expecting more bytes */
70 	u8			rx_ack;		/* Last ack number received */
71 
72 	int			(*rx_func)(struct hci_uart *hu, u8 c);
73 
74 	struct timer_list	timer;		/* Retransmission timer */
75 	struct hci_uart		*hu;		/* Parent HCI UART */
76 
77 	u8			tx_seq;		/* Next seq number to send */
78 	u8			tx_ack;		/* Next ack number to send */
79 	u8			tx_win;		/* Sliding window size */
80 
81 	enum {
82 		H5_UNINITIALIZED,
83 		H5_INITIALIZED,
84 		H5_ACTIVE,
85 	} state;
86 
87 	enum {
88 		H5_AWAKE,
89 		H5_SLEEPING,
90 		H5_WAKING_UP,
91 	} sleep;
92 
93 	const struct h5_vnd *vnd;
94 	const char *id;
95 
96 	struct gpio_desc *enable_gpio;
97 	struct gpio_desc *device_wake_gpio;
98 };
99 
100 struct h5_vnd {
101 	int (*setup)(struct h5 *h5);
102 	void (*open)(struct h5 *h5);
103 	void (*close)(struct h5 *h5);
104 	int (*suspend)(struct h5 *h5);
105 	int (*resume)(struct h5 *h5);
106 	const struct acpi_gpio_mapping *acpi_gpio_map;
107 };
108 
109 static void h5_reset_rx(struct h5 *h5);
110 
111 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
112 {
113 	struct h5 *h5 = hu->priv;
114 	struct sk_buff *nskb;
115 
116 	nskb = alloc_skb(3, GFP_ATOMIC);
117 	if (!nskb)
118 		return;
119 
120 	hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT;
121 
122 	skb_put_data(nskb, data, len);
123 
124 	skb_queue_tail(&h5->unrel, nskb);
125 }
126 
127 static u8 h5_cfg_field(struct h5 *h5)
128 {
129 	/* Sliding window size (first 3 bits) */
130 	return h5->tx_win & 0x07;
131 }
132 
133 static void h5_timed_event(struct timer_list *t)
134 {
135 	const unsigned char sync_req[] = { 0x01, 0x7e };
136 	unsigned char conf_req[3] = { 0x03, 0xfc };
137 	struct h5 *h5 = from_timer(h5, t, timer);
138 	struct hci_uart *hu = h5->hu;
139 	struct sk_buff *skb;
140 	unsigned long flags;
141 
142 	BT_DBG("%s", hu->hdev->name);
143 
144 	if (h5->state == H5_UNINITIALIZED)
145 		h5_link_control(hu, sync_req, sizeof(sync_req));
146 
147 	if (h5->state == H5_INITIALIZED) {
148 		conf_req[2] = h5_cfg_field(h5);
149 		h5_link_control(hu, conf_req, sizeof(conf_req));
150 	}
151 
152 	if (h5->state != H5_ACTIVE) {
153 		mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
154 		goto wakeup;
155 	}
156 
157 	if (h5->sleep != H5_AWAKE) {
158 		h5->sleep = H5_SLEEPING;
159 		goto wakeup;
160 	}
161 
162 	BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
163 
164 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
165 
166 	while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
167 		h5->tx_seq = (h5->tx_seq - 1) & 0x07;
168 		skb_queue_head(&h5->rel, skb);
169 	}
170 
171 	spin_unlock_irqrestore(&h5->unack.lock, flags);
172 
173 wakeup:
174 	hci_uart_tx_wakeup(hu);
175 }
176 
177 static void h5_peer_reset(struct hci_uart *hu)
178 {
179 	struct h5 *h5 = hu->priv;
180 
181 	bt_dev_err(hu->hdev, "Peer device has reset");
182 
183 	h5->state = H5_UNINITIALIZED;
184 
185 	del_timer(&h5->timer);
186 
