1 /* 2 * 3 * Generic Bluetooth USB driver 4 * 5 * Copyright (C) 2005-2008 Marcel Holtmann <marcel@holtmann.org> 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/usb.h> 26 #include <linux/firmware.h> 27 #include <linux/of_device.h> 28 #include <linux/of_irq.h> 29 #include <linux/suspend.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 35 #include "btintel.h" 36 #include "btbcm.h" 37 #include "btrtl.h" 38 39 #define VERSION "0.8" 40 41 static bool disable_scofix; 42 static bool force_scofix; 43 static bool enable_autosuspend = IS_ENABLED(CONFIG_BT_HCIBTUSB_AUTOSUSPEND); 44 45 static bool reset = true; 46 47 static struct usb_driver btusb_driver; 48 49 #define BTUSB_IGNORE 0x01 50 #define BTUSB_DIGIANSWER 0x02 51 #define BTUSB_CSR 0x04 52 #define BTUSB_SNIFFER 0x08 53 #define BTUSB_BCM92035 0x10 54 #define BTUSB_BROKEN_ISOC 0x20 55 #define BTUSB_WRONG_SCO_MTU 0x40 56 #define BTUSB_ATH3012 0x80 57 #define BTUSB_INTEL 0x100 58 #define BTUSB_INTEL_BOOT 0x200 59 #define BTUSB_BCM_PATCHRAM 0x400 60 #define BTUSB_MARVELL 0x800 61 #define BTUSB_SWAVE 0x1000 62 #define BTUSB_INTEL_NEW 0x2000 63 #define BTUSB_AMP 0x4000 64 #define BTUSB_QCA_ROME 0x8000 65 #define BTUSB_BCM_APPLE 0x10000 66 #define BTUSB_REALTEK 0x20000 67 #define BTUSB_BCM2045 0x40000 68 #define BTUSB_IFNUM_2 0x80000 69 #define BTUSB_CW6622 0x100000 70 71 static const struct usb_device_id btusb_table[] = { 72 /* Generic Bluetooth USB device */ 73 { USB_DEVICE_INFO(0xe0, 0x01, 0x01) }, 74 75 /* Generic Bluetooth AMP device */ 76 { USB_DEVICE_INFO(0xe0, 0x01, 0x04), .driver_info = BTUSB_AMP }, 77 78 /* Generic Bluetooth USB interface */ 79 { USB_INTERFACE_INFO(0xe0, 0x01, 0x01) }, 80 81 /* Apple-specific (Broadcom) devices */ 82 { USB_VENDOR_AND_INTERFACE_INFO(0x05ac, 0xff, 0x01, 0x01), 83 .driver_info = BTUSB_BCM_APPLE | BTUSB_IFNUM_2 }, 84 85 /* MediaTek MT76x0E */ 86 { USB_DEVICE(0x0e8d, 0x763f) }, 87 88 /* Broadcom SoftSailing reporting vendor specific */ 89 { USB_DEVICE(0x0a5c, 0x21e1) }, 90 91 /* Apple MacBookPro 7,1 */ 92 { USB_DEVICE(0x05ac, 0x8213) }, 93 94 /* Apple iMac11,1 */ 95 { USB_DEVICE(0x05ac, 0x8215) }, 96 97 /* Apple MacBookPro6,2 */ 98 { USB_DEVICE(0x05ac, 0x8218) }, 99 100 /* Apple MacBookAir3,1, MacBookAir3,2 */ 101 { USB_DEVICE(0x05ac, 0x821b) }, 102 103 /* Apple MacBookAir4,1 */ 104 { USB_DEVICE(0x05ac, 0x821f) }, 105 106 /* Apple MacBookPro8,2 */ 107 { USB_DEVICE(0x05ac, 0x821a) }, 108 109 /* Apple MacMini5,1 */ 110 { USB_DEVICE(0x05ac, 0x8281) }, 111 112 /* AVM BlueFRITZ! USB v2.0 */ 113 { USB_DEVICE(0x057c, 0x3800), .driver_info = BTUSB_SWAVE }, 114 115 /* Bluetooth Ultraport Module from IBM */ 116 { USB_DEVICE(0x04bf, 0x030a) }, 117 118 /* ALPS Modules with non-standard id */ 119 { USB_DEVICE(0x044e, 0x3001) }, 120 { USB_DEVICE(0x044e, 0x3002) }, 121 122 /* Ericsson with non-standard id */ 123 { USB_DEVICE(0x0bdb, 0x1002) }, 124 125 /* Canyon CN-BTU1 with HID interfaces */ 126 { USB_DEVICE(0x0c10, 0x0000) }, 127 128 /* Broadcom BCM20702A0 */ 129 { USB_DEVICE(0x413c, 0x8197) }, 130 131 /* Broadcom BCM20702B0 (Dynex/Insignia) */ 132 { USB_DEVICE(0x19ff, 0x0239), .driver_info = BTUSB_BCM_PATCHRAM }, 133 134 /* Broadcom BCM43142A0 (Foxconn/Lenovo) */ 135 { USB_VENDOR_AND_INTERFACE_INFO(0x105b, 0xff, 0x01, 0x01), 136 .driver_info = BTUSB_BCM_PATCHRAM }, 137 138 /* Broadcom BCM920703 (HTC Vive) */ 139 { USB_VENDOR_AND_INTERFACE_INFO(0x0bb4, 0xff, 0x01, 0x01), 140 .driver_info = BTUSB_BCM_PATCHRAM }, 141 142 /* Foxconn - Hon Hai */ 143 { USB_VENDOR_AND_INTERFACE_INFO(0x0489, 0xff, 0x01, 0x01), 144 .driver_info = BTUSB_BCM_PATCHRAM }, 145 146 /* Lite-On Technology - Broadcom based */ 147 { USB_VENDOR_AND_INTERFACE_INFO(0x04ca, 0xff, 0x01, 0x01), 148 .driver_info = BTUSB_BCM_PATCHRAM }, 149 150 /* Broadcom devices with vendor specific id */ 151 { USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01), 152 .driver_info = BTUSB_BCM_PATCHRAM }, 153 154 /* ASUSTek Computer - Broadcom based */ 155 { USB_VENDOR_AND_INTERFACE_INFO(0x0b05, 0xff, 0x01, 0x01), 156 .driver_info = BTUSB_BCM_PATCHRAM }, 157 158 /* Belkin F8065bf - Broadcom based */ 159 { USB_VENDOR_AND_INTERFACE_INFO(0x050d, 0xff, 0x01, 0x01), 160 .driver_info = BTUSB_BCM_PATCHRAM }, 161 162 /* IMC Networks - Broadcom based */ 163 { USB_VENDOR_AND_INTERFACE_INFO(0x13d3, 0xff, 0x01, 0x01), 164 .driver_info = BTUSB_BCM_PATCHRAM }, 165 166 /* Dell Computer - Broadcom based */ 167 { USB_VENDOR_AND_INTERFACE_INFO(0x413c, 0xff, 0x01, 0x01), 168 .driver_info = BTUSB_BCM_PATCHRAM }, 169 170 /* Toshiba Corp - Broadcom based */ 171 { USB_VENDOR_AND_INTERFACE_INFO(0x0930, 0xff, 0x01, 0x01), 172 .driver_info = BTUSB_BCM_PATCHRAM }, 173 174 /* Intel Bluetooth USB Bootloader (RAM module) */ 175 { USB_DEVICE(0x8087, 0x0a5a), 176 .driver_info = BTUSB_INTEL_BOOT | BTUSB_BROKEN_ISOC }, 177 178 { } /* Terminating entry */ 179 }; 180 181 MODULE_DEVICE_TABLE(usb, btusb_table); 182 183 static const struct usb_device_id blacklist_table[] = { 184 /* CSR BlueCore devices */ 185 { USB_DEVICE(0x0a12, 0x0001), .driver_info = BTUSB_CSR }, 186 187 /* Broadcom BCM2033 without firmware */ 188 { USB_DEVICE(0x0a5c, 0x2033), .driver_info = BTUSB_IGNORE }, 189 190 /* Broadcom BCM2045 devices */ 191 { USB_DEVICE(0x0a5c, 0x2045), .driver_info = BTUSB_BCM2045 }, 192 193 /* Atheros 3011 with sflash firmware */ 194 { USB_DEVICE(0x0489, 0xe027), .driver_info = BTUSB_IGNORE }, 195 { USB_DEVICE(0x0489, 0xe03d), .driver_info = BTUSB_IGNORE }, 196 { USB_DEVICE(0x04f2, 0xaff1), .driver_info = BTUSB_IGNORE }, 197 { USB_DEVICE(0x0930, 0x0215), .driver_info = BTUSB_IGNORE }, 198 { USB_DEVICE(0x0cf3, 0x3002), .driver_info = BTUSB_IGNORE }, 199 { USB_DEVICE(0x0cf3, 0xe019), .driver_info = BTUSB_IGNORE }, 200 { USB_DEVICE(0x13d3, 0x3304), .driver_info = BTUSB_IGNORE }, 201 202 /* Atheros AR9285 Malbec with sflash firmware */ 203 { USB_DEVICE(0x03f0, 0x311d), .driver_info = BTUSB_IGNORE }, 204 205 /* Atheros 3012 with sflash firmware */ 206 { USB_DEVICE(0x0489, 0xe04d), .driver_info = BTUSB_ATH3012 }, 207 { USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 }, 208 { USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 }, 209 { USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 }, 210 { USB_DEVICE(0x0489, 0xe05f), .driver_info = BTUSB_ATH3012 }, 211 { USB_DEVICE(0x0489, 0xe076), .driver_info = BTUSB_ATH3012 }, 212 { USB_DEVICE(0x0489, 0xe078), .driver_info = BTUSB_ATH3012 }, 213 { USB_DEVICE(0x0489, 0xe095), .driver_info = BTUSB_ATH3012 }, 214 { USB_DEVICE(0x04c5, 0x1330), .driver_info = BTUSB_ATH3012 }, 215 { USB_DEVICE(0x04ca, 0x3004), .driver_info = BTUSB_ATH3012 }, 216 { USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 }, 217 { USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 }, 218 { USB_DEVICE(0x04ca, 0x3007), .driver_info = BTUSB_ATH3012 }, 219 { USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 }, 220 { USB_DEVICE(0x04ca, 0x300b), .driver_info = BTUSB_ATH3012 }, 221 { USB_DEVICE(0x04ca, 0x300d), .driver_info = BTUSB_ATH3012 }, 222 { USB_DEVICE(0x04ca, 0x300f), .driver_info = BTUSB_ATH3012 }, 223 { USB_DEVICE(0x04ca, 0x3010), .driver_info = BTUSB_ATH3012 }, 224 { USB_DEVICE(0x04ca, 0x3014), .driver_info = BTUSB_ATH3012 }, 225 { USB_DEVICE(0x04ca, 0x3018), .driver_info = BTUSB_ATH3012 }, 226 { USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 }, 227 { USB_DEVICE(0x0930, 0x021c), .driver_info = BTUSB_ATH3012 }, 228 { USB_DEVICE(0x0930, 0x0220), .driver_info = BTUSB_ATH3012 }, 229 { USB_DEVICE(0x0930, 0x0227), .driver_info = BTUSB_ATH3012 }, 230 { USB_DEVICE(0x0b05, 0x17d0), .driver_info = BTUSB_ATH3012 }, 231 { USB_DEVICE(0x0cf3, 0x0036), .driver_info = BTUSB_ATH3012 }, 232 { USB_DEVICE(0x0cf3, 0x3004), .driver_info = BTUSB_ATH3012 }, 233 { USB_DEVICE(0x0cf3, 0x3008), .driver_info = BTUSB_ATH3012 }, 234 { USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 }, 235 { USB_DEVICE(0x0cf3, 0x311e), .driver_info = BTUSB_ATH3012 }, 236 { USB_DEVICE(0x0cf3, 0x311f), .driver_info = BTUSB_ATH3012 }, 237 { USB_DEVICE(0x0cf3, 0x3121), .driver_info = BTUSB_ATH3012 }, 238 { USB_DEVICE(0x0cf3, 0x817a), .driver_info = BTUSB_ATH3012 }, 239 { USB_DEVICE(0x0cf3, 0x817b), .driver_info = BTUSB_ATH3012 }, 240 { USB_DEVICE(0x0cf3, 0xe003), .driver_info = BTUSB_ATH3012 }, 241 { USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 }, 242 { USB_DEVICE(0x0cf3, 0xe005), .driver_info = BTUSB_ATH3012 }, 243 { USB_DEVICE(0x0cf3, 0xe006), .driver_info = BTUSB_ATH3012 }, 244 { USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 }, 245 { USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 }, 246 { USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 }, 247 { USB_DEVICE(0x13d3, 0x3395), .driver_info = BTUSB_ATH3012 }, 248 { USB_DEVICE(0x13d3, 0x3402), .driver_info = BTUSB_ATH3012 }, 249 { USB_DEVICE(0x13d3, 0x3408), .driver_info = BTUSB_ATH3012 }, 250 { USB_DEVICE(0x13d3, 0x3423), .driver_info = BTUSB_ATH3012 }, 251 { USB_DEVICE(0x13d3, 0x3432), .driver_info = BTUSB_ATH3012 }, 252 { USB_DEVICE(0x13d3, 0x3472), .driver_info = BTUSB_ATH3012 }, 253 { USB_DEVICE(0x13d3, 0x3474), .driver_info = BTUSB_ATH3012 }, 254 { USB_DEVICE(0x13d3, 0x3487), .driver_info = BTUSB_ATH3012 }, 255 { USB_DEVICE(0x13d3, 0x3490), .driver_info = BTUSB_ATH3012 }, 256 257 /* Atheros AR5BBU12 with sflash firmware */ 258 { USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE }, 259 260 /* Atheros AR5BBU12 with sflash firmware */ 261 { USB_DEVICE(0x0489, 0xe036), .driver_info = BTUSB_ATH3012 }, 262 { USB_DEVICE(0x0489, 0xe03c), .driver_info = BTUSB_ATH3012 }, 263 264 /* QCA ROME chipset */ 265 { USB_DEVICE(0x0cf3, 0xe007), .driver_info = BTUSB_QCA_ROME }, 266 { USB_DEVICE(0x0cf3, 0xe009), .driver_info = BTUSB_QCA_ROME }, 267 { USB_DEVICE(0x0cf3, 0xe300), .driver_info = BTUSB_QCA_ROME }, 268 { USB_DEVICE(0x0cf3, 0xe301), .driver_info = BTUSB_QCA_ROME }, 269 { USB_DEVICE(0x0cf3, 0xe360), .driver_info = BTUSB_QCA_ROME }, 270 { USB_DEVICE(0x0489, 0xe092), .driver_info = BTUSB_QCA_ROME }, 271 { USB_DEVICE(0x0489, 0xe09f), .driver_info = BTUSB_QCA_ROME }, 272 { USB_DEVICE(0x0489, 0xe0a2), .driver_info = BTUSB_QCA_ROME }, 273 { USB_DEVICE(0x04ca, 0x3011), .driver_info = BTUSB_QCA_ROME }, 274 { USB_DEVICE(0x04ca, 0x3016), .driver_info = BTUSB_QCA_ROME }, 275 276 /* Broadcom BCM2035 */ 277 { USB_DEVICE(0x0a5c, 0x2009), .driver_info = BTUSB_BCM92035 }, 278 { USB_DEVICE(0x0a5c, 0x200a), .driver_info = BTUSB_WRONG_SCO_MTU }, 279 { USB_DEVICE(0x0a5c, 0x2035), .driver_info = BTUSB_WRONG_SCO_MTU }, 280 281 /* Broadcom BCM2045 */ 282 { USB_DEVICE(0x0a5c, 0x2039), .driver_info = BTUSB_WRONG_SCO_MTU }, 283 { USB_DEVICE(0x0a5c, 0x2101), .driver_info = BTUSB_WRONG_SCO_MTU }, 284 285 /* IBM/Lenovo ThinkPad with Broadcom chip */ 286 { USB_DEVICE(0x0a5c, 0x201e), .driver_info = BTUSB_WRONG_SCO_MTU }, 287 { USB_DEVICE(0x0a5c, 0x2110), .driver_info = BTUSB_WRONG_SCO_MTU }, 288 289 /* HP laptop with Broadcom chip */ 290 { USB_DEVICE(0x03f0, 0x171d), .driver_info = BTUSB_WRONG_SCO_MTU }, 291 292 /* Dell laptop with Broadcom chip */ 293 { USB_DEVICE(0x413c, 0x8126), .driver_info = BTUSB_WRONG_SCO_MTU }, 294 295 /* Dell Wireless 370 and 410 devices */ 296 { USB_DEVICE(0x413c, 0x8152), .driver_info = BTUSB_WRONG_SCO_MTU }, 297 { USB_DEVICE(0x413c, 0x8156), .driver_info = BTUSB_WRONG_SCO_MTU }, 298 299 /* Belkin F8T012 and F8T013 devices */ 300 { USB_DEVICE(0x050d, 0x0012), .driver_info = BTUSB_WRONG_SCO_MTU }, 301 { USB_DEVICE(0x050d, 0x0013), .driver_info = BTUSB_WRONG_SCO_MTU }, 302 303 /* Asus WL-BTD202 device */ 304 { USB_DEVICE(0x0b05, 0x1715), .driver_info = BTUSB_WRONG_SCO_MTU }, 305 306 /* Kensington Bluetooth USB adapter */ 307 { USB_DEVICE(0x047d, 0x105e), .driver_info = BTUSB_WRONG_SCO_MTU }, 308 309 /* RTX Telecom based adapters with buggy SCO support */ 310 { USB_DEVICE(0x0400, 0x0807), .driver_info = BTUSB_BROKEN_ISOC }, 311 { USB_DEVICE(0x0400, 0x080a), .driver_info = BTUSB_BROKEN_ISOC }, 312 313 /* CONWISE Technology based adapters with buggy SCO support */ 314 { USB_DEVICE(0x0e5e, 0x6622), 315 .driver_info = BTUSB_BROKEN_ISOC | BTUSB_CW6622}, 316 317 /* Roper Class 1 Bluetooth Dongle (Silicon Wave based) */ 318 { USB_DEVICE(0x1310, 0x0001), .driver_info = BTUSB_SWAVE }, 319 320 /* Digianswer devices */ 321 { USB_DEVICE(0x08fd, 0x0001), .driver_info = BTUSB_DIGIANSWER }, 322 { USB_DEVICE(0x08fd, 0x0002), .driver_info = BTUSB_IGNORE }, 323 324 /* CSR BlueCore Bluetooth Sniffer */ 325 { USB_DEVICE(0x0a12, 0x0002), 326 .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC }, 327 328 /* Frontline ComProbe Bluetooth Sniffer */ 329 { USB_DEVICE(0x16d3, 0x0002), 330 .