xref: /openbmc/linux/drivers/bluetooth/hci_h5.c (revision dd163fa3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI Three-wire UART driver
5  *
6  *  Copyright (C) 2012  Intel Corporation
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/of.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/serdev.h>
17 #include <linux/skbuff.h>
18 
19 #include <net/bluetooth/bluetooth.h>
20 #include <net/bluetooth/hci_core.h>
21 
22 #include "btrtl.h"
23 #include "hci_uart.h"
24 
25 #define SUSPEND_TIMEOUT_MS	6000
26 
27 #define HCI_3WIRE_ACK_PKT	0
28 #define HCI_3WIRE_LINK_PKT	15
29 
30 /* Sliding window size */
31 #define H5_TX_WIN_MAX		4
32 
33 #define H5_ACK_TIMEOUT	msecs_to_jiffies(250)
34 #define H5_SYNC_TIMEOUT	msecs_to_jiffies(100)
35 
36 /*
37  * Maximum Three-wire packet:
38  *     4 byte header + max value for 12-bit length + 2 bytes for CRC
39  */
40 #define H5_MAX_LEN (4 + 0xfff + 2)
41 
42 /* Convenience macros for reading Three-wire header values */
43 #define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
44 #define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
45 #define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
46 #define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
47 #define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
48 #define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
49 
50 #define SLIP_DELIMITER	0xc0
51 #define SLIP_ESC	0xdb
52 #define SLIP_ESC_DELIM	0xdc
53 #define SLIP_ESC_ESC	0xdd
54 
55 /* H5 state flags */
56 enum {
57 	H5_RX_ESC,		/* SLIP escape mode */
58 	H5_TX_ACK_REQ,		/* Pending ack to send */
59 	H5_WAKEUP_DISABLE,	/* Device cannot wake host */
60 	H5_HW_FLOW_CONTROL,	/* Use HW flow control */
61 };
62 
63 struct h5 {
64 	/* Must be the first member, hci_serdev.c expects this. */
65 	struct hci_uart		serdev_hu;
66 
67 	struct sk_buff_head	unack;		/* Unack'ed packets queue */
68 	struct sk_buff_head	rel;		/* Reliable packets queue */
69 	struct sk_buff_head	unrel;		/* Unreliable packets queue */
70 
71 	unsigned long		flags;
72 
73 	struct sk_buff		*rx_skb;	/* Receive buffer */
74 	size_t			rx_pending;	/* Expecting more bytes */
75 	u8			rx_ack;		/* Last ack number received */
76 
77 	int			(*rx_func)(struct hci_uart *hu, u8 c);
78 
79 	struct timer_list	timer;		/* Retransmission timer */
80 	struct hci_uart		*hu;		/* Parent HCI UART */
81 
82 	u8			tx_seq;		/* Next seq number to send */
83 	u8			tx_ack;		/* Next ack number to send */
84 	u8			tx_win;		/* Sliding window size */
85 
86 	enum {
87 		H5_UNINITIALIZED,
88 		H5_INITIALIZED,
89 		H5_ACTIVE,
90 	} state;
91 
92 	enum {
93 		H5_AWAKE,
94 		H5_SLEEPING,
95 		H5_WAKING_UP,
96 	} sleep;
97 
98 	const struct h5_vnd *vnd;
99 	const char *id;
100 
101 	struct gpio_desc *enable_gpio;
102 	struct gpio_desc *device_wake_gpio;
103 };
104 
105 enum h5_driver_info {
106 	H5_INFO_WAKEUP_DISABLE = BIT(0),
107 };
108 
109 struct h5_vnd {
110 	int (*setup)(struct h5 *h5);
111 	void (*open)(struct h5 *h5);
112 	void (*close)(struct h5 *h5);
113 	int (*suspend)(struct h5 *h5);
114 	int (*resume)(struct h5 *h5);
115 	const struct acpi_gpio_mapping *acpi_gpio_map;
116 	int sizeof_priv;
117 };
118 
119 struct h5_device_data {
120 	uint32_t driver_info;
121 	struct h5_vnd *vnd;
122 };
123 
124 static void h5_reset_rx(struct h5 *h5);
125 
h5_link_control(struct hci_uart * hu,const void * data,size_t len)126 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
127 {
128 	struct h5 *h5 = hu->priv;
129 	struct sk_buff *nskb;
130 
131 	nskb = alloc_skb(3, GFP_ATOMIC);
132 	if (!nskb)
133 		return;
134 
135 	hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT;
136 
137 	skb_put_data(nskb, data, len);
138 
139 	skb_queue_tail(&h5->unrel, nskb);
140 }
141 
h5_cfg_field(struct h5 * h5)142 static u8 h5_cfg_field(struct h5 *h5)
143 {
144 	/* Sliding window size (first 3 bits) */
145 	return h5->tx_win & 0x07;
146 }
147 
h5_timed_event(struct timer_list * t)148 static void h5_timed_event(struct timer_list *t)