187 	skb_queue_purge(&h5->rel);
188 	skb_queue_purge(&h5->unrel);
189 	skb_queue_purge(&h5->unack);
190 
191 	h5->tx_seq = 0;
192 	h5->tx_ack = 0;
193 
194 	/* Send reset request to upper stack */
195 	hci_reset_dev(hu->hdev);
196 }
197 
198 static int h5_open(struct hci_uart *hu)
199 {
200 	struct h5 *h5;
201 	const unsigned char sync[] = { 0x01, 0x7e };
202 
203 	BT_DBG("hu %p", hu);
204 
205 	if (hu->serdev) {
206 		h5 = serdev_device_get_drvdata(hu->serdev);
207 	} else {
208 		h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
209 		if (!h5)
210 			return -ENOMEM;
211 	}
212 
213 	hu->priv = h5;
214 	h5->hu = hu;
215 
216 	skb_queue_head_init(&h5->unack);
217 	skb_queue_head_init(&h5->rel);
218 	skb_queue_head_init(&h5->unrel);
219 
220 	h5_reset_rx(h5);
221 
222 	timer_setup(&h5->timer, h5_timed_event, 0);
223 
224 	h5->tx_win = H5_TX_WIN_MAX;
225 
226 	if (h5->vnd && h5->vnd->open)
227 		h5->vnd->open(h5);
228 
229 	set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);
230 
231 	/* Send initial sync request */
232 	h5_link_control(hu, sync, sizeof(sync));
233 	mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
234 
235 	return 0;
236 }
237 
238 static int h5_close(struct hci_uart *hu)
239 {
240 	struct h5 *h5 = hu->priv;
241 
242 	del_timer_sync(&h5->timer);
243 
244 	skb_queue_purge(&h5->unack);
245 	skb_queue_purge(&h5->rel);
246 	skb_queue_purge(&h5->unrel);
247 
248 	if (h5->vnd && h5->vnd->close)
249 		h5->vnd->close(h5);
250 
251 	if (!hu->serdev)
252 		kfree(h5);
253 
254 	return 0;
255 }
256 
257 static int h5_setup(struct hci_uart *hu)
258 {
259 	struct h5 *h5 = hu->priv;
260 
261 	if (h5->vnd && h5->vnd->setup)
262 		return h5->vnd->setup(h5);
263 
264 	return 0;
265 }
266 
267 static void h5_pkt_cull(struct h5 *h5)
268 {
269 	struct sk_buff *skb, *tmp;
270 	unsigned long flags;
271 	int i, to_remove;
272 	u8 seq;
273 
274 	spin_lock_irqsave(&h5->unack.lock, flags);
275 
276 	to_remove = skb_queue_len(&h5->unack);
277 	if (to_remove == 0)
278 		goto unlock;
279 
280 	seq = h5->tx_seq;
281 
282 	while (to_remove > 0) {
283 		if (h5->rx_ack == seq)
284 			break;
285 
286 		to_remove--;
287 		seq = (seq - 1) & 0x07;
288 	}
289 
290 	if (seq != h5->rx_ack)
291 		BT_ERR("Controller acked invalid packet");
292 
293 	i = 0;
294 	skb_queue_walk_safe(&h5->unack, skb, tmp) {
295 		if (i++ >= to_remove)
296 			break;
297 
298 		__skb_unlink(skb, &h5->unack);
299 		kfree_skb(skb);
300 	}
301 
302 	if (skb_queue_empty(&h5->unack))
303 		del_timer(&h5->timer);
304 
305 unlock:
306 	spin_unlock_irqrestore(&h5->unack.lock, flags);
307 }
308 
309 static void h5_handle_internal_rx(struct hci_uart *hu)
310 {
311 	struct h5 *h5 = hu->priv;
312 	const unsigned char sync_req[] = { 0x01, 0x7e };
313 	const unsigned char sync_rsp[] = { 0x02, 0x7d };
314 	unsigned char conf_req[3] = { 0x03, 0xfc };
315 	const unsigned char conf_rsp[] = { 0x04, 0x7b };
316 	const unsigned char wakeup_req[] = { 0x05, 0xfa };