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC }, 331 332 /* Marvell Bluetooth devices */ 333 { USB_DEVICE(0x1286, 0x2044), .driver_info = BTUSB_MARVELL }, 334 { USB_DEVICE(0x1286, 0x2046), .driver_info = BTUSB_MARVELL }, 335 { USB_DEVICE(0x1286, 0x204e), .driver_info = BTUSB_MARVELL }, 336 337 /* Intel Bluetooth devices */ 338 { USB_DEVICE(0x8087, 0x0025), .driver_info = BTUSB_INTEL_NEW }, 339 { USB_DEVICE(0x8087, 0x07da), .driver_info = BTUSB_CSR }, 340 { USB_DEVICE(0x8087, 0x07dc), .driver_info = BTUSB_INTEL }, 341 { USB_DEVICE(0x8087, 0x0a2a), .driver_info = BTUSB_INTEL }, 342 { USB_DEVICE(0x8087, 0x0a2b), .driver_info = BTUSB_INTEL_NEW }, 343 { USB_DEVICE(0x8087, 0x0aa7), .driver_info = BTUSB_INTEL }, 344 { USB_DEVICE(0x8087, 0x0aaa), .driver_info = BTUSB_INTEL_NEW }, 345 346 /* Other Intel Bluetooth devices */ 347 { USB_VENDOR_AND_INTERFACE_INFO(0x8087, 0xe0, 0x01, 0x01), 348 .driver_info = BTUSB_IGNORE }, 349 350 /* Realtek Bluetooth devices */ 351 { USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01), 352 .driver_info = BTUSB_REALTEK }, 353 354 /* Additional Realtek 8723AE Bluetooth devices */ 355 { USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK }, 356 { USB_DEVICE(0x13d3, 0x3394), .driver_info = BTUSB_REALTEK }, 357 358 /* Additional Realtek 8723BE Bluetooth devices */ 359 { USB_DEVICE(0x0489, 0xe085), .driver_info = BTUSB_REALTEK }, 360 { USB_DEVICE(0x0489, 0xe08b), .driver_info = BTUSB_REALTEK }, 361 { USB_DEVICE(0x13d3, 0x3410), .driver_info = BTUSB_REALTEK }, 362 { USB_DEVICE(0x13d3, 0x3416), .driver_info = BTUSB_REALTEK }, 363 { USB_DEVICE(0x13d3, 0x3459), .driver_info = BTUSB_REALTEK }, 364 { USB_DEVICE(0x13d3, 0x3494), .driver_info = BTUSB_REALTEK }, 365 366 /* Additional Realtek 8821AE Bluetooth devices */ 367 { USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK }, 368 { USB_DEVICE(0x13d3, 0x3414), .driver_info = BTUSB_REALTEK }, 369 { USB_DEVICE(0x13d3, 0x3458), .driver_info = BTUSB_REALTEK }, 370 { USB_DEVICE(0x13d3, 0x3461), .driver_info = BTUSB_REALTEK }, 371 { USB_DEVICE(0x13d3, 0x3462), .driver_info = BTUSB_REALTEK }, 372 373 /* Silicon Wave based devices */ 374 { USB_DEVICE(0x0c10, 0x0000), .driver_info = BTUSB_SWAVE }, 375 376 { } /* Terminating entry */ 377 }; 378 379 #define BTUSB_MAX_ISOC_FRAMES 10 380 381 #define BTUSB_INTR_RUNNING 0 382 #define BTUSB_BULK_RUNNING 1 383 #define BTUSB_ISOC_RUNNING 2 384 #define BTUSB_SUSPENDING 3 385 #define BTUSB_DID_ISO_RESUME 4 386 #define BTUSB_BOOTLOADER 5 387 #define BTUSB_DOWNLOADING 6 388 #define BTUSB_FIRMWARE_LOADED 7 389 #define BTUSB_FIRMWARE_FAILED 8 390 #define BTUSB_BOOTING 9 391 #define BTUSB_RESET_RESUME 10 392 #define BTUSB_DIAG_RUNNING 11 393 #define BTUSB_OOB_WAKE_ENABLED 12 394 395 struct btusb_data { 396 struct hci_dev *hdev; 397 struct usb_device *udev; 398 struct usb_interface *intf; 399 struct usb_interface *isoc; 400 struct usb_interface *diag; 401 unsigned isoc_ifnum; 402 403 unsigned long flags; 404 405 struct work_struct work; 406 struct work_struct waker; 407 408 struct usb_anchor deferred; 409 struct usb_anchor tx_anchor; 410 int tx_in_flight; 411 spinlock_t txlock; 412 413 struct usb_anchor intr_anchor; 414 struct usb_anchor bulk_anchor; 415 struct usb_anchor isoc_anchor; 416 struct usb_anchor diag_anchor; 417 spinlock_t rxlock; 418 419 struct sk_buff *evt_skb; 420 struct sk_buff *acl_skb; 421 struct sk_buff *sco_skb; 422 423 struct usb_endpoint_descriptor *intr_ep; 424 struct usb_endpoint_descriptor *bulk_tx_ep; 425 struct usb_endpoint_descriptor *bulk_rx_ep; 426 struct usb_endpoint_descriptor *isoc_tx_ep; 427 struct usb_endpoint_descriptor *isoc_rx_ep; 428 struct usb_endpoint_descriptor *diag_tx_ep; 429 struct usb_endpoint_descriptor *diag_rx_ep; 430 431 __u8 cmdreq_type; 432 __u8 cmdreq; 433 434 unsigned int sco_num; 435 int isoc_altsetting; 436 int suspend_count; 437 438 int (*recv_event)(struct hci_dev *hdev, struct sk_buff *skb); 439 int (*recv_bulk)(struct btusb_data *data, void *buffer, int count); 440 441 int (*setup_on_usb)(struct hci_dev *hdev); 442 443 int oob_wake_irq; /* irq for out-of-band wake-on-bt */ 444 }; 445 446 static inline void btusb_free_frags(struct btusb_data *data) 447 { 448 unsigned long flags; 449 450 spin_lock_irqsave(&data->rxlock, flags); 451 452 kfree_skb(data->evt_skb); 453 data->evt_skb = NULL; 454 455 kfree_skb(data->acl_skb); 456 data->acl_skb = NULL; 457 458 kfree_skb(data->sco_skb); 459 data->sco_skb = NULL; 460 461 spin_unlock_irqrestore(&data->rxlock, flags); 462 } 463 464 static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count) 465 { 466 struct sk_buff *skb; 467 int err = 0; 468 469 spin_lock(&data->rxlock); 470 skb = data->evt_skb; 471 472 while (count) { 473 int len; 474 475 if (!skb) { 476 skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC); 477 if (!skb) { 478 err = -ENOMEM; 479 break; 480 } 481 482 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 483 hci_skb_expect(skb) = HCI_EVENT_HDR_SIZE; 484 } 485 486 len = min_t(uint, hci_skb_expect(skb), count); 487 skb_put_data(skb, buffer, len); 488 489 count -= len; 490 buffer += len; 491 hci_skb_expect(skb) -= len; 492 493 if (skb->len == HCI_EVENT_HDR_SIZE) { 494 /* Complete event header */ 495 hci_skb_expect(skb) = hci_event_hdr(skb)->plen; 496 497 if (skb_tailroom(skb) < hci_skb_expect(skb)) { 498 kfree_skb(skb); 499 skb = NULL; 500 501 err = -EILSEQ; 502 break; 503 } 504 } 505 506 if (!hci_skb_expect(skb)) { 507 /* Complete frame */ 508 data->recv_event(data->hdev, skb); 509 skb = NULL; 510 } 511 } 512 513 data->evt_skb = skb; 514 spin_unlock(&data->rxlock); 515 516 return err; 517 } 518 519 static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count) 520 { 521 struct sk_buff *skb; 522 int err = 0; 523 524 spin_lock(&data->rxlock); 525 skb = data->acl_skb; 526 527 while (count) { 528 int len; 529 530 if (!skb) { 531 skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC); 532 if (!skb) { 533 err = -ENOMEM; 534 break; 535 } 536 537 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 538 hci_skb_expect(skb) = HCI_ACL_HDR_SIZE; 539 } 540 541 len = min_t(uint, hci_skb_expect(skb), count); 542 skb_put_data(skb, buffer, len); 543 544 count -= len; 545 buffer += len; 546 hci_skb_expect(skb) -= len; 547 548 if (skb->len == HCI_ACL_HDR_SIZE) { 549 __le16 dlen = hci_acl_hdr(skb)->dlen; 550 551 /* Complete ACL header */ 552 hci_skb_expect(skb) = __le16_to_cpu(dlen); 553 554 if (skb_tailroom(skb) < hci_skb_expect(skb)) { 555 kfree_skb(skb); 556 skb = NULL; 557 558 err = -EILSEQ; 559 break; 560 } 561 } 562 563 if (!hci_skb_expect(skb)) { 564 /* Complete frame */ 565 hci_recv_frame(data->hdev, skb); 566 skb = NULL; 567 } 568 } 569 570 data->acl_skb = skb; 571 spin_unlock(&data->rxlock); 572 573 return err; 574 } 575 576 static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count) 577 { 578 struct sk_buff *skb; 579 int err = 0; 580 581 spin_lock(&data->rxlock); 582 skb = data->sco_skb; 583 584 while (count) { 585 int len; 586 587 if (!skb) { 588 skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC); 589 if (!skb) { 590 err = -ENOMEM; 591 break; 592 } 593 594 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 595 hci_skb_expect(skb) = HCI_SCO_HDR_SIZE; 596 } 597 598 len = min_t(uint, hci_skb_expect(skb), count); 599 skb_put_data(skb, buffer, len); 600 601 count -= len; 602 buffer += len; 603 hci_skb_expect(skb) -= len; 604 605 if (skb->len == HCI_SCO_HDR_SIZE) { 606 /* Complete SCO header */ 607 hci_skb_expect(skb) = hci_sco_hdr(skb)->dlen; 608 609 if (skb_tailroom(skb) < hci_skb_expect(skb)) { 610 kfree_skb(skb); 611 skb = NULL; 612 613 err = -EILSEQ; 614 break; 615 } 616 } 617 618 if (!hci_skb_expect(skb)) { 619 /* Complete frame */ 620 hci_recv_frame(data->hdev, skb); 621 skb = NULL; 622 } 623 } 624 625 data->sco_skb = skb; 626 spin_unlock(&data->rxlock); 627 628 return err; 629 } 630 631 static void btusb_intr_complete(struct urb *urb) 632 { 633 struct hci_dev *hdev = urb->context; 634 struct btusb_data *data = hci_get_drvdata(hdev); 635 int err; 636 637 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status, 638 urb->actual_length); 639 640 if (!test_bit(HCI_RUNNING, &hdev->flags)) 641 return; 642 643 if (urb->status == 0) { 644 hdev->stat.byte_rx += urb->actual_length; 645 646 if (btusb_recv_intr(data, urb->transfer_buffer, 647 urb->actual_length) < 0) { 648 bt_dev_err(hdev, "corrupted event packet"); 649 hdev->stat.err_rx++; 650 } 651 } else if (urb->status == -ENOENT) { 652 /* Avoid suspend failed when usb_kill_urb */ 653 return; 654 } 655 656 if (!test_bit(BTUSB_INTR_RUNNING, &data->flags)) 657 return; 658 659 usb_mark_last_busy(data->udev); 660 usb_anchor_urb(urb, &data->intr_anchor); 661 662 err = usb_submit_urb(urb, GFP_ATOMIC); 663 if (err < 0) { 664 /* -EPERM: urb is being killed; 665 * -ENODEV: device got disconnected 666 */ 667 if (err != -EPERM && err != -ENODEV) 668 bt_dev_err(hdev, "urb %p failed to resubmit (%d)", 669 urb, -err); 670 usb_unanchor_urb(urb); 671 } 672 } 673 674 static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags) 675 { 676 struct btusb_data *data = hci_get_drvdata(hdev); 677 struct urb *urb; 678 unsigned char *buf; 679 unsigned int pipe; 680 int err, size; 681 682 BT_DBG("%s", hdev->name); 683 684 if (!data->intr_ep) 685 return -ENODEV; 686 687 urb = usb_alloc_urb(0, mem_flags); 688 if (!urb) 689 return -ENOMEM; 690 691 size = le16_to_cpu(data->intr_ep->wMaxPacketSize); 692 693 buf = kmalloc(size, mem_flags); 694 if (!buf) { 695 usb_free_urb(urb); 696 return -ENOMEM; 697 } 698 699 pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress); 700 701 usb_fill_int_urb(urb, data->udev, pipe, buf, size, 702 btusb_intr_complete, hdev, data->intr_ep->bInterval); 703 704 urb->transfer_flags |= URB_FREE_BUFFER; 705 706 usb_anchor_urb(urb, &data->intr_anchor); 707 708 err = usb_submit_urb(urb, mem_flags); 709 if (err < 0) { 710 if (err != -EPERM && err != -ENODEV) 711 bt_dev_err(hdev, "urb %p submission failed (%d)", 712 urb, -err); 713 usb_unanchor_urb(urb); 714 } 715 716 usb_free_urb(urb); 717 718 return err; 719 } 720 721 static void btusb_bulk_complete(struct urb *urb) 722 { 723 struct hci_dev *hdev = urb->context; 724 struct btusb_data *data = hci_get_drvdata(hdev); 725 int err; 726 727 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status, 728 urb->actual_length); 729 730 if (!test_bit(HCI_RUNNING, &hdev->flags)) 731 return; 732 733 if (urb->status == 0) { 734 hdev->stat.byte_rx += urb->actual_length; 735 736 if (data->recv_bulk(data, urb->transfer_buffer, 737 urb->actual_length) < 0) { 738 bt_dev_err(hdev, "corrupted ACL packet"); 739 hdev->stat.err_rx++; 740 } 741 } else if (urb->status == -ENOENT) { 742 /* Avoid suspend failed when usb_kill_urb */ 743 return; 744 } 745 746 if (!test_bit(BTUSB_BULK_RUNNING, &data->flags)) 747 return; 748 749 usb_anchor_urb(urb, &data->bulk_anchor); 750 usb_mark_last_busy(data->udev); 751 752 err = usb_submit_urb(urb, GFP_ATOMIC); 753 if (err < 0) { 754 /* -EPERM: urb is being killed; 755 * -ENODEV: device got disconnected 756 */ 757 if (err != -EPERM && err != -ENODEV) 758 bt_dev_err(hdev, "urb %p failed to resubmit (%d)", 759 urb, -err); 760 usb_unanchor_urb(urb); 761 } 762 } 763 764 static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags) 765 { 766 struct btusb_data *data = hci_get_drvdata(hdev); 767 struct urb *urb; 768 unsigned char *buf; 769 unsigned int pipe; 770 int err, size = HCI_MAX_FRAME_SIZE; 771 772 BT_DBG("%s", hdev->name); 773 774 if (!data->bulk_rx_ep) 775 return -ENODEV; 776 777 urb = usb_alloc_urb(0, mem_flags); 778 if (!urb) 779 return -ENOMEM; 780 781 buf = kmalloc(size, mem_flags); 782 if (!buf) { 783 usb_free_urb(urb); 784 return -ENOMEM; 785 } 786 787 pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress); 788 789 usb_fill_bulk_urb(urb, data->udev, pipe, buf, size, 790 btusb_bulk_complete, hdev); 791 792 urb->transfer_flags |= URB_FREE_BUFFER; 793 794 usb_mark_last_busy(data->udev); 795 usb_anchor_urb(urb, &data->bulk_anchor); 796 797 err = usb_submit_urb(urb, mem_flags); 798 if (err < 0) { 799 if (err != -EPERM && err != -ENODEV) 800 bt_dev_err(hdev, "urb %p submission failed (%d)", 801 urb, -err); 802 usb_unanchor_urb(urb); 803 } 804 805 usb_free_urb(urb); 806 807 return err; 808 } 809 810 static void btusb_isoc_complete(struct urb *urb) 811 { 812 struct hci_dev *hdev = urb->context; 813 struct btusb_data *data = hci_get_drvdata(hdev); 814 int i, err; 815 816 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status, 817 urb->actual_length); 818 819 if (!test_bit(HCI_RUNNING, &hdev->flags)) 820 return; 821 822 if (urb->status == 0) { 823 for (i = 0; i < urb->number_of_packets; i++) { 824 unsigned int offset = urb->iso_frame_desc[i].offset; 825 unsigned int length = urb->iso_frame_desc[i].actual_length; 826 827 if (urb->iso_frame_desc[i].status) 828 continue; 829 830 hdev->stat.byte_rx += length; 831 832 if (btusb_recv_isoc(data, urb->transfer_buffer + offset, 833 length) < 0) { 834 bt_dev_err(hdev, "corrupted SCO packet"); 835 hdev->stat.err_rx++; 836 } 837 } 838 } else if (urb->status == -ENOENT) { 839 /* Avoid suspend failed when usb_kill_urb */ 840 return; 841 } 842 843 if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags)) 844 return; 845 846 usb_anchor_urb(urb, &data->isoc_anchor); 847 848 err = usb_submit_urb(urb, GFP_ATOMIC); 849 if (err < 0) { 850 /* -EPERM: urb is being killed; 851 * -ENODEV: device got disconnected 852 */ 853 if (err != -EPERM && err != -ENODEV) 854 bt_dev_err(hdev, "urb %p failed to resubmit (%d)", 855 urb, -err); 856 usb_unanchor_urb(urb); 857 } 858 } 859 860 static inline void __fill_isoc_descriptor(struct urb *urb, int len, int mtu) 861 { 862 int i, offset = 0; 863 864 BT_DBG("len %d mtu %d", len, mtu); 865 866 for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu; 867 i++, offset += mtu, len -= mtu) { 868 urb->iso_frame_desc[i].offset = offset; 869 urb->iso_frame_desc[i].length = mtu; 870 } 871 872 if (len && i < BTUSB_MAX_ISOC_FRAMES) { 873 urb->iso_frame_desc[i].offset = offset; 874 urb->iso_frame_desc[i].length = len; 875 i++; 876 } 877 878 urb->number_of_packets = i; 879 } 880 881 static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags) 882 { 883 struct btusb_data *data = hci_get_drvdata(hdev); 884 struct urb *urb; 885 unsigned char *buf; 886 unsigned int pipe; 887 int err, size; 888 889 BT_DBG("%s", hdev->name); 890 891 if (!data->isoc_rx_ep) 892 return -ENODEV; 893 894 urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags); 895 if (!urb) 896 return -ENOMEM; 897 898 size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) * 899 BTUSB_MAX_ISOC_FRAMES; 900 901 buf = kmalloc(size, mem_flags); 902 if (!buf) { 903 usb_free_urb(urb); 904 return -ENOMEM; 905 } 906 907 pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress); 908 909 usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_isoc_complete, 910 hdev, data->isoc_rx_ep->bInterval); 911 912 urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP; 913 914 __fill_isoc_descriptor(urb, size, 915 le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize)); 916 917 usb_anchor_urb(urb, &data->isoc_anchor); 918 919 err = usb_submit_urb(urb, mem_flags); 920 if (err < 0) { 921 if (err != -EPERM && err != -ENODEV) 922 bt_dev_err(hdev, "urb %p submission failed (%d)", 923 urb, -err); 924 usb_unanchor_urb(urb); 925 } 926 927 usb_free_urb(urb); 928 929 return err; 930 } 931 932 static void btusb_diag_complete(struct urb *urb) 933 { 934 struct hci_dev *hdev = urb->context; 935 struct btusb_data *data = hci_get_drvdata(hdev); 936 int err; 937 938 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status, 939 urb->actual_length); 940 941 if (urb->status == 0) { 942 struct sk_buff *skb; 943 944 skb = bt_skb_alloc(urb->actual_length, GFP_ATOMIC); 945 if (skb) { 946 skb_put_data(skb, urb->transfer_buffer, 947 urb->actual_length); 948 hci_recv_diag(hdev, skb); 949 } 950 } else if (urb->status == -ENOENT) { 951 /* Avoid suspend failed when usb_kill_urb */ 952 return; 953 } 954 955 if (!test_bit(BTUSB_DIAG_RUNNING, &data->flags)) 956 return; 957 958 usb_anchor_urb(urb, &data->diag_anchor); 959 usb_mark_last_busy(data->udev); 960 961 err = usb_submit_urb(urb, GFP_ATOMIC); 962 if (err < 0) { 963 /* -EPERM: urb is being killed; 964 * -ENODEV: device got disconnected 965 */ 966 if (err != -EPERM && err != -ENODEV) 967 bt_dev_err(hdev, "urb %p failed to resubmit (%d)", 968 urb, -err); 969 usb_unanchor_urb(urb); 970 } 971 } 972 973 static int btusb_submit_diag_urb(struct hci_dev *hdev, gfp_t mem_flags) 974 { 975 struct btusb_data *data = hci_get_drvdata(hdev); 976 struct urb *urb; 977 unsigned char *buf; 978 unsigned int pipe; 979 int err, size = HCI_MAX_FRAME_SIZE; 980 981 BT_DBG("%s", hdev->name); 982 983 if (!data->diag_rx_ep) 984 return -ENODEV; 985 986 urb = usb_alloc_urb(0, mem_flags); 987 if (!urb) 988 return -ENOMEM; 989 990 buf = kmalloc(size, mem_flags); 991 if (!buf) { 992 usb_free_urb(urb); 993 return -ENOMEM; 994 } 995 996 pipe = usb_rcvbulkpipe(data->udev, data->diag_rx_ep->bEndpointAddress); 997 998 usb_fill_bulk_urb(urb, data->udev, pipe, buf, size, 999 btusb_diag_complete, hdev); 1000 1001 urb->transfer_flags |= URB_FREE_BUFFER; 1002 1003 usb_mark_last_busy(data->udev); 1004 usb_anchor_urb(urb, &data->diag_anchor); 1005 1006 err = usb_submit_urb(urb, mem_flags); 1007 if (err < 0) { 1008 if (err != -EPERM && err != -ENODEV) 1009 bt_dev_err(hdev, "urb %p submission failed (%d)", 1010 urb, -err); 1011 usb_unanchor_urb(urb); 1012 } 1013 1014 usb_free_urb(urb); 1015 1016 return err; 1017 } 1018 1019 static void btusb_tx_complete(struct urb *urb) 1020 { 1021 struct sk_buff *skb = urb->context; 1022 struct hci_dev *hdev = (struct hci_dev *)skb->dev; 1023 struct btusb_data *data = hci_get_drvdata(hdev); 1024 1025 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status, 1026 urb->actual_length); 1027 1028 if (!test_bit(HCI_RUNNING, &hdev->flags)) 1029 goto done; 1030 1031 if (!urb->status) 1032 hdev->stat.byte_tx += urb->transfer_buffer_length; 1033 else 1034 hdev->stat.err_tx++; 1035 1036 done: 1037 spin_lock(&data->txlock); 1038 data->tx_in_flight--; 1039 spin_unlock(&data->txlock); 1040 1041 kfree(urb->setup_packet); 1042 1043 kfree_skb(skb); 1044 } 1045 1046 static void btusb_isoc_tx_complete(struct urb *urb) 1047 { 1048 struct sk_buff *skb = urb->context; 1049 struct hci_dev *hdev = (struct hci_dev *)skb->dev; 1050 1051 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status, 1052 urb->actual_length); 1053 1054 if (!test_bit(HCI_RUNNING, &hdev->flags)) 1055 goto done; 1056 1057 if (!urb->status) 1058 hdev->stat.byte_tx += urb->transfer_buffer_length; 1059 else 1060 hdev->stat.err_tx++; 1061 1062 done: 1063 kfree(urb->setup_packet); 1064 1065 kfree_skb(skb); 1066 } 1067 1068 static int btusb_open(struct hci_dev *hdev) 1069 { 1070 struct btusb_data *data = hci_get_drvdata(hdev); 1071 int err; 1072 1073 BT_DBG("%s", hdev->name); 1074 1075 err = usb_autopm_get_interface(data->intf); 1076 if (err < 0) 1077 return err; 1078 1079 /* Patching USB firmware files prior to starting any URBs of HCI path 1080 * It is more safe to use USB bulk channel for downloading USB patch 1081 */ 1082 if (data->setup_on_usb) { 1083 err = data->setup_on_usb(hdev); 1084 if (err < 0) 1085 return err; 1086 } 1087 1088 data->intf->needs_remote_wakeup = 1; 1089 /* device specific wakeup source enabled and required for USB 1090 * remote wakeup while host is suspended 1091 */ 1092 device_wakeup_enable(&data->udev->dev); 1093 1094 if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags)) 1095 goto done; 1096 1097 err = btusb_submit_intr_urb(hdev, GFP_KERNEL); 1098 if (err < 0) 1099 goto failed; 1100 1101 err = btusb_submit_bulk_urb(hdev, GFP_KERNEL); 1102 if (err < 0) { 1103 usb_kill_anchored_urbs(&data->intr_anchor); 1104 goto failed; 1105 } 1106 1107 set_bit(BTUSB_BULK_RUNNING, &data->flags); 1108 btusb_submit_bulk_urb(hdev, GFP_KERNEL); 1109 1110 if (data->diag) { 1111 if (!btusb_submit_diag_urb(hdev, GFP_KERNEL)) 1112 set_bit(BTUSB_DIAG_RUNNING, &data->flags); 1113 } 1114 1115 done: 1116 usb_autopm_put_interface(data->intf); 1117 return 0; 1118 1119 failed: 1120 clear_bit(BTUSB_INTR_RUNNING, &data->flags); 1121 usb_autopm_put_interface(data->intf); 1122 return err; 1123 } 1124 1125 static void btusb_stop_traffic(struct btusb_data *data) 1126 { 1127 usb_kill_anchored_urbs(&data->intr_anchor); 1128 usb_kill_anchored_urbs(&data->bulk_anchor); 1129 usb_kill_anchored_urbs(&data->isoc_anchor); 1130 usb_kill_anchored_urbs(&data->diag_anchor); 1131 } 1132 1133 static int btusb_close(struct hci_dev *hdev) 1134 { 1135 struct btusb_data *data = hci_get_drvdata(hdev); 1136 int err; 1137 1138 BT_DBG("%s", hdev->name); 1139 1140 cancel_work_sync(&data->work); 1141 cancel_work_sync(&data->waker); 1142 1143 clear_bit(BTUSB_ISOC_RUNNING, &data->flags); 1144 clear_bit(BTUSB_BULK_RUNNING, &data->flags); 1145 clear_bit(BTUSB_INTR_RUNNING, &data->flags); 1146 clear_bit(BTUSB_DIAG_RUNNING, &data->flags); 1147 1148 btusb_stop_traffic(data); 1149 btusb_free_frags(data); 1150 1151 err = usb_autopm_get_interface(data->intf); 1152 if (err < 0) 1153 goto failed; 1154 1155 data->intf->needs_remote_wakeup = 0; 1156 device_wakeup_disable(&data->udev->dev); 1157 usb_autopm_put_interface(data->intf); 1158 1159 failed: 1160 usb_scuttle_anchored_urbs(&data->deferred); 1161 return 0; 1162 } 1163 1164 static int btusb_flush(struct hci_dev *hdev) 1165 { 1166 struct btusb_data *data = hci_get_drvdata(hdev); 1167 1168 BT_DBG("%s", hdev->name); 1169 1170 usb_kill_anchored_urbs(&data->tx_anchor); 1171 btusb_free_frags(data); 1172 1173 return 0; 1174 } 1175 1176 static struct urb *alloc_ctrl_urb(struct hci_dev *hdev, struct sk_buff *skb) 1177 { 1178 struct btusb_data *data = hci_get_drvdata(hdev); 1179 struct usb_ctrlrequest *dr; 1180 struct urb *urb; 1181 unsigned int pipe; 1182 1183 urb = usb_alloc_urb(0, GFP_KERNEL); 1184 if (!urb) 1185 return ERR_PTR(-ENOMEM); 1186 1187 dr = kmalloc(sizeof(*dr), GFP_KERNEL); 1188 if (!dr) { 1189 usb_free_urb(urb); 1190 return ERR_PTR(-ENOMEM); 1191 } 1192 1193 dr->bRequestType = data->cmdreq_type; 1194 dr->bRequest = data->cmdreq; 1195 dr->wIndex = 0; 1196 dr->wValue = 0; 1197 dr->wLength = __cpu_to_le16(skb->len); 1198 1199 pipe = usb_sndctrlpipe(data->udev, 0x00); 1200 1201 usb_fill_control_urb(urb, data->udev, pipe, (void *)dr, 1202 skb->data, skb->len, btusb_tx_complete, skb); 1203 1204 skb->dev = (void *)hdev; 1205 1206 return urb; 1207 } 1208 1209 static struct urb *alloc_bulk_urb(struct hci_dev *hdev, struct sk_buff *skb) 1210 { 1211 struct btusb_data *data = hci_get_drvdata(hdev); 1212 struct urb *urb; 1213 unsigned int pipe; 1214 1215 if (!data->bulk_tx_ep) 1216 return ERR_PTR(-ENODEV); 1217 1218 urb = usb_alloc_urb(0, GFP_KERNEL); 1219 if (!urb) 1220 return ERR_PTR(-ENOMEM); 1221 1222 pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress); 1223 1224 usb_fill_bulk_urb(urb, data->udev, pipe, 1225 skb->data, skb->len, btusb_tx_complete, skb); 1226 1227 skb->dev = (void *)hdev; 1228 1229 return urb; 1230 } 1231 1232 static struct urb *alloc_isoc_urb(struct hci_dev *hdev, struct sk_buff *skb) 1233 { 1234 struct btusb_data *data = hci_get_drvdata(hdev); 1235 struct urb *urb; 1236 unsigned int pipe; 1237 1238 if (!data->isoc_tx_ep) 1239 return ERR_PTR(-ENODEV); 1240 1241 urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_KERNEL); 1242 if (!urb) 1243 return ERR_PTR(-ENOMEM); 1244 1245 pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress); 1246 1247 usb_fill_int_urb(urb, data->udev, pipe, 1248 skb->data, skb->len, btusb_isoc_tx_complete, 1249 skb, data->isoc_tx_ep->bInterval); 1250 1251 urb->transfer_flags = URB_ISO_ASAP; 1252 1253 __fill_isoc_descriptor(urb, skb->len, 1254 le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize)); 1255 1256 skb->dev = (void *)hdev; 1257 1258 return urb; 1259 } 1260 1261 static int submit_tx_urb(struct hci_dev *hdev, struct urb *urb) 1262 { 1263 struct btusb_data *data = hci_get_drvdata(hdev); 1264 int err; 1265 1266 usb_anchor_urb(urb, &data->tx_anchor); 1267 1268 err = usb_submit_urb(urb, GFP_KERNEL); 1269 if (err < 0) { 1270 if (err != -EPERM && err != -ENODEV) 1271 bt_dev_err(hdev, "urb %p submission failed (%d)", 1272 urb, -err); 1273 kfree(urb->setup_packet); 1274 usb_unanchor_urb(urb); 1275 } else { 1276 usb_mark_last_busy(data->udev); 1277 } 1278 1279 usb_free_urb(urb); 1280 return err; 1281 } 1282 1283 static int submit_or_queue_tx_urb(struct hci_dev *hdev, struct urb *urb) 1284 { 1285 struct btusb_data *data = hci_get_drvdata(hdev); 1286 unsigned long flags; 1287 bool suspending; 1288 1289 spin_lock_irqsave(&data->txlock, flags); 1290 suspending = test_bit(BTUSB_SUSPENDING, &data->flags); 1291 if (!suspending) 1292 data->tx_in_flight++; 1293 spin_unlock_irqrestore(&data->txlock, flags); 1294 1295 if (!suspending) 1296 return submit_tx_urb(hdev, urb); 1297 1298 usb_anchor_urb(urb, &data->deferred); 1299 schedule_work(&data->waker); 1300 1301 usb_free_urb(urb); 1302 return 0; 1303 } 1304 1305 static int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 1306 { 1307 struct urb *urb; 1308 1309 BT_DBG("%s", hdev->name); 1310 1311 switch (hci_skb_pkt_type(skb)) { 1312 case HCI_COMMAND_PKT: 1313 urb = alloc_ctrl_urb(hdev, skb); 1314 if (IS_ERR(urb)) 1315 return PTR_ERR(urb); 1316 1317 hdev->stat.cmd_tx++; 1318 return submit_or_queue_tx_urb(hdev, urb); 1319 1320 case HCI_ACLDATA_PKT: 1321 urb = alloc_bulk_urb(hdev, skb); 1322 if (IS_ERR(urb)) 1323 return PTR_ERR(urb); 1324 1325 hdev->stat.acl_tx++; 1326 return submit_or_queue_tx_urb(hdev, urb); 1327 1328 case HCI_SCODATA_PKT: 1329 if (hci_conn_num(hdev, SCO_LINK) < 1) 1330 return -ENODEV; 1331 1332 urb = alloc_isoc_urb(hdev, skb); 1333 if (IS_ERR(urb)) 1334 return PTR_ERR(urb); 1335 1336 hdev->stat.sco_tx++; 1337 return submit_tx_urb(hdev, urb); 1338 } 1339 1340 return -EILSEQ; 1341 } 1342 1343 static void btusb_notify(struct hci_dev *hdev, unsigned int evt) 1344 { 1345 struct btusb_data *data = hci_get_drvdata(hdev); 1346 1347 BT_DBG("%s evt %d", hdev->name, evt); 1348 1349 if (hci_conn_num(hdev, SCO_LINK) != data->sco_num) { 1350 data->sco_num = hci_conn_num(hdev, SCO_LINK); 1351 schedule_work(&data->work); 1352 } 1353 } 1354 1355 static inline int __set_isoc_interface(struct hci_dev *hdev, int altsetting) 1356 { 1357 struct btusb_data *data = hci_get_drvdata(hdev); 1358 struct usb_interface *intf = data->isoc; 1359 struct usb_endpoint_descriptor *ep_desc; 1360 int i, err; 1361 1362 if (!data->isoc) 1363 return -ENODEV; 1364 1365 err = usb_set_interface(data->udev, data->isoc_ifnum, altsetting); 1366 if (err < 0) { 1367 bt_dev_err(hdev, "setting interface failed (%d)", -err); 1368 return err; 1369 } 1370 1371 data->isoc_altsetting = altsetting; 1372 1373 data->isoc_tx_ep = NULL; 1374 data->isoc_rx_ep = NULL; 1375 1376 for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { 1377 ep_desc = &intf->cur_altsetting->endpoint[i].desc; 1378 1379 if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) { 1380 data->isoc_tx_ep = ep_desc; 1381 continue; 1382 } 1383 1384 if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) { 1385 data->isoc_rx_ep = ep_desc; 1386 continue; 1387 } 1388 } 1389 1390 if (!data->isoc_tx_ep || !data->isoc_rx_ep) { 1391 bt_dev_err(hdev, "invalid SCO descriptors"); 1392 return -ENODEV; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static void btusb_work(struct work_struct *work) 1399 { 1400 struct btusb_data *data = container_of(work, struct btusb_data, work); 1401 struct hci_dev *hdev = data->hdev; 1402 int new_alts; 1403 int err; 1404 1405 if (data->sco_num > 0) { 1406 if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) { 1407 err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf); 1408 if (err < 0) { 1409 clear_bit(BTUSB_ISOC_RUNNING, &data->flags); 1410 usb_kill_anchored_urbs(&data->isoc_anchor); 1411 return; 1412 } 1413 1414 set_bit(BTUSB_DID_ISO_RESUME, &data->flags); 1415 } 1416 1417 if (hdev->voice_setting & 0x0020) { 1418 static const int alts[3] = { 2, 4, 5 }; 1419 1420 new_alts = alts[data->sco_num - 1]; 1421 } else { 1422 new_alts = data->sco_num; 1423 } 1424 1425 if (data->isoc_altsetting != new_alts) { 1426 unsigned long flags; 1427 1428 clear_bit(BTUSB_ISOC_RUNNING, &data->flags); 1429 usb_kill_anchored_urbs(&data->isoc_anchor); 1430 1431 /* When isochronous alternate setting needs to be 1432 * changed, because SCO connection has been added 1433 * or removed, a packet fragment may be left in the 1434 * reassembling state. This could lead to wrongly 1435 * assembled fragments. 1436 * 1437 * Clear outstanding fragment when selecting a new 1438 * alternate setting. 1439 */ 1440 spin_lock_irqsave(&data->rxlock, flags); 1441 kfree_skb(data->sco_skb); 1442 data->sco_skb = NULL; 1443 spin_unlock_irqrestore(&data->rxlock, flags); 1444 1445 if (__set_isoc_interface(hdev, new_alts) < 0) 1446 return; 1447 } 1448 1449 if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) { 1450 if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0) 1451 clear_bit(BTUSB_ISOC_RUNNING, &data->flags); 1452 else 1453 btusb_submit_isoc_urb(hdev, GFP_KERNEL); 1454 } 1455 } else { 1456 clear_bit(BTUSB_ISOC_RUNNING, &data->flags); 1457 usb_kill_anchored_urbs(&data->isoc_anchor); 1458 1459 __set_isoc_interface(hdev, 0); 1460 if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags)) 1461 usb_autopm_put_interface(data->isoc ? data->isoc : data->intf); 1462 } 1463 } 1464 1465 static void btusb_waker(struct work_struct *work) 1466 { 1467 struct btusb_data *data = container_of(work, struct btusb_data, waker); 1468 int err; 1469 1470 err = usb_autopm_get_interface(data->intf); 1471 if (err < 0) 1472 return; 1473 1474 usb_autopm_put_interface(data->intf); 1475 } 1476 1477 static int btusb_setup_bcm92035(struct hci_dev *hdev) 1478 { 1479 struct sk_buff *skb; 1480 u8 val = 0x00; 1481 1482 BT_DBG("%s", hdev->name); 1483 1484 skb = __hci_cmd_sync(hdev, 0xfc3b, 1, &val, HCI_INIT_TIMEOUT); 1485 if (IS_ERR(skb)) 1486 bt_dev_err(hdev, "BCM92035 command failed (%ld)", PTR_ERR(skb)); 1487 else 1488 kfree_skb(skb); 1489 1490 return 0; 1491 } 1492 1493 static int btusb_setup_csr(struct hci_dev *hdev) 1494 { 1495 struct hci_rp_read_local_version *rp; 1496 struct sk_buff *skb; 1497 1498 BT_DBG("%s", hdev->name); 1499 1500 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL, 1501 HCI_INIT_TIMEOUT); 1502 if (IS_ERR(skb)) { 1503 int err = PTR_ERR(skb); 1504 bt_dev_err(hdev, "CSR: Local version failed (%d)", err); 1505 return err; 1506 } 1507 1508 if (skb->len != sizeof(struct hci_rp_read_local_version)) { 1509 bt_dev_err(hdev, "CSR: Local version length mismatch"); 1510 kfree_skb(skb); 1511 return -EIO; 1512 } 1513 1514 rp = (struct hci_rp_read_local_version *)skb->data; 1515 1516 /* Detect controllers which aren't real CSR ones. */ 1517 if (le16_to_cpu(rp->manufacturer) != 10 || 1518 le16_to_cpu(rp->lmp_subver) == 0x0c5c) { 1519 /* Clear the reset quirk since this is not an actual 1520 * early Bluetooth 1.1 device from CSR. 1521 */ 1522 clear_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); 1523 1524 /* These fake CSR controllers have all a broken 1525 * stored link key handling and so just disable it. 1526 */ 1527 set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks); 1528 } 1529 1530 kfree_skb(skb); 1531 1532 return 0; 1533 } 1534 1535 static const struct firmware *btusb_setup_intel_get_fw(struct hci_dev *hdev, 1536 struct intel_version *ver) 1537 { 1538 const struct firmware *fw; 1539 char fwname[64]; 1540 int ret; 1541 1542 snprintf(fwname, sizeof(fwname), 1543 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", 1544 ver->hw_platform, ver->hw_variant, ver->hw_revision, 1545 ver->fw_variant, ver->fw_revision, ver->fw_build_num, 1546 ver->fw_build_ww, ver->fw_build_yy); 1547 1548 ret = request_firmware(&fw, fwname, &hdev->dev); 1549 if (ret < 0) { 1550 if (ret == -EINVAL) { 1551 BT_ERR("%s Intel firmware file request failed (%d)", 1552 hdev->name, ret); 1553 return NULL; 1554 } 1555 1556 BT_ERR("%s failed to open Intel firmware file: %s(%d)", 1557 hdev->name, fwname, ret); 1558 1559 /* If the correct firmware patch file is not found, use the 1560 * default firmware patch file instead 1561 */ 1562 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq", 1563 ver->hw_platform, ver->hw_variant); 1564 if (request_firmware(&fw, fwname, &hdev->dev) < 0) { 1565 BT_ERR("%s failed to open default Intel fw file: %s", 1566 hdev->name, fwname); 1567 return NULL; 1568 } 1569 } 1570 1571 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); 1572 1573 return fw; 1574 } 1575 1576 static int btusb_setup_intel_patching(struct hci_dev *hdev, 1577 const struct firmware *fw, 1578 const u8 **fw_ptr, int *disable_patch) 1579 { 1580 struct sk_buff *skb; 1581 struct hci_command_hdr *cmd; 1582 const u8 *cmd_param; 1583 struct hci_event_hdr *evt = NULL; 1584 const u8 *evt_param = NULL; 1585 int remain = fw->size - (*fw_ptr - fw->data); 1586 1587 /* The first byte indicates the types of the patch command or event. 1588 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes 1589 * in the current firmware buffer doesn't start with 0x01 or 1590 * the size of remain buffer is smaller than HCI command header, 1591 * the firmware file is corrupted and it should stop the patching 1592 * process. 1593 */ 1594 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { 1595 BT_ERR("%s Intel fw corrupted: invalid cmd read", hdev->name); 1596 return -EINVAL; 1597 } 1598 (*fw_ptr)++; 1599 remain--; 1600 1601 cmd = (struct hci_command_hdr *)(*fw_ptr); 1602 *fw_ptr += sizeof(*cmd); 1603 remain -= sizeof(*cmd); 1604 1605 /* Ensure that the remain firmware data is long enough than the length 1606 * of command parameter. If not, the firmware file is corrupted. 1607 */ 1608 if (remain < cmd->plen) { 1609 BT_ERR("%s Intel fw corrupted: invalid cmd len", hdev->name); 1610 return -EFAULT; 1611 } 1612 1613 /* If there is a command that loads a patch in the firmware 1614 * file, then enable the patch upon success, otherwise just 1615 * disable the manufacturer mode, for example patch activation 1616 * is not required when the default firmware patch file is used 1617 * because there are no patch data to load. 1618 */ 1619 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) 1620 *disable_patch = 0; 1621 1622 cmd_param = *fw_ptr; 1623 *fw_ptr += cmd->plen; 1624 remain -= cmd->plen; 1625 1626 /* This reads the expected events when the above command is sent to the 1627 * device. Some vendor commands expects more than one events, for 1628 * example command status event followed by vendor specific event. 1629 * For this case, it only keeps the last expected event. so the command 1630 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of 1631 * last expected event. 1632 */ 1633 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { 1634 (*fw_ptr)++; 1635 remain--; 1636 1637 evt = (struct hci_event_hdr *)(*fw_ptr); 1638 *fw_ptr += sizeof(*evt); 1639 remain -= sizeof(*evt); 1640 1641 if (remain < evt->plen) { 1642 BT_ERR("%s Intel fw corrupted: invalid evt len", 1643 hdev->name); 1644 return -EFAULT; 1645 } 1646 1647 evt_param = *fw_ptr; 1648 *fw_ptr += evt->plen; 1649 remain -= evt->plen; 1650 } 1651 1652 /* Every HCI commands in the firmware file has its correspond event. 1653 * If event is not found or remain is smaller than zero, the firmware 1654 * file is corrupted. 1655 */ 1656 if (!evt || !evt_param || remain < 0) { 1657 BT_ERR("%s Intel fw corrupted: invalid evt read", hdev->name); 1658 return -EFAULT; 1659 } 1660 1661 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen, 1662 cmd_param, evt->evt, HCI_INIT_TIMEOUT); 1663 if (IS_ERR(skb)) { 1664 BT_ERR("%s sending Intel patch command (0x%4.4x) failed (%ld)", 1665 hdev->name, cmd->opcode, PTR_ERR(skb)); 1666 return PTR_ERR(skb); 1667 } 1668 1669 /* It ensures that the returned event matches the event data read from 1670 * the firmware file. At fist, it checks the length and then 1671 * the contents of the event. 1672 */ 1673 if (skb->len != evt->plen) { 1674 BT_ERR("%s mismatch event length (opcode 0x%4.4x)", hdev->name, 1675 le16_to_cpu(cmd->opcode)); 1676 kfree_skb(skb); 1677 return -EFAULT; 1678 } 1679 1680 if (memcmp(skb->data, evt_param, evt->plen)) { 1681 BT_ERR("%s mismatch event parameter (opcode 0x%4.4x)", 1682 hdev->name, le16_to_cpu(cmd->opcode)); 1683 kfree_skb(skb); 1684 return -EFAULT; 1685 } 1686 kfree_skb(skb); 1687 1688 return 0; 1689 } 1690 1691 static int btusb_setup_intel(struct hci_dev *hdev) 1692 { 1693 struct sk_buff *skb; 1694 const struct firmware *fw; 1695 const u8 *fw_ptr; 1696 int disable_patch, err; 1697 struct intel_version ver; 1698 1699 BT_DBG("%s", hdev->name); 1700 1701 /* The controller has a bug with the first HCI command sent to it 1702 * returning number of completed commands as zero. This would stall the 1703 * command processing in the Bluetooth core. 1704 * 1705 * As a workaround, send HCI Reset command first which will reset the 1706 * number of completed commands and allow normal command processing 1707 * from now on. 1708 */ 1709 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 1710 if (IS_ERR(skb)) { 1711 BT_ERR("%s sending initial HCI reset command failed (%ld)", 1712 hdev->name, PTR_ERR(skb)); 1713 return PTR_ERR(skb); 1714 } 1715 kfree_skb(skb); 1716 1717 /* Read Intel specific controller version first to allow selection of 1718 * which firmware file to load. 1719 * 1720 * The returned information are hardware variant and revision plus 1721 * firmware variant, revision and build number. 