xref: /openbmc/linux/drivers/bluetooth/btusb.c (revision 711aab1d)
1 /*
2  *
3  *  Generic Bluetooth USB driver
4  *
5  *  Copyright (C) 2005-2008  Marcel Holtmann <marcel@holtmann.org>
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/usb.h>
26 #include <linux/firmware.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/suspend.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 
35 #include "btintel.h"
36 #include "btbcm.h"
37 #include "btrtl.h"
38 
39 #define VERSION "0.8"
40 
41 static bool disable_scofix;
42 static bool force_scofix;
43 
44 static bool reset = true;
45 
46 static struct usb_driver btusb_driver;
47 
48 #define BTUSB_IGNORE		0x01
49 #define BTUSB_DIGIANSWER	0x02
50 #define BTUSB_CSR		0x04
51 #define BTUSB_SNIFFER		0x08
52 #define BTUSB_BCM92035		0x10
53 #define BTUSB_BROKEN_ISOC	0x20
54 #define BTUSB_WRONG_SCO_MTU	0x40
55 #define BTUSB_ATH3012		0x80
56 #define BTUSB_INTEL		0x100
57 #define BTUSB_INTEL_BOOT	0x200
58 #define BTUSB_BCM_PATCHRAM	0x400
59 #define BTUSB_MARVELL		0x800
60 #define BTUSB_SWAVE		0x1000
61 #define BTUSB_INTEL_NEW		0x2000
62 #define BTUSB_AMP		0x4000
63 #define BTUSB_QCA_ROME		0x8000
64 #define BTUSB_BCM_APPLE		0x10000
65 #define BTUSB_REALTEK		0x20000
66 #define BTUSB_BCM2045		0x40000
67 #define BTUSB_IFNUM_2		0x80000
68 #define BTUSB_CW6622		0x100000
69 #define BTUSB_BCM_NO_PRODID	0x200000
70 
71 static const struct usb_device_id btusb_table[] = {
72 	/* Generic Bluetooth USB device */
73 	{ USB_DEVICE_INFO(0xe0, 0x01, 0x01) },
74 
75 	/* Generic Bluetooth AMP device */
76 	{ USB_DEVICE_INFO(0xe0, 0x01, 0x04), .driver_info = BTUSB_AMP },
77 
78 	/* Generic Bluetooth USB interface */
79 	{ USB_INTERFACE_INFO(0xe0, 0x01, 0x01) },
80 
81 	/* Apple-specific (Broadcom) devices */
82 	{ USB_VENDOR_AND_INTERFACE_INFO(0x05ac, 0xff, 0x01, 0x01),
83 	  .driver_info = BTUSB_BCM_APPLE | BTUSB_IFNUM_2 },
84 
85 	/* MediaTek MT76x0E */
86 	{ USB_DEVICE(0x0e8d, 0x763f) },
87 
88 	/* Broadcom SoftSailing reporting vendor specific */
89 	{ USB_DEVICE(0x0a5c, 0x21e1) },
90 
91 	/* Apple MacBookPro 7,1 */
92 	{ USB_DEVICE(0x05ac, 0x8213) },
93 
94 	/* Apple iMac11,1 */
95 	{ USB_DEVICE(0x05ac, 0x8215) },
96 
97 	/* Apple MacBookPro6,2 */
98 	{ USB_DEVICE(0x05ac, 0x8218) },
99 
100 	/* Apple MacBookAir3,1, MacBookAir3,2 */
101 	{ USB_DEVICE(0x05ac, 0x821b) },
102 
103 	/* Apple MacBookAir4,1 */
104 	{ USB_DEVICE(0x05ac, 0x821f) },
105 
106 	/* Apple MacBookPro8,2 */
107 	{ USB_DEVICE(0x05ac, 0x821a) },
108 
109 	/* Apple MacMini5,1 */
110 	{ USB_DEVICE(0x05ac, 0x8281) },
111 
112 	/* AVM BlueFRITZ! USB v2.0 */
113 	{ USB_DEVICE(0x057c, 0x3800), .driver_info = BTUSB_SWAVE },
114 
115 	/* Bluetooth Ultraport Module from IBM */
116 	{ USB_DEVICE(0x04bf, 0x030a) },
117 
118 	/* ALPS Modules with non-standard id */
119 	{ USB_DEVICE(0x044e, 0x3001) },
120 	{ USB_DEVICE(0x044e, 0x3002) },
121 
122 	/* Ericsson with non-standard id */
123 	{ USB_DEVICE(0x0bdb, 0x1002) },
124 
125 	/* Canyon CN-BTU1 with HID interfaces */
126 	{ USB_DEVICE(0x0c10, 0x0000) },
127 
128 	/* Broadcom BCM20702A0 */
129 	{ USB_DEVICE(0x413c, 0x8197) },
130 
131 	/* Broadcom BCM20702B0 (Dynex/Insignia) */
132 	{ USB_DEVICE(0x19ff, 0x0239), .driver_info = BTUSB_BCM_PATCHRAM },
133 
134 	/* Broadcom BCM43142A0 (Foxconn/Lenovo) */
135 	{ USB_VENDOR_AND_INTERFACE_INFO(0x105b, 0xff, 0x01, 0x01),
136 	  .driver_info = BTUSB_BCM_PATCHRAM },
137 
138 	/* Broadcom BCM920703 (HTC Vive) */
139 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0bb4, 0xff, 0x01, 0x01),
140 	  .driver_info = BTUSB_BCM_PATCHRAM },
141 
142 	/* Foxconn - Hon Hai */
143 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0489, 0xff, 0x01, 0x01),
144 	  .driver_info = BTUSB_BCM_PATCHRAM },
145 
146 	/* Lite-On Technology - Broadcom based */
147 	{ USB_VENDOR_AND_INTERFACE_INFO(0x04ca, 0xff, 0x01, 0x01),
148 	  .driver_info = BTUSB_BCM_PATCHRAM },
149 
150 	/* Broadcom devices with vendor specific id */
151 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01),
152 	  .driver_info = BTUSB_BCM_PATCHRAM },
153 
154 	/* ASUSTek Computer - Broadcom based */
155 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0b05, 0xff, 0x01, 0x01),
156 	  .driver_info = BTUSB_BCM_PATCHRAM },
157 
158 	/* Belkin F8065bf - Broadcom based */
159 	{ USB_VENDOR_AND_INTERFACE_INFO(0x050d, 0xff, 0x01, 0x01),
160 	  .driver_info = BTUSB_BCM_PATCHRAM },
161 
162 	/* IMC Networks - Broadcom based */
163 	{ USB_VENDOR_AND_INTERFACE_INFO(0x13d3, 0xff, 0x01, 0x01),
164 	  .driver_info = BTUSB_BCM_PATCHRAM },
165 
166 	/* Dell Computer - Broadcom based  */
167 	{ USB_VENDOR_AND_INTERFACE_INFO(0x413c, 0xff, 0x01, 0x01),
168 	  .driver_info = BTUSB_BCM_PATCHRAM },
169 
170 	/* Toshiba Corp - Broadcom based */
171 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0930, 0xff, 0x01, 0x01),
172 	  .driver_info = BTUSB_BCM_PATCHRAM },
173 
174 	/* Broadcom devices with missing product id */
175 	{ USB_DEVICE_AND_INTERFACE_INFO(0x0000, 0x0000, 0xff, 0x01, 0x01),
176 	  .driver_info = BTUSB_BCM_PATCHRAM | BTUSB_BCM_NO_PRODID },
177 
178 	/* Intel Bluetooth USB Bootloader (RAM module) */
179 	{ USB_DEVICE(0x8087, 0x0a5a),
180 	  .driver_info = BTUSB_INTEL_BOOT | BTUSB_BROKEN_ISOC },
181 
182 	{ }	/* Terminating entry */
183 };
184 
185 MODULE_DEVICE_TABLE(usb, btusb_table);
186 
187 static const struct usb_device_id blacklist_table[] = {
188 	/* CSR BlueCore devices */
189 	{ USB_DEVICE(0x0a12, 0x0001), .driver_info = BTUSB_CSR },
190 
191 	/* Broadcom BCM2033 without firmware */
192 	{ USB_DEVICE(0x0a5c, 0x2033), .driver_info = BTUSB_IGNORE },
193 
194 	/* Broadcom BCM2045 devices */
195 	{ USB_DEVICE(0x0a5c, 0x2045), .driver_info = BTUSB_BCM2045 },
196 
197 	/* Atheros 3011 with sflash firmware */
198 	{ USB_DEVICE(0x0489, 0xe027), .driver_info = BTUSB_IGNORE },
199 	{ USB_DEVICE(0x0489, 0xe03d), .driver_info = BTUSB_IGNORE },
200 	{ USB_DEVICE(0x04f2, 0xaff1), .driver_info = BTUSB_IGNORE },
201 	{ USB_DEVICE(0x0930, 0x0215), .driver_info = BTUSB_IGNORE },
202 	{ USB_DEVICE(0x0cf3, 0x3002), .driver_info = BTUSB_IGNORE },
203 	{ USB_DEVICE(0x0cf3, 0xe019), .driver_info = BTUSB_IGNORE },
204 	{ USB_DEVICE(0x13d3, 0x3304), .driver_info = BTUSB_IGNORE },
205 
206 	/* Atheros AR9285 Malbec with sflash firmware */
207 	{ USB_DEVICE(0x03f0, 0x311d), .driver_info = BTUSB_IGNORE },
208 
209 	/* Atheros 3012 with sflash firmware */
210 	{ USB_DEVICE(0x0489, 0xe04d), .driver_info = BTUSB_ATH3012 },
211 	{ USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
212 	{ USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
213 	{ USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
214 	{ USB_DEVICE(0x0489, 0xe05f), .driver_info = BTUSB_ATH3012 },
215 	{ USB_DEVICE(0x0489, 0xe076), .driver_info = BTUSB_ATH3012 },
216 	{ USB_DEVICE(0x0489, 0xe078), .driver_info = BTUSB_ATH3012 },
217 	{ USB_DEVICE(0x0489, 0xe095), .driver_info = BTUSB_ATH3012 },
218 	{ USB_DEVICE(0x04c5, 0x1330), .driver_info = BTUSB_ATH3012 },
219 	{ USB_DEVICE(0x04ca, 0x3004), .driver_info = BTUSB_ATH3012 },
220 	{ USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
221 	{ USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
222 	{ USB_DEVICE(0x04ca, 0x3007), .driver_info = BTUSB_ATH3012 },
223 	{ USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
224 	{ USB_DEVICE(0x04ca, 0x300b), .driver_info = BTUSB_ATH3012 },
225 	{ USB_DEVICE(0x04ca, 0x300d), .driver_info = BTUSB_ATH3012 },
226 	{ USB_DEVICE(0x04ca, 0x300f), .driver_info = BTUSB_ATH3012 },
227 	{ USB_DEVICE(0x04ca, 0x3010), .driver_info = BTUSB_ATH3012 },
228 	{ USB_DEVICE(0x04ca, 0x3014), .driver_info = BTUSB_ATH3012 },
229 	{ USB_DEVICE(0x04ca, 0x3018), .driver_info = BTUSB_ATH3012 },
230 	{ USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
231 	{ USB_DEVICE(0x0930, 0x021c), .driver_info = BTUSB_ATH3012 },
232 	{ USB_DEVICE(0x0930, 0x0220), .driver_info = BTUSB_ATH3012 },
233 	{ USB_DEVICE(0x0930, 0x0227), .driver_info = BTUSB_ATH3012 },
234 	{ USB_DEVICE(0x0b05, 0x17d0), .driver_info = BTUSB_ATH3012 },
235 	{ USB_DEVICE(0x0cf3, 0x0036), .driver_info = BTUSB_ATH3012 },
236 	{ USB_DEVICE(0x0cf3, 0x3004), .driver_info = BTUSB_ATH3012 },
237 	{ USB_DEVICE(0x0cf3, 0x3008), .driver_info = BTUSB_ATH3012 },
238 	{ USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 },
239 	{ USB_DEVICE(0x0cf3, 0x311e), .driver_info = BTUSB_ATH3012 },
240 	{ USB_DEVICE(0x0cf3, 0x311f), .driver_info = BTUSB_ATH3012 },
241 	{ USB_DEVICE(0x0cf3, 0x3121), .driver_info = BTUSB_ATH3012 },
242 	{ USB_DEVICE(0x0cf3, 0x817a), .driver_info = BTUSB_ATH3012 },
243 	{ USB_DEVICE(0x0cf3, 0x817b), .driver_info = BTUSB_ATH3012 },
244 	{ USB_DEVICE(0x0cf3, 0xe003), .driver_info = BTUSB_ATH3012 },
245 	{ USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
246 	{ USB_DEVICE(0x0cf3, 0xe005), .driver_info = BTUSB_ATH3012 },
247 	{ USB_DEVICE(0x0cf3, 0xe006), .driver_info = BTUSB_ATH3012 },
248 	{ USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
249 	{ USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
250 	{ USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
251 	{ USB_DEVICE(0x13d3, 0x3395), .driver_info = BTUSB_ATH3012 },
252 	{ USB_DEVICE(0x13d3, 0x3402), .driver_info = BTUSB_ATH3012 },
253 	{ USB_DEVICE(0x13d3, 0x3408), .driver_info = BTUSB_ATH3012 },
254 	{ USB_DEVICE(0x13d3, 0x3423), .driver_info = BTUSB_ATH3012 },
255 	{ USB_DEVICE(0x13d3, 0x3432), .driver_info = BTUSB_ATH3012 },
256 	{ USB_DEVICE(0x13d3, 0x3472), .driver_info = BTUSB_ATH3012 },
257 	{ USB_DEVICE(0x13d3, 0x3474), .driver_info = BTUSB_ATH3012 },
258 	{ USB_DEVICE(0x13d3, 0x3487), .driver_info = BTUSB_ATH3012 },
259 	{ USB_DEVICE(0x13d3, 0x3490), .driver_info = BTUSB_ATH3012 },
260 
261 	/* Atheros AR5BBU12 with sflash firmware */
262 	{ USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE },
263 
264 	/* Atheros AR5BBU12 with sflash firmware */
265 	{ USB_DEVICE(0x0489, 0xe036), .driver_info = BTUSB_ATH3012 },
266 	{ USB_DEVICE(0x0489, 0xe03c), .driver_info = BTUSB_ATH3012 },
267 
268 	/* QCA ROME chipset */
269 	{ USB_DEVICE(0x0cf3, 0xe007), .driver_info = BTUSB_QCA_ROME },
270 	{ USB_DEVICE(0x0cf3, 0xe009), .driver_info = BTUSB_QCA_ROME },
271 	{ USB_DEVICE(0x0cf3, 0xe300), .driver_info = BTUSB_QCA_ROME },
272 	{ USB_DEVICE(0x0cf3, 0xe301), .driver_info = BTUSB_QCA_ROME },
273 	{ USB_DEVICE(0x0cf3, 0xe360), .driver_info = BTUSB_QCA_ROME },
274 	{ USB_DEVICE(0x0489, 0xe092), .driver_info = BTUSB_QCA_ROME },
275 	{ USB_DEVICE(0x0489, 0xe0a2), .driver_info = BTUSB_QCA_ROME },
276 	{ USB_DEVICE(0x04ca, 0x3011), .driver_info = BTUSB_QCA_ROME },
277 	{ USB_DEVICE(0x04ca, 0x3016), .driver_info = BTUSB_QCA_ROME },
278 
279 	/* Broadcom BCM2035 */
280 	{ USB_DEVICE(0x0a5c, 0x2009), .driver_info = BTUSB_BCM92035 },
281 	{ USB_DEVICE(0x0a5c, 0x200a), .driver_info = BTUSB_WRONG_SCO_MTU },
282 	{ USB_DEVICE(0x0a5c, 0x2035), .driver_info = BTUSB_WRONG_SCO_MTU },
283 
284 	/* Broadcom BCM2045 */
285 	{ USB_DEVICE(0x0a5c, 0x2039), .driver_info = BTUSB_WRONG_SCO_MTU },
286 	{ USB_DEVICE(0x0a5c, 0x2101), .driver_info = BTUSB_WRONG_SCO_MTU },
287 
288 	/* IBM/Lenovo ThinkPad with Broadcom chip */
289 	{ USB_DEVICE(0x0a5c, 0x201e), .driver_info = BTUSB_WRONG_SCO_MTU },
290 	{ USB_DEVICE(0x0a5c, 0x2110), .driver_info = BTUSB_WRONG_SCO_MTU },
291 
292 	/* HP laptop with Broadcom chip */
293 	{ USB_DEVICE(0x03f0, 0x171d), .driver_info = BTUSB_WRONG_SCO_MTU },
294 
295 	/* Dell laptop with Broadcom chip */
296 	{ USB_DEVICE(0x413c, 0x8126), .driver_info = BTUSB_WRONG_SCO_MTU },
297 
298 	/* Dell Wireless 370 and 410 devices */
299 	{ USB_DEVICE(0x413c, 0x8152), .driver_info = BTUSB_WRONG_SCO_MTU },
300 	{ USB_DEVICE(0x413c, 0x8156), .driver_info = BTUSB_WRONG_SCO_MTU },
301 
302 	/* Belkin F8T012 and F8T013 devices */
303 	{ USB_DEVICE(0x050d, 0x0012), .driver_info = BTUSB_WRONG_SCO_MTU },
304 	{ USB_DEVICE(0x050d, 0x0013), .driver_info = BTUSB_WRONG_SCO_MTU },
305 
306 	/* Asus WL-BTD202 device */
307 	{ USB_DEVICE(0x0b05, 0x1715), .driver_info = BTUSB_WRONG_SCO_MTU },
308 