317 	const unsigned char woken_req[] = { 0x06, 0xf9 };
318 	const unsigned char sleep_req[] = { 0x07, 0x78 };
319 	const unsigned char *hdr = h5->rx_skb->data;
320 	const unsigned char *data = &h5->rx_skb->data[4];
321 
322 	BT_DBG("%s", hu->hdev->name);
323 
324 	if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
325 		return;
326 
327 	if (H5_HDR_LEN(hdr) < 2)
328 		return;
329 
330 	conf_req[2] = h5_cfg_field(h5);
331 
332 	if (memcmp(data, sync_req, 2) == 0) {
333 		if (h5->state == H5_ACTIVE)
334 			h5_peer_reset(hu);
335 		h5_link_control(hu, sync_rsp, 2);
336 	} else if (memcmp(data, sync_rsp, 2) == 0) {
337 		if (h5->state == H5_ACTIVE)
338 			h5_peer_reset(hu);
339 		h5->state = H5_INITIALIZED;
340 		h5_link_control(hu, conf_req, 3);
341 	} else if (memcmp(data, conf_req, 2) == 0) {
342 		h5_link_control(hu, conf_rsp, 2);
343 		h5_link_control(hu, conf_req, 3);
344 	} else if (memcmp(data, conf_rsp, 2) == 0) {
345 		if (H5_HDR_LEN(hdr) > 2)
346 			h5->tx_win = (data[2] & 0x07);
347 		BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
348 		h5->state = H5_ACTIVE;
349 		hci_uart_init_ready(hu);
350 		return;
351 	} else if (memcmp(data, sleep_req, 2) == 0) {
352 		BT_DBG("Peer went to sleep");
353 		h5->sleep = H5_SLEEPING;
354 		return;
355 	} else if (memcmp(data, woken_req, 2) == 0) {
356 		BT_DBG("Peer woke up");
357 		h5->sleep = H5_AWAKE;
358 	} else if (memcmp(data, wakeup_req, 2) == 0) {
359 		BT_DBG("Peer requested wakeup");
360 		h5_link_control(hu, woken_req, 2);
361 		h5->sleep = H5_AWAKE;
362 	} else {
363 		BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
364 		return;
365 	}
366 
367 	hci_uart_tx_wakeup(hu);
368 }
369 
370 static void h5_complete_rx_pkt(struct hci_uart *hu)
371 {
372 	struct h5 *h5 = hu->priv;
373 	const unsigned char *hdr = h5->rx_skb->data;
374 
375 	if (H5_HDR_RELIABLE(hdr)) {
376 		h5->tx_ack = (h5->tx_ack + 1) % 8;
377 		set_bit(H5_TX_ACK_REQ, &h5->flags);
378 		hci_uart_tx_wakeup(hu);
379 	}
380 
381 	h5->rx_ack = H5_HDR_ACK(hdr);
382 
383 	h5_pkt_cull(h5);
384 
385 	switch (H5_HDR_PKT_TYPE(hdr)) {
386 	case HCI_EVENT_PKT:
387 	case HCI_ACLDATA_PKT:
388 	case HCI_SCODATA_PKT:
389 	case HCI_ISODATA_PKT:
390 		hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr);
391 
392 		/* Remove Three-wire header */
393 		skb_pull(h5->rx_skb, 4);
394 
395 		hci_recv_frame(hu->hdev, h5->rx_skb);
396 		h5->rx_skb = NULL;
397 
398 		break;
399 
400 	default:
401 		h5_handle_internal_rx(hu);
402 		break;
403 	}
404 
405 	h5_reset_rx(h5);
406 }
407 
408 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
409 {
410 	h5_complete_rx_pkt(hu);
411 
412 	return 0;
413 }
414 
415 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
416 {
417 	struct h5 *h5 = hu->priv;
418 	const unsigned char *hdr = h5->rx_skb->data;
419 
420 	if (H5_HDR_CRC(hdr)) {
421 		h5->rx_func = h5_rx_crc;
422 		h5->rx_pending = 2;
423 	} else {