1722 */ 1723 err = btintel_read_version(hdev, &ver); 1724 if (err) 1725 return err; 1726 1727 bt_dev_info(hdev, "read Intel version: %02x%02x%02x%02x%02x%02x%02x%02x%02x", 1728 ver.hw_platform, ver.hw_variant, ver.hw_revision, 1729 ver.fw_variant, ver.fw_revision, ver.fw_build_num, 1730 ver.fw_build_ww, ver.fw_build_yy, ver.fw_patch_num); 1731 1732 /* fw_patch_num indicates the version of patch the device currently 1733 * have. If there is no patch data in the device, it is always 0x00. 1734 * So, if it is other than 0x00, no need to patch the device again. 1735 */ 1736 if (ver.fw_patch_num) { 1737 bt_dev_info(hdev, "Intel device is already patched. " 1738 "patch num: %02x", ver.fw_patch_num); 1739 goto complete; 1740 } 1741 1742 /* Opens the firmware patch file based on the firmware version read 1743 * from the controller. If it fails to open the matching firmware 1744 * patch file, it tries to open the default firmware patch file. 1745 * If no patch file is found, allow the device to operate without 1746 * a patch. 1747 */ 1748 fw = btusb_setup_intel_get_fw(hdev, &ver); 1749 if (!fw) 1750 goto complete; 1751 fw_ptr = fw->data; 1752 1753 /* Enable the manufacturer mode of the controller. 1754 * Only while this mode is enabled, the driver can download the 1755 * firmware patch data and configuration parameters. 1756 */ 1757 err = btintel_enter_mfg(hdev); 1758 if (err) { 1759 release_firmware(fw); 1760 return err; 1761 } 1762 1763 disable_patch = 1; 1764 1765 /* The firmware data file consists of list of Intel specific HCI 1766 * commands and its expected events. The first byte indicates the 1767 * type of the message, either HCI command or HCI event. 1768 * 1769 * It reads the command and its expected event from the firmware file, 1770 * and send to the controller. Once __hci_cmd_sync_ev() returns, 1771 * the returned event is compared with the event read from the firmware 1772 * file and it will continue until all the messages are downloaded to 1773 * the controller. 1774 * 1775 * Once the firmware patching is completed successfully, 1776 * the manufacturer mode is disabled with reset and activating the 1777 * downloaded patch. 1778 * 1779 * If the firmware patching fails, the manufacturer mode is 1780 * disabled with reset and deactivating the patch. 1781 * 1782 * If the default patch file is used, no reset is done when disabling 1783 * the manufacturer. 1784 */ 1785 while (fw->size > fw_ptr - fw->data) { 1786 int ret; 1787 1788 ret = btusb_setup_intel_patching(hdev, fw, &fw_ptr, 1789 &disable_patch); 1790 if (ret < 0) 1791 goto exit_mfg_deactivate; 1792 } 1793 1794 release_firmware(fw); 1795 1796 if (disable_patch) 1797 goto exit_mfg_disable; 1798 1799 /* Patching completed successfully and disable the manufacturer mode 1800 * with reset and activate the downloaded firmware patches. 1801 */ 1802 err = btintel_exit_mfg(hdev, true, true); 1803 if (err) 1804 return err; 1805 1806 bt_dev_info(hdev, "Intel firmware patch completed and activated"); 1807 1808 goto complete; 1809 1810 exit_mfg_disable: 1811 /* Disable the manufacturer mode without reset */ 1812 err = btintel_exit_mfg(hdev, false, false); 1813 if (err) 1814 return err; 1815 1816 bt_dev_info(hdev, "Intel firmware patch completed"); 1817 1818 goto complete; 1819 1820 exit_mfg_deactivate: 1821 release_firmware(fw); 1822 1823 /* Patching failed. Disable the manufacturer mode with reset and 1824 * deactivate the downloaded firmware patches. 1825 */ 1826 err = btintel_exit_mfg(hdev, true, false); 1827 if (err) 1828 return err; 1829 1830 bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); 1831 1832 complete: 1833 /* Set the event mask for Intel specific vendor events. This enables 1834 * a few extra events that are useful during general operation. 1835 */ 1836 btintel_set_event_mask_mfg(hdev, false); 1837 1838 btintel_check_bdaddr(hdev); 1839 return 0; 1840 } 1841 1842 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 1843 { 1844 struct sk_buff *skb; 1845 struct hci_event_hdr *hdr; 1846 struct hci_ev_cmd_complete *evt; 1847 1848 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC); 1849 if (!skb) 1850 return -ENOMEM; 1851 1852 hdr = skb_put(skb, sizeof(*hdr)); 1853 hdr->evt = HCI_EV_CMD_COMPLETE; 1854 hdr->plen = sizeof(*evt) + 1; 1855 1856 evt = skb_put(skb, sizeof(*evt)); 1857 evt->ncmd = 0x01; 1858 evt->opcode = cpu_to_le16(opcode); 1859 1860 skb_put_u8(skb, 0x00); 1861 1862 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 1863 1864 return hci_recv_frame(hdev, skb); 1865 } 1866 1867 static int btusb_recv_bulk_intel(struct btusb_data *data, void *buffer, 1868 int count) 1869 { 1870 /* When the device is in bootloader mode, then it can send 1871 * events via the bulk endpoint. These events are treated the 1872 * same way as the ones received from the interrupt endpoint. 1873 */ 1874 if (test_bit(BTUSB_BOOTLOADER, &data->flags)) 1875 return btusb_recv_intr(data, buffer, count); 1876 1877 return btusb_recv_bulk(data, buffer, count); 1878 } 1879 1880 static void btusb_intel_bootup(struct btusb_data *data, const void *ptr, 1881 unsigned int len) 1882 { 1883 const struct intel_bootup *evt = ptr; 1884 1885 if (len != sizeof(*evt)) 1886 return; 1887 1888 if (test_and_clear_bit(BTUSB_BOOTING, &data->flags)) { 1889 smp_mb__after_atomic(); 1890 wake_up_bit(&data->flags, BTUSB_BOOTING); 1891 } 1892 } 1893 1894 static void btusb_intel_secure_send_result(struct btusb_data *data, 1895 const void *ptr, unsigned int len) 1896 { 1897 const struct intel_secure_send_result *evt = ptr; 1898 1899 if (len != sizeof(*evt)) 1900 return; 1901 1902 if (evt->result) 1903 set_bit(BTUSB_FIRMWARE_FAILED, &data->flags); 1904 1905 if (test_and_clear_bit(BTUSB_DOWNLOADING, &data->flags) && 1906 test_bit(BTUSB_FIRMWARE_LOADED, &data->flags)) { 1907 smp_mb__after_atomic(); 1908 wake_up_bit(&data->flags, BTUSB_DOWNLOADING); 1909 } 1910 } 1911 1912 static int btusb_recv_event_intel(struct hci_dev *hdev, struct sk_buff *skb) 1913 { 1914 struct btusb_data *data = hci_get_drvdata(hdev); 1915 1916 if (test_bit(BTUSB_BOOTLOADER, &data->flags)) { 1917 struct hci_event_hdr *hdr = (void *)skb->data; 1918 1919 if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff && 1920 hdr->plen > 0) { 1921 const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1; 1922 unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1; 1923 1924 switch (skb->data[2]) { 1925 case 0x02: 1926 /* When switching to the operational firmware 1927 * the device sends a vendor specific event 1928 * indicating that the bootup completed. 1929 */ 1930 btusb_intel_bootup(data, ptr, len); 1931 break; 1932 case 0x06: 1933 /* When the firmware loading completes the 1934 * device sends out a vendor specific event 1935 * indicating the result of the firmware 1936 * loading. 1937 */ 1938 btusb_intel_secure_send_result(data, ptr, len); 1939 break; 1940 } 1941 } 1942 } 1943 1944 return hci_recv_frame(hdev, skb); 1945 } 1946 1947 static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb) 1948 { 1949 struct btusb_data *data = hci_get_drvdata(hdev); 1950 struct urb *urb; 1951 1952 BT_DBG("%s", hdev->name); 1953 1954 switch (hci_skb_pkt_type(skb)) { 1955 case HCI_COMMAND_PKT: 1956 if (test_bit(BTUSB_BOOTLOADER, &data->flags)) { 1957 struct hci_command_hdr *cmd = (void *)skb->data; 1958 __u16 opcode = le16_to_cpu(cmd->opcode); 1959 1960 /* When in bootloader mode and the command 0xfc09 1961 * is received, it needs to be send down the 1962 * bulk endpoint. So allocate a bulk URB instead. 1963 */ 1964 if (opcode == 0xfc09) 1965 urb = alloc_bulk_urb(hdev, skb); 1966 else 1967 urb = alloc_ctrl_urb(hdev, skb); 1968 1969 /* When the 0xfc01 command is issued to boot into 1970 * the operational firmware, it will actually not 1971 * send a command complete event. To keep the flow 1972 * control working inject that event here. 1973 */ 1974 if (opcode == 0xfc01) 1975 inject_cmd_complete(hdev, opcode); 1976 } else { 1977 urb = alloc_ctrl_urb(hdev, skb); 1978 } 1979 if (IS_ERR(urb)) 1980 return PTR_ERR(urb); 1981 1982 hdev->stat.cmd_tx++; 1983 return submit_or_queue_tx_urb(hdev, urb); 1984 1985 case HCI_ACLDATA_PKT: 1986 urb = alloc_bulk_urb(hdev, skb); 1987 if (IS_ERR(urb)) 1988 return PTR_ERR(urb); 1989 1990 hdev->stat.acl_tx++; 1991 return submit_or_queue_tx_urb(hdev, urb); 1992 1993 case HCI_SCODATA_PKT: 1994 if (hci_conn_num(hdev, SCO_LINK) < 1) 1995 return -ENODEV; 1996 1997 urb = alloc_isoc_urb(hdev, skb); 1998 if (IS_ERR(urb)) 1999 return PTR_ERR(urb); 2000 2001 hdev->stat.sco_tx++; 2002 return submit_tx_urb(hdev, urb); 2003 } 2004 2005 return -EILSEQ; 2006 } 2007 2008 static int btusb_setup_intel_new(struct hci_dev *hdev) 2009 { 2010 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01, 2011 0x00, 0x08, 0x04, 0x00 }; 2012 struct btusb_data *data = hci_get_drvdata(hdev); 2013 struct sk_buff *skb; 2014 struct intel_version ver; 2015 struct intel_boot_params *params; 2016 const struct firmware *fw; 2017 const u8 *fw_ptr; 2018 u32 frag_len; 2019 char fwname[64]; 2020 ktime_t calltime, delta, rettime; 2021 unsigned long long duration; 2022 int err; 2023 2024 BT_DBG("%s", hdev->name); 2025 2026 calltime = ktime_get(); 2027 2028 /* Read the Intel version information to determine if the device 2029 * is in bootloader mode or if it already has operational firmware 2030 * loaded. 2031 */ 2032 err = btintel_read_version(hdev, &ver); 2033 if (err) 2034 return err; 2035 2036 /* The hardware platform number has a fixed value of 0x37 and 2037 * for now only accept this single value. 2038 */ 2039 if (ver.hw_platform != 0x37) { 2040 BT_ERR("%s: Unsupported Intel hardware platform (%u)", 2041 hdev->name, ver.hw_platform); 2042 return -EINVAL; 2043 } 2044 2045 /* Check for supported iBT hardware variants of this firmware 2046 * loading method. 2047 * 2048 * This check has been put in place to ensure correct forward 2049 * compatibility options when newer hardware variants come along. 2050 */ 2051 switch (ver.hw_variant) { 2052 case 0x0b: /* SfP */ 2053 case 0x0c: /* WsP */ 2054 case 0x11: /* JfP */ 2055 case 0x12: /* ThP */ 2056 break; 2057 default: 2058 BT_ERR("%s: Unsupported Intel hardware variant (%u)", 2059 hdev->name, ver.hw_variant); 2060 return -EINVAL; 2061 } 2062 2063 btintel_version_info(hdev, &ver); 2064 2065 /* The firmware variant determines if the device is in bootloader 2066 * mode or is running operational firmware. The value 0x06 identifies 2067 * the bootloader and the value 0x23 identifies the operational 2068 * firmware. 2069 * 2070 * When the operational firmware is already present, then only 2071 * the check for valid Bluetooth device address is needed. This 2072 * determines if the device will be added as configured or 2073 * unconfigured controller. 2074 * 2075 * It is not possible to use the Secure Boot Parameters in this 2076 * case since that command is only available in bootloader mode. 2077 */ 2078 if (ver.fw_variant == 0x23) { 2079 clear_bit(BTUSB_BOOTLOADER, &data->flags); 2080 btintel_check_bdaddr(hdev); 2081 return 0; 2082 } 2083 2084 /* If the device is not in bootloader mode, then the only possible 2085 * choice is to return an error and abort the device initialization. 2086 */ 2087 if (ver.fw_variant != 0x06) { 2088 BT_ERR("%s: Unsupported Intel firmware variant (%u)", 2089 hdev->name, ver.fw_variant); 2090 return -ENODEV; 2091 } 2092 2093 /* Read the secure boot parameters to identify the operating 2094 * details of the bootloader. 2095 */ 2096 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); 2097 if (IS_ERR(skb)) { 2098 BT_ERR("%s: Reading Intel boot parameters failed (%ld)", 2099 hdev->name, PTR_ERR(skb)); 2100 return PTR_ERR(skb); 2101 } 2102 2103 if (skb->len != sizeof(*params)) { 2104 BT_ERR("%s: Intel boot parameters size mismatch", hdev->name); 2105 kfree_skb(skb); 2106 return -EILSEQ; 2107 } 2108 2109 params = (struct intel_boot_params *)skb->data; 2110 2111 bt_dev_info(hdev, "Device revision is %u", 2112 le16_to_cpu(params->dev_revid)); 2113 2114 bt_dev_info(hdev, "Secure boot is %s", 2115 params->secure_boot ? "enabled" : "disabled"); 2116 2117 bt_dev_info(hdev, "OTP lock is %s", 2118 params->otp_lock ? "enabled" : "disabled"); 2119 2120 bt_dev_info(hdev, "API lock is %s", 2121 params->api_lock ? "enabled" : "disabled"); 2122 2123 bt_dev_info(hdev, "Debug lock is %s", 2124 params->debug_lock ? "enabled" : "disabled"); 2125 2126 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 2127 params->min_fw_build_nn, params->min_fw_build_cw, 2128 2000 + params->min_fw_build_yy); 2129 2130 /* It is required that every single firmware fragment is acknowledged 2131 * with a command complete event. If the boot parameters indicate 2132 * that this bootloader does not send them, then abort the setup. 