309 	/* Kensington Bluetooth USB adapter */
310 	{ USB_DEVICE(0x047d, 0x105e), .driver_info = BTUSB_WRONG_SCO_MTU },
311 
312 	/* RTX Telecom based adapters with buggy SCO support */
313 	{ USB_DEVICE(0x0400, 0x0807), .driver_info = BTUSB_BROKEN_ISOC },
314 	{ USB_DEVICE(0x0400, 0x080a), .driver_info = BTUSB_BROKEN_ISOC },
315 
316 	/* CONWISE Technology based adapters with buggy SCO support */
317 	{ USB_DEVICE(0x0e5e, 0x6622),
318 	  .driver_info = BTUSB_BROKEN_ISOC | BTUSB_CW6622},
319 
320 	/* Roper Class 1 Bluetooth Dongle (Silicon Wave based) */
321 	{ USB_DEVICE(0x1310, 0x0001), .driver_info = BTUSB_SWAVE },
322 
323 	/* Digianswer devices */
324 	{ USB_DEVICE(0x08fd, 0x0001), .driver_info = BTUSB_DIGIANSWER },
325 	{ USB_DEVICE(0x08fd, 0x0002), .driver_info = BTUSB_IGNORE },
326 
327 	/* CSR BlueCore Bluetooth Sniffer */
328 	{ USB_DEVICE(0x0a12, 0x0002),
329 	  .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
330 
331 	/* Frontline ComProbe Bluetooth Sniffer */
332 	{ USB_DEVICE(0x16d3, 0x0002),
333 	  .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
334 
335 	/* Marvell Bluetooth devices */
336 	{ USB_DEVICE(0x1286, 0x2044), .driver_info = BTUSB_MARVELL },
337 	{ USB_DEVICE(0x1286, 0x2046), .driver_info = BTUSB_MARVELL },
338 	{ USB_DEVICE(0x1286, 0x204e), .driver_info = BTUSB_MARVELL },
339 
340 	/* Intel Bluetooth devices */
341 	{ USB_DEVICE(0x8087, 0x0025), .driver_info = BTUSB_INTEL_NEW },
342 	{ USB_DEVICE(0x8087, 0x07da), .driver_info = BTUSB_CSR },
343 	{ USB_DEVICE(0x8087, 0x07dc), .driver_info = BTUSB_INTEL },
344 	{ USB_DEVICE(0x8087, 0x0a2a), .driver_info = BTUSB_INTEL },
345 	{ USB_DEVICE(0x8087, 0x0a2b), .driver_info = BTUSB_INTEL_NEW },
346 	{ USB_DEVICE(0x8087, 0x0aa7), .driver_info = BTUSB_INTEL },
347 	{ USB_DEVICE(0x8087, 0x0aaa), .driver_info = BTUSB_INTEL_NEW },
348 
349 	/* Other Intel Bluetooth devices */
350 	{ USB_VENDOR_AND_INTERFACE_INFO(0x8087, 0xe0, 0x01, 0x01),
351 	  .driver_info = BTUSB_IGNORE },
352 
353 	/* Realtek Bluetooth devices */
354 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01),
355 	  .driver_info = BTUSB_REALTEK },
356 
357 	/* Additional Realtek 8723AE Bluetooth devices */
358 	{ USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK },
359 	{ USB_DEVICE(0x13d3, 0x3394), .driver_info = BTUSB_REALTEK },
360 
361 	/* Additional Realtek 8723BE Bluetooth devices */
362 	{ USB_DEVICE(0x0489, 0xe085), .driver_info = BTUSB_REALTEK },
363 	{ USB_DEVICE(0x0489, 0xe08b), .driver_info = BTUSB_REALTEK },
364 	{ USB_DEVICE(0x13d3, 0x3410), .driver_info = BTUSB_REALTEK },
365 	{ USB_DEVICE(0x13d3, 0x3416), .driver_info = BTUSB_REALTEK },
366 	{ USB_DEVICE(0x13d3, 0x3459), .driver_info = BTUSB_REALTEK },
367 	{ USB_DEVICE(0x13d3, 0x3494), .driver_info = BTUSB_REALTEK },
368 
369 	/* Additional Realtek 8821AE Bluetooth devices */
370 	{ USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK },
371 	{ USB_DEVICE(0x13d3, 0x3414), .driver_info = BTUSB_REALTEK },
372 	{ USB_DEVICE(0x13d3, 0x3458), .driver_info = BTUSB_REALTEK },
373 	{ USB_DEVICE(0x13d3, 0x3461), .driver_info = BTUSB_REALTEK },
374 	{ USB_DEVICE(0x13d3, 0x3462), .driver_info = BTUSB_REALTEK },
375 
376 	/* Silicon Wave based devices */
377 	{ USB_DEVICE(0x0c10, 0x0000), .driver_info = BTUSB_SWAVE },
378 
379 	{ }	/* Terminating entry */
380 };
381 
382 #define BTUSB_MAX_ISOC_FRAMES	10
383 
384 #define BTUSB_INTR_RUNNING	0
385 #define BTUSB_BULK_RUNNING	1
386 #define BTUSB_ISOC_RUNNING	2
387 #define BTUSB_SUSPENDING	3
388 #define BTUSB_DID_ISO_RESUME	4
389 #define BTUSB_BOOTLOADER	5
390 #define BTUSB_DOWNLOADING	6
391 #define BTUSB_FIRMWARE_LOADED	7
392 #define BTUSB_FIRMWARE_FAILED	8
393 #define BTUSB_BOOTING		9
394 #define BTUSB_RESET_RESUME	10
395 #define BTUSB_DIAG_RUNNING	11
396 #define BTUSB_OOB_WAKE_ENABLED	12
397 
398 struct btusb_data {
399 	struct hci_dev       *hdev;
400 	struct usb_device    *udev;
401 	struct usb_interface *intf;
402 	struct usb_interface *isoc;
403 	struct usb_interface *diag;
404 
405 	unsigned long flags;
406 
407 	struct work_struct work;
408 	struct work_struct waker;
409 
410 	struct usb_anchor deferred;
411 	struct usb_anchor tx_anchor;
412 	int tx_in_flight;
413 	spinlock_t txlock;
414 
415 	struct usb_anchor intr_anchor;
416 	struct usb_anchor bulk_anchor;
417 	struct usb_anchor isoc_anchor;
418 	struct usb_anchor diag_anchor;
419 	spinlock_t rxlock;
420 
421 	struct sk_buff *evt_skb;
422 	struct sk_buff *acl_skb;
423 	struct sk_buff *sco_skb;
424 
425 	struct usb_endpoint_descriptor *intr_ep;
426 	struct usb_endpoint_descriptor *bulk_tx_ep;
427 	struct usb_endpoint_descriptor *bulk_rx_ep;
428 	struct usb_endpoint_descriptor *isoc_tx_ep;
429 	struct usb_endpoint_descriptor *isoc_rx_ep;
430 	struct usb_endpoint_descriptor *diag_tx_ep;
431 	struct usb_endpoint_descriptor *diag_rx_ep;
432 
433 	__u8 cmdreq_type;
434 	__u8 cmdreq;
435 
436 	unsigned int sco_num;
437 	int isoc_altsetting;
438 	int suspend_count;
439 
440 	int (*recv_event)(struct hci_dev *hdev, struct sk_buff *skb);
441 	int (*recv_bulk)(struct btusb_data *data, void *buffer, int count);
442 
443 	int (*setup_on_usb)(struct hci_dev *hdev);
444 
445 	int oob_wake_irq;   /* irq for out-of-band wake-on-bt */
446 };
447 
448 static inline void btusb_free_frags(struct btusb_data *data)
449 {
450 	unsigned long flags;
451 
452 	spin_lock_irqsave(&data->rxlock, flags);
453 
454 	kfree_skb(data->evt_skb);
455 	data->evt_skb = NULL;
456 
457 	kfree_skb(data->acl_skb);
458 	data->acl_skb = NULL;
459 
460 	kfree_skb(data->sco_skb);
461 	data->sco_skb = NULL;
462 
463 	spin_unlock_irqrestore(&data->rxlock, flags);
464 }
465 
466 static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count)
467 {
468 	struct sk_buff *skb;
469 	int err = 0;
470 
471 	spin_lock(&data->rxlock);
472 	skb = data->evt_skb;
473 
474 	while (count) {
475 		int len;
476 
477 		if (!skb) {
478 			skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC);
479 			if (!skb) {
480 				err = -ENOMEM;
481 				break;
482 			}
483 
484 			hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
485 			hci_skb_expect(skb) = HCI_EVENT_HDR_SIZE;
486 		}
487 
488 		len = min_t(uint, hci_skb_expect(skb), count);
489 		skb_put_data(skb, buffer, len);
490 
491 		count -= len;
492 		buffer += len;
493 		hci_skb_expect(skb) -= len;
494 
495 		if (skb->len == HCI_EVENT_HDR_SIZE) {
496 			/* Complete event header */
497 			hci_skb_expect(skb) = hci_event_hdr(skb)->plen;
498 
499 			if (skb_tailroom(skb) < hci_skb_expect(skb)) {
500 				kfree_skb(skb);
501 				skb = NULL;
502 
503 				err = -EILSEQ;
504 				break;
505 			}
506 		}
507 
508 		if (!hci_skb_expect(skb)) {
509 			/* Complete frame */
510 			data->recv_event(data->hdev, skb);
511 			skb = NULL;
512 		}
513 	}
514 
515 	data->evt_skb = skb;
516 	spin_unlock(&data->rxlock);
517 
518 	return err;
519 }
520 
521 static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count)
522 {
523 	struct sk_buff *skb;
524 	int err = 0;
525 
526 	spin_lock(&data->rxlock);
527 	skb = data->acl_skb;
528 
529 	while (count) {
530 		int len;
531 
532 		if (!skb) {
533 			skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC);
534 			if (!skb) {
535 				err = -ENOMEM;
536 				break;
537 			}
538 
539 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
540 			hci_skb_expect(skb) = HCI_ACL_HDR_SIZE;
541 		}
542 
543 		len = min_t(uint, hci_skb_expect(skb), count);
544 		skb_put_data(skb, buffer, len);
545 
546 		count -= len;
547 		buffer += len;
548 		hci_skb_expect(skb) -= len;
549 
550 		if (skb->len == HCI_ACL_HDR_SIZE) {
551 			__le16 dlen = hci_acl_hdr(skb)->dlen;
552 
553 			/* Complete ACL header */
554 			hci_skb_expect(skb) = __le16_to_cpu(dlen);
555 
556 			if (skb_tailroom(skb) < hci_skb_expect(skb)) {
557 				kfree_skb(skb);
558 				skb = NULL;
559 
560 				err = -EILSEQ;
561 				break;
562 			}
563 		}
564 
565 		if (!hci_skb_expect(skb)) {
566 			/* Complete frame */
567 			hci_recv_frame(data->hdev, skb);
568 			skb = NULL;
569 		}
570 	}
571 
572 	data->acl_skb = skb;
573 	spin_unlock(&data->rxlock);
574 
575 	return err;
576 }
577 
578 static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
579 {
580 	struct sk_buff *skb;
581 	int err = 0;
582 
583 	spin_lock(&data->rxlock);
584 	skb = data->sco_skb;
585 
586 	while (count) {
587 		int len;
588 
589 		if (!skb) {
590 			skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC);
591 			if (!skb) {
592 				err = -ENOMEM;
593 				break;
594 			}
595 
596 			hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
597 			hci_skb_expect(skb) = HCI_SCO_HDR_SIZE;
598 		}
599 
600 		len = min_t(uint, hci_skb_expect(skb), count);
601 		skb_put_data(skb, buffer, len);
602 
603 		count -= len;
604 		buffer += len;
605 		hci_skb_expect(skb) -= len;
606 
607 		if (skb->len == HCI_SCO_HDR_SIZE) {
608 			/* Complete SCO header */
609 			hci_skb_expect(skb) = hci_sco_hdr(skb)->dlen;
610 
611 			if (skb_tailroom(skb) < hci_skb_expect(skb)) {
612 				kfree_skb(skb);
613 				skb = NULL;
614 
615 				err = -EILSEQ;
616 				break;
617 			}
618 		}
619 
620 		if (!hci_skb_expect(skb)) {
621 			/* Complete frame */
622 			hci_recv_frame(data->hdev, skb);
623 			skb = NULL;
624 		}
625 	}
626 
627 	data->sco_skb = skb;
628 	spin_unlock(&data->rxlock);
629 
630 	return err;
631 }
632 
633 static void btusb_intr_complete(struct urb *urb)
634 {
635 	struct hci_dev *hdev = urb->context;
636 	struct btusb_data *data = hci_get_drvdata(hdev);
637 	int err;
638 
639 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
640 	       urb->actual_length);
641 
642 	if (!test_bit(HCI_RUNNING, &hdev->flags))
643 		return;
644 
645 	if (urb->status == 0) {
646 		hdev->stat.byte_rx += urb->actual_length;
647 
648 		if (btusb_recv_intr(data, urb->transfer_buffer,
649 				    urb->actual_length) < 0) {
650 			BT_ERR("%s corrupted event packet", hdev->name);
651 			hdev->stat.err_rx++;
652 		}
653 	} else if (urb->status == -ENOENT) {
654 		/* Avoid suspend failed when usb_kill_urb */
655 		return;
656 	}
657 
658 	if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
659 		return;
660 
661 	usb_mark_last_busy(data->udev);
662 	usb_anchor_urb(urb, &data->intr_anchor);
663 
664 	err = usb_submit_urb(urb, GFP_ATOMIC);
665 	if (err < 0) {
666 		/* -EPERM: urb is being killed;
667 		 * -ENODEV: device got disconnected
668 		 */
669 		if (err != -EPERM && err != -ENODEV)
670 			BT_ERR("%s urb %p failed to resubmit (%d)",
671 			       hdev->name, urb, -err);
672 		usb_unanchor_urb(urb);
673 	}
674 }
675 
676 static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
677 {
678 	struct btusb_data *data = hci_get_drvdata(hdev);
679 	struct urb *urb;
680 	unsigned char *buf;
681 	unsigned int pipe;
682 	int err, size;
683 
684 	BT_DBG("%s", hdev->name);
685 
686 	if (!data->intr_ep)
687 		return -ENODEV;
688 
689 	urb = usb_alloc_urb(0, mem_flags);
690 	if (!urb)
691 		return -ENOMEM;
692 
693 	size = le16_to_cpu(data->intr_ep->wMaxPacketSize);
694 
695 	buf = kmalloc(size, mem_flags);
696 	if (!buf) {
697 		usb_free_urb(urb);
698 		return -ENOMEM;
699 	}
700 
701 	pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);
702 
703 	usb_fill_int_urb(urb, data->udev, pipe, buf, size,
704 			 btusb_intr_complete, hdev, data->intr_ep->bInterval);
705 
706 	urb->transfer_flags |= URB_FREE_BUFFER;
707 
708 	usb_anchor_urb(urb, &data->intr_anchor);
709 
710 	err = usb_submit_urb(urb, mem_flags);
711 	if (err < 0) {
712 		if (err != -EPERM && err != -ENODEV)
713 			BT_ERR("%s urb %p submission failed (%d)",
714 			       hdev->name, urb, -err);
715 		usb_unanchor_urb(urb);
716 	}
717 
718 	usb_free_urb(urb);
719 
720 	return err;
721 }
722 
723 static void btusb_bulk_complete(struct urb *urb)
724 {
725 	struct hci_dev *hdev = urb->context;
726 	struct btusb_data *data = hci_get_drvdata(hdev);
727 	int err;
728 
729 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
730 	       urb->actual_length);
731 
732 	if (!test_bit(HCI_RUNNING, &hdev->flags))