424 		h5_complete_rx_pkt(hu);
425 	}
426 
427 	return 0;
428 }
429 
430 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
431 {
432 	struct h5 *h5 = hu->priv;
433 	const unsigned char *hdr = h5->rx_skb->data;
434 
435 	BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
436 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
437 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
438 	       H5_HDR_LEN(hdr));
439 
440 	if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
441 		bt_dev_err(hu->hdev, "Invalid header checksum");
442 		h5_reset_rx(h5);
443 		return 0;
444 	}
445 
446 	if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
447 		bt_dev_err(hu->hdev, "Out-of-order packet arrived (%u != %u)",
448 			   H5_HDR_SEQ(hdr), h5->tx_ack);
449 		h5_reset_rx(h5);
450 		return 0;
451 	}
452 
453 	if (h5->state != H5_ACTIVE &&
454 	    H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
455 		bt_dev_err(hu->hdev, "Non-link packet received in non-active state");
456 		h5_reset_rx(h5);
457 		return 0;
458 	}
459 
460 	h5->rx_func = h5_rx_payload;
461 	h5->rx_pending = H5_HDR_LEN(hdr);
462 
463 	return 0;
464 }
465 
466 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
467 {
468 	struct h5 *h5 = hu->priv;
469 
470 	if (c == SLIP_DELIMITER)
471 		return 1;
472 
473 	h5->rx_func = h5_rx_3wire_hdr;
474 	h5->rx_pending = 4;
475 
476 	h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
477 	if (!h5->rx_skb) {
478 		bt_dev_err(hu->hdev, "Can't allocate mem for new packet");
479 		h5_reset_rx(h5);
480 		return -ENOMEM;
481 	}
482 
483 	h5->rx_skb->dev = (void *)hu->hdev;
484 
485 	return 0;
486 }
487 
488 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
489 {
490 	struct h5 *h5 = hu->priv;
491 
492 	if (c == SLIP_DELIMITER)
493 		h5->rx_func = h5_rx_pkt_start;
494 
495 	return 1;
496 }
497 
498 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
499 {
500 	const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
501 	const u8 *byte = &c;
502 
503 	if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
504 		set_bit(H5_RX_ESC, &h5->flags);
505 		return;
506 	}
507 
508 	if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
509 		switch (c) {
510 		case SLIP_ESC_DELIM:
511 			byte = &delim;
512 			break;
513 		case SLIP_ESC_ESC:
514 			byte = &esc;
515 			break;
516 		default:
517 			BT_ERR("Invalid esc byte 0x%02hhx", c);
518 			h5_reset_rx(h5);
519 			return;
520 		}
521 	}
522 
523 	skb_put_data(h5->rx_skb, byte, 1);
524 	h5->rx_pending--;
525 
526 	BT_DBG("unslipped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
527 }
528 
529 static void h5_reset_rx(struct h5 *h5)
530 {
531 	if (h5->rx_skb) {
532 		kfree_skb(h5->rx_skb);
533 		h5->rx_skb = NULL;
534 	}
535 
536 	h5->rx_func = h5_rx_delimiter;
537 	h5->rx_pending = 0;
538 	clear_bit(H5_RX_ESC, &h5->flags);
539 }
540 
541 static int h5_recv(struct hci_uart *hu, const void *data, int count)
542 {