2133 */ 2134 if (params->limited_cce != 0x00) { 2135 BT_ERR("%s: Unsupported Intel firmware loading method (%u)", 2136 hdev->name, params->limited_cce); 2137 kfree_skb(skb); 2138 return -EINVAL; 2139 } 2140 2141 /* If the OTP has no valid Bluetooth device address, then there will 2142 * also be no valid address for the operational firmware. 2143 */ 2144 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { 2145 bt_dev_info(hdev, "No device address configured"); 2146 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 2147 } 2148 2149 /* With this Intel bootloader only the hardware variant and device 2150 * revision information are used to select the right firmware for SfP 2151 * and WsP. 2152 * 2153 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. 2154 * 2155 * Currently the supported hardware variants are: 2156 * 11 (0x0b) for iBT3.0 (LnP/SfP) 2157 * 12 (0x0c) for iBT3.5 (WsP) 2158 * 2159 * For ThP/JfP and for future SKU's, the FW name varies based on HW 2160 * variant, HW revision and FW revision, as these are dependent on CNVi 2161 * and RF Combination. 2162 * 2163 * 17 (0x11) for iBT3.5 (JfP) 2164 * 18 (0x12) for iBT3.5 (ThP) 2165 * 2166 * The firmware file name for these will be 2167 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. 2168 * 2169 */ 2170 switch (ver.hw_variant) { 2171 case 0x0b: /* SfP */ 2172 case 0x0c: /* WsP */ 2173 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi", 2174 le16_to_cpu(ver.hw_variant), 2175 le16_to_cpu(params->dev_revid)); 2176 break; 2177 case 0x11: /* JfP */ 2178 case 0x12: /* ThP */ 2179 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi", 2180 le16_to_cpu(ver.hw_variant), 2181 le16_to_cpu(ver.hw_revision), 2182 le16_to_cpu(ver.fw_revision)); 2183 break; 2184 default: 2185 BT_ERR("%s: Unsupported Intel firmware naming", hdev->name); 2186 return -EINVAL; 2187 } 2188 2189 err = request_firmware(&fw, fwname, &hdev->dev); 2190 if (err < 0) { 2191 BT_ERR("%s: Failed to load Intel firmware file (%d)", 2192 hdev->name, err); 2193 kfree_skb(skb); 2194 return err; 2195 } 2196 2197 bt_dev_info(hdev, "Found device firmware: %s", fwname); 2198 2199 /* Save the DDC file name for later use to apply once the firmware 2200 * downloading is done. 2201 */ 2202 switch (ver.hw_variant) { 2203 case 0x0b: /* SfP */ 2204 case 0x0c: /* WsP */ 2205 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc", 2206 le16_to_cpu(ver.hw_variant), 2207 le16_to_cpu(params->dev_revid)); 2208 break; 2209 case 0x11: /* JfP */ 2210 case 0x12: /* ThP */ 2211 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc", 2212 le16_to_cpu(ver.hw_variant), 2213 le16_to_cpu(ver.hw_revision), 2214 le16_to_cpu(ver.fw_revision)); 2215 break; 2216 default: 2217 BT_ERR("%s: Unsupported Intel firmware naming", hdev->name); 2218 return -EINVAL; 2219 } 2220 2221 kfree_skb(skb); 2222 2223 if (fw->size < 644) { 2224 BT_ERR("%s: Invalid size of firmware file (%zu)", 2225 hdev->name, fw->size); 2226 err = -EBADF; 2227 goto done; 2228 } 2229 2230 set_bit(BTUSB_DOWNLOADING, &data->flags); 2231 2232 /* Start the firmware download transaction with the Init fragment 2233 * represented by the 128 bytes of CSS header. 2234 */ 2235 err = btintel_secure_send(hdev, 0x00, 128, fw->data); 2236 if (err < 0) { 2237 BT_ERR("%s: Failed to send firmware header (%d)", 2238 hdev->name, err); 2239 goto done; 2240 } 2241 2242 /* Send the 256 bytes of public key information from the firmware 2243 * as the PKey fragment. 2244 */ 2245 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); 2246 if (err < 0) { 2247 BT_ERR("%s: Failed to send firmware public key (%d)", 2248 hdev->name, err); 2249 goto done; 2250 } 2251 2252 /* Send the 256 bytes of signature information from the firmware 2253 * as the Sign fragment. 2254 */ 2255 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); 2256 if (err < 0) { 2257 BT_ERR("%s: Failed to send firmware signature (%d)", 2258 hdev->name, err); 2259 goto done; 2260 } 2261 2262 fw_ptr = fw->data + 644; 2263 frag_len = 0; 2264 2265 while (fw_ptr - fw->data < fw->size) { 2266 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); 2267 2268 frag_len += sizeof(*cmd) + cmd->plen; 2269 2270 /* The parameter length of the secure send command requires 2271 * a 4 byte alignment. It happens so that the firmware file 2272 * contains proper Intel_NOP commands to align the fragments 2273 * as needed. 2274 * 2275 * Send set of commands with 4 byte alignment from the 2276 * firmware data buffer as a single Data fragement. 2277 */ 2278 if (!(frag_len % 4)) { 2279 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); 2280 if (err < 0) { 2281 BT_ERR("%s: Failed to send firmware data (%d)", 2282 hdev->name, err); 2283 goto done; 2284 } 2285 2286 fw_ptr += frag_len; 2287 frag_len = 0; 2288 } 2289 } 2290 2291 set_bit(BTUSB_FIRMWARE_LOADED, &data->flags); 2292 2293 bt_dev_info(hdev, "Waiting for firmware download to complete"); 2294 2295 /* Before switching the device into operational mode and with that 2296 * booting the loaded firmware, wait for the bootloader notification 2297 * that all fragments have been successfully received. 2298 * 2299 * When the event processing receives the notification, then the 2300 * BTUSB_DOWNLOADING flag will be cleared. 2301 * 2302 * The firmware loading should not take longer than 5 seconds 2303 * and thus just timeout if that happens and fail the setup 2304 * of this device. 2305 */ 2306 err = wait_on_bit_timeout(&data->flags, BTUSB_DOWNLOADING, 2307 TASK_INTERRUPTIBLE, 2308 msecs_to_jiffies(5000)); 2309 if (err == -EINTR) { 2310 BT_ERR("%s: Firmware loading interrupted", hdev->name); 2311 goto done; 2312 } 2313 2314 if (err) { 2315 BT_ERR("%s: Firmware loading timeout", hdev->name); 2316 err = -ETIMEDOUT; 2317 goto done; 2318 } 2319 2320 if (test_bit(BTUSB_FIRMWARE_FAILED, &data->flags)) { 2321 BT_ERR("%s: Firmware loading failed", hdev->name); 2322 err = -ENOEXEC; 2323 goto done; 2324 } 2325 2326 rettime = ktime_get(); 2327 delta = ktime_sub(rettime, calltime); 2328 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 2329 2330 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 2331 2332 done: 2333 release_firmware(fw); 2334 2335 if (err < 0) 2336 return err; 2337 2338 calltime = ktime_get(); 2339 2340 set_bit(BTUSB_BOOTING, &data->flags); 2341 2342 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param, 2343 HCI_INIT_TIMEOUT); 2344 if (IS_ERR(skb)) 2345 return PTR_ERR(skb); 2346 2347 kfree_skb(skb); 2348 2349 /* The bootloader will not indicate when the device is ready. This 2350 * is done by the operational firmware sending bootup notification. 2351 * 2352 * Booting into operational firmware should not take longer than 2353 * 1 second. However if that happens, then just fail the setup 2354 * since something went wrong. 2355 */ 2356 bt_dev_info(hdev, "Waiting for device to boot"); 2357 2358 err = wait_on_bit_timeout(&data->flags, BTUSB_BOOTING, 2359 TASK_INTERRUPTIBLE, 2360 msecs_to_jiffies(1000)); 2361 2362 if (err == -EINTR) { 2363 BT_ERR("%s: Device boot interrupted", hdev->name); 2364 return -EINTR; 2365 } 2366 2367 if (err) { 2368 BT_ERR("%s: Device boot timeout", hdev->name); 2369 return -ETIMEDOUT; 2370 } 2371 2372 rettime = ktime_get(); 2373 delta = ktime_sub(rettime, calltime); 2374 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 2375 2376 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 2377 2378 clear_bit(BTUSB_BOOTLOADER, &data->flags); 2379 2380 /* Once the device is running in operational mode, it needs to apply 2381 * the device configuration (DDC) parameters. 2382 * 2383 * The device can work without DDC parameters, so even if it fails 2384 * to load the file, no need to fail the setup. 2385 */ 2386 btintel_load_ddc_config(hdev, fwname); 2387 2388 /* Set the event mask for Intel specific vendor events. This enables 2389 * a few extra events that are useful during general operation. It 2390 * does not enable any debugging related events. 2391 * 2392 * The device will function correctly without these events enabled 2393 * and thus no need to fail the setup. 2394 */ 2395 btintel_set_event_mask(hdev, false); 2396 2397 return 0; 2398 } 2399 2400 static int btusb_shutdown_intel(struct hci_dev *hdev) 2401 { 2402 struct sk_buff *skb; 2403 long ret; 2404 2405 /* Some platforms have an issue with BT LED when the interface is 2406 * down or BT radio is turned off, which takes 5 seconds to BT LED 2407 * goes off. This command turns off the BT LED immediately. 2408 */ 2409 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT); 2410 if (IS_ERR(skb)) { 2411 ret = PTR_ERR(skb); 2412 BT_ERR("%s: turning off Intel device LED failed (%ld)", 2413 hdev->name, ret); 2414 return ret; 2415 } 2416 kfree_skb(skb); 2417 2418 return 0; 2419 } 2420 2421 #ifdef CONFIG_PM 2422 /* Configure an out-of-band gpio as wake-up pin, if specified in device tree */ 2423 static int marvell_config_oob_wake(struct hci_dev *hdev) 2424 { 2425 struct sk_buff *skb; 2426 struct btusb_data *data = hci_get_drvdata(hdev); 2427 struct device *dev = &data->udev->dev; 2428 u16 pin, gap, opcode; 2429 int ret; 2430 u8 cmd[5]; 2431 2432 /* Move on if no wakeup pin specified */ 2433 if (of_property_read_u16(dev->of_node, "marvell,wakeup-pin", &pin) || 2434 of_property_read_u16(dev->of_node, "marvell,wakeup-gap-ms", &gap)) 2435 return 0; 2436 2437 /* Vendor specific command to configure a GPIO as wake-up pin */ 2438 opcode = hci_opcode_pack(0x3F, 0x59); 2439 cmd[0] = opcode & 0xFF; 2440 cmd[1] = opcode >> 8; 2441 cmd[2] = 2; /* length of parameters that follow */ 2442 cmd[3] = pin; 2443 cmd[4] = gap; /* time in ms, for which wakeup pin should be asserted */ 2444 2445 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 2446 if (!skb) { 2447 bt_dev_err(hdev, "%s: No memory\n", __func__); 2448 return -ENOMEM; 2449 } 2450 2451 skb_put_data(skb, cmd, sizeof(cmd)); 2452 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 2453 2454 ret = btusb_send_frame(hdev, skb); 2455 if (ret) { 2456 bt_dev_err(hdev, "%s: configuration failed\n", __func__); 2457 kfree_skb(skb); 2458 return ret; 2459 } 2460 2461 return 0; 2462 } 2463 #endif 2464 2465 static int btusb_set_bdaddr_marvell(struct hci_dev *hdev, 2466 const bdaddr_t *bdaddr) 2467 { 2468 struct sk_buff *skb; 2469 u8 buf[8]; 2470 long ret; 2471 2472 buf[0] = 0xfe; 2473 buf[1] = sizeof(bdaddr_t); 2474 memcpy(buf + 2, bdaddr, sizeof(bdaddr_t)); 2475 2476 skb = __hci_cmd_sync(hdev, 0xfc22, sizeof(buf), buf, HCI_INIT_TIMEOUT); 2477 if (IS_ERR(skb)) { 2478 ret = PTR_ERR(skb); 2479 bt_dev_err(hdev, "changing Marvell device address failed (%ld)", 2480 ret); 2481 return ret; 2482 } 2483 kfree_skb(skb); 2484 2485 return 0; 2486 } 2487 2488 static int btusb_set_bdaddr_ath3012(struct hci_dev *hdev, 2489 const bdaddr_t *bdaddr) 2490 { 2491 struct sk_buff *skb; 2492 u8 buf[10]; 2493 long ret; 2494 2495 buf[0] = 0x01; 2496 buf[1] = 0x01; 2497 buf[2] = 0x00; 2498 buf[3] = sizeof(bdaddr_t); 2499 memcpy(buf + 4, bdaddr, sizeof(bdaddr_t)); 2500 2501 skb = __hci_cmd_sync(hdev, 0xfc0b, sizeof(buf), buf, HCI_INIT_TIMEOUT); 2502 if (IS_ERR(skb)) { 2503 ret = PTR_ERR(skb); 2504 bt_dev_err(hdev, "Change address command failed (%ld)", ret); 2505 return ret; 2506 } 2507 kfree_skb(skb); 2508 2509 return 0; 2510 } 2511 2512 #define QCA_DFU_PACKET_LEN 4096 2513 2514 #define QCA_GET_TARGET_VERSION 0x09 2515 #define QCA_CHECK_STATUS 0x05 2516 #define QCA_DFU_DOWNLOAD 0x01 2517 2518 #define QCA_SYSCFG_UPDATED 0x40 2519 #define QCA_PATCH_UPDATED 0x80 2520 #define QCA_DFU_TIMEOUT 3000 2521 2522 struct qca_version { 2523 __le32 rom_version; 2524 __le32 patch_version; 2525 __le32 ram_version; 2526 __le32 ref_clock; 2527 __u8 reserved[4]; 2528 } __packed; 2529 2530 struct qca_rampatch_version { 2531 __le16 rom_version; 2532 __le16 patch_version; 2533 } __packed; 2534 2535 struct qca_device_info { 2536 u32 rom_version; 2537 u8 rampatch_hdr; /* length of header in rampatch */ 2538 u8 nvm_hdr; /* length of header in NVM */ 2539 u8 ver_offset; /* offset of version structure in rampatch */ 2540 }; 2541 2542 static const struct qca_device_info qca_devices_table[] = { 2543 { 0x00000100, 20, 4, 10 }, /* Rome 1.0 */ 2544 { 0x00000101, 20, 4, 10 }, /* Rome 1.1 */ 2545 { 0x00000200, 28, 4, 18 }, /* Rome 2.0 */ 2546 { 0x00000201, 28, 4, 18 }, /* Rome 2.1 */ 2547 { 0x00000300, 28, 4, 18 }, /* Rome 3.0 */ 2548 { 0x00000302, 28, 4, 18 }, /* Rome 3.2 */ 2549 }; 2550 2551 static int btusb_qca_send_vendor_req(struct hci_dev *hdev, u8 request, 2552 void *data, u16 size) 2553 { 2554 struct btusb_data *btdata = hci_get_drvdata(hdev); 2555 struct usb_device *udev = btdata->udev; 2556 int pipe, err; 2557 u8 *buf; 2558 2559 buf = kmalloc(size, GFP_KERNEL); 2560 if (!buf) 2561 return -ENOMEM; 2562 2563 /* Found some of USB hosts have IOT issues with ours so that we should 2564 * not wait until HCI layer is ready. 