733 		return;
734 
735 	if (urb->status == 0) {
736 		hdev->stat.byte_rx += urb->actual_length;
737 
738 		if (data->recv_bulk(data, urb->transfer_buffer,
739 				    urb->actual_length) < 0) {
740 			BT_ERR("%s corrupted ACL packet", hdev->name);
741 			hdev->stat.err_rx++;
742 		}
743 	} else if (urb->status == -ENOENT) {
744 		/* Avoid suspend failed when usb_kill_urb */
745 		return;
746 	}
747 
748 	if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
749 		return;
750 
751 	usb_anchor_urb(urb, &data->bulk_anchor);
752 	usb_mark_last_busy(data->udev);
753 
754 	err = usb_submit_urb(urb, GFP_ATOMIC);
755 	if (err < 0) {
756 		/* -EPERM: urb is being killed;
757 		 * -ENODEV: device got disconnected
758 		 */
759 		if (err != -EPERM && err != -ENODEV)
760 			BT_ERR("%s urb %p failed to resubmit (%d)",
761 			       hdev->name, urb, -err);
762 		usb_unanchor_urb(urb);
763 	}
764 }
765 
766 static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
767 {
768 	struct btusb_data *data = hci_get_drvdata(hdev);
769 	struct urb *urb;
770 	unsigned char *buf;
771 	unsigned int pipe;
772 	int err, size = HCI_MAX_FRAME_SIZE;
773 
774 	BT_DBG("%s", hdev->name);
775 
776 	if (!data->bulk_rx_ep)
777 		return -ENODEV;
778 
779 	urb = usb_alloc_urb(0, mem_flags);
780 	if (!urb)
781 		return -ENOMEM;
782 
783 	buf = kmalloc(size, mem_flags);
784 	if (!buf) {
785 		usb_free_urb(urb);
786 		return -ENOMEM;
787 	}
788 
789 	pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);
790 
791 	usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
792 			  btusb_bulk_complete, hdev);
793 
794 	urb->transfer_flags |= URB_FREE_BUFFER;
795 
796 	usb_mark_last_busy(data->udev);
797 	usb_anchor_urb(urb, &data->bulk_anchor);
798 
799 	err = usb_submit_urb(urb, mem_flags);
800 	if (err < 0) {
801 		if (err != -EPERM && err != -ENODEV)
802 			BT_ERR("%s urb %p submission failed (%d)",
803 			       hdev->name, urb, -err);
804 		usb_unanchor_urb(urb);
805 	}
806 
807 	usb_free_urb(urb);
808 
809 	return err;
810 }
811 
812 static void btusb_isoc_complete(struct urb *urb)
813 {
814 	struct hci_dev *hdev = urb->context;
815 	struct btusb_data *data = hci_get_drvdata(hdev);
816 	int i, err;
817 
818 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
819 	       urb->actual_length);
820 
821 	if (!test_bit(HCI_RUNNING, &hdev->flags))
822 		return;
823 
824 	if (urb->status == 0) {
825 		for (i = 0; i < urb->number_of_packets; i++) {
826 			unsigned int offset = urb->iso_frame_desc[i].offset;
827 			unsigned int length = urb->iso_frame_desc[i].actual_length;
828 
829 			if (urb->iso_frame_desc[i].status)
830 				continue;
831 
832 			hdev->stat.byte_rx += length;
833 
834 			if (btusb_recv_isoc(data, urb->transfer_buffer + offset,
835 					    length) < 0) {
836 				BT_ERR("%s corrupted SCO packet", hdev->name);
837 				hdev->stat.err_rx++;
838 			}
839 		}
840 	} else if (urb->status == -ENOENT) {
841 		/* Avoid suspend failed when usb_kill_urb */
842 		return;
843 	}
844 
845 	if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags))
846 		return;
847 
848 	usb_anchor_urb(urb, &data->isoc_anchor);
849 
850 	err = usb_submit_urb(urb, GFP_ATOMIC);
851 	if (err < 0) {
852 		/* -EPERM: urb is being killed;
853 		 * -ENODEV: device got disconnected
854 		 */
855 		if (err != -EPERM && err != -ENODEV)
856 			BT_ERR("%s urb %p failed to resubmit (%d)",
857 			       hdev->name, urb, -err);
858 		usb_unanchor_urb(urb);
859 	}
860 }
861 
862 static inline void __fill_isoc_descriptor(struct urb *urb, int len, int mtu)
863 {
864 	int i, offset = 0;
865 
866 	BT_DBG("len %d mtu %d", len, mtu);
867 
868 	for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
869 					i++, offset += mtu, len -= mtu) {
870 		urb->iso_frame_desc[i].offset = offset;
871 		urb->iso_frame_desc[i].length = mtu;
872 	}
873 
874 	if (len && i < BTUSB_MAX_ISOC_FRAMES) {
875 		urb->iso_frame_desc[i].offset = offset;
876 		urb->iso_frame_desc[i].length = len;
877 		i++;
878 	}
879 
880 	urb->number_of_packets = i;
881 }
882 
883 static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
884 {
885 	struct btusb_data *data = hci_get_drvdata(hdev);
886 	struct urb *urb;
887 	unsigned char *buf;
888 	unsigned int pipe;
889 	int err, size;
890 
891 	BT_DBG("%s", hdev->name);
892 
893 	if (!data->isoc_rx_ep)
894 		return -ENODEV;
895 
896 	urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
897 	if (!urb)
898 		return -ENOMEM;
899 
900 	size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
901 						BTUSB_MAX_ISOC_FRAMES;
902 
903 	buf = kmalloc(size, mem_flags);
904 	if (!buf) {
905 		usb_free_urb(urb);
906 		return -ENOMEM;
907 	}
908 
909 	pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);
910 
911 	usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_isoc_complete,
912 			 hdev, data->isoc_rx_ep->bInterval);
913 
914 	urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP;
915 
916 	__fill_isoc_descriptor(urb, size,
917 			       le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));
918 
919 	usb_anchor_urb(urb, &data->isoc_anchor);
920 
921 	err = usb_submit_urb(urb, mem_flags);
922 	if (err < 0) {
923 		if (err != -EPERM && err != -ENODEV)
924 			BT_ERR("%s urb %p submission failed (%d)",
925 			       hdev->name, urb, -err);
926 		usb_unanchor_urb(urb);
927 	}
928 
929 	usb_free_urb(urb);
930 
931 	return err;
932 }
933 
934 static void btusb_diag_complete(struct urb *urb)
935 {
936 	struct hci_dev *hdev = urb->context;
937 	struct btusb_data *data = hci_get_drvdata(hdev);
938 	int err;
939 
940 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
941 	       urb->actual_length);
942 
943 	if (urb->status == 0) {
944 		struct sk_buff *skb;
945 
946 		skb = bt_skb_alloc(urb->actual_length, GFP_ATOMIC);
947 		if (skb) {
948 			skb_put_data(skb, urb->transfer_buffer,
949 				     urb->actual_length);
950 			hci_recv_diag(hdev, skb);
951 		}
952 	} else if (urb->status == -ENOENT) {
953 		/* Avoid suspend failed when usb_kill_urb */
954 		return;
955 	}
956 
957 	if (!test_bit(BTUSB_DIAG_RUNNING, &data->flags))
958 		return;
959 
960 	usb_anchor_urb(urb, &data->diag_anchor);
961 	usb_mark_last_busy(data->udev);
962 
963 	err = usb_submit_urb(urb, GFP_ATOMIC);
964 	if (err < 0) {
965 		/* -EPERM: urb is being killed;
966 		 * -ENODEV: device got disconnected
967 		 */
968 		if (err != -EPERM && err != -ENODEV)
969 			BT_ERR("%s urb %p failed to resubmit (%d)",
970 			       hdev->name, urb, -err);
971 		usb_unanchor_urb(urb);
972 	}
973 }
974 
975 static int btusb_submit_diag_urb(struct hci_dev *hdev, gfp_t mem_flags)
976 {
977 	struct btusb_data *data = hci_get_drvdata(hdev);
978 	struct urb *urb;
979 	unsigned char *buf;
980 	unsigned int pipe;
981 	int err, size = HCI_MAX_FRAME_SIZE;
982 
983 	BT_DBG("%s", hdev->name);
984 
985 	if (!data->diag_rx_ep)
986 		return -ENODEV;
987 
988 	urb = usb_alloc_urb(0, mem_flags);
989 	if (!urb)
990 		return -ENOMEM;
991 
992 	buf = kmalloc(size, mem_flags);
993 	if (!buf) {
994 		usb_free_urb(urb);
995 		return -ENOMEM;
996 	}
997 
998 	pipe = usb_rcvbulkpipe(data->udev, data->diag_rx_ep->bEndpointAddress);
999 
1000 	usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
1001 			  btusb_diag_complete, hdev);
1002 
1003 	urb->transfer_flags |= URB_FREE_BUFFER;
1004 
1005 	usb_mark_last_busy(data->udev);
1006 	usb_anchor_urb(urb, &data->diag_anchor);
1007 
1008 	err = usb_submit_urb(urb, mem_flags);
1009 	if (err < 0) {
1010 		if (err != -EPERM && err != -ENODEV)
1011 			BT_ERR("%s urb %p submission failed (%d)",
1012 			       hdev->name, urb, -err);
1013 		usb_unanchor_urb(urb);
1014 	}
1015 
1016 	usb_free_urb(urb);
1017 
1018 	return err;
1019 }
1020 
1021 static void btusb_tx_complete(struct urb *urb)
1022 {
1023 	struct sk_buff *skb = urb->context;
1024 	struct hci_dev *hdev = (struct hci_dev *)skb->dev;
1025 	struct btusb_data *data = hci_get_drvdata(hdev);
1026 
1027 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
1028 	       urb->actual_length);
1029 
1030 	if (!test_bit(HCI_RUNNING, &hdev->flags))
1031 		goto done;
1032 
1033 	if (!urb->status)
1034 		hdev->stat.byte_tx += urb->transfer_buffer_length;
1035 	else
1036 		hdev->stat.err_tx++;
1037 
1038 done:
1039 	spin_lock(&data->txlock);
1040 	data->tx_in_flight--;
1041 	spin_unlock(&data->txlock);
1042 
1043 	kfree(urb->setup_packet);
1044 
1045 	kfree_skb(skb);
1046 }
1047 
1048 static void btusb_isoc_tx_complete(struct urb *urb)
1049 {
1050 	struct sk_buff *skb = urb->context;
1051 	struct hci_dev *hdev = (struct hci_dev *)skb->dev;
1052 
1053 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
1054 	       urb->actual_length);
1055 
1056 	if (!test_bit(HCI_RUNNING, &hdev->flags))
1057 		goto done;
1058 
1059 	if (!urb->status)
1060 		hdev->stat.byte_tx += urb->transfer_buffer_length;
1061 	else
1062 		hdev->stat.err_tx++;
1063 
1064 done:
1065 	kfree(urb->setup_packet);
1066 
1067 	kfree_skb(skb);
1068 }
1069 
1070 static int btusb_open(struct hci_dev *hdev)
1071 {
1072 	struct btusb_data *data = hci_get_drvdata(hdev);
1073 	int err;
1074 
1075 	BT_DBG("%s", hdev->name);
1076 
1077 	err = usb_autopm_get_interface(data->intf);
1078 	if (err < 0)
1079 		return err;
1080 
1081 	/* Patching USB firmware files prior to starting any URBs of HCI path
1082 	 * It is more safe to use USB bulk channel for downloading USB patch
1083 	 */
1084 	if (data->setup_on_usb) {
1085 		err = data->setup_on_usb(hdev);
1086 		if (err < 0)
1087 			return err;
1088 	}
1089 
1090 	data->intf->needs_remote_wakeup = 1;
1091 	/* device specific wakeup source enabled and required for USB
1092 	 * remote wakeup while host is suspended
1093 	 */
1094 	device_wakeup_enable(&data->udev->dev);
1095 
1096 	if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
1097 		goto done;
1098 
1099 	err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
1100 	if (err < 0)
1101 		goto failed;
1102 
1103 	err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
1104 	if (err < 0) {
1105 		usb_kill_anchored_urbs(&data->intr_anchor);
1106 		goto failed;
1107 	}
1108 
1109 	set_bit(BTUSB_BULK_RUNNING, &data->flags);
1110 	btusb_submit_bulk_urb(hdev, GFP_KERNEL);
1111 
1112 	if (data->diag) {
1113 		if (!btusb_submit_diag_urb(hdev, GFP_KERNEL))
1114 			set_bit(BTUSB_DIAG_RUNNING, &data->flags);
1115 	}
1116 
1117 done:
1118 	usb_autopm_put_interface(data->intf);
1119 	return 0;
1120 
1121 failed:
1122 	clear_bit(BTUSB_INTR_RUNNING, &data->flags);
1123 	usb_autopm_put_interface(data->intf);
1124 	return err;
1125 }
1126 
1127 static void btusb_stop_traffic(struct btusb_data *data)
1128 {
1129 	usb_kill_anchored_urbs(&data->intr_anchor);
1130 	usb_kill_anchored_urbs(&data->bulk_anchor);
1131 	usb_kill_anchored_urbs(&data->isoc_anchor);
1132 	usb_kill_anchored_urbs(&data->diag_anchor);
1133 }
1134 
1135 static int btusb_close(struct hci_dev *hdev)
1136 {
1137 	struct btusb_data *data = hci_get_drvdata(hdev);
1138 	int err;
1139 
1140 	BT_DBG("%s", hdev->name);
1141 
1142 	cancel_work_sync(&data->work);
1143 	cancel_work_sync(&data->waker);
1144 
1145 	clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1146 	clear_bit(BTUSB_BULK_RUNNING, &data->flags);
1147 	clear_bit(BTUSB_INTR_RUNNING, &data->flags);
1148 	clear_bit(BTUSB_DIAG_RUNNING, &data->flags);
1149 
1150 	btusb_stop_traffic(data);
1151 	btusb_free_frags(data);
1152 
1153 	err = usb_autopm_get_interface(data->intf);
1154 	if (err < 0)
1155 		goto failed;
1156 
1157 	data->intf->needs_remote_wakeup = 0;
1158 	device_wakeup_disable(&data->udev->dev);
1159 	usb_autopm_put_interface(data->intf);
1160 
1161 failed:
1162 	usb_scuttle_anchored_urbs(&data->deferred);
1163 	return 0;
1164 }
1165 
1166 static int btusb_flush(struct hci_dev *hdev)
1167 {
1168 	struct btusb_data *data = hci_get_drvdata(hdev);
1169 
1170 	BT_DBG("%s", hdev->name);
1171 
1172 	usb_kill_anchored_urbs(&data->tx_anchor);
1173 	btusb_free_frags(data);
1174 
1175 	return 0;
1176 }
1177 
1178 static struct urb *alloc_ctrl_urb(struct hci_dev *hdev, struct sk_buff *skb)