543 	struct h5 *h5 = hu->priv;
544 	const unsigned char *ptr = data;
545 
546 	BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
547 	       count);
548 
549 	while (count > 0) {
550 		int processed;
551 
552 		if (h5->rx_pending > 0) {
553 			if (*ptr == SLIP_DELIMITER) {
554 				bt_dev_err(hu->hdev, "Too short H5 packet");
555 				h5_reset_rx(h5);
556 				continue;
557 			}
558 
559 			h5_unslip_one_byte(h5, *ptr);
560 
561 			ptr++; count--;
562 			continue;
563 		}
564 
565 		processed = h5->rx_func(hu, *ptr);
566 		if (processed < 0)
567 			return processed;
568 
569 		ptr += processed;
570 		count -= processed;
571 	}
572 
573 	return 0;
574 }
575 
576 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
577 {
578 	struct h5 *h5 = hu->priv;
579 
580 	if (skb->len > 0xfff) {
581 		bt_dev_err(hu->hdev, "Packet too long (%u bytes)", skb->len);
582 		kfree_skb(skb);
583 		return 0;
584 	}
585 
586 	if (h5->state != H5_ACTIVE) {
587 		bt_dev_err(hu->hdev, "Ignoring HCI data in non-active state");
588 		kfree_skb(skb);
589 		return 0;
590 	}
591 
592 	switch (hci_skb_pkt_type(skb)) {
593 	case HCI_ACLDATA_PKT:
594 	case HCI_COMMAND_PKT:
595 		skb_queue_tail(&h5->rel, skb);
596 		break;
597 
598 	case HCI_SCODATA_PKT:
599 	case HCI_ISODATA_PKT:
600 		skb_queue_tail(&h5->unrel, skb);
601 		break;
602 
603 	default:
604 		bt_dev_err(hu->hdev, "Unknown packet type %u", hci_skb_pkt_type(skb));
605 		kfree_skb(skb);
606 		break;
607 	}
608 
609 	return 0;
610 }
611 
612 static void h5_slip_delim(struct sk_buff *skb)
613 {
614 	const char delim = SLIP_DELIMITER;
615 
616 	skb_put_data(skb, &delim, 1);
617 }
618 
619 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
620 {
621 	const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
622 	const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
623 
624 	switch (c) {
625 	case SLIP_DELIMITER:
626 		skb_put_data(skb, &esc_delim, 2);
627 		break;
628 	case SLIP_ESC:
629 		skb_put_data(skb, &esc_esc, 2);
630 		break;
631 	default:
632 		skb_put_data(skb, &c, 1);
633 	}
634 }
635 
636 static bool valid_packet_type(u8 type)
637 {
638 	switch (type) {
639 	case HCI_ACLDATA_PKT:
640 	case HCI_COMMAND_PKT:
641 	case HCI_SCODATA_PKT:
642 	case HCI_ISODATA_PKT:
643 	case HCI_3WIRE_LINK_PKT:
644 	case HCI_3WIRE_ACK_PKT:
645 		return true;
646 	default:
647 		return false;
648 	}
649 }
650 
651 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
652 				      const u8 *data, size_t len)
653 {
654 	struct h5 *h5 = hu->priv;
655 	struct sk_buff *nskb;
656 	u8 hdr[4];
657 	int i;
658 
659 	if (!valid_packet_type(pkt_type)) {
660 		bt_dev_err(hu->hdev, "Unknown packet type %u", pkt_type);
661 		return NULL;
662 	}
663 
664 	/*
665 	 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
666 	 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
667 	 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
668 	 * delimiters at start and end).