149 {
150 	const unsigned char sync_req[] = { 0x01, 0x7e };
151 	unsigned char conf_req[3] = { 0x03, 0xfc };
152 	struct h5 *h5 = from_timer(h5, t, timer);
153 	struct hci_uart *hu = h5->hu;
154 	struct sk_buff *skb;
155 	unsigned long flags;
156 
157 	BT_DBG("%s", hu->hdev->name);
158 
159 	if (h5->state == H5_UNINITIALIZED)
160 		h5_link_control(hu, sync_req, sizeof(sync_req));
161 
162 	if (h5->state == H5_INITIALIZED) {
163 		conf_req[2] = h5_cfg_field(h5);
164 		h5_link_control(hu, conf_req, sizeof(conf_req));
165 	}
166 
167 	if (h5->state != H5_ACTIVE) {
168 		mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
169 		goto wakeup;
170 	}
171 
172 	if (h5->sleep != H5_AWAKE) {
173 		h5->sleep = H5_SLEEPING;
174 		goto wakeup;
175 	}
176 
177 	BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
178 
179 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
180 
181 	while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
182 		h5->tx_seq = (h5->tx_seq - 1) & 0x07;
183 		skb_queue_head(&h5->rel, skb);
184 	}
185 
186 	spin_unlock_irqrestore(&h5->unack.lock, flags);
187 
188 wakeup:
189 	hci_uart_tx_wakeup(hu);
190 }
191 
h5_peer_reset(struct hci_uart * hu)192 static void h5_peer_reset(struct hci_uart *hu)
193 {
194 	struct h5 *h5 = hu->priv;
195 
196 	bt_dev_err(hu->hdev, "Peer device has reset");
197 
198 	h5->state = H5_UNINITIALIZED;
199 
200 	del_timer(&h5->timer);
201 
202 	skb_queue_purge(&h5->rel);
203 	skb_queue_purge(&h5->unrel);
204 	skb_queue_purge(&h5->unack);
205 
206 	h5->tx_seq = 0;
207 	h5->tx_ack = 0;
208 
209 	/* Send reset request to upper stack */
210 	hci_reset_dev(hu->hdev);
211 }
212 
h5_open(struct hci_uart * hu)213 static int h5_open(struct hci_uart *hu)
214 {
215 	struct h5 *h5;
216 	const unsigned char sync[] = { 0x01, 0x7e };
217 
218 	BT_DBG("hu %p", hu);
219 
220 	if (hu->serdev) {
221 		h5 = serdev_device_get_drvdata(hu->serdev);
222 	} else {
223 		h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
224 		if (!h5)
225 			return -ENOMEM;
226 	}
227 
228 	hu->priv = h5;
229 	h5->hu = hu;
230 
231 	skb_queue_head_init(&h5->unack);
232 	skb_queue_head_init(&h5->rel);
233 	skb_queue_head_init(&h5->unrel);
234 
235 	h5_reset_rx(h5);
236 
237 	timer_setup(&h5->timer, h5_timed_event, 0);
238 
239 	h5->tx_win = H5_TX_WIN_MAX;
240 
241 	if (h5->vnd && h5->vnd->open)
242 		h5->vnd->open(h5);
243 
244 	set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);
245 
246 	/* Send initial sync request */
247 	h5_link_control(hu, sync, sizeof(sync));
248 	mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
249 
250 	return 0;
251 }
252 
h5_close(struct hci_uart * hu)253 static int h5_close(struct hci_uart *hu)
254 {
255 	struct h5 *h5 = hu->priv;
256 
257 	del_timer_sync(&h5->timer);
258 
259 	skb_queue_purge(&h5->unack);
260 	skb_queue_purge(&h5->rel);
261 	skb_queue_purge(&h5->unrel);
262 
263 	kfree_skb(h5->rx_skb);
264 	h5->rx_skb = NULL;
265 
266 	if (h5->vnd && h5->vnd->close)
267 		h5->vnd->close(h5);
268 
269 	if (!hu->serdev)
270 		kfree(h5);
271 
272 	return 0;
273 }
274 
h5_setup(struct hci_uart * hu)275 static int h5_setup(struct hci_uart *hu)
276 {
277 	struct h5 *h5 = hu->priv;
278 
279 	if (h5->vnd && h5->vnd->setup)
280 		return h5->vnd->setup(h5);
281 
282 	return 0;
283 }
284 
h5_pkt_cull(struct h5 * h5)285 static void h5_pkt_cull(struct h5 *h5)
286 {
287 	struct sk_buff *skb, *tmp;
288 	unsigned long flags;
289 	int i, to_remove;
290 	u8 seq;
291 
292 	spin_lock_irqsave(&h5->unack.lock, flags);
293 
294 	to_remove = skb_queue_len(&h5->unack);
295 	if (to_remove == 0)
296 		goto unlock;
297 
298 	seq = h5->tx_seq;
299 
300 	while (to_remove > 0) {
301 		if (h5->rx_ack == seq)
302 			break;
303 
304 		to_remove--;
305 		seq = (seq - 1) & 0x07;
306 	}
307 
308 	if (seq != h5->rx_ack)
309 		BT_ERR("Controller acked invalid packet");
310 
311 	i = 0;
312 	skb_queue_walk_safe(&h5->unack, skb, tmp) {