1179 {
1180 	struct btusb_data *data = hci_get_drvdata(hdev);
1181 	struct usb_ctrlrequest *dr;
1182 	struct urb *urb;
1183 	unsigned int pipe;
1184 
1185 	urb = usb_alloc_urb(0, GFP_KERNEL);
1186 	if (!urb)
1187 		return ERR_PTR(-ENOMEM);
1188 
1189 	dr = kmalloc(sizeof(*dr), GFP_KERNEL);
1190 	if (!dr) {
1191 		usb_free_urb(urb);
1192 		return ERR_PTR(-ENOMEM);
1193 	}
1194 
1195 	dr->bRequestType = data->cmdreq_type;
1196 	dr->bRequest     = data->cmdreq;
1197 	dr->wIndex       = 0;
1198 	dr->wValue       = 0;
1199 	dr->wLength      = __cpu_to_le16(skb->len);
1200 
1201 	pipe = usb_sndctrlpipe(data->udev, 0x00);
1202 
1203 	usb_fill_control_urb(urb, data->udev, pipe, (void *)dr,
1204 			     skb->data, skb->len, btusb_tx_complete, skb);
1205 
1206 	skb->dev = (void *)hdev;
1207 
1208 	return urb;
1209 }
1210 
1211 static struct urb *alloc_bulk_urb(struct hci_dev *hdev, struct sk_buff *skb)
1212 {
1213 	struct btusb_data *data = hci_get_drvdata(hdev);
1214 	struct urb *urb;
1215 	unsigned int pipe;
1216 
1217 	if (!data->bulk_tx_ep)
1218 		return ERR_PTR(-ENODEV);
1219 
1220 	urb = usb_alloc_urb(0, GFP_KERNEL);
1221 	if (!urb)
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress);
1225 
1226 	usb_fill_bulk_urb(urb, data->udev, pipe,
1227 			  skb->data, skb->len, btusb_tx_complete, skb);
1228 
1229 	skb->dev = (void *)hdev;
1230 
1231 	return urb;
1232 }
1233 
1234 static struct urb *alloc_isoc_urb(struct hci_dev *hdev, struct sk_buff *skb)
1235 {
1236 	struct btusb_data *data = hci_get_drvdata(hdev);
1237 	struct urb *urb;
1238 	unsigned int pipe;
1239 
1240 	if (!data->isoc_tx_ep)
1241 		return ERR_PTR(-ENODEV);
1242 
1243 	urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_KERNEL);
1244 	if (!urb)
1245 		return ERR_PTR(-ENOMEM);
1246 
1247 	pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);
1248 
1249 	usb_fill_int_urb(urb, data->udev, pipe,
1250 			 skb->data, skb->len, btusb_isoc_tx_complete,
1251 			 skb, data->isoc_tx_ep->bInterval);
1252 
1253 	urb->transfer_flags  = URB_ISO_ASAP;
1254 
1255 	__fill_isoc_descriptor(urb, skb->len,
1256 			       le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));
1257 
1258 	skb->dev = (void *)hdev;
1259 
1260 	return urb;
1261 }
1262 
1263 static int submit_tx_urb(struct hci_dev *hdev, struct urb *urb)
1264 {
1265 	struct btusb_data *data = hci_get_drvdata(hdev);
1266 	int err;
1267 
1268 	usb_anchor_urb(urb, &data->tx_anchor);
1269 
1270 	err = usb_submit_urb(urb, GFP_KERNEL);
1271 	if (err < 0) {
1272 		if (err != -EPERM && err != -ENODEV)
1273 			BT_ERR("%s urb %p submission failed (%d)",
1274 			       hdev->name, urb, -err);
1275 		kfree(urb->setup_packet);
1276 		usb_unanchor_urb(urb);
1277 	} else {
1278 		usb_mark_last_busy(data->udev);
1279 	}
1280 
1281 	usb_free_urb(urb);
1282 	return err;
1283 }
1284 
1285 static int submit_or_queue_tx_urb(struct hci_dev *hdev, struct urb *urb)
1286 {
1287 	struct btusb_data *data = hci_get_drvdata(hdev);
1288 	unsigned long flags;
1289 	bool suspending;
1290 
1291 	spin_lock_irqsave(&data->txlock, flags);
1292 	suspending = test_bit(BTUSB_SUSPENDING, &data->flags);
1293 	if (!suspending)
1294 		data->tx_in_flight++;
1295 	spin_unlock_irqrestore(&data->txlock, flags);
1296 
1297 	if (!suspending)
1298 		return submit_tx_urb(hdev, urb);
1299 
1300 	usb_anchor_urb(urb, &data->deferred);
1301 	schedule_work(&data->waker);
1302 
1303 	usb_free_urb(urb);
1304 	return 0;
1305 }
1306 
1307 static int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1308 {
1309 	struct urb *urb;
1310 
1311 	BT_DBG("%s", hdev->name);
1312 
1313 	switch (hci_skb_pkt_type(skb)) {
1314 	case HCI_COMMAND_PKT:
1315 		urb = alloc_ctrl_urb(hdev, skb);
1316 		if (IS_ERR(urb))
1317 			return PTR_ERR(urb);
1318 
1319 		hdev->stat.cmd_tx++;
1320 		return submit_or_queue_tx_urb(hdev, urb);
1321 
1322 	case HCI_ACLDATA_PKT:
1323 		urb = alloc_bulk_urb(hdev, skb);
1324 		if (IS_ERR(urb))
1325 			return PTR_ERR(urb);
1326 
1327 		hdev->stat.acl_tx++;
1328 		return submit_or_queue_tx_urb(hdev, urb);
1329 
1330 	case HCI_SCODATA_PKT:
1331 		if (hci_conn_num(hdev, SCO_LINK) < 1)
1332 			return -ENODEV;
1333 
1334 		urb = alloc_isoc_urb(hdev, skb);
1335 		if (IS_ERR(urb))
1336 			return PTR_ERR(urb);
1337 
1338 		hdev->stat.sco_tx++;
1339 		return submit_tx_urb(hdev, urb);
1340 	}
1341 
1342 	return -EILSEQ;
1343 }
1344 
1345 static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
1346 {
1347 	struct btusb_data *data = hci_get_drvdata(hdev);
1348 
1349 	BT_DBG("%s evt %d", hdev->name, evt);
1350 
1351 	if (hci_conn_num(hdev, SCO_LINK) != data->sco_num) {
1352 		data->sco_num = hci_conn_num(hdev, SCO_LINK);
1353 		schedule_work(&data->work);
1354 	}
1355 }
1356 
1357 static inline int __set_isoc_interface(struct hci_dev *hdev, int altsetting)
1358 {
1359 	struct btusb_data *data = hci_get_drvdata(hdev);
1360 	struct usb_interface *intf = data->isoc;
1361 	struct usb_endpoint_descriptor *ep_desc;
1362 	int i, err;
1363 
1364 	if (!data->isoc)
1365 		return -ENODEV;
1366 
1367 	err = usb_set_interface(data->udev, 1, altsetting);
1368 	if (err < 0) {
1369 		BT_ERR("%s setting interface failed (%d)", hdev->name, -err);
1370 		return err;
1371 	}
1372 
1373 	data->isoc_altsetting = altsetting;
1374 
1375 	data->isoc_tx_ep = NULL;
1376 	data->isoc_rx_ep = NULL;
1377 
1378 	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
1379 		ep_desc = &intf->cur_altsetting->endpoint[i].desc;
1380 
1381 		if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
1382 			data->isoc_tx_ep = ep_desc;
1383 			continue;
1384 		}
1385 
1386 		if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
1387 			data->isoc_rx_ep = ep_desc;
1388 			continue;
1389 		}
1390 	}
1391 
1392 	if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
1393 		BT_ERR("%s invalid SCO descriptors", hdev->name);
1394 		return -ENODEV;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 static void btusb_work(struct work_struct *work)
1401 {
1402 	struct btusb_data *data = container_of(work, struct btusb_data, work);
1403 	struct hci_dev *hdev = data->hdev;
1404 	int new_alts;
1405 	int err;
1406 
1407 	if (data->sco_num > 0) {
1408 		if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
1409 			err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
1410 			if (err < 0) {
1411 				clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1412 				usb_kill_anchored_urbs(&data->isoc_anchor);
1413 				return;
1414 			}
1415 
1416 			set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
1417 		}
1418 
1419 		if (hdev->voice_setting & 0x0020) {
1420 			static const int alts[3] = { 2, 4, 5 };
1421 
1422 			new_alts = alts[data->sco_num - 1];
1423 		} else {
1424 			new_alts = data->sco_num;
1425 		}
1426 
1427 		if (data->isoc_altsetting != new_alts) {
1428 			unsigned long flags;
1429 
1430 			clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1431 			usb_kill_anchored_urbs(&data->isoc_anchor);
1432 
1433 			/* When isochronous alternate setting needs to be
1434 			 * changed, because SCO connection has been added
1435 			 * or removed, a packet fragment may be left in the
1436 			 * reassembling state. This could lead to wrongly
1437 			 * assembled fragments.
1438 			 *
1439 			 * Clear outstanding fragment when selecting a new
1440 			 * alternate setting.
1441 			 */
1442 			spin_lock_irqsave(&data->rxlock, flags);
1443 			kfree_skb(data->sco_skb);
1444 			data->sco_skb = NULL;
1445 			spin_unlock_irqrestore(&data->rxlock, flags);
1446 
1447 			if (__set_isoc_interface(hdev, new_alts) < 0)
1448 				return;
1449 		}
1450 
1451 		if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
1452 			if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
1453 				clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1454 			else
1455 				btusb_submit_isoc_urb(hdev, GFP_KERNEL);
1456 		}
1457 	} else {
1458 		clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1459 		usb_kill_anchored_urbs(&data->isoc_anchor);
1460 
1461 		__set_isoc_interface(hdev, 0);
1462 		if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
1463 			usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
1464 	}
1465 }
1466 
1467 static void btusb_waker(struct work_struct *work)
1468 {
1469 	struct btusb_data *data = container_of(work, struct btusb_data, waker);
1470 	int err;
1471 
1472 	err = usb_autopm_get_interface(data->intf);
1473 	if (err < 0)
1474 		return;
1475 
1476 	usb_autopm_put_interface(data->intf);
1477 }
1478 
1479 static int btusb_setup_bcm92035(struct hci_dev *hdev)
1480 {
1481 	struct sk_buff *skb;
1482 	u8 val = 0x00;
1483 
1484 	BT_DBG("%s", hdev->name);
1485 
1486 	skb = __hci_cmd_sync(hdev, 0xfc3b, 1, &val, HCI_INIT_TIMEOUT);
1487 	if (IS_ERR(skb))
1488 		BT_ERR("BCM92035 command failed (%ld)", -PTR_ERR(skb));
1489 	else
1490 		kfree_skb(skb);
1491 
1492 	return 0;
1493 }
1494 
1495 static int btusb_setup_csr(struct hci_dev *hdev)
1496 {
1497 	struct hci_rp_read_local_version *rp;
1498 	struct sk_buff *skb;
1499 
1500 	BT_DBG("%s", hdev->name);
1501 
1502 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
1503 			     HCI_INIT_TIMEOUT);
1504 	if (IS_ERR(skb)) {
1505 		int err = PTR_ERR(skb);
1506 		BT_ERR("%s: CSR: Local version failed (%d)", hdev->name, err);
1507 		return err;
1508 	}
1509 
1510 	if (skb->len != sizeof(struct hci_rp_read_local_version)) {
1511 		BT_ERR("%s: CSR: Local version length mismatch", hdev->name);
1512 		kfree_skb(skb);
1513 		return -EIO;
1514 	}
1515 
1516 	rp = (struct hci_rp_read_local_version *)skb->data;
1517 
1518 	/* Detect controllers which aren't real CSR ones. */
1519 	if (le16_to_cpu(rp->manufacturer) != 10 ||
1520 	    le16_to_cpu(rp->lmp_subver) == 0x0c5c) {
1521 		/* Clear the reset quirk since this is not an actual
1522 		 * early Bluetooth 1.1 device from CSR.
1523 		 */
1524 		clear_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
1525 
1526 		/* These fake CSR controllers have all a broken
1527 		 * stored link key handling and so just disable it.
1528 		 */
1529 		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
1530 	}
1531 
1532 	kfree_skb(skb);
1533 
1534 	return 0;
1535 }
1536 
1537 static const struct firmware *btusb_setup_intel_get_fw(struct hci_dev *hdev,
1538 						       struct intel_version *ver)
1539 {
1540 	const struct firmware *fw;
1541 	char fwname[64];
1542 	int ret;
1543 
1544 	snprintf(fwname, sizeof(fwname),
1545 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1546 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1547 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1548 		 ver->fw_build_ww, ver->fw_build_yy);
1549 
1550 	ret = request_firmware(&fw, fwname, &hdev->dev);
1551 	if (ret < 0) {
1552 		if (ret == -EINVAL) {
1553 			BT_ERR("%s Intel firmware file request failed (%d)",
1554 			       hdev->name, ret);
1555 			return NULL;
1556 		}
1557 
1558 		BT_ERR("%s failed to open Intel firmware file: %s(%d)",
1559 		       hdev->name, fwname, ret);
1560 
1561 		/* If the correct firmware patch file is not found, use the
1562 		 * default firmware patch file instead
1563 		 */
1564 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1565 			 ver->hw_platform, ver->hw_variant);
1566 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1567 			BT_ERR("%s failed to open default Intel fw file: %s",
1568 			       hdev->name, fwname);
1569 			return NULL;
1570 		}
1571 	}
1572 
1573 	BT_INFO("%s: Intel Bluetooth firmware file: %s", hdev->name, fwname);
1574 
1575 	return fw;
1576 }
1577 
1578 static int btusb_setup_intel_patching(struct hci_dev *hdev,
1579 				      const struct firmware *fw,
1580 				      const u8 **fw_ptr, int *disable_patch)
1581 {
1582 	struct sk_buff *skb;
1583 	struct hci_command_hdr *cmd;
1584 	const u8 *cmd_param;
1585 	struct hci_event_hdr *evt = NULL;
1586 	const u8 *evt_param = NULL;
1587 	int remain = fw->size - (*fw_ptr - fw->data);
1588 
1589 	/* The first byte indicates the types of the patch command or event.