669 	 */
670 	nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
671 	if (!nskb)
672 		return NULL;
673 
674 	hci_skb_pkt_type(nskb) = pkt_type;
675 
676 	h5_slip_delim(nskb);
677 
678 	hdr[0] = h5->tx_ack << 3;
679 	clear_bit(H5_TX_ACK_REQ, &h5->flags);
680 
681 	/* Reliable packet? */
682 	if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
683 		hdr[0] |= 1 << 7;
684 		hdr[0] |= h5->tx_seq;
685 		h5->tx_seq = (h5->tx_seq + 1) % 8;
686 	}
687 
688 	hdr[1] = pkt_type | ((len & 0x0f) << 4);
689 	hdr[2] = len >> 4;
690 	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
691 
692 	BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
693 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
694 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
695 	       H5_HDR_LEN(hdr));
696 
697 	for (i = 0; i < 4; i++)
698 		h5_slip_one_byte(nskb, hdr[i]);
699 
700 	for (i = 0; i < len; i++)
701 		h5_slip_one_byte(nskb, data[i]);
702 
703 	h5_slip_delim(nskb);
704 
705 	return nskb;
706 }
707 
708 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
709 {
710 	struct h5 *h5 = hu->priv;
711 	unsigned long flags;
712 	struct sk_buff *skb, *nskb;
713 
714 	if (h5->sleep != H5_AWAKE) {
715 		const unsigned char wakeup_req[] = { 0x05, 0xfa };
716 
717 		if (h5->sleep == H5_WAKING_UP)
718 			return NULL;
719 
720 		h5->sleep = H5_WAKING_UP;
721 		BT_DBG("Sending wakeup request");
722 
723 		mod_timer(&h5->timer, jiffies + HZ / 100);
724 		return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
725 	}
726 
727 	skb = skb_dequeue(&h5->unrel);
728 	if (skb) {
729 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
730 				      skb->data, skb->len);
731 		if (nskb) {
732 			kfree_skb(skb);
733 			return nskb;
734 		}
735 
736 		skb_queue_head(&h5->unrel, skb);
737 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
738 	}
739 
740 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
741 
742 	if (h5->unack.qlen >= h5->tx_win)
743 		goto unlock;
744 
745 	skb = skb_dequeue(&h5->rel);
746 	if (skb) {
747 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
748 				      skb->data, skb->len);
749 		if (nskb) {
750 			__skb_queue_tail(&h5->unack, skb);
751 			mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
752 			spin_unlock_irqrestore(&h5->unack.lock, flags);
753 			return nskb;
754 		}
755 
756 		skb_queue_head(&h5->rel, skb);
757 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
758 	}
759 
760 unlock:
761 	spin_unlock_irqrestore(&h5->unack.lock, flags);
762 
763 	if (test_bit(H5_TX_ACK_REQ, &h5->flags))
764 		return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
765 
766 	return NULL;
767 }
768 
769 static int h5_flush(struct hci_uart *hu)
770 {
771 	BT_DBG("hu %p", hu);
772 	return 0;
773 }
774 
775 static const struct hci_uart_proto h5p = {
776 	.id		= HCI_UART_3WIRE,
777 	.name		= "Three-wire (H5)",
778 	.open		= h5_open,
779 	.close		= h5_close,
780 	.setup		= h5_setup,
781 	.recv		= h5_recv,
782 	.enqueue	= h5_enqueue,
783 	.dequeue	= h5_dequeue,
784 	.flush		= h5_flush,
785 };
786 
787 static int h5_serdev_probe(struct serdev_device *serdev)
788 {
789 	struct device *dev = &serdev->dev;
790 	struct h5 *h5;
791 
792 	h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL);
793 	if (!h5)
794 		return -ENOMEM;
795 
796 	set_bit(HCI_UART_RESET_ON_INIT, &h5->serdev_hu.hdev_flags);
797 
798 	h5->hu = &h5->serdev_hu;
799 	h5->serdev_hu.serdev = serdev;
800 	serdev_device_set_drvdata(serdev, h5);
801 
802 	if (has_acpi_companion(dev)) {
803 		const struct acpi_device_id *match;
804 
805 		match = acpi_match_device(dev->driver->acpi_match_table, dev);
806 		if (!match)
807 			return -ENODEV;
808 
809 		h5->vnd = (const struct h5_vnd *)match->driver_data;
810 		h5->id  = (char *)match->id;
811 
812 		if (h5->vnd->acpi_gpio_map)