313 		if (i++ >= to_remove)
314 			break;
315 
316 		__skb_unlink(skb, &h5->unack);
317 		dev_kfree_skb_irq(skb);
318 	}
319 
320 	if (skb_queue_empty(&h5->unack))
321 		del_timer(&h5->timer);
322 
323 unlock:
324 	spin_unlock_irqrestore(&h5->unack.lock, flags);
325 }
326 
h5_handle_internal_rx(struct hci_uart * hu)327 static void h5_handle_internal_rx(struct hci_uart *hu)
328 {
329 	struct h5 *h5 = hu->priv;
330 	const unsigned char sync_req[] = { 0x01, 0x7e };
331 	const unsigned char sync_rsp[] = { 0x02, 0x7d };
332 	unsigned char conf_req[3] = { 0x03, 0xfc };
333 	const unsigned char conf_rsp[] = { 0x04, 0x7b };
334 	const unsigned char wakeup_req[] = { 0x05, 0xfa };
335 	const unsigned char woken_req[] = { 0x06, 0xf9 };
336 	const unsigned char sleep_req[] = { 0x07, 0x78 };
337 	const unsigned char *hdr = h5->rx_skb->data;
338 	const unsigned char *data = &h5->rx_skb->data[4];
339 
340 	BT_DBG("%s", hu->hdev->name);
341 
342 	if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
343 		return;
344 
345 	if (H5_HDR_LEN(hdr) < 2)
346 		return;
347 
348 	conf_req[2] = h5_cfg_field(h5);
349 
350 	if (memcmp(data, sync_req, 2) == 0) {
351 		if (h5->state == H5_ACTIVE)
352 			h5_peer_reset(hu);
353 		h5_link_control(hu, sync_rsp, 2);
354 	} else if (memcmp(data, sync_rsp, 2) == 0) {
355 		if (h5->state == H5_ACTIVE)
356 			h5_peer_reset(hu);
357 		h5->state = H5_INITIALIZED;
358 		h5_link_control(hu, conf_req, 3);
359 	} else if (memcmp(data, conf_req, 2) == 0) {
360 		h5_link_control(hu, conf_rsp, 2);
361 		h5_link_control(hu, conf_req, 3);
362 	} else if (memcmp(data, conf_rsp, 2) == 0) {
363 		if (H5_HDR_LEN(hdr) > 2)
364 			h5->tx_win = (data[2] & 0x07);
365 		BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
366 		h5->state = H5_ACTIVE;
367 		hci_uart_init_ready(hu);
368 		return;
369 	} else if (memcmp(data, sleep_req, 2) == 0) {
370 		BT_DBG("Peer went to sleep");
371 		h5->sleep = H5_SLEEPING;
372 		return;
373 	} else if (memcmp(data, woken_req, 2) == 0) {
374 		BT_DBG("Peer woke up");
375 		h5->sleep = H5_AWAKE;
376 	} else if (memcmp(data, wakeup_req, 2) == 0) {
377 		BT_DBG("Peer requested wakeup");
378 		h5_link_control(hu, woken_req, 2);
379 		h5->sleep = H5_AWAKE;
380 	} else {
381 		BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
382 		return;
383 	}
384 
385 	hci_uart_tx_wakeup(hu);
386 }
387 
h5_complete_rx_pkt(struct hci_uart * hu)388 static void h5_complete_rx_pkt(struct hci_uart *hu)
389 {
390 	struct h5 *h5 = hu->priv;
391 	const unsigned char *hdr = h5->rx_skb->data;
392 
393 	if (H5_HDR_RELIABLE(hdr)) {
394 		h5->tx_ack = (h5->tx_ack + 1) % 8;
395 		set_bit(H5_TX_ACK_REQ, &h5->flags);
396 		hci_uart_tx_wakeup(hu);
397 	}
398 
399 	h5->rx_ack = H5_HDR_ACK(hdr);
400 
401 	h5_pkt_cull(h5);
402 
403 	switch (H5_HDR_PKT_TYPE(hdr)) {
404 	case HCI_EVENT_PKT:
405 	case HCI_ACLDATA_PKT:
406 	case HCI_SCODATA_PKT:
407 	case HCI_ISODATA_PKT:
408 		hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr);
409 
410 		/* Remove Three-wire header */
411 		skb_pull(h5->rx_skb, 4);
412 
413 		hci_recv_frame(hu->hdev, h5->rx_skb);
414 		h5->rx_skb = NULL;
415 
416 		break;
417 
418 	default:
419 		h5_handle_internal_rx(hu);
420 		break;
421 	}
422 
423 	h5_reset_rx(h5);
424 }
425 
h5_rx_crc(struct hci_uart * hu,unsigned char c)426 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
427 {
428 	h5_complete_rx_pkt(hu);
429 
430 	return 0;
431 }
432 
h5_rx_payload(struct hci_uart * hu,unsigned char c)433 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
434 {
435 	struct h5 *h5 = hu->priv;
436 	const unsigned char *hdr = h5->rx_skb->data;
437 
438 	if (H5_HDR_CRC(hdr)) {
439 		h5->rx_func = h5_rx_crc;
440 		h5->rx_pending = 2;
441 	} else {
442 		h5_complete_rx_pkt(hu);
443 	}
444 
445 	return 0;
446 }
447 
h5_rx_3wire_hdr(struct hci_uart * hu,unsigned char c)448 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
449 {
450 	struct h5 *h5 = hu->priv;