1590 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1591 	 * in the current firmware buffer doesn't start with 0x01 or
1592 	 * the size of remain buffer is smaller than HCI command header,
1593 	 * the firmware file is corrupted and it should stop the patching
1594 	 * process.
1595 	 */
1596 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1597 		BT_ERR("%s Intel fw corrupted: invalid cmd read", hdev->name);
1598 		return -EINVAL;
1599 	}
1600 	(*fw_ptr)++;
1601 	remain--;
1602 
1603 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1604 	*fw_ptr += sizeof(*cmd);
1605 	remain -= sizeof(*cmd);
1606 
1607 	/* Ensure that the remain firmware data is long enough than the length
1608 	 * of command parameter. If not, the firmware file is corrupted.
1609 	 */
1610 	if (remain < cmd->plen) {
1611 		BT_ERR("%s Intel fw corrupted: invalid cmd len", hdev->name);
1612 		return -EFAULT;
1613 	}
1614 
1615 	/* If there is a command that loads a patch in the firmware
1616 	 * file, then enable the patch upon success, otherwise just
1617 	 * disable the manufacturer mode, for example patch activation
1618 	 * is not required when the default firmware patch file is used
1619 	 * because there are no patch data to load.
1620 	 */
1621 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1622 		*disable_patch = 0;
1623 
1624 	cmd_param = *fw_ptr;
1625 	*fw_ptr += cmd->plen;
1626 	remain -= cmd->plen;
1627 
1628 	/* This reads the expected events when the above command is sent to the
1629 	 * device. Some vendor commands expects more than one events, for
1630 	 * example command status event followed by vendor specific event.
1631 	 * For this case, it only keeps the last expected event. so the command
1632 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1633 	 * last expected event.
1634 	 */
1635 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1636 		(*fw_ptr)++;
1637 		remain--;
1638 
1639 		evt = (struct hci_event_hdr *)(*fw_ptr);
1640 		*fw_ptr += sizeof(*evt);
1641 		remain -= sizeof(*evt);
1642 
1643 		if (remain < evt->plen) {
1644 			BT_ERR("%s Intel fw corrupted: invalid evt len",
1645 			       hdev->name);
1646 			return -EFAULT;
1647 		}
1648 
1649 		evt_param = *fw_ptr;
1650 		*fw_ptr += evt->plen;
1651 		remain -= evt->plen;
1652 	}
1653 
1654 	/* Every HCI commands in the firmware file has its correspond event.
1655 	 * If event is not found or remain is smaller than zero, the firmware
1656 	 * file is corrupted.
1657 	 */
1658 	if (!evt || !evt_param || remain < 0) {
1659 		BT_ERR("%s Intel fw corrupted: invalid evt read", hdev->name);
1660 		return -EFAULT;
1661 	}
1662 
1663 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1664 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1665 	if (IS_ERR(skb)) {
1666 		BT_ERR("%s sending Intel patch command (0x%4.4x) failed (%ld)",
1667 		       hdev->name, cmd->opcode, PTR_ERR(skb));
1668 		return PTR_ERR(skb);
1669 	}
1670 
1671 	/* It ensures that the returned event matches the event data read from
1672 	 * the firmware file. At fist, it checks the length and then
1673 	 * the contents of the event.
1674 	 */
1675 	if (skb->len != evt->plen) {
1676 		BT_ERR("%s mismatch event length (opcode 0x%4.4x)", hdev->name,
1677 		       le16_to_cpu(cmd->opcode));
1678 		kfree_skb(skb);
1679 		return -EFAULT;
1680 	}
1681 
1682 	if (memcmp(skb->data, evt_param, evt->plen)) {
1683 		BT_ERR("%s mismatch event parameter (opcode 0x%4.4x)",
1684 		       hdev->name, le16_to_cpu(cmd->opcode));
1685 		kfree_skb(skb);
1686 		return -EFAULT;
1687 	}
1688 	kfree_skb(skb);
1689 
1690 	return 0;
1691 }
1692 
1693 static int btusb_setup_intel(struct hci_dev *hdev)
1694 {
1695 	struct sk_buff *skb;
1696 	const struct firmware *fw;
1697 	const u8 *fw_ptr;
1698 	int disable_patch, err;
1699 	struct intel_version ver;
1700 
1701 	BT_DBG("%s", hdev->name);
1702 
1703 	/* The controller has a bug with the first HCI command sent to it
1704 	 * returning number of completed commands as zero. This would stall the
1705 	 * command processing in the Bluetooth core.
1706 	 *
1707 	 * As a workaround, send HCI Reset command first which will reset the
1708 	 * number of completed commands and allow normal command processing
1709 	 * from now on.
1710 	 */
1711 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
1712 	if (IS_ERR(skb)) {
1713 		BT_ERR("%s sending initial HCI reset command failed (%ld)",
1714 		       hdev->name, PTR_ERR(skb));
1715 		return PTR_ERR(skb);
1716 	}
1717 	kfree_skb(skb);
1718 
1719 	/* Read Intel specific controller version first to allow selection of
1720 	 * which firmware file to load.
1721 	 *
1722 	 * The returned information are hardware variant and revision plus
1723 	 * firmware variant, revision and build number.
1724 	 */
1725 	err = btintel_read_version(hdev, &ver);
1726 	if (err)
1727 		return err;
1728 
1729 	BT_INFO("%s: read Intel version: %02x%02x%02x%02x%02x%02x%02x%02x%02x",
1730 		hdev->name, ver.hw_platform, ver.hw_variant, ver.hw_revision,
1731 		ver.fw_variant,  ver.fw_revision, ver.fw_build_num,
1732 		ver.fw_build_ww, ver.fw_build_yy, ver.fw_patch_num);
1733 
1734 	/* fw_patch_num indicates the version of patch the device currently
1735 	 * have. If there is no patch data in the device, it is always 0x00.
1736 	 * So, if it is other than 0x00, no need to patch the device again.
1737 	 */
1738 	if (ver.fw_patch_num) {
1739 		BT_INFO("%s: Intel device is already patched. patch num: %02x",
1740 			hdev->name, ver.fw_patch_num);
1741 		goto complete;
1742 	}
1743 
1744 	/* Opens the firmware patch file based on the firmware version read
1745 	 * from the controller. If it fails to open the matching firmware
1746 	 * patch file, it tries to open the default firmware patch file.
1747 	 * If no patch file is found, allow the device to operate without
1748 	 * a patch.
1749 	 */
1750 	fw = btusb_setup_intel_get_fw(hdev, &ver);
1751 	if (!fw)
1752 		goto complete;
1753 	fw_ptr = fw->data;
1754 
1755 	/* Enable the manufacturer mode of the controller.
1756 	 * Only while this mode is enabled, the driver can download the
1757 	 * firmware patch data and configuration parameters.
1758 	 */
1759 	err = btintel_enter_mfg(hdev);
1760 	if (err) {
1761 		release_firmware(fw);
1762 		return err;
1763 	}
1764 
1765 	disable_patch = 1;
1766 
1767 	/* The firmware data file consists of list of Intel specific HCI
1768 	 * commands and its expected events. The first byte indicates the
1769 	 * type of the message, either HCI command or HCI event.
1770 	 *
1771 	 * It reads the command and its expected event from the firmware file,
1772 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1773 	 * the returned event is compared with the event read from the firmware
1774 	 * file and it will continue until all the messages are downloaded to
1775 	 * the controller.
1776 	 *
1777 	 * Once the firmware patching is completed successfully,
1778 	 * the manufacturer mode is disabled with reset and activating the
1779 	 * downloaded patch.
1780 	 *
1781 	 * If the firmware patching fails, the manufacturer mode is
1782 	 * disabled with reset and deactivating the patch.
1783 	 *
1784 	 * If the default patch file is used, no reset is done when disabling
1785 	 * the manufacturer.
1786 	 */
1787 	while (fw->size > fw_ptr - fw->data) {
1788 		int ret;
1789 
1790 		ret = btusb_setup_intel_patching(hdev, fw, &fw_ptr,
1791 						 &disable_patch);
1792 		if (ret < 0)
1793 			goto exit_mfg_deactivate;
1794 	}
1795 
1796 	release_firmware(fw);
1797 
1798 	if (disable_patch)
1799 		goto exit_mfg_disable;
1800 
1801 	/* Patching completed successfully and disable the manufacturer mode
1802 	 * with reset and activate the downloaded firmware patches.
1803 	 */
1804 	err = btintel_exit_mfg(hdev, true, true);
1805 	if (err)
1806 		return err;
1807 
1808 	BT_INFO("%s: Intel Bluetooth firmware patch completed and activated",
1809 		hdev->name);
1810 
1811 	goto complete;
1812 
1813 exit_mfg_disable:
1814 	/* Disable the manufacturer mode without reset */
1815 	err = btintel_exit_mfg(hdev, false, false);
1816 	if (err)
1817 		return err;
1818 
1819 	BT_INFO("%s: Intel Bluetooth firmware patch completed", hdev->name);
1820 
1821 	goto complete;
1822 
1823 exit_mfg_deactivate:
1824 	release_firmware(fw);
1825 
1826 	/* Patching failed. Disable the manufacturer mode with reset and
1827 	 * deactivate the downloaded firmware patches.
1828 	 */
1829 	err = btintel_exit_mfg(hdev, true, false);
1830 	if (err)
1831 		return err;
1832 
1833 	BT_INFO("%s: Intel Bluetooth firmware patch completed and deactivated",
1834 		hdev->name);
1835 
1836 complete:
1837 	/* Set the event mask for Intel specific vendor events. This enables
1838 	 * a few extra events that are useful during general operation.
1839 	 */
1840 	btintel_set_event_mask_mfg(hdev, false);
1841 
1842 	btintel_check_bdaddr(hdev);
1843 	return 0;
1844 }
1845 
1846 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1847 {
1848 	struct sk_buff *skb;
1849 	struct hci_event_hdr *hdr;
1850 	struct hci_ev_cmd_complete *evt;
1851 
1852 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
1853 	if (!skb)
1854 		return -ENOMEM;
1855 
1856 	hdr = skb_put(skb, sizeof(*hdr));
1857 	hdr->evt = HCI_EV_CMD_COMPLETE;
1858 	hdr->plen = sizeof(*evt) + 1;
1859 
1860 	evt = skb_put(skb, sizeof(*evt));
1861 	evt->ncmd = 0x01;
1862 	evt->opcode = cpu_to_le16(opcode);
1863 
1864 	skb_put_u8(skb, 0x00);
1865 
1866 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1867 
1868 	return hci_recv_frame(hdev, skb);
1869 }
1870 
1871 static int btusb_recv_bulk_intel(struct btusb_data *data, void *buffer,
1872 				 int count)
1873 {
1874 	/* When the device is in bootloader mode, then it can send
1875 	 * events via the bulk endpoint. These events are treated the
1876 	 * same way as the ones received from the interrupt endpoint.
1877 	 */
1878 	if (test_bit(BTUSB_BOOTLOADER, &data->flags))
1879 		return btusb_recv_intr(data, buffer, count);
1880 
1881 	return btusb_recv_bulk(data, buffer, count);
1882 }
1883 
1884 static void btusb_intel_bootup(struct btusb_data *data, const void *ptr,
1885 			       unsigned int len)
1886 {
1887 	const struct intel_bootup *evt = ptr;
1888 
1889 	if (len != sizeof(*evt))
1890 		return;
1891 
1892 	if (test_and_clear_bit(BTUSB_BOOTING, &data->flags)) {
1893 		smp_mb__after_atomic();
1894 		wake_up_bit(&data->flags, BTUSB_BOOTING);
1895 	}
1896 }
1897 
1898 static void btusb_intel_secure_send_result(struct btusb_data *data,
1899 					   const void *ptr, unsigned int len)
1900 {
1901 	const struct intel_secure_send_result *evt = ptr;
1902 
1903 	if (len != sizeof(*evt))
1904 		return;
1905 
1906 	if (evt->result)
1907 		set_bit(BTUSB_FIRMWARE_FAILED, &data->flags);
1908 
1909 	if (test_and_clear_bit(BTUSB_DOWNLOADING, &data->flags) &&
1910 	    test_bit(BTUSB_FIRMWARE_LOADED, &data->flags)) {
1911 		smp_mb__after_atomic();
1912 		wake_up_bit(&data->flags, BTUSB_DOWNLOADING);
1913 	}
1914 }
1915 
1916 static int btusb_recv_event_intel(struct hci_dev *hdev, struct sk_buff *skb)
1917 {
1918 	struct btusb_data *data = hci_get_drvdata(hdev);
1919 
1920 	if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
1921 		struct hci_event_hdr *hdr = (void *)skb->data;
1922 
1923 		if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
1924 		    hdr->plen > 0) {
1925 			const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
1926 			unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
1927 
1928 			switch (skb->data[2]) {
1929 			case 0x02:
1930 				/* When switching to the operational firmware
1931 				 * the device sends a vendor specific event
1932 				 * indicating that the bootup completed.
1933 				 */
1934 				btusb_intel_bootup(data, ptr, len);
1935 				break;
1936 			case 0x06:
1937 				/* When the firmware loading completes the
1938 				 * device sends out a vendor specific event
1939 				 * indicating the result of the firmware
1940 				 * loading.
1941 				 */
1942 				btusb_intel_secure_send_result(data, ptr, len);
1943 				break;
1944 			}
1945 		}
1946 	}
1947 
1948 	return hci_recv_frame(hdev, skb);
1949 }
1950 
1951 static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb)
1952 {
1953 	struct btusb_data *data = hci_get_drvdata(hdev);
1954 	struct urb *urb;
1955 
1956 	BT_DBG("%s", hdev->name);
1957 
1958 	switch (hci_skb_pkt_type(skb)) {
1959 	case HCI_COMMAND_PKT:
1960 		if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
1961 			struct hci_command_hdr *cmd = (void *)skb->data;
1962 			__u16 opcode = le16_to_cpu(cmd->opcode);
1963 
1964 			/* When in bootloader mode and the command 0xfc09
1965 			 * is received, it needs to be send down the
1966 			 * bulk endpoint. So allocate a bulk URB instead.
1967 			 */
1968 			if (opcode == 0xfc09)
1969 				urb = alloc_bulk_urb(hdev, skb);
1970 			else
1971 				urb = alloc_ctrl_urb(hdev, skb);
1972 
1973 			/* When the 0xfc01 command is issued to boot into
1974 			 * the operational firmware, it will actually not
1975 			 * send a command complete event. To keep the flow
1976 			 * control working inject that event here.