813 			devm_acpi_dev_add_driver_gpios(dev,
814 						       h5->vnd->acpi_gpio_map);
815 	} else {
816 		const void *data;
817 
818 		data = of_device_get_match_data(dev);
819 		if (!data)
820 			return -ENODEV;
821 
822 		h5->vnd = (const struct h5_vnd *)data;
823 	}
824 
825 
826 	h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
827 	if (IS_ERR(h5->enable_gpio))
828 		return PTR_ERR(h5->enable_gpio);
829 
830 	h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake",
831 						       GPIOD_OUT_LOW);
832 	if (IS_ERR(h5->device_wake_gpio))
833 		return PTR_ERR(h5->device_wake_gpio);
834 
835 	return hci_uart_register_device(&h5->serdev_hu, &h5p);
836 }
837 
838 static void h5_serdev_remove(struct serdev_device *serdev)
839 {
840 	struct h5 *h5 = serdev_device_get_drvdata(serdev);
841 
842 	hci_uart_unregister_device(&h5->serdev_hu);
843 }
844 
845 static int __maybe_unused h5_serdev_suspend(struct device *dev)
846 {
847 	struct h5 *h5 = dev_get_drvdata(dev);
848 	int ret = 0;
849 
850 	if (h5->vnd && h5->vnd->suspend)
851 		ret = h5->vnd->suspend(h5);
852 
853 	return ret;
854 }
855 
856 static int __maybe_unused h5_serdev_resume(struct device *dev)
857 {
858 	struct h5 *h5 = dev_get_drvdata(dev);
859 	int ret = 0;
860 
861 	if (h5->vnd && h5->vnd->resume)
862 		ret = h5->vnd->resume(h5);
863 
864 	return ret;
865 }
866 
867 #ifdef CONFIG_BT_HCIUART_RTL
868 static int h5_btrtl_setup(struct h5 *h5)
869 {
870 	struct btrtl_device_info *btrtl_dev;
871 	struct sk_buff *skb;
872 	__le32 baudrate_data;
873 	u32 device_baudrate;
874 	unsigned int controller_baudrate;
875 	bool flow_control;
876 	int err;
877 
878 	btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id);
879 	if (IS_ERR(btrtl_dev))
880 		return PTR_ERR(btrtl_dev);
881 
882 	err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev,
883 				      &controller_baudrate, &device_baudrate,
884 				      &flow_control);
885 	if (err)
886 		goto out_free;
887 
888 	baudrate_data = cpu_to_le32(device_baudrate);
889 	skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data),
890 			     &baudrate_data, HCI_INIT_TIMEOUT);
891 	if (IS_ERR(skb)) {
892 		rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n");
893 		err = PTR_ERR(skb);
894 		goto out_free;
895 	} else {
896 		kfree_skb(skb);
897 	}
898 	/* Give the device some time to set up the new baudrate. */
899 	usleep_range(10000, 20000);
900 
901 	serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate);
902 	serdev_device_set_flow_control(h5->hu->serdev, flow_control);
903 
904 	err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev);
905 	/* Give the device some time before the hci-core sends it a reset */
906 	usleep_range(10000, 20000);
907 
908 out_free:
909 	btrtl_free(btrtl_dev);
910 
911 	return err;
912 }
913 
914 static void h5_btrtl_open(struct h5 *h5)
915 {
916 	/* Devices always start with these fixed parameters */
917 	serdev_device_set_flow_control(h5->hu->serdev, false);
918 	serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN);
919 	serdev_device_set_baudrate(h5->hu->serdev, 115200);
920 
921 	/* The controller needs up to 500ms to wakeup */
922 	gpiod_set_value_cansleep(h5->enable_gpio, 1);
923 	gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
924 	msleep(500);
925 }
926 
927 static void h5_btrtl_close(struct h5 *h5)
928 {
929 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
930 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
931 }
932 
933 /* Suspend/resume support. On many devices the RTL BT device loses power during
934  * suspend/resume, causing it to lose its firmware and all state. So we simply
935  * turn it off on suspend and reprobe on resume.  This mirrors how RTL devices
936  * are handled in the USB driver, where the USB_QUIRK_RESET_RESUME is used which
937  * also causes a reprobe on resume.