2565 */ 2566 pipe = usb_rcvctrlpipe(udev, 0); 2567 err = usb_control_msg(udev, pipe, request, USB_TYPE_VENDOR | USB_DIR_IN, 2568 0, 0, buf, size, USB_CTRL_SET_TIMEOUT); 2569 if (err < 0) { 2570 bt_dev_err(hdev, "Failed to access otp area (%d)", err); 2571 goto done; 2572 } 2573 2574 memcpy(data, buf, size); 2575 2576 done: 2577 kfree(buf); 2578 2579 return err; 2580 } 2581 2582 static int btusb_setup_qca_download_fw(struct hci_dev *hdev, 2583 const struct firmware *firmware, 2584 size_t hdr_size) 2585 { 2586 struct btusb_data *btdata = hci_get_drvdata(hdev); 2587 struct usb_device *udev = btdata->udev; 2588 size_t count, size, sent = 0; 2589 int pipe, len, err; 2590 u8 *buf; 2591 2592 buf = kmalloc(QCA_DFU_PACKET_LEN, GFP_KERNEL); 2593 if (!buf) 2594 return -ENOMEM; 2595 2596 count = firmware->size; 2597 2598 size = min_t(size_t, count, hdr_size); 2599 memcpy(buf, firmware->data, size); 2600 2601 /* USB patches should go down to controller through USB path 2602 * because binary format fits to go down through USB channel. 2603 * USB control path is for patching headers and USB bulk is for 2604 * patch body. 2605 */ 2606 pipe = usb_sndctrlpipe(udev, 0); 2607 err = usb_control_msg(udev, pipe, QCA_DFU_DOWNLOAD, USB_TYPE_VENDOR, 2608 0, 0, buf, size, USB_CTRL_SET_TIMEOUT); 2609 if (err < 0) { 2610 bt_dev_err(hdev, "Failed to send headers (%d)", err); 2611 goto done; 2612 } 2613 2614 sent += size; 2615 count -= size; 2616 2617 while (count) { 2618 size = min_t(size_t, count, QCA_DFU_PACKET_LEN); 2619 2620 memcpy(buf, firmware->data + sent, size); 2621 2622 pipe = usb_sndbulkpipe(udev, 0x02); 2623 err = usb_bulk_msg(udev, pipe, buf, size, &len, 2624 QCA_DFU_TIMEOUT); 2625 if (err < 0) { 2626 bt_dev_err(hdev, "Failed to send body at %zd of %zd (%d)", 2627 sent, firmware->size, err); 2628 break; 2629 } 2630 2631 if (size != len) { 2632 bt_dev_err(hdev, "Failed to get bulk buffer"); 2633 err = -EILSEQ; 2634 break; 2635 } 2636 2637 sent += size; 2638 count -= size; 2639 } 2640 2641 done: 2642 kfree(buf); 2643 return err; 2644 } 2645 2646 static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev, 2647 struct qca_version *ver, 2648 const struct qca_device_info *info) 2649 { 2650 struct qca_rampatch_version *rver; 2651 const struct firmware *fw; 2652 u32 ver_rom, ver_patch; 2653 u16 rver_rom, rver_patch; 2654 char fwname[64]; 2655 int err; 2656 2657 ver_rom = le32_to_cpu(ver->rom_version); 2658 ver_patch = le32_to_cpu(ver->patch_version); 2659 2660 snprintf(fwname, sizeof(fwname), "qca/rampatch_usb_%08x.bin", ver_rom); 2661 2662 err = request_firmware(&fw, fwname, &hdev->dev); 2663 if (err) { 2664 bt_dev_err(hdev, "failed to request rampatch file: %s (%d)", 2665 fwname, err); 2666 return err; 2667 } 2668 2669 bt_dev_info(hdev, "using rampatch file: %s", fwname); 2670 2671 rver = (struct qca_rampatch_version *)(fw->data + info->ver_offset); 2672 rver_rom = le16_to_cpu(rver->rom_version); 2673 rver_patch = le16_to_cpu(rver->patch_version); 2674 2675 bt_dev_info(hdev, "QCA: patch rome 0x%x build 0x%x, " 2676 "firmware rome 0x%x build 0x%x", 2677 rver_rom, rver_patch, ver_rom, ver_patch); 2678 2679 if (rver_rom != ver_rom || rver_patch <= ver_patch) { 2680 bt_dev_err(hdev, "rampatch file version did not match with firmware"); 2681 err = -EINVAL; 2682 goto done; 2683 } 2684 2685 err = btusb_setup_qca_download_fw(hdev, fw, info->rampatch_hdr); 2686 2687 done: 2688 release_firmware(fw); 2689 2690 return err; 2691 } 2692 2693 static int btusb_setup_qca_load_nvm(struct hci_dev *hdev, 2694 struct qca_version *ver, 2695 const struct qca_device_info *info) 2696 { 2697 const struct firmware *fw; 2698 char fwname[64]; 2699 int err; 2700 2701 snprintf(fwname, sizeof(fwname), "qca/nvm_usb_%08x.bin", 2702 le32_to_cpu(ver->rom_version)); 2703 2704 err = request_firmware(&fw, fwname, &hdev->dev); 2705 if (err) { 2706 bt_dev_err(hdev, "failed to request NVM file: %s (%d)", 2707 fwname, err); 2708 return err; 2709 } 2710 2711 bt_dev_info(hdev, "using NVM file: %s", fwname); 2712 2713 err = btusb_setup_qca_download_fw(hdev, fw, info->nvm_hdr); 2714 2715 release_firmware(fw); 2716 2717 return err; 2718 } 2719 2720 static int btusb_setup_qca(struct hci_dev *hdev) 2721 { 2722 const struct qca_device_info *info = NULL; 2723 struct qca_version ver; 2724 u32 ver_rom; 2725 u8 status; 2726 int i, err; 2727 2728 err = btusb_qca_send_vendor_req(hdev, QCA_GET_TARGET_VERSION, &ver, 2729 sizeof(ver)); 2730 if (err < 0) 2731 return err; 2732 2733 ver_rom = le32_to_cpu(ver.rom_version); 2734 for (i = 0; i < ARRAY_SIZE(qca_devices_table); i++) { 2735 if (ver_rom == qca_devices_table[i].rom_version) 2736 info = &qca_devices_table[i]; 2737 } 2738 if (!info) { 2739 bt_dev_err(hdev, "don't support firmware rome 0x%x", ver_rom); 2740 return -ENODEV; 2741 } 2742 2743 err = btusb_qca_send_vendor_req(hdev, QCA_CHECK_STATUS, &status, 2744 sizeof(status)); 2745 if (err < 0) 2746 return err; 2747 2748 if (!(status & QCA_PATCH_UPDATED)) { 2749 err = btusb_setup_qca_load_rampatch(hdev, &ver, info); 2750 if (err < 0) 2751 return err; 2752 } 2753 2754 if (!(status & QCA_SYSCFG_UPDATED)) { 2755 err = btusb_setup_qca_load_nvm(hdev, &ver, info); 2756 if (err < 0) 2757 return err; 2758 } 2759 2760 return 0; 2761 } 2762 2763 #ifdef CONFIG_BT_HCIBTUSB_BCM 2764 static inline int __set_diag_interface(struct hci_dev *hdev) 2765 { 2766 struct btusb_data *data = hci_get_drvdata(hdev); 2767 struct usb_interface *intf = data->diag; 2768 int i; 2769 2770 if (!data->diag) 2771 return -ENODEV; 2772 2773 data->diag_tx_ep = NULL; 2774 data->diag_rx_ep = NULL; 2775 2776 for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { 2777 struct usb_endpoint_descriptor *ep_desc; 2778 2779 ep_desc = &intf->cur_altsetting->endpoint[i].desc; 2780 2781 if (!data->diag_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { 2782 data->diag_tx_ep = ep_desc; 2783 continue; 2784 } 2785 2786 if (!data->diag_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { 2787 data->diag_rx_ep = ep_desc; 2788 continue; 2789 } 2790 } 2791 2792 if (!data->diag_tx_ep || !data->diag_rx_ep) { 2793 bt_dev_err(hdev, "invalid diagnostic descriptors"); 2794 return -ENODEV; 2795 } 2796 2797 return 0; 2798 } 2799 2800 static struct urb *alloc_diag_urb(struct hci_dev *hdev, bool enable) 2801 { 2802 struct btusb_data *data = hci_get_drvdata(hdev); 2803 struct sk_buff *skb; 2804 struct urb *urb; 2805 unsigned int pipe; 2806 2807 if (!data->diag_tx_ep) 2808 return ERR_PTR(-ENODEV); 2809 2810 urb = usb_alloc_urb(0, GFP_KERNEL); 2811 if (!urb) 2812 return ERR_PTR(-ENOMEM); 2813 2814 skb = bt_skb_alloc(2, GFP_KERNEL); 2815 if (!skb) { 2816 usb_free_urb(urb); 2817 return ERR_PTR(-ENOMEM); 2818 } 2819 2820 skb_put_u8(skb, 0xf0); 2821 skb_put_u8(skb, enable); 2822 2823 pipe = usb_sndbulkpipe(data->udev, data->diag_tx_ep->bEndpointAddress); 2824 2825 usb_fill_bulk_urb(urb, data->udev, pipe, 2826 skb->data, skb->len, btusb_tx_complete, skb); 2827 2828 skb->dev = (void *)hdev; 2829 2830 return urb; 2831 } 2832 2833 static int btusb_bcm_set_diag(struct hci_dev *hdev, bool enable) 2834 { 2835 struct btusb_data *data = hci_get_drvdata(hdev); 2836 struct urb *urb; 2837 2838 if (!data->diag) 2839 return -ENODEV; 2840 2841 if (!test_bit(HCI_RUNNING, &hdev->flags)) 2842 return -ENETDOWN; 2843 2844 urb = alloc_diag_urb(hdev, enable); 2845 if (IS_ERR(urb)) 2846 return PTR_ERR(urb); 2847 2848 return submit_or_queue_tx_urb(hdev, urb); 2849 } 2850 #endif 2851 2852 #ifdef CONFIG_PM 2853 static irqreturn_t btusb_oob_wake_handler(int irq, void *priv) 2854 { 2855 struct btusb_data *data = priv; 2856 2857 pm_wakeup_event(&data->udev->dev, 0); 2858 pm_system_wakeup(); 2859 2860 /* Disable only if not already disabled (keep it balanced) */ 2861 if (test_and_clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags)) { 2862 disable_irq_nosync(irq); 2863 disable_irq_wake(irq); 2864 } 2865 return IRQ_HANDLED; 2866 } 2867 2868 static const struct of_device_id btusb_match_table[] = { 2869 { .compatible = "usb1286,204e" }, 2870 { } 2871 }; 2872 MODULE_DEVICE_TABLE(of, btusb_match_table); 2873 2874 /* Use an oob wakeup pin? */ 2875 static int btusb_config_oob_wake(struct hci_dev *hdev) 2876 { 2877 struct btusb_data *data = hci_get_drvdata(hdev); 2878 struct device *dev = &data->udev->dev; 2879 int irq, ret; 2880 2881 clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags); 2882 2883 if (!of_match_device(btusb_match_table, dev)) 2884 return 0; 2885 2886 /* Move on if no IRQ specified */ 2887 irq = of_irq_get_byname(dev->of_node, "wakeup"); 2888 if (irq <= 0) { 2889 bt_dev_dbg(hdev, "%s: no OOB Wakeup IRQ in DT", __func__); 2890 return 0; 2891 } 2892 2893 ret = devm_request_irq(&hdev->dev, irq, btusb_oob_wake_handler, 2894 0, "OOB Wake-on-BT", data); 2895 if (ret) { 2896 bt_dev_err(hdev, "%s: IRQ request failed", __func__); 2897 return ret; 2898 } 2899 2900 ret = device_init_wakeup(dev, true); 2901 if (ret) { 2902 bt_dev_err(hdev, "%s: failed to init_wakeup", __func__); 2903 return ret; 2904 } 2905 2906 data->oob_wake_irq = irq; 2907 disable_irq(irq); 2908 bt_dev_info(hdev, "OOB Wake-on-BT configured at IRQ %u", irq); 2909 return 0; 2910 } 2911 #endif 2912 2913 static int btusb_probe(struct usb_interface *intf, 2914 const struct usb_device_id *id) 2915 { 2916 struct usb_endpoint_descriptor *ep_desc; 2917 struct btusb_data *data; 2918 struct hci_dev *hdev; 2919 unsigned ifnum_base; 2920 int i, err; 2921 2922 BT_DBG("intf %p id %p", intf, id); 2923 2924 /* interface numbers are hardcoded in the spec */ 2925 if (intf->cur_altsetting->desc.bInterfaceNumber != 0) { 2926 if (!(id->driver_info & BTUSB_IFNUM_2)) 2927 return -ENODEV; 2928 if (intf->cur_altsetting->desc.bInterfaceNumber != 2) 2929 return -ENODEV; 2930 } 2931 2932 ifnum_base = intf->cur_altsetting->desc.bInterfaceNumber; 2933 2934 if (!id->driver_info) { 2935 const struct usb_device_id *match; 2936 2937 match = usb_match_id(intf, blacklist_table); 2938 if (match) 2939 id = match; 2940 } 2941 2942 if (id->driver_info == BTUSB_IGNORE) 2943 return -ENODEV; 2944 2945 if (id->driver_info & BTUSB_ATH3012) { 2946 struct usb_device *udev = interface_to_usbdev(intf); 2947 2948 /* Old firmware would otherwise let ath3k driver load 2949 * patch and sysconfig files 2950 */ 2951 if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001) 2952 return -ENODEV; 2953 } 2954 2955 data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL); 2956 if (!data) 2957 return -ENOMEM; 2958 2959 for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { 2960 ep_desc = &intf->cur_altsetting->endpoint[i].desc; 2961 2962 if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) { 2963 data->intr_ep = ep_desc; 2964 continue; 2965 } 2966 2967 if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { 2968 data->bulk_tx_ep = ep_desc; 2969 continue; 2970 } 2971 2972 if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { 2973 data->bulk_rx_ep = ep_desc; 2974 continue; 2975 } 2976 } 2977 2978 if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) 2979 return -ENODEV; 2980 2981 if (id->driver_info & BTUSB_AMP) { 2982 data->cmdreq_type = USB_TYPE_CLASS | 0x01; 2983 data->cmdreq = 0x2b; 2984 } else { 2985 data->cmdreq_type = USB_TYPE_CLASS; 2986 data->cmdreq = 0x00; 2987 } 2988 2989 data->udev = interface_to_usbdev(intf); 2990 data->intf = intf; 2991 2992 INIT_WORK(&data->work, btusb_work); 2993 INIT_WORK(&data->waker, btusb_waker); 2994 init_usb_anchor(&data->deferred); 2995 init_usb_anchor(&data->tx_anchor); 2996 spin_lock_init(&data->txlock); 2997 2998 init_usb_anchor(&data->intr_anchor); 2999 init_usb_anchor(&data->bulk_anchor); 3000 init_usb_anchor(&data->isoc_anchor); 3001 init_usb_anchor(&data->diag_anchor); 3002 spin_lock_init(&data->rxlock); 3003 3004 if (id->driver_info & BTUSB_INTEL_NEW) { 3005 data->recv_event = btusb_recv_event_intel; 3006 data->recv_bulk = btusb_recv_bulk_intel; 3007 set_bit(BTUSB_BOOTLOADER, &data->flags); 3008 } else { 3009 data->recv_event = hci_recv_frame; 3010 data->recv_bulk = btusb_recv_bulk; 3011 } 3012 3013 hdev = hci_alloc_dev(); 3014 if (!hdev) 3015 return -ENOMEM; 3016 3017 hdev->bus = HCI_USB; 3018 hci_set_drvdata(hdev, data); 3019 3020 if (id->driver_info & BTUSB_AMP) 