451 	const unsigned char *hdr = h5->rx_skb->data;
452 
453 	BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
454 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
455 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
456 	       H5_HDR_LEN(hdr));
457 
458 	if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
459 		bt_dev_err(hu->hdev, "Invalid header checksum");
460 		h5_reset_rx(h5);
461 		return 0;
462 	}
463 
464 	if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
465 		bt_dev_err(hu->hdev, "Out-of-order packet arrived (%u != %u)",
466 			   H5_HDR_SEQ(hdr), h5->tx_ack);
467 		set_bit(H5_TX_ACK_REQ, &h5->flags);
468 		hci_uart_tx_wakeup(hu);
469 		h5_reset_rx(h5);
470 		return 0;
471 	}
472 
473 	if (h5->state != H5_ACTIVE &&
474 	    H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
475 		bt_dev_err(hu->hdev, "Non-link packet received in non-active state");
476 		h5_reset_rx(h5);
477 		return 0;
478 	}
479 
480 	h5->rx_func = h5_rx_payload;
481 	h5->rx_pending = H5_HDR_LEN(hdr);
482 
483 	return 0;
484 }
485 
h5_rx_pkt_start(struct hci_uart * hu,unsigned char c)486 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
487 {
488 	struct h5 *h5 = hu->priv;
489 
490 	if (c == SLIP_DELIMITER)
491 		return 1;
492 
493 	h5->rx_func = h5_rx_3wire_hdr;
494 	h5->rx_pending = 4;
495 
496 	h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
497 	if (!h5->rx_skb) {
498 		bt_dev_err(hu->hdev, "Can't allocate mem for new packet");
499 		h5_reset_rx(h5);
500 		return -ENOMEM;
501 	}
502 
503 	h5->rx_skb->dev = (void *)hu->hdev;
504 
505 	return 0;
506 }
507 
h5_rx_delimiter(struct hci_uart * hu,unsigned char c)508 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
509 {
510 	struct h5 *h5 = hu->priv;
511 
512 	if (c == SLIP_DELIMITER)
513 		h5->rx_func = h5_rx_pkt_start;
514 
515 	return 1;
516 }
517 
h5_unslip_one_byte(struct h5 * h5,unsigned char c)518 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
519 {
520 	const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
521 	const u8 *byte = &c;
522 
523 	if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
524 		set_bit(H5_RX_ESC, &h5->flags);
525 		return;
526 	}
527 
528 	if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
529 		switch (c) {
530 		case SLIP_ESC_DELIM:
531 			byte = &delim;
532 			break;
533 		case SLIP_ESC_ESC:
534 			byte = &esc;
535 			break;
536 		default:
537 			BT_ERR("Invalid esc byte 0x%02hhx", c);
538 			h5_reset_rx(h5);
539 			return;
540 		}
541 	}
542 
543 	skb_put_data(h5->rx_skb, byte, 1);
544 	h5->rx_pending--;
545 
546 	BT_DBG("unslipped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
547 }
548 
h5_reset_rx(struct h5 * h5)549 static void h5_reset_rx(struct h5 *h5)
550 {
551 	if (h5->rx_skb) {
552 		kfree_skb(h5->rx_skb);
553 		h5->rx_skb = NULL;
554 	}
555 
556 	h5->rx_func = h5_rx_delimiter;
557 	h5->rx_pending = 0;
558 	clear_bit(H5_RX_ESC, &h5->flags);
559 }
560 
h5_recv(struct hci_uart * hu,const void * data,int count)561 static int h5_recv(struct hci_uart *hu, const void *data, int count)
562 {
563 	struct h5 *h5 = hu->priv;
564 	const unsigned char *ptr = data;
565 
566 	BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
567 	       count);
568 
569 	while (count > 0) {
570 		int processed;
571 
572 		if (h5->rx_pending > 0) {
573 			if (*ptr == SLIP_DELIMITER) {
574 				bt_dev_err(hu->hdev, "Too short H5 packet");
575 				h5_reset_rx(h5);
576 				continue;
577 			}
578 
579 			h5_unslip_one_byte(h5, *ptr);
580 
581 			ptr++; count--;
582 			continue;
583 		}
584 
585 		processed = h5->rx_func(hu, *ptr);
586 		if (processed < 0)
587 			return processed;
588 
589 		ptr += processed;
590 		count -= processed;
591 	}
592 
593 	if (hu->serdev) {
594 		pm_runtime_get(&hu->serdev->dev);
595 		pm_runtime_mark_last_busy(&hu->serdev->dev);
596 		pm_runtime_put_autosuspend(&hu->serdev->dev);
597 	}
598 
599 	return 0;
600 }
601 