1977 			 */
1978 			if (opcode == 0xfc01)
1979 				inject_cmd_complete(hdev, opcode);
1980 		} else {
1981 			urb = alloc_ctrl_urb(hdev, skb);
1982 		}
1983 		if (IS_ERR(urb))
1984 			return PTR_ERR(urb);
1985 
1986 		hdev->stat.cmd_tx++;
1987 		return submit_or_queue_tx_urb(hdev, urb);
1988 
1989 	case HCI_ACLDATA_PKT:
1990 		urb = alloc_bulk_urb(hdev, skb);
1991 		if (IS_ERR(urb))
1992 			return PTR_ERR(urb);
1993 
1994 		hdev->stat.acl_tx++;
1995 		return submit_or_queue_tx_urb(hdev, urb);
1996 
1997 	case HCI_SCODATA_PKT:
1998 		if (hci_conn_num(hdev, SCO_LINK) < 1)
1999 			return -ENODEV;
2000 
2001 		urb = alloc_isoc_urb(hdev, skb);
2002 		if (IS_ERR(urb))
2003 			return PTR_ERR(urb);
2004 
2005 		hdev->stat.sco_tx++;
2006 		return submit_tx_urb(hdev, urb);
2007 	}
2008 
2009 	return -EILSEQ;
2010 }
2011 
2012 static int btusb_setup_intel_new(struct hci_dev *hdev)
2013 {
2014 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
2015 					  0x00, 0x08, 0x04, 0x00 };
2016 	struct btusb_data *data = hci_get_drvdata(hdev);
2017 	struct sk_buff *skb;
2018 	struct intel_version ver;
2019 	struct intel_boot_params *params;
2020 	const struct firmware *fw;
2021 	const u8 *fw_ptr;
2022 	u32 frag_len;
2023 	char fwname[64];
2024 	ktime_t calltime, delta, rettime;
2025 	unsigned long long duration;
2026 	int err;
2027 
2028 	BT_DBG("%s", hdev->name);
2029 
2030 	calltime = ktime_get();
2031 
2032 	/* Read the Intel version information to determine if the device
2033 	 * is in bootloader mode or if it already has operational firmware
2034 	 * loaded.
2035 	 */
2036 	err = btintel_read_version(hdev, &ver);
2037 	if (err)
2038 		return err;
2039 
2040 	/* The hardware platform number has a fixed value of 0x37 and
2041 	 * for now only accept this single value.
2042 	 */
2043 	if (ver.hw_platform != 0x37) {
2044 		BT_ERR("%s: Unsupported Intel hardware platform (%u)",
2045 		       hdev->name, ver.hw_platform);
2046 		return -EINVAL;
2047 	}
2048 
2049 	/* Check for supported iBT hardware variants of this firmware
2050 	 * loading method.
2051 	 *
2052 	 * This check has been put in place to ensure correct forward
2053 	 * compatibility options when newer hardware variants come along.
2054 	 */
2055 	switch (ver.hw_variant) {
2056 	case 0x0b:	/* SfP */
2057 	case 0x0c:	/* WsP */
2058 	case 0x11:	/* JfP */
2059 	case 0x12:	/* ThP */
2060 		break;
2061 	default:
2062 		BT_ERR("%s: Unsupported Intel hardware variant (%u)",
2063 		       hdev->name, ver.hw_variant);
2064 		return -EINVAL;
2065 	}
2066 
2067 	btintel_version_info(hdev, &ver);
2068 
2069 	/* The firmware variant determines if the device is in bootloader
2070 	 * mode or is running operational firmware. The value 0x06 identifies
2071 	 * the bootloader and the value 0x23 identifies the operational
2072 	 * firmware.
2073 	 *
2074 	 * When the operational firmware is already present, then only
2075 	 * the check for valid Bluetooth device address is needed. This
2076 	 * determines if the device will be added as configured or
2077 	 * unconfigured controller.
2078 	 *
2079 	 * It is not possible to use the Secure Boot Parameters in this
2080 	 * case since that command is only available in bootloader mode.
2081 	 */
2082 	if (ver.fw_variant == 0x23) {
2083 		clear_bit(BTUSB_BOOTLOADER, &data->flags);
2084 		btintel_check_bdaddr(hdev);
2085 		return 0;
2086 	}
2087 
2088 	/* If the device is not in bootloader mode, then the only possible
2089 	 * choice is to return an error and abort the device initialization.
2090 	 */
2091 	if (ver.fw_variant != 0x06) {
2092 		BT_ERR("%s: Unsupported Intel firmware variant (%u)",
2093 		       hdev->name, ver.fw_variant);
2094 		return -ENODEV;
2095 	}
2096 
2097 	/* Read the secure boot parameters to identify the operating
2098 	 * details of the bootloader.
2099 	 */
2100 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
2101 	if (IS_ERR(skb)) {
2102 		BT_ERR("%s: Reading Intel boot parameters failed (%ld)",
2103 		       hdev->name, PTR_ERR(skb));
2104 		return PTR_ERR(skb);
2105 	}
2106 
2107 	if (skb->len != sizeof(*params)) {
2108 		BT_ERR("%s: Intel boot parameters size mismatch", hdev->name);
2109 		kfree_skb(skb);
2110 		return -EILSEQ;
2111 	}
2112 
2113 	params = (struct intel_boot_params *)skb->data;
2114 
2115 	BT_INFO("%s: Device revision is %u", hdev->name,
2116 		le16_to_cpu(params->dev_revid));
2117 
2118 	BT_INFO("%s: Secure boot is %s", hdev->name,
2119 		params->secure_boot ? "enabled" : "disabled");
2120 
2121 	BT_INFO("%s: OTP lock is %s", hdev->name,
2122 		params->otp_lock ? "enabled" : "disabled");
2123 
2124 	BT_INFO("%s: API lock is %s", hdev->name,
2125 		params->api_lock ? "enabled" : "disabled");
2126 
2127 	BT_INFO("%s: Debug lock is %s", hdev->name,
2128 		params->debug_lock ? "enabled" : "disabled");
2129 
2130 	BT_INFO("%s: Minimum firmware build %u week %u %u", hdev->name,
2131 		params->min_fw_build_nn, params->min_fw_build_cw,
2132 		2000 + params->min_fw_build_yy);
2133 
2134 	/* It is required that every single firmware fragment is acknowledged
2135 	 * with a command complete event. If the boot parameters indicate
2136 	 * that this bootloader does not send them, then abort the setup.
2137 	 */
2138 	if (params->limited_cce != 0x00) {
2139 		BT_ERR("%s: Unsupported Intel firmware loading method (%u)",
2140 		       hdev->name, params->limited_cce);
2141 		kfree_skb(skb);
2142 		return -EINVAL;
2143 	}
2144 
2145 	/* If the OTP has no valid Bluetooth device address, then there will
2146 	 * also be no valid address for the operational firmware.
2147 	 */
2148 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2149 		BT_INFO("%s: No device address configured", hdev->name);
2150 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2151 	}
2152 
2153 	/* With this Intel bootloader only the hardware variant and device
2154 	 * revision information are used to select the right firmware.
2155 	 *
2156 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2157 	 *
2158 	 * Currently the supported hardware variants are:
2159 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
2160 	 *   12 (0x0c) for iBT3.5 (WsP)
2161 	 *   17 (0x11) for iBT3.5 (JfP)
2162 	 *   18 (0x12) for iBT3.5 (ThP)
2163 	 */
2164 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
2165 		 le16_to_cpu(ver.hw_variant),
2166 		 le16_to_cpu(params->dev_revid));
2167 
2168 	err = request_firmware(&fw, fwname, &hdev->dev);
2169 	if (err < 0) {
2170 		BT_ERR("%s: Failed to load Intel firmware file (%d)",
2171 		       hdev->name, err);
2172 		kfree_skb(skb);
2173 		return err;
2174 	}
2175 
2176 	BT_INFO("%s: Found device firmware: %s", hdev->name, fwname);
2177 
2178 	/* Save the DDC file name for later use to apply once the firmware
2179 	 * downloading is done.
2180 	 */
2181 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
2182 		 le16_to_cpu(ver.hw_variant),
2183 		 le16_to_cpu(params->dev_revid));
2184 
2185 	kfree_skb(skb);
2186 
2187 	if (fw->size < 644) {
2188 		BT_ERR("%s: Invalid size of firmware file (%zu)",
2189 		       hdev->name, fw->size);
2190 		err = -EBADF;
2191 		goto done;
2192 	}
2193 
2194 	set_bit(BTUSB_DOWNLOADING, &data->flags);
2195 
2196 	/* Start the firmware download transaction with the Init fragment
2197 	 * represented by the 128 bytes of CSS header.
2198 	 */
2199 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
2200 	if (err < 0) {
2201 		BT_ERR("%s: Failed to send firmware header (%d)",
2202 		       hdev->name, err);
2203 		goto done;
2204 	}
2205 
2206 	/* Send the 256 bytes of public key information from the firmware
2207 	 * as the PKey fragment.
2208 	 */
2209 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
2210 	if (err < 0) {
2211 		BT_ERR("%s: Failed to send firmware public key (%d)",
2212 		       hdev->name, err);
2213 		goto done;
2214 	}
2215 
2216 	/* Send the 256 bytes of signature information from the firmware
2217 	 * as the Sign fragment.
2218 	 */
2219 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
2220 	if (err < 0) {
2221 		BT_ERR("%s: Failed to send firmware signature (%d)",
2222 		       hdev->name, err);
2223 		goto done;
2224 	}
2225 
2226 	fw_ptr = fw->data + 644;
2227 	frag_len = 0;
2228 
2229 	while (fw_ptr - fw->data < fw->size) {
2230 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
2231 
2232 		frag_len += sizeof(*cmd) + cmd->plen;
2233 
2234 		/* The parameter length of the secure send command requires
2235 		 * a 4 byte alignment. It happens so that the firmware file
2236 		 * contains proper Intel_NOP commands to align the fragments
2237 		 * as needed.
2238 		 *
2239 		 * Send set of commands with 4 byte alignment from the
2240 		 * firmware data buffer as a single Data fragement.
2241 		 */
2242 		if (!(frag_len % 4)) {
2243 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
2244 			if (err < 0) {
2245 				BT_ERR("%s: Failed to send firmware data (%d)",
2246 				       hdev->name, err);
2247 				goto done;
2248 			}
2249 
2250 			fw_ptr += frag_len;
2251 			frag_len = 0;
2252 		}
2253 	}
2254 
2255 	set_bit(BTUSB_FIRMWARE_LOADED, &data->flags);
2256 
2257 	BT_INFO("%s: Waiting for firmware download to complete", hdev->name);
2258 
2259 	/* Before switching the device into operational mode and with that
2260 	 * booting the loaded firmware, wait for the bootloader notification
2261 	 * that all fragments have been successfully received.
2262 	 *
2263 	 * When the event processing receives the notification, then the
2264 	 * BTUSB_DOWNLOADING flag will be cleared.
2265 	 *
2266 	 * The firmware loading should not take longer than 5 seconds
2267 	 * and thus just timeout if that happens and fail the setup
2268 	 * of this device.
2269 	 */
2270 	err = wait_on_bit_timeout(&data->flags, BTUSB_DOWNLOADING,
2271 				  TASK_INTERRUPTIBLE,
2272 				  msecs_to_jiffies(5000));
2273 	if (err == -EINTR) {
2274 		BT_ERR("%s: Firmware loading interrupted", hdev->name);
2275 		goto done;
2276 	}
2277 
2278 	if (err) {
2279 		BT_ERR("%s: Firmware loading timeout", hdev->name);
2280 		err = -ETIMEDOUT;
2281 		goto done;
2282 	}
2283 
2284 	if (test_bit(BTUSB_FIRMWARE_FAILED, &data->flags)) {
2285 		BT_ERR("%s: Firmware loading failed", hdev->name);
2286 		err = -ENOEXEC;
2287 		goto done;
2288 	}
2289 
2290 	rettime = ktime_get();
2291 	delta = ktime_sub(rettime, calltime);
2292 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
2293 
2294 	BT_INFO("%s: Firmware loaded in %llu usecs", hdev->name, duration);
2295 
2296 done:
2297 	release_firmware(fw);
2298 
2299 	if (err < 0)
2300 		return err;
2301 
2302 	calltime = ktime_get();
2303 
2304 	set_bit(BTUSB_BOOTING, &data->flags);
2305 
2306 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
2307 			     HCI_INIT_TIMEOUT);
2308 	if (IS_ERR(skb))
2309 		return PTR_ERR(skb);
2310 
2311 	kfree_skb(skb);
2312 
2313 	/* The bootloader will not indicate when the device is ready. This
2314 	 * is done by the operational firmware sending bootup notification.
2315 	 *
2316 	 * Booting into operational firmware should not take longer than
2317 	 * 1 second. However if that happens, then just fail the setup
2318 	 * since something went wrong.
2319 	 */
2320 	BT_INFO("%s: Waiting for device to boot", hdev->name);
2321 
2322 	err = wait_on_bit_timeout(&data->flags, BTUSB_BOOTING,
2323 				  TASK_INTERRUPTIBLE,
2324 				  msecs_to_jiffies(1000));
2325 
2326 	if (err == -EINTR) {
2327 		BT_ERR("%s: Device boot interrupted", hdev->name);
2328 		return -EINTR;
2329 	}
2330 
2331 	if (err) {
2332 		BT_ERR("%s: Device boot timeout", hdev->name);
2333 		return -ETIMEDOUT;
2334 	}
2335 
2336 	rettime = ktime_get();
2337 	delta = ktime_sub(rettime, calltime);
2338 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
2339 
2340 	BT_INFO("%s: Device booted in %llu usecs", hdev->name, duration);
2341 
2342 	clear_bit(BTUSB_BOOTLOADER, &data->flags);
2343 
2344 	/* Once the device is running in operational mode, it needs to apply
2345 	 * the device configuration (DDC) parameters.
2346 	 *
2347 	 * The device can work without DDC parameters, so even if it fails
2348 	 * to load the file, no need to fail the setup.
2349 	 */
2350 	btintel_load_ddc_config(hdev, fwname);
2351 
2352 	/* Set the event mask for Intel specific vendor events. This enables
2353 	 * a few extra events that are useful during general operation. It
2354 	 * does not enable any debugging related events.
2355 	 *
2356 	 * The device will function correctly without these events enabled
2357 	 * and thus no need to fail the setup.
2358 	 */
2359 	btintel_set_event_mask(hdev, false);
2360 
2361 	return 0;
2362 }
2363 
2364 static int btusb_shutdown_intel(struct hci_dev *hdev)
2365 {
2366 	struct sk_buff *skb;
2367 	long ret;
2368 
2369 	/* Some platforms have an issue with BT LED when the interface is
2370 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
2371 	 * goes off. This command turns off the BT LED immediately.