3021 hdev->dev_type = HCI_AMP; 3022 else 3023 hdev->dev_type = HCI_PRIMARY; 3024 3025 data->hdev = hdev; 3026 3027 SET_HCIDEV_DEV(hdev, &intf->dev); 3028 3029 hdev->open = btusb_open; 3030 hdev->close = btusb_close; 3031 hdev->flush = btusb_flush; 3032 hdev->send = btusb_send_frame; 3033 hdev->notify = btusb_notify; 3034 3035 #ifdef CONFIG_PM 3036 err = btusb_config_oob_wake(hdev); 3037 if (err) 3038 goto out_free_dev; 3039 3040 /* Marvell devices may need a specific chip configuration */ 3041 if (id->driver_info & BTUSB_MARVELL && data->oob_wake_irq) { 3042 err = marvell_config_oob_wake(hdev); 3043 if (err) 3044 goto out_free_dev; 3045 } 3046 #endif 3047 if (id->driver_info & BTUSB_CW6622) 3048 set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks); 3049 3050 if (id->driver_info & BTUSB_BCM2045) 3051 set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks); 3052 3053 if (id->driver_info & BTUSB_BCM92035) 3054 hdev->setup = btusb_setup_bcm92035; 3055 3056 #ifdef CONFIG_BT_HCIBTUSB_BCM 3057 if (id->driver_info & BTUSB_BCM_PATCHRAM) { 3058 hdev->manufacturer = 15; 3059 hdev->setup = btbcm_setup_patchram; 3060 hdev->set_diag = btusb_bcm_set_diag; 3061 hdev->set_bdaddr = btbcm_set_bdaddr; 3062 3063 /* Broadcom LM_DIAG Interface numbers are hardcoded */ 3064 data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2); 3065 } 3066 3067 if (id->driver_info & BTUSB_BCM_APPLE) { 3068 hdev->manufacturer = 15; 3069 hdev->setup = btbcm_setup_apple; 3070 hdev->set_diag = btusb_bcm_set_diag; 3071 3072 /* Broadcom LM_DIAG Interface numbers are hardcoded */ 3073 data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2); 3074 } 3075 #endif 3076 3077 if (id->driver_info & BTUSB_INTEL) { 3078 hdev->manufacturer = 2; 3079 hdev->setup = btusb_setup_intel; 3080 hdev->shutdown = btusb_shutdown_intel; 3081 hdev->set_diag = btintel_set_diag_mfg; 3082 hdev->set_bdaddr = btintel_set_bdaddr; 3083 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 3084 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 3085 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 3086 } 3087 3088 if (id->driver_info & BTUSB_INTEL_NEW) { 3089 hdev->manufacturer = 2; 3090 hdev->send = btusb_send_frame_intel; 3091 hdev->setup = btusb_setup_intel_new; 3092 hdev->hw_error = btintel_hw_error; 3093 hdev->set_diag = btintel_set_diag; 3094 hdev->set_bdaddr = btintel_set_bdaddr; 3095 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 3096 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 3097 } 3098 3099 if (id->driver_info & BTUSB_MARVELL) 3100 hdev->set_bdaddr = btusb_set_bdaddr_marvell; 3101 3102 if (id->driver_info & BTUSB_SWAVE) { 3103 set_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks); 3104 set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks); 3105 } 3106 3107 if (id->driver_info & BTUSB_INTEL_BOOT) { 3108 hdev->manufacturer = 2; 3109 set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); 3110 } 3111 3112 if (id->driver_info & BTUSB_ATH3012) { 3113 hdev->set_bdaddr = btusb_set_bdaddr_ath3012; 3114 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 3115 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 3116 } 3117 3118 if (id->driver_info & BTUSB_QCA_ROME) { 3119 data->setup_on_usb = btusb_setup_qca; 3120 hdev->set_bdaddr = btusb_set_bdaddr_ath3012; 3121 3122 /* QCA Rome devices lose their updated firmware over suspend, 3123 * but the USB hub doesn't notice any status change. 3124 * Explicitly request a device reset on resume. 3125 */ 3126 set_bit(BTUSB_RESET_RESUME, &data->flags); 3127 } 3128 3129 #ifdef CONFIG_BT_HCIBTUSB_RTL 3130 if (id->driver_info & BTUSB_REALTEK) { 3131 hdev->setup = btrtl_setup_realtek; 3132 3133 /* Realtek devices lose their updated firmware over suspend, 3134 * but the USB hub doesn't notice any status change. 3135 * Explicitly request a device reset on resume. 3136 */ 3137 set_bit(BTUSB_RESET_RESUME, &data->flags); 3138 } 3139 #endif 3140 3141 if (id->driver_info & BTUSB_AMP) { 3142 /* AMP controllers do not support SCO packets */ 3143 data->isoc = NULL; 3144 } else { 3145 /* Interface orders are hardcoded in the specification */ 3146 data->isoc = usb_ifnum_to_if(data->udev, ifnum_base + 1); 3147 data->isoc_ifnum = ifnum_base + 1; 3148 } 3149 3150 if (!reset) 3151 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); 3152 3153 if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) { 3154 if (!disable_scofix) 3155 set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks); 3156 } 3157 3158 if (id->driver_info & BTUSB_BROKEN_ISOC) 3159 data->isoc = NULL; 3160 3161 if (id->driver_info & BTUSB_DIGIANSWER) { 3162 data->cmdreq_type = USB_TYPE_VENDOR; 3163 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); 3164 } 3165 3166 if (id->driver_info & BTUSB_CSR) { 3167 struct usb_device *udev = data->udev; 3168 u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice); 3169 3170 /* Old firmware would otherwise execute USB reset */ 3171 if (bcdDevice < 0x117) 3172 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); 3173 3174 /* Fake CSR devices with broken commands */ 3175 if (bcdDevice <= 0x100 || bcdDevice == 0x134) 3176 hdev->setup = btusb_setup_csr; 3177 3178 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 3179 } 3180 3181 if (id->driver_info & BTUSB_SNIFFER) { 3182 struct usb_device *udev = data->udev; 3183 3184 /* New sniffer firmware has crippled HCI interface */ 3185 if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997) 3186 set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); 3187 } 3188 3189 if (id->driver_info & BTUSB_INTEL_BOOT) { 3190 /* A bug in the bootloader causes that interrupt interface is 3191 * only enabled after receiving SetInterface(0, AltSetting=0). 3192 */ 3193 err = usb_set_interface(data->udev, 0, 0); 3194 if (err < 0) { 3195 BT_ERR("failed to set interface 0, alt 0 %d", err); 3196 goto out_free_dev; 3197 } 3198 } 3199 3200 if (data->isoc) { 3201 err = usb_driver_claim_interface(&btusb_driver, 3202 data->isoc, data); 3203 if (err < 0) 3204 goto out_free_dev; 3205 } 3206 3207 #ifdef CONFIG_BT_HCIBTUSB_BCM 3208 if (data->diag) { 3209 if (!usb_driver_claim_interface(&btusb_driver, 3210 data->diag, data)) 3211 __set_diag_interface(hdev); 3212 else 3213 data->diag = NULL; 3214 } 3215 #endif 3216 3217 if (enable_autosuspend) 3218 usb_enable_autosuspend(data->udev); 3219 3220 err = hci_register_dev(hdev); 3221 if (err < 0) 3222 goto out_free_dev; 3223 3224 usb_set_intfdata(intf, data); 3225 3226 return 0; 3227 3228 out_free_dev: 3229 hci_free_dev(hdev); 3230 return err; 3231 } 3232 3233 static void btusb_disconnect(struct usb_interface *intf) 3234 { 3235 struct btusb_data *data = usb_get_intfdata(intf); 3236 struct hci_dev *hdev; 3237 3238 BT_DBG("intf %p", intf); 3239 3240 if (!data) 3241 return; 3242 3243 hdev = data->hdev; 3244 usb_set_intfdata(data->intf, NULL); 3245 3246 if (data->isoc) 3247 usb_set_intfdata(data->isoc, NULL); 3248 3249 if (data->diag) 3250 usb_set_intfdata(data->diag, NULL); 3251 3252 hci_unregister_dev(hdev); 3253 3254 if (intf == data->intf) { 3255 if (data->isoc) 3256 usb_driver_release_interface(&btusb_driver, data->isoc); 3257 if (data->diag) 3258 usb_driver_release_interface(&btusb_driver, data->diag); 3259 } else if (intf == data->isoc) { 3260 if (data->diag) 3261 usb_driver_release_interface(&btusb_driver, data->diag); 3262 usb_driver_release_interface(&btusb_driver, data->intf); 3263 } else if (intf == data->diag) { 3264 usb_driver_release_interface(&btusb_driver, data->intf); 3265 if (data->isoc) 3266 usb_driver_release_interface(&btusb_driver, data->isoc); 3267 } 3268 3269 if (data->oob_wake_irq) 3270 device_init_wakeup(&data->udev->dev, false); 3271 3272 hci_free_dev(hdev); 3273 } 3274 3275 #ifdef CONFIG_PM 3276 static int btusb_suspend(struct usb_interface *intf, pm_message_t message) 3277 { 3278 struct btusb_data *data = usb_get_intfdata(intf); 3279 3280 BT_DBG("intf %p", intf); 3281 3282 if (data->suspend_count++) 3283 return 0; 3284 3285 spin_lock_irq(&data->txlock); 3286 if (!(PMSG_IS_AUTO(message) && data->tx_in_flight)) { 3287 set_bit(BTUSB_SUSPENDING, &data->flags); 3288 spin_unlock_irq(&data->txlock); 3289 } else { 3290 spin_unlock_irq(&data->txlock); 3291 data->suspend_count--; 3292 return -EBUSY; 3293 } 3294 3295 cancel_work_sync(&data->work); 3296 3297 btusb_stop_traffic(data); 3298 usb_kill_anchored_urbs(&data->tx_anchor); 3299 3300 if (data->oob_wake_irq && device_may_wakeup(&data->udev->dev)) { 3301 set_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags); 3302 enable_irq_wake(data->oob_wake_irq); 3303 enable_irq(data->oob_wake_irq); 3304 } 3305 3306 /* Optionally request a device reset on resume, but only when 3307 * wakeups are disabled. If wakeups are enabled we assume the 3308 * device will stay powered up throughout suspend. 3309 */ 3310 if (test_bit(BTUSB_RESET_RESUME, &data->flags) && 3311 !device_may_wakeup(&data->udev->dev)) 3312 data->udev->reset_resume = 1; 3313 3314 return 0; 3315 } 3316 3317 static void play_deferred(struct btusb_data *data) 3318 { 3319 struct urb *urb; 3320 int err; 3321 3322 while ((urb = usb_get_from_anchor(&data->deferred))) { 3323 usb_anchor_urb(urb, &data->tx_anchor); 3324 3325 err = usb_submit_urb(urb, GFP_ATOMIC); 3326 if (err < 0) { 3327 if (err != -EPERM && err != -ENODEV) 3328 BT_ERR("%s urb %p submission failed (%d)", 3329 data->hdev->name, urb, -err); 3330 kfree(urb->setup_packet); 3331 usb_unanchor_urb(urb); 3332 usb_free_urb(urb); 3333 break; 3334 } 3335 3336 data->tx_in_flight++; 3337 usb_free_urb(urb); 3338 } 3339 3340 /* Cleanup the rest deferred urbs. */ 3341 while ((urb = usb_get_from_anchor(&data->deferred))) { 3342 kfree(urb->setup_packet); 3343 usb_free_urb(urb); 3344 } 3345 } 3346 3347 static int btusb_resume(struct usb_interface *intf) 3348 { 3349 struct btusb_data *data = usb_get_intfdata(intf); 3350 struct hci_dev *hdev = data->hdev; 3351 int err = 0; 3352 3353 BT_DBG("intf %p", intf); 3354 3355 if (--data->suspend_count) 3356 return 0; 3357 3358 /* Disable only if not already disabled (keep it balanced) */ 3359 if (test_and_clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags)) { 3360 disable_irq(data->oob_wake_irq); 3361 disable_irq_wake(data->oob_wake_irq); 3362 } 3363 3364 if (!test_bit(HCI_RUNNING, &hdev->flags)) 3365 goto done; 3366 3367 if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) { 3368 err = btusb_submit_intr_urb(hdev, GFP_NOIO); 3369 if (err < 0) { 3370 clear_bit(BTUSB_INTR_RUNNING, &data->flags); 3371 goto failed; 3372 } 3373 } 3374 3375 if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) { 3376 err = btusb_submit_bulk_urb(hdev, GFP_NOIO); 3377 if (err < 0) { 3378 clear_bit(BTUSB_BULK_RUNNING, &data->flags); 3379 goto failed; 3380 } 3381 3382 btusb_submit_bulk_urb(hdev, GFP_NOIO); 3383 } 3384 3385 if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) { 3386 if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0) 3387 clear_bit(BTUSB_ISOC_RUNNING, &data->flags); 3388 else 3389 btusb_submit_isoc_urb(hdev, GFP_NOIO); 3390 } 3391 3392 spin_lock_irq(&data->txlock); 3393 play_deferred(data); 3394 clear_bit(BTUSB_SUSPENDING, &data->flags); 3395 spin_unlock_irq(&data->txlock); 3396 schedule_work(&data->work); 3397 3398 return 0; 3399 3400 failed: 3401 usb_scuttle_anchored_urbs(&data->deferred); 3402 done: 3403 spin_lock_irq(&data->txlock); 3404 clear_bit(BTUSB_SUSPENDING, &data->flags); 3405 spin_unlock_irq(&data->txlock); 3406 3407 return err; 3408 } 3409 #endif 3410 3411 static struct usb_driver btusb_driver = { 3412 .name = "btusb", 3413 .probe = btusb_probe, 3414 .disconnect = btusb_disconnect, 3415 #ifdef CONFIG_PM 3416 .suspend = btusb_suspend, 3417 .resume = btusb_resume, 3418 #endif 3419 .id_table = btusb_table, 3420 .supports_autosuspend = 1, 3421 .disable_hub_initiated_lpm = 1, 3422 }; 3423 3424 module_usb_driver(btusb_driver); 3425 3426 module_param(disable_scofix, bool, 0644); 3427 MODULE_PARM_DESC(disable_scofix, "Disable fixup of wrong SCO buffer size"); 3428 3429 module_param(force_scofix, bool, 0644); 3430 MODULE_PARM_DESC(force_scofix, "Force fixup of wrong SCO buffers size"); 3431 3432 module_param(enable_autosuspend, bool, 0644); 3433 MODULE_PARM_DESC(enable_autosuspend, "Enable USB autosuspend by default"); 3434 3435 module_param(reset, bool, 0644); 3436 MODULE_PARM_DESC(reset, "Send HCI reset command on initialization"); 3437 3438 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 3439 MODULE_DESCRIPTION("Generic Bluetooth USB driver ver " VERSION); 3440 MODULE_VERSION(VERSION); 3441 MODULE_LICENSE("GPL"); 3442