h5_enqueue(struct hci_uart * hu,struct sk_buff * skb)602 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
603 {
604 	struct h5 *h5 = hu->priv;
605 
606 	if (skb->len > 0xfff) {
607 		bt_dev_err(hu->hdev, "Packet too long (%u bytes)", skb->len);
608 		kfree_skb(skb);
609 		return 0;
610 	}
611 
612 	if (h5->state != H5_ACTIVE) {
613 		bt_dev_err(hu->hdev, "Ignoring HCI data in non-active state");
614 		kfree_skb(skb);
615 		return 0;
616 	}
617 
618 	switch (hci_skb_pkt_type(skb)) {
619 	case HCI_ACLDATA_PKT:
620 	case HCI_COMMAND_PKT:
621 		skb_queue_tail(&h5->rel, skb);
622 		break;
623 
624 	case HCI_SCODATA_PKT:
625 	case HCI_ISODATA_PKT:
626 		skb_queue_tail(&h5->unrel, skb);
627 		break;
628 
629 	default:
630 		bt_dev_err(hu->hdev, "Unknown packet type %u", hci_skb_pkt_type(skb));
631 		kfree_skb(skb);
632 		break;
633 	}
634 
635 	if (hu->serdev) {
636 		pm_runtime_get_sync(&hu->serdev->dev);
637 		pm_runtime_mark_last_busy(&hu->serdev->dev);
638 		pm_runtime_put_autosuspend(&hu->serdev->dev);
639 	}
640 
641 	return 0;
642 }
643 
h5_slip_delim(struct sk_buff * skb)644 static void h5_slip_delim(struct sk_buff *skb)
645 {
646 	const char delim = SLIP_DELIMITER;
647 
648 	skb_put_data(skb, &delim, 1);
649 }
650 
h5_slip_one_byte(struct sk_buff * skb,u8 c)651 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
652 {
653 	const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
654 	const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
655 
656 	switch (c) {
657 	case SLIP_DELIMITER:
658 		skb_put_data(skb, &esc_delim, 2);
659 		break;
660 	case SLIP_ESC:
661 		skb_put_data(skb, &esc_esc, 2);
662 		break;
663 	default:
664 		skb_put_data(skb, &c, 1);
665 	}
666 }
667 
valid_packet_type(u8 type)668 static bool valid_packet_type(u8 type)
669 {
670 	switch (type) {
671 	case HCI_ACLDATA_PKT:
672 	case HCI_COMMAND_PKT:
673 	case HCI_SCODATA_PKT:
674 	case HCI_ISODATA_PKT:
675 	case HCI_3WIRE_LINK_PKT:
676 	case HCI_3WIRE_ACK_PKT:
677 		return true;
678 	default:
679 		return false;
680 	}
681 }
682 
h5_prepare_pkt(struct hci_uart * hu,u8 pkt_type,const u8 * data,size_t len)683 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
684 				      const u8 *data, size_t len)
685 {
686 	struct h5 *h5 = hu->priv;
687 	struct sk_buff *nskb;
688 	u8 hdr[4];
689 	int i;
690 
691 	if (!valid_packet_type(pkt_type)) {
692 		bt_dev_err(hu->hdev, "Unknown packet type %u", pkt_type);
693 		return NULL;
694 	}
695 
696 	/*
697 	 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
698 	 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
699 	 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
700 	 * delimiters at start and end).
701 	 */
702 	nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
703 	if (!nskb)
704 		return NULL;
705 
706 	hci_skb_pkt_type(nskb) = pkt_type;
707 
708 	h5_slip_delim(nskb);
709 
710 	hdr[0] = h5->tx_ack << 3;
711 	clear_bit(H5_TX_ACK_REQ, &h5->flags);
712 
713 	/* Reliable packet? */
714 	if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
715 		hdr[0] |= 1 << 7;
716 		hdr[0] |= h5->tx_seq;
717 		h5->tx_seq = (h5->tx_seq + 1) % 8;
718 	}
719 
720 	hdr[1] = pkt_type | ((len & 0x0f) << 4);
721 	hdr[2] = len >> 4;
722 	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
723 
724 	BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
725 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
726 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
727 	       H5_HDR_LEN(hdr));
728 
729 	for (i = 0; i < 4; i++)
730 		h5_slip_one_byte(nskb, hdr[i]);
731 
732 	for (i = 0; i < len; i++)
733 		h5_slip_one_byte(nskb, data[i]);
734 
735 	h5_slip_delim(nskb);
736 
737 	return nskb;
738 }
739 
h5_dequeue(struct hci_uart * hu)740 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
741 {
742 	struct h5 *h5 = hu->priv;
743 	unsigned long flags;
744 	struct sk_buff *skb, *nskb;
745 
746 	if (h5->sleep != H5_AWAKE) {
747 		const unsigned char wakeup_req[] = { 0x05, 0xfa };
748 