2372 	 */
2373 	skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
2374 	if (IS_ERR(skb)) {
2375 		ret = PTR_ERR(skb);
2376 		BT_ERR("%s: turning off Intel device LED failed (%ld)",
2377 		       hdev->name, ret);
2378 		return ret;
2379 	}
2380 	kfree_skb(skb);
2381 
2382 	return 0;
2383 }
2384 
2385 #ifdef CONFIG_PM
2386 /* Configure an out-of-band gpio as wake-up pin, if specified in device tree */
2387 static int marvell_config_oob_wake(struct hci_dev *hdev)
2388 {
2389 	struct sk_buff *skb;
2390 	struct btusb_data *data = hci_get_drvdata(hdev);
2391 	struct device *dev = &data->udev->dev;
2392 	u16 pin, gap, opcode;
2393 	int ret;
2394 	u8 cmd[5];
2395 
2396 	/* Move on if no wakeup pin specified */
2397 	if (of_property_read_u16(dev->of_node, "marvell,wakeup-pin", &pin) ||
2398 	    of_property_read_u16(dev->of_node, "marvell,wakeup-gap-ms", &gap))
2399 		return 0;
2400 
2401 	/* Vendor specific command to configure a GPIO as wake-up pin */
2402 	opcode = hci_opcode_pack(0x3F, 0x59);
2403 	cmd[0] = opcode & 0xFF;
2404 	cmd[1] = opcode >> 8;
2405 	cmd[2] = 2; /* length of parameters that follow */
2406 	cmd[3] = pin;
2407 	cmd[4] = gap; /* time in ms, for which wakeup pin should be asserted */
2408 
2409 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
2410 	if (!skb) {
2411 		bt_dev_err(hdev, "%s: No memory\n", __func__);
2412 		return -ENOMEM;
2413 	}
2414 
2415 	skb_put_data(skb, cmd, sizeof(cmd));
2416 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
2417 
2418 	ret = btusb_send_frame(hdev, skb);
2419 	if (ret) {
2420 		bt_dev_err(hdev, "%s: configuration failed\n", __func__);
2421 		kfree_skb(skb);
2422 		return ret;
2423 	}
2424 
2425 	return 0;
2426 }
2427 #endif
2428 
2429 static int btusb_set_bdaddr_marvell(struct hci_dev *hdev,
2430 				    const bdaddr_t *bdaddr)
2431 {
2432 	struct sk_buff *skb;
2433 	u8 buf[8];
2434 	long ret;
2435 
2436 	buf[0] = 0xfe;
2437 	buf[1] = sizeof(bdaddr_t);
2438 	memcpy(buf + 2, bdaddr, sizeof(bdaddr_t));
2439 
2440 	skb = __hci_cmd_sync(hdev, 0xfc22, sizeof(buf), buf, HCI_INIT_TIMEOUT);
2441 	if (IS_ERR(skb)) {
2442 		ret = PTR_ERR(skb);
2443 		BT_ERR("%s: changing Marvell device address failed (%ld)",
2444 		       hdev->name, ret);
2445 		return ret;
2446 	}
2447 	kfree_skb(skb);
2448 
2449 	return 0;
2450 }
2451 
2452 static int btusb_set_bdaddr_ath3012(struct hci_dev *hdev,
2453 				    const bdaddr_t *bdaddr)
2454 {
2455 	struct sk_buff *skb;
2456 	u8 buf[10];
2457 	long ret;
2458 
2459 	buf[0] = 0x01;
2460 	buf[1] = 0x01;
2461 	buf[2] = 0x00;
2462 	buf[3] = sizeof(bdaddr_t);
2463 	memcpy(buf + 4, bdaddr, sizeof(bdaddr_t));
2464 
2465 	skb = __hci_cmd_sync(hdev, 0xfc0b, sizeof(buf), buf, HCI_INIT_TIMEOUT);
2466 	if (IS_ERR(skb)) {
2467 		ret = PTR_ERR(skb);
2468 		BT_ERR("%s: Change address command failed (%ld)",
2469 		       hdev->name, ret);
2470 		return ret;
2471 	}
2472 	kfree_skb(skb);
2473 
2474 	return 0;
2475 }
2476 
2477 #define QCA_DFU_PACKET_LEN	4096
2478 
2479 #define QCA_GET_TARGET_VERSION	0x09
2480 #define QCA_CHECK_STATUS	0x05
2481 #define QCA_DFU_DOWNLOAD	0x01
2482 
2483 #define QCA_SYSCFG_UPDATED	0x40
2484 #define QCA_PATCH_UPDATED	0x80
2485 #define QCA_DFU_TIMEOUT		3000
2486 
2487 struct qca_version {
2488 	__le32	rom_version;
2489 	__le32	patch_version;
2490 	__le32	ram_version;
2491 	__le32	ref_clock;
2492 	__u8	reserved[4];
2493 } __packed;
2494 
2495 struct qca_rampatch_version {
2496 	__le16	rom_version;
2497 	__le16	patch_version;
2498 } __packed;
2499 
2500 struct qca_device_info {
2501 	u32	rom_version;
2502 	u8	rampatch_hdr;	/* length of header in rampatch */
2503 	u8	nvm_hdr;	/* length of header in NVM */
2504 	u8	ver_offset;	/* offset of version structure in rampatch */
2505 };
2506 
2507 static const struct qca_device_info qca_devices_table[] = {
2508 	{ 0x00000100, 20, 4, 10 }, /* Rome 1.0 */
2509 	{ 0x00000101, 20, 4, 10 }, /* Rome 1.1 */
2510 	{ 0x00000200, 28, 4, 18 }, /* Rome 2.0 */
2511 	{ 0x00000201, 28, 4, 18 }, /* Rome 2.1 */
2512 	{ 0x00000300, 28, 4, 18 }, /* Rome 3.0 */
2513 	{ 0x00000302, 28, 4, 18 }, /* Rome 3.2 */
2514 };
2515 
2516 static int btusb_qca_send_vendor_req(struct hci_dev *hdev, u8 request,
2517 				     void *data, u16 size)
2518 {
2519 	struct btusb_data *btdata = hci_get_drvdata(hdev);
2520 	struct usb_device *udev = btdata->udev;
2521 	int pipe, err;
2522 	u8 *buf;
2523 
2524 	buf = kmalloc(size, GFP_KERNEL);
2525 	if (!buf)
2526 		return -ENOMEM;
2527 
2528 	/* Found some of USB hosts have IOT issues with ours so that we should
2529 	 * not wait until HCI layer is ready.
2530 	 */
2531 	pipe = usb_rcvctrlpipe(udev, 0);
2532 	err = usb_control_msg(udev, pipe, request, USB_TYPE_VENDOR | USB_DIR_IN,
2533 			      0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
2534 	if (err < 0) {
2535 		BT_ERR("%s: Failed to access otp area (%d)", hdev->name, err);
2536 		goto done;
2537 	}
2538 
2539 	memcpy(data, buf, size);
2540 
2541 done:
2542 	kfree(buf);
2543 
2544 	return err;
2545 }
2546 
2547 static int btusb_setup_qca_download_fw(struct hci_dev *hdev,
2548 				       const struct firmware *firmware,
2549 				       size_t hdr_size)
2550 {
2551 	struct btusb_data *btdata = hci_get_drvdata(hdev);
2552 	struct usb_device *udev = btdata->udev;
2553 	size_t count, size, sent = 0;
2554 	int pipe, len, err;
2555 	u8 *buf;
2556 
2557 	buf = kmalloc(QCA_DFU_PACKET_LEN, GFP_KERNEL);
2558 	if (!buf)
2559 		return -ENOMEM;
2560 
2561 	count = firmware->size;
2562 
2563 	size = min_t(size_t, count, hdr_size);
2564 	memcpy(buf, firmware->data, size);
2565 
2566 	/* USB patches should go down to controller through USB path
2567 	 * because binary format fits to go down through USB channel.
2568 	 * USB control path is for patching headers and USB bulk is for
2569 	 * patch body.
2570 	 */
2571 	pipe = usb_sndctrlpipe(udev, 0);
2572 	err = usb_control_msg(udev, pipe, QCA_DFU_DOWNLOAD, USB_TYPE_VENDOR,
2573 			      0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
2574 	if (err < 0) {
2575 		BT_ERR("%s: Failed to send headers (%d)", hdev->name, err);
2576 		goto done;
2577 	}
2578 
2579 	sent += size;
2580 	count -= size;
2581 
2582 	while (count) {
2583 		size = min_t(size_t, count, QCA_DFU_PACKET_LEN);
2584 
2585 		memcpy(buf, firmware->data + sent, size);
2586 
2587 		pipe = usb_sndbulkpipe(udev, 0x02);
2588 		err = usb_bulk_msg(udev, pipe, buf, size, &len,
2589 				   QCA_DFU_TIMEOUT);
2590 		if (err < 0) {
2591 			BT_ERR("%s: Failed to send body at %zd of %zd (%d)",
2592 			       hdev->name, sent, firmware->size, err);
2593 			break;
2594 		}
2595 
2596 		if (size != len) {
2597 			BT_ERR("%s: Failed to get bulk buffer", hdev->name);
2598 			err = -EILSEQ;
2599 			break;
2600 		}
2601 
2602 		sent  += size;
2603 		count -= size;
2604 	}
2605 
2606 done:
2607 	kfree(buf);
2608 	return err;
2609 }
2610 
2611 static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev,
2612 					 struct qca_version *ver,
2613 					 const struct qca_device_info *info)
2614 {
2615 	struct qca_rampatch_version *rver;
2616 	const struct firmware *fw;
2617 	u32 ver_rom, ver_patch;
2618 	u16 rver_rom, rver_patch;
2619 	char fwname[64];
2620 	int err;
2621 
2622 	ver_rom = le32_to_cpu(ver->rom_version);
2623 	ver_patch = le32_to_cpu(ver->patch_version);
2624 
2625 	snprintf(fwname, sizeof(fwname), "qca/rampatch_usb_%08x.bin", ver_rom);
2626 
2627 	err = request_firmware(&fw, fwname, &hdev->dev);
2628 	if (err) {
2629 		BT_ERR("%s: failed to request rampatch file: %s (%d)",
2630 		       hdev->name, fwname, err);
2631 		return err;
2632 	}
2633 
2634 	BT_INFO("%s: using rampatch file: %s", hdev->name, fwname);
2635 
2636 	rver = (struct qca_rampatch_version *)(fw->data + info->ver_offset);
2637 	rver_rom = le16_to_cpu(rver->rom_version);
2638 	rver_patch = le16_to_cpu(rver->patch_version);
2639 
2640 	BT_INFO("%s: QCA: patch rome 0x%x build 0x%x, firmware rome 0x%x "
2641 		"build 0x%x", hdev->name, rver_rom, rver_patch, ver_rom,
2642 		ver_patch);
2643 
2644 	if (rver_rom != ver_rom || rver_patch <= ver_patch) {
2645 		BT_ERR("%s: rampatch file version did not match with firmware",
2646 		       hdev->name);
2647 		err = -EINVAL;
2648 		goto done;
2649 	}
2650 
2651 	err = btusb_setup_qca_download_fw(hdev, fw, info->rampatch_hdr);
2652 
2653 done:
2654 	release_firmware(fw);
2655 
2656 	return err;
2657 }
2658 
2659 static int btusb_setup_qca_load_nvm(struct hci_dev *hdev,
2660 				    struct qca_version *ver,
2661 				    const struct qca_device_info *info)
2662 {
2663 	const struct firmware *fw;
2664 	char fwname[64];
2665 	int err;
2666 
2667 	snprintf(fwname, sizeof(fwname), "qca/nvm_usb_%08x.bin",
2668 		 le32_to_cpu(ver->rom_version));
2669 
2670 	err = request_firmware(&fw, fwname, &hdev->dev);
2671 	if (err) {
2672 		BT_ERR("%s: failed to request NVM file: %s (%d)",
2673 		       hdev->name, fwname, err);
2674 		return err;
2675 	}
2676 
2677 	BT_INFO("%s: using NVM file: %s", hdev->name, fwname);
2678 
2679 	err = btusb_setup_qca_download_fw(hdev, fw, info->nvm_hdr);
2680 
2681 	release_firmware(fw);
2682 
2683 	return err;
2684 }
2685 
2686 static int btusb_setup_qca(struct hci_dev *hdev)
2687 {
2688 	const struct qca_device_info *info = NULL;
2689 	struct qca_version ver;
2690 	u32 ver_rom;
2691 	u8 status;
2692 	int i, err;
2693 
2694 	err = btusb_qca_send_vendor_req(hdev, QCA_GET_TARGET_VERSION, &ver,
2695 					sizeof(ver));
2696 	if (err < 0)
2697 		return err;
2698 
2699 	ver_rom = le32_to_cpu(ver.rom_version);
2700 	for (i = 0; i < ARRAY_SIZE(qca_devices_table); i++) {
2701 		if (ver_rom == qca_devices_table[i].rom_version)
2702 			info = &qca_devices_table[i];
2703 	}
2704 	if (!info) {
2705 		BT_ERR("%s: don't support firmware rome 0x%x", hdev->name,
2706 		       ver_rom);
2707 		return -ENODEV;
2708 	}
2709 
2710 	err = btusb_qca_send_vendor_req(hdev, QCA_CHECK_STATUS, &status,
2711 					sizeof(status));
2712 	if (err < 0)
2713 		return err;
2714 
2715 	if (!(status & QCA_PATCH_UPDATED)) {
2716 		err = btusb_setup_qca_load_rampatch(hdev, &ver, info);
2717 		if (err < 0)
2718 			return err;
2719 	}
2720 
2721 	if (!(status & QCA_SYSCFG_UPDATED)) {
2722 		err = btusb_setup_qca_load_nvm(hdev, &ver, info);
2723 		if (err < 0)
2724 			return err;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 #ifdef CONFIG_BT_HCIBTUSB_BCM
2731 static inline int __set_diag_interface(struct hci_dev *hdev)
2732 {
2733 	struct btusb_data *data = hci_get_drvdata(hdev);
2734 	struct usb_interface *intf = data->diag;
2735 	int i;
2736 
2737 	if (!data->diag)
2738 		return -ENODEV;
2739 
2740 	data->diag_tx_ep = NULL;
2741 	data->diag_rx_ep = NULL;
2742 
2743 	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
2744 		struct usb_endpoint_descriptor *ep_desc;
2745 
2746 		ep_desc = &intf->cur_altsetting->endpoint[i].desc;
2747 
2748 		if (!data->diag_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
2749 			data->diag_tx_ep = ep_desc;
2750 			continue;
2751 		}
2752 
2753 		if (!data->diag_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
2754 			data->diag_rx_ep = ep_desc;
2755 			continue;
2756 		}
2757 	}
2758 
2759 	if (!data->diag_tx_ep || !data->diag_rx_ep) {
2760 		BT_ERR("%s invalid diagnostic descriptors", hdev->name);
2761 		return -ENODEV;
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 static struct urb *alloc_diag_urb(struct hci_dev *hdev, bool enable)
2768 {
2769 	struct btusb_data *data = hci_get_drvdata(hdev);
2770 	struct sk_buff *skb;
2771 	struct urb *urb;
2772 	unsigned int pipe;
2773 
2774 	if (!data->diag_tx_ep)
2775 		return ERR_PTR(-ENODEV);
2776 
2777 	urb = usb_alloc_urb(0, GFP_KERNEL);
2778 	if (!urb)
2779 		return ERR_PTR(-ENOMEM);
2780 
2781 	skb = bt_skb_alloc(2, GFP_KERNEL);
2782 	if (!skb) {
2783 		usb_free_urb(urb);
2784 		return ERR_PTR(-ENOMEM);
2785 	}
2786 
2787 	skb_put_u8(skb, 0xf0);
2788 	skb_put_u8(skb, enable);
2789 
2790 	pipe = usb_sndbulkpipe(data->udev, data->diag_tx_ep->bEndpointAddress);
2791 
2792 	usb_fill_bulk_urb(urb, data->udev, pipe,
2793 			  skb->data, skb->len, btusb_tx_complete, skb);
2794 
2795 	skb->dev = (void *)hdev;
2796 
2797 	return urb;
2798 }
2799 
2800 static int btusb_bcm_set_diag(struct hci_dev *hdev, bool enable)
2801 {
2802 	struct btusb_data *data = hci_get_drvdata(hdev);
2803 	struct urb *urb;
2804 
2805 	if (!data->diag)
2806 		return -ENODEV;
2807 
2808 	if (!test_bit(HCI_RUNNING, &hdev->flags))
2809 		return -ENETDOWN;
2810 
2811 	urb = alloc_diag_urb(hdev, enable);
2812 	if (IS_ERR(urb))
2813 		return PTR_ERR(urb);
2814 
2815 	return submit_or_queue_tx_urb(hdev, urb);
2816 }
2817 #endif
2818 
2819 #ifdef CONFIG_PM
2820 static irqreturn_t btusb_oob_wake_handler(int irq, void *priv)
2821 {
2822 	struct btusb_data *data = priv;
2823 
2824 	pm_wakeup_event(&data->udev->dev, 0);
2825 	pm_system_wakeup();
2826 
2827 	/* Disable only if not already disabled (keep it balanced) */
2828 	if (test_and_clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags)) {
2829 		disable_irq_nosync(irq);
2830 		disable_irq_wake(irq);
2831 	}
2832 	return IRQ_HANDLED;
2833 }
2834 
2835 static const struct of_device_id btusb_match_table[] = {
2836 	{ .compatible = "usb1286,204e" },
2837 	{ }
2838 };
2839 MODULE_DEVICE_TABLE(of, btusb_match_table);
2840 
2841 /* Use an oob wakeup pin? */
2842 static int btusb_config_oob_wake(struct hci_dev *hdev)
2843 {
2844 	struct btusb_data *data = hci_get_drvdata(hdev);
2845 	struct device *dev = &data->udev->dev;
2846 	int irq, ret;
2847 
2848 	clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags);
2849 
2850 	if (!of_match_device(btusb_match_table, dev))
2851 		return 0;
2852 
2853 	/* Move on if no IRQ specified */
2854 	irq = of_irq_get_byname(dev->of_node, "wakeup");
2855 	if (irq <= 0) {
2856 		bt_dev_dbg(hdev, "%s: no OOB Wakeup IRQ in DT", __func__);
2857 		return 0;
2858 	}
2859 
2860 	ret = devm_request_irq(&hdev->dev, irq, btusb_oob_wake_handler,
2861 			       0, "OOB Wake-on-BT", data);
2862 	if (ret) {
2863 		bt_dev_err(hdev, "%s: IRQ request failed", __func__);
2864 		return ret;
2865 	}
2866 
2867 	ret = device_init_wakeup(dev, true);
2868 	if (ret) {
2869 		bt_dev_err(hdev, "%s: failed to init_wakeup", __func__);
2870 		return ret;
2871 	}
2872 
2873 	data->oob_wake_irq = irq;
2874 	disable_irq(irq);
2875 	bt_dev_info(hdev, "OOB Wake-on-BT configured at IRQ %u", irq);
2876 	return 0;
2877 }
2878 #endif
2879 
2880 static int btusb_probe(struct usb_interface *intf,
2881 		       const struct usb_device_id *id)
2882 {
2883 	struct usb_endpoint_descriptor *ep_desc;
2884 	struct btusb_data *data;
2885 	struct hci_dev *hdev;
2886 	unsigned ifnum_base;
2887 	int i, err;
2888 
2889 	BT_DBG("intf %p id %p", intf, id);
2890 
2891 	/* interface numbers are hardcoded in the spec */
2892 	if (intf->cur_altsetting->desc.bInterfaceNumber != 0) {
2893 		if (!(id->driver_info & BTUSB_IFNUM_2))
2894 			return -ENODEV;
2895 		if (intf->cur_altsetting->desc.bInterfaceNumber != 2)
2896 			return -ENODEV;
2897 	}
2898 
2899 	ifnum_base = intf->cur_altsetting->desc.bInterfaceNumber;
2900 
2901 	if (!id->driver_info) {
2902 		const struct usb_device_id *match;
2903 
2904 		match = usb_match_id(intf, blacklist_table);
2905 		if (match)
2906 			id = match;
2907 	}
2908 
2909 	if (id->driver_info == BTUSB_IGNORE)
2910 		return -ENODEV;
2911 
2912 	if (id->driver_info & BTUSB_BCM_NO_PRODID) {
2913 		struct usb_device *udev = interface_to_usbdev(intf);
2914 
2915 		/* For the broken Broadcom devices that show 0000:0000
2916 		 * as USB vendor and product information, check that the
2917 		 * manufacturer string identifies them as Broadcom based
2918 		 * devices.