938  */
939 static int h5_btrtl_suspend(struct h5 *h5)
940 {
941 	serdev_device_set_flow_control(h5->hu->serdev, false);
942 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
943 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
944 	return 0;
945 }
946 
947 struct h5_btrtl_reprobe {
948 	struct device *dev;
949 	struct work_struct work;
950 };
951 
952 static void h5_btrtl_reprobe_worker(struct work_struct *work)
953 {
954 	struct h5_btrtl_reprobe *reprobe =
955 		container_of(work, struct h5_btrtl_reprobe, work);
956 	int ret;
957 
958 	ret = device_reprobe(reprobe->dev);
959 	if (ret && ret != -EPROBE_DEFER)
960 		dev_err(reprobe->dev, "Reprobe error %d\n", ret);
961 
962 	put_device(reprobe->dev);
963 	kfree(reprobe);
964 	module_put(THIS_MODULE);
965 }
966 
967 static int h5_btrtl_resume(struct h5 *h5)
968 {
969 	struct h5_btrtl_reprobe *reprobe;
970 
971 	reprobe = kzalloc(sizeof(*reprobe), GFP_KERNEL);
972 	if (!reprobe)
973 		return -ENOMEM;
974 
975 	__module_get(THIS_MODULE);
976 
977 	INIT_WORK(&reprobe->work, h5_btrtl_reprobe_worker);
978 	reprobe->dev = get_device(&h5->hu->serdev->dev);
979 	queue_work(system_long_wq, &reprobe->work);
980 	return 0;
981 }
982 
983 static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false };
984 static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false };
985 static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false };
986 static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = {
987 	{ "device-wake-gpios", &btrtl_device_wake_gpios, 1 },
988 	{ "enable-gpios", &btrtl_enable_gpios, 1 },
989 	{ "host-wake-gpios", &btrtl_host_wake_gpios, 1 },
990 	{},
991 };
992 
993 static struct h5_vnd rtl_vnd = {
994 	.setup		= h5_btrtl_setup,
995 	.open		= h5_btrtl_open,
996 	.close		= h5_btrtl_close,
997 	.suspend	= h5_btrtl_suspend,
998 	.resume		= h5_btrtl_resume,
999 	.acpi_gpio_map	= acpi_btrtl_gpios,
1000 };
1001 #endif
1002 
1003 #ifdef CONFIG_ACPI
1004 static const struct acpi_device_id h5_acpi_match[] = {
1005 #ifdef CONFIG_BT_HCIUART_RTL
1006 	{ "OBDA8723", (kernel_ulong_t)&rtl_vnd },
1007 #endif
1008 	{ },
1009 };
1010 MODULE_DEVICE_TABLE(acpi, h5_acpi_match);
1011 #endif
1012 
1013 static const struct dev_pm_ops h5_serdev_pm_ops = {
1014 	SET_SYSTEM_SLEEP_PM_OPS(h5_serdev_suspend, h5_serdev_resume)
1015 };
1016 
1017 static const struct of_device_id rtl_bluetooth_of_match[] = {
1018 #ifdef CONFIG_BT_HCIUART_RTL
1019 	{ .compatible = "realtek,rtl8822cs-bt",
1020 	  .data = (const void *)&rtl_vnd },
1021 	{ .compatible = "realtek,rtl8723bs-bt",
1022 	  .data = (const void *)&rtl_vnd },
1023 #endif
1024 	{ },
1025 };
1026 MODULE_DEVICE_TABLE(of, rtl_bluetooth_of_match);
1027 
1028 static struct serdev_device_driver h5_serdev_driver = {
1029 	.probe = h5_serdev_probe,
1030 	.remove = h5_serdev_remove,
1031 	.driver = {
1032 		.name = "hci_uart_h5",
1033 		.acpi_match_table = ACPI_PTR(h5_acpi_match),
1034 		.pm = &h5_serdev_pm_ops,
1035 		.of_match_table = rtl_bluetooth_of_match,
1036 	},
1037 };
1038 
1039 int __init h5_init(void)
1040 {
1041 	serdev_device_driver_register(&h5_serdev_driver);
1042 	return hci_uart_register_proto(&h5p);
1043 }
1044 
1045 int __exit h5_deinit(void)
1046 {
1047 	serdev_device_driver_unregister(&h5_serdev_driver);
1048 	return hci_uart_unregister_proto(&h5p);
1049 }
1050