749 		if (h5->sleep == H5_WAKING_UP)
750 			return NULL;
751 
752 		h5->sleep = H5_WAKING_UP;
753 		BT_DBG("Sending wakeup request");
754 
755 		mod_timer(&h5->timer, jiffies + HZ / 100);
756 		return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
757 	}
758 
759 	skb = skb_dequeue(&h5->unrel);
760 	if (skb) {
761 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
762 				      skb->data, skb->len);
763 		if (nskb) {
764 			kfree_skb(skb);
765 			return nskb;
766 		}
767 
768 		skb_queue_head(&h5->unrel, skb);
769 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
770 	}
771 
772 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
773 
774 	if (h5->unack.qlen >= h5->tx_win)
775 		goto unlock;
776 
777 	skb = skb_dequeue(&h5->rel);
778 	if (skb) {
779 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
780 				      skb->data, skb->len);
781 		if (nskb) {
782 			__skb_queue_tail(&h5->unack, skb);
783 			mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
784 			spin_unlock_irqrestore(&h5->unack.lock, flags);
785 			return nskb;
786 		}
787 
788 		skb_queue_head(&h5->rel, skb);
789 		bt_dev_err(hu->hdev, "Could not dequeue pkt because alloc_skb failed");
790 	}
791 
792 unlock:
793 	spin_unlock_irqrestore(&h5->unack.lock, flags);
794 
795 	if (test_bit(H5_TX_ACK_REQ, &h5->flags))
796 		return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
797 
798 	return NULL;
799 }
800 
h5_flush(struct hci_uart * hu)801 static int h5_flush(struct hci_uart *hu)
802 {
803 	BT_DBG("hu %p", hu);
804 	return 0;
805 }
806 
807 static const struct hci_uart_proto h5p = {
808 	.id		= HCI_UART_3WIRE,
809 	.name		= "Three-wire (H5)",
810 	.open		= h5_open,
811 	.close		= h5_close,
812 	.setup		= h5_setup,
813 	.recv		= h5_recv,
814 	.enqueue	= h5_enqueue,
815 	.dequeue	= h5_dequeue,
816 	.flush		= h5_flush,
817 };
818 
h5_serdev_probe(struct serdev_device * serdev)819 static int h5_serdev_probe(struct serdev_device *serdev)
820 {
821 	struct device *dev = &serdev->dev;
822 	struct h5 *h5;
823 	const struct h5_device_data *data;
824 
825 	h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL);
826 	if (!h5)
827 		return -ENOMEM;
828 
829 	h5->hu = &h5->serdev_hu;
830 	h5->serdev_hu.serdev = serdev;
831 	serdev_device_set_drvdata(serdev, h5);
832 
833 	if (has_acpi_companion(dev)) {
834 		const struct acpi_device_id *match;
835 
836 		match = acpi_match_device(dev->driver->acpi_match_table, dev);
837 		if (!match)
838 			return -ENODEV;
839 
840 		data = (const struct h5_device_data *)match->driver_data;
841 		h5->vnd = data->vnd;
842 		h5->id  = (char *)match->id;
843 
844 		if (h5->vnd->acpi_gpio_map)
845 			devm_acpi_dev_add_driver_gpios(dev,
846 						       h5->vnd->acpi_gpio_map);
847 	} else {
848 		data = of_device_get_match_data(dev);
849 		if (!data)
850 			return -ENODEV;
851 
852 		h5->vnd = data->vnd;
853 	}
854 
855 	if (data->driver_info & H5_INFO_WAKEUP_DISABLE)
856 		set_bit(H5_WAKEUP_DISABLE, &h5->flags);
857 
858 	h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
859 	if (IS_ERR(h5->enable_gpio))
860 		return PTR_ERR(h5->enable_gpio);
861 
862 	h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake",
863 						       GPIOD_OUT_LOW);
864 	if (IS_ERR(h5->device_wake_gpio))
865 		return PTR_ERR(h5->device_wake_gpio);
866 
867 	return hci_uart_register_device_priv(&h5->serdev_hu, &h5p,
868 					     h5->vnd->sizeof_priv);
869 }
870 
h5_serdev_remove(struct serdev_device * serdev)871 static void h5_serdev_remove(struct serdev_device *serdev)
872 {
873 	struct h5 *h5 = serdev_device_get_drvdata(serdev);
874 
875 	hci_uart_unregister_device(&h5->serdev_hu);
876 }
877 
h5_serdev_suspend(struct device * dev)878 static int __maybe_unused h5_serdev_suspend(struct device *dev)
879 {
880 	struct h5 *h5 = dev_get_drvdata(dev);
881 	int ret = 0;
882 
883 	if (h5->vnd && h5->vnd->suspend)
884 		ret = h5->vnd->suspend(h5);
885 
886 	return ret;
887 }
888 
h5_serdev_resume(struct device * dev)889 static int __maybe_unused h5_serdev_resume(struct device *dev)
890 {
891 	struct h5 *h5 = dev_get_drvdata(dev);
892 	int ret = 0;
893 
894 	if (h5->vnd && h5->vnd->resume)
895 		ret = h5->vnd->resume(h5);
896 
897 	return ret;
898 }
899 
900 #ifdef CONFIG_BT_HCIUART_RTL
h5_btrtl_setup(struct h5 * h5)901 static int h5_btrtl_setup(struct h5 *h5)
902 {
903 	struct btrtl_device_info *btrtl_dev;
904 	struct sk_buff *skb;
905 	__le32 baudrate_data;
906 	u32 device_baudrate;
907 	unsigned int controller_baudrate;
908 	bool flow_control;
909 	int err;
910 
911 	btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id);
912 	if (IS_ERR(btrtl_dev))
913 		return PTR_ERR(btrtl_dev);
914 
915 	err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev,
916 				      &controller_baudrate, &device_baudrate,
917 				      &flow_control);
918 	if (err)
919 		goto out_free;
920 
921 	baudrate_data = cpu_to_le32(device_baudrate);
922 	skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data),
923 			     &baudrate_data, HCI_INIT_TIMEOUT);
924 	if (IS_ERR(skb)) {
925 		rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n");
926 		err = PTR_ERR(skb);
927 		goto out_free;
928 	} else {
929 		kfree_skb(skb);
930 	}
931 	/* Give the device some time to set up the new baudrate. */
932 	usleep_range(10000, 20000);
933 
934 	serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate);
935 	serdev_device_set_flow_control(h5->hu->serdev, flow_control);
936 
937 	if (flow_control)
938 		set_bit(H5_HW_FLOW_CONTROL, &h5->flags);
939 
940 	err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev);
941 	/* Give the device some time before the hci-core sends it a reset */
942 	usleep_range(10000, 20000);
943 	if (err)
944 		goto out_free;
945 
946 	btrtl_set_quirks(h5->hu->hdev, btrtl_dev);
947 
948 out_free:
949 	btrtl_free(btrtl_dev);
950 
951 	return err;
952 }
953 
h5_btrtl_open(struct h5 * h5)954 static void h5_btrtl_open(struct h5 *h5)
955 {
956 	/*
957 	 * Since h5_btrtl_resume() does a device_reprobe() the suspend handling
958 	 * done by the hci_suspend_notifier is not necessary; it actually causes
959 	 * delays and a bunch of errors to get logged, so disable it.
960 	 */
961 	if (test_bit(H5_WAKEUP_DISABLE, &h5->flags))
962 		set_bit(HCI_UART_NO_SUSPEND_NOTIFIER, &h5->hu->flags);
963 
964 	/* Devices always start with these fixed parameters */
965 	serdev_device_set_flow_control(h5->hu->serdev, false);
966 	serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN);
967 	serdev_device_set_baudrate(h5->hu->serdev, 115200);
968 
969 	if (!test_bit(H5_WAKEUP_DISABLE, &h5->flags)) {
970 		pm_runtime_set_active(&h5->hu->serdev->dev);
971 		pm_runtime_use_autosuspend(&h5->hu->serdev->dev);
972 		pm_runtime_set_autosuspend_delay(&h5->hu->serdev->dev,
973 						 SUSPEND_TIMEOUT_MS);
974 		pm_runtime_enable(&h5->hu->serdev->dev);
975 	}
976 
977 	/* The controller needs reset to startup */
978 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
979 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
980 	msleep(100);
981 
982 	/* The controller needs up to 500ms to wakeup */
983 	gpiod_set_value_cansleep(h5->enable_gpio, 1);
984 	gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
985 	msleep(500);
986 }
987 
h5_btrtl_close(struct h5 * h5)988 static void h5_btrtl_close(struct h5 *h5)
989 {
990 	if (!test_bit(H5_WAKEUP_DISABLE, &h5->flags))
991 		pm_runtime_disable(&h5->hu->serdev->dev);
992 
993 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
994 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
995 }
996 
997 /* Suspend/resume support. On many devices the RTL BT device loses power during
998  * suspend/resume, causing it to lose its firmware and all state. So we simply
999  * turn it off on suspend and reprobe on resume. This mirrors how RTL devices
1000  * are handled in the USB driver, where the BTUSB_WAKEUP_DISABLE is used which
1001  * also causes a reprobe on resume.
1002  */
h5_btrtl_suspend(struct h5 * h5)1003 static int h5_btrtl_suspend(struct h5 *h5)
1004 {
1005 	serdev_device_set_flow_control(h5->hu->serdev, false);
1006 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
1007 
1008 	if (test_bit(H5_WAKEUP_DISABLE, &h5->flags))
1009 		gpiod_set_value_cansleep(h5->enable_gpio, 0);
1010 
1011 	return 0;
1012 }
1013 
1014 struct h5_btrtl_reprobe {
1015 	struct device *dev;
1016 	struct work_struct work;
1017 };
1018 
h5_btrtl_reprobe_worker(struct work_struct * work)1019 static void h5_btrtl_reprobe_worker(struct work_struct *work)
1020 {
1021 	struct h5_btrtl_reprobe *reprobe =
1022 		container_of(work, struct h5_btrtl_reprobe, work);
1023 	int ret;
1024 
1025 	ret = device_reprobe(reprobe->dev);
1026 	if (ret && ret != -EPROBE_DEFER)
1027 		dev_err(reprobe->dev, "Reprobe error %d\n", ret);
1028 
1029 	put_device(reprobe->dev);
1030 	kfree(reprobe);
1031 	module_put(THIS_MODULE);
1032 }
1033 
h5_btrtl_resume(struct h5 * h5)1034 static int h5_btrtl_resume(struct h5 *h5)
1035 {
1036 	if (test_bit(H5_WAKEUP_DISABLE, &h5->flags)) {
1037 		struct h5_btrtl_reprobe *reprobe;
1038 
1039 		reprobe = kzalloc(sizeof(*reprobe), GFP_KERNEL);
1040 		if (!reprobe)
1041 			return -ENOMEM;
1042 
1043 		__module_get(THIS_MODULE);
1044 
1045 		INIT_WORK(&reprobe->work, h5_btrtl_reprobe_worker);
1046 		reprobe->dev = get_device(&h5->hu->serdev->dev);
1047 		queue_work(system_long_wq, &reprobe->work);
1048 	} else {
1049 		gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
1050 
1051 		if (test_bit(H5_HW_FLOW_CONTROL, &h5->flags))
1052 			serdev_device_set_flow_control(h5->hu->serdev, true);
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false };
1059 static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false };
1060 static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false };
1061 static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = {
1062 	{ "device-wake-gpios", &btrtl_device_wake_gpios, 1 },
1063 	{ "enable-gpios", &btrtl_enable_gpios, 1 },
1064 	{ "host-wake-gpios", &btrtl_host_wake_gpios, 1 },
1065 	{},
1066 };
1067 
1068 static struct h5_vnd rtl_vnd = {
1069 	.setup		= h5_btrtl_setup,
1070 	.open		= h5_btrtl_open,
1071 	.close		= h5_btrtl_close,
1072 	.suspend	= h5_btrtl_suspend,
1073 	.resume		= h5_btrtl_resume,
1074 	.acpi_gpio_map	= acpi_btrtl_gpios,
1075 	.sizeof_priv    = sizeof(struct btrealtek_data),
1076 };
1077 
1078 static const struct h5_device_data h5_data_rtl8822cs = {
1079 	.vnd = &rtl_vnd,
1080 };
1081 
1082 static const struct h5_device_data h5_data_rtl8723bs = {
1083 	.driver_info = H5_INFO_WAKEUP_DISABLE,
1084 	.vnd = &rtl_vnd,
1085 };
1086 #endif
1087 
1088 #ifdef CONFIG_ACPI
1089 static const struct acpi_device_id h5_acpi_match[] = {
1090 #ifdef CONFIG_BT_HCIUART_RTL
1091 	{ "OBDA0623", (kernel_ulong_t)&h5_data_rtl8723bs },
1092 	{ "OBDA8723", (kernel_ulong_t)&h5_data_rtl8723bs },
1093 #endif
1094 	{ },
1095 };
1096 MODULE_DEVICE_TABLE(acpi, h5_acpi_match);
1097 #endif
1098 
1099 static const struct dev_pm_ops h5_serdev_pm_ops = {
1100 	SET_SYSTEM_SLEEP_PM_OPS(h5_serdev_suspend, h5_serdev_resume)
1101 	SET_RUNTIME_PM_OPS(h5_serdev_suspend, h5_serdev_resume, NULL)
1102 };
1103 
1104 static const struct of_device_id rtl_bluetooth_of_match[] = {
1105 #ifdef CONFIG_BT_HCIUART_RTL
1106 	{ .compatible = "realtek,rtl8822cs-bt",
1107 	  .data = (const void *)&h5_data_rtl8822cs },
1108 	{ .compatible = "realtek,rtl8723bs-bt",
1109 	  .data = (const void *)&h5_data_rtl8723bs },
1110 	{ .compatible = "realtek,rtl8723cs-bt",
1111 	  .data = (const void *)&h5_data_rtl8723bs },
1112 	{ .compatible = "realtek,rtl8723ds-bt",
1113 	  .data = (const void *)&h5_data_rtl8723bs },
1114 #endif
1115 	{ },
1116 };
1117 MODULE_DEVICE_TABLE(of, rtl_bluetooth_of_match);
1118 
1119 static struct serdev_device_driver h5_serdev_driver = {
1120 	.probe = h5_serdev_probe,
1121 	.remove = h5_serdev_remove,
1122 	.driver = {
1123 		.name = "hci_uart_h5",
1124 		.acpi_match_table = ACPI_PTR(h5_acpi_match),
1125 		.pm = &h5_serdev_pm_ops,
1126 		.of_match_table = rtl_bluetooth_of_match,
1127 	},
1128 };
1129 
h5_init(void)1130 int __init h5_init(void)
1131 {
1132 	serdev_device_driver_register(&h5_serdev_driver);
1133 	return hci_uart_register_proto(&h5p);
1134 }
1135 
h5_deinit(void)1136 int __exit h5_deinit(void)
1137 {
1138 	serdev_device_driver_unregister(&h5_serdev_driver);
1139 	return hci_uart_unregister_proto(&h5p);
1140 }
1141