2919 		 */
2920 		if (!udev->manufacturer ||
2921 		    strcmp(udev->manufacturer, "Broadcom Corp"))
2922 			return -ENODEV;
2923 	}
2924 
2925 	if (id->driver_info & BTUSB_ATH3012) {
2926 		struct usb_device *udev = interface_to_usbdev(intf);
2927 
2928 		/* Old firmware would otherwise let ath3k driver load
2929 		 * patch and sysconfig files
2930 		 */
2931 		if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001)
2932 			return -ENODEV;
2933 	}
2934 
2935 	data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
2936 	if (!data)
2937 		return -ENOMEM;
2938 
2939 	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
2940 		ep_desc = &intf->cur_altsetting->endpoint[i].desc;
2941 
2942 		if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
2943 			data->intr_ep = ep_desc;
2944 			continue;
2945 		}
2946 
2947 		if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
2948 			data->bulk_tx_ep = ep_desc;
2949 			continue;
2950 		}
2951 
2952 		if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
2953 			data->bulk_rx_ep = ep_desc;
2954 			continue;
2955 		}
2956 	}
2957 
2958 	if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep)
2959 		return -ENODEV;
2960 
2961 	if (id->driver_info & BTUSB_AMP) {
2962 		data->cmdreq_type = USB_TYPE_CLASS | 0x01;
2963 		data->cmdreq = 0x2b;
2964 	} else {
2965 		data->cmdreq_type = USB_TYPE_CLASS;
2966 		data->cmdreq = 0x00;
2967 	}
2968 
2969 	data->udev = interface_to_usbdev(intf);
2970 	data->intf = intf;
2971 
2972 	INIT_WORK(&data->work, btusb_work);
2973 	INIT_WORK(&data->waker, btusb_waker);
2974 	init_usb_anchor(&data->deferred);
2975 	init_usb_anchor(&data->tx_anchor);
2976 	spin_lock_init(&data->txlock);
2977 
2978 	init_usb_anchor(&data->intr_anchor);
2979 	init_usb_anchor(&data->bulk_anchor);
2980 	init_usb_anchor(&data->isoc_anchor);
2981 	init_usb_anchor(&data->diag_anchor);
2982 	spin_lock_init(&data->rxlock);
2983 
2984 	if (id->driver_info & BTUSB_INTEL_NEW) {
2985 		data->recv_event = btusb_recv_event_intel;
2986 		data->recv_bulk = btusb_recv_bulk_intel;
2987 		set_bit(BTUSB_BOOTLOADER, &data->flags);
2988 	} else {
2989 		data->recv_event = hci_recv_frame;
2990 		data->recv_bulk = btusb_recv_bulk;
2991 	}
2992 
2993 	hdev = hci_alloc_dev();
2994 	if (!hdev)
2995 		return -ENOMEM;
2996 
2997 	hdev->bus = HCI_USB;
2998 	hci_set_drvdata(hdev, data);
2999 
3000 	if (id->driver_info & BTUSB_AMP)
3001 		hdev->dev_type = HCI_AMP;
3002 	else
3003 		hdev->dev_type = HCI_PRIMARY;
3004 
3005 	data->hdev = hdev;
3006 
3007 	SET_HCIDEV_DEV(hdev, &intf->dev);
3008 
3009 	hdev->open   = btusb_open;
3010 	hdev->close  = btusb_close;
3011 	hdev->flush  = btusb_flush;
3012 	hdev->send   = btusb_send_frame;
3013 	hdev->notify = btusb_notify;
3014 
3015 #ifdef CONFIG_PM
3016 	err = btusb_config_oob_wake(hdev);
3017 	if (err)
3018 		goto out_free_dev;
3019 
3020 	/* Marvell devices may need a specific chip configuration */
3021 	if (id->driver_info & BTUSB_MARVELL && data->oob_wake_irq) {
3022 		err = marvell_config_oob_wake(hdev);
3023 		if (err)
3024 			goto out_free_dev;
3025 	}
3026 #endif
3027 	if (id->driver_info & BTUSB_CW6622)
3028 		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
3029 
3030 	if (id->driver_info & BTUSB_BCM2045)
3031 		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
3032 
3033 	if (id->driver_info & BTUSB_BCM92035)
3034 		hdev->setup = btusb_setup_bcm92035;
3035 
3036 #ifdef CONFIG_BT_HCIBTUSB_BCM
3037 	if (id->driver_info & BTUSB_BCM_PATCHRAM) {
3038 		hdev->manufacturer = 15;
3039 		hdev->setup = btbcm_setup_patchram;
3040 		hdev->set_diag = btusb_bcm_set_diag;
3041 		hdev->set_bdaddr = btbcm_set_bdaddr;
3042 
3043 		/* Broadcom LM_DIAG Interface numbers are hardcoded */
3044 		data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
3045 	}
3046 
3047 	if (id->driver_info & BTUSB_BCM_APPLE) {
3048 		hdev->manufacturer = 15;
3049 		hdev->setup = btbcm_setup_apple;
3050 		hdev->set_diag = btusb_bcm_set_diag;
3051 
3052 		/* Broadcom LM_DIAG Interface numbers are hardcoded */
3053 		data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
3054 	}
3055 #endif
3056 
3057 	if (id->driver_info & BTUSB_INTEL) {
3058 		hdev->manufacturer = 2;
3059 		hdev->setup = btusb_setup_intel;
3060 		hdev->shutdown = btusb_shutdown_intel;
3061 		hdev->set_diag = btintel_set_diag_mfg;
3062 		hdev->set_bdaddr = btintel_set_bdaddr;
3063 		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3064 		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3065 		set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3066 	}
3067 
3068 	if (id->driver_info & BTUSB_INTEL_NEW) {
3069 		hdev->manufacturer = 2;
3070 		hdev->send = btusb_send_frame_intel;
3071 		hdev->setup = btusb_setup_intel_new;
3072 		hdev->hw_error = btintel_hw_error;
3073 		hdev->set_diag = btintel_set_diag;
3074 		hdev->set_bdaddr = btintel_set_bdaddr;
3075 		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3076 		set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3077 	}
3078 
3079 	if (id->driver_info & BTUSB_MARVELL)
3080 		hdev->set_bdaddr = btusb_set_bdaddr_marvell;
3081 
3082 	if (id->driver_info & BTUSB_SWAVE) {
3083 		set_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks);
3084 		set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks);
3085 	}
3086 
3087 	if (id->driver_info & BTUSB_INTEL_BOOT) {
3088 		hdev->manufacturer = 2;
3089 		set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
3090 	}
3091 
3092 	if (id->driver_info & BTUSB_ATH3012) {
3093 		hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
3094 		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3095 		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3096 	}
3097 
3098 	if (id->driver_info & BTUSB_QCA_ROME) {
3099 		data->setup_on_usb = btusb_setup_qca;
3100 		hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
3101 
3102 		/* QCA Rome devices lose their updated firmware over suspend,
3103 		 * but the USB hub doesn't notice any status change.
3104 		 * Explicitly request a device reset on resume.
3105 		 */
3106 		set_bit(BTUSB_RESET_RESUME, &data->flags);
3107 	}
3108 
3109 #ifdef CONFIG_BT_HCIBTUSB_RTL
3110 	if (id->driver_info & BTUSB_REALTEK) {
3111 		hdev->setup = btrtl_setup_realtek;
3112 
3113 		/* Realtek devices lose their updated firmware over suspend,
3114 		 * but the USB hub doesn't notice any status change.
3115 		 * Explicitly request a device reset on resume.
3116 		 */
3117 		set_bit(BTUSB_RESET_RESUME, &data->flags);
3118 	}
3119 #endif
3120 
3121 	if (id->driver_info & BTUSB_AMP) {
3122 		/* AMP controllers do not support SCO packets */
3123 		data->isoc = NULL;
3124 	} else {
3125 		/* Interface orders are hardcoded in the specification */
3126 		data->isoc = usb_ifnum_to_if(data->udev, ifnum_base + 1);
3127 	}
3128 
3129 	if (!reset)
3130 		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
3131 
3132 	if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
3133 		if (!disable_scofix)
3134 			set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
3135 	}
3136 
3137 	if (id->driver_info & BTUSB_BROKEN_ISOC)
3138 		data->isoc = NULL;
3139 
3140 	if (id->driver_info & BTUSB_DIGIANSWER) {
3141 		data->cmdreq_type = USB_TYPE_VENDOR;
3142 		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
3143 	}
3144 
3145 	if (id->driver_info & BTUSB_CSR) {
3146 		struct usb_device *udev = data->udev;
3147 		u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice);
3148 
3149 		/* Old firmware would otherwise execute USB reset */
3150 		if (bcdDevice < 0x117)
3151 			set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
3152 
3153 		/* Fake CSR devices with broken commands */
3154 		if (bcdDevice <= 0x100 || bcdDevice == 0x134)
3155 			hdev->setup = btusb_setup_csr;
3156 
3157 		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3158 	}
3159 
3160 	if (id->driver_info & BTUSB_SNIFFER) {
3161 		struct usb_device *udev = data->udev;
3162 
3163 		/* New sniffer firmware has crippled HCI interface */
3164 		if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
3165 			set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
3166 	}
3167 
3168 	if (id->driver_info & BTUSB_INTEL_BOOT) {
3169 		/* A bug in the bootloader causes that interrupt interface is
3170 		 * only enabled after receiving SetInterface(0, AltSetting=0).
3171 		 */
3172 		err = usb_set_interface(data->udev, 0, 0);
3173 		if (err < 0) {
3174 			BT_ERR("failed to set interface 0, alt 0 %d", err);
3175 			goto out_free_dev;
3176 		}
3177 	}
3178 
3179 	if (data->isoc) {
3180 		err = usb_driver_claim_interface(&btusb_driver,
3181 						 data->isoc, data);
3182 		if (err < 0)
3183 			goto out_free_dev;
3184 	}
3185 
3186 #ifdef CONFIG_BT_HCIBTUSB_BCM
3187 	if (data->diag) {
3188 		if (!usb_driver_claim_interface(&btusb_driver,
3189 						data->diag, data))
3190 			__set_diag_interface(hdev);
3191 		else
3192 			data->diag = NULL;
3193 	}
3194 #endif
3195 
3196 	err = hci_register_dev(hdev);
3197 	if (err < 0)
3198 		goto out_free_dev;
3199 
3200 	usb_set_intfdata(intf, data);
3201 
3202 	return 0;
3203 
3204 out_free_dev:
3205 	hci_free_dev(hdev);
3206 	return err;
3207 }
3208 
3209 static void btusb_disconnect(struct usb_interface *intf)
3210 {
3211 	struct btusb_data *data = usb_get_intfdata(intf);
3212 	struct hci_dev *hdev;
3213 
3214 	BT_DBG("intf %p", intf);
3215 
3216 	if (!data)
3217 		return;
3218 
3219 	hdev = data->hdev;
3220 	usb_set_intfdata(data->intf, NULL);
3221 
3222 	if (data->isoc)
3223 		usb_set_intfdata(data->isoc, NULL);
3224 
3225 	if (data->diag)
3226 		usb_set_intfdata(data->diag, NULL);
3227 
3228 	hci_unregister_dev(hdev);
3229 
3230 	if (intf == data->intf) {
3231 		if (data->isoc)
3232 			usb_driver_release_interface(&btusb_driver, data->isoc);
3233 		if (data->diag)
3234 			usb_driver_release_interface(&btusb_driver, data->diag);
3235 	} else if (intf == data->isoc) {
3236 		if (data->diag)
3237 			usb_driver_release_interface(&btusb_driver, data->diag);
3238 		usb_driver_release_interface(&btusb_driver, data->intf);
3239 	} else if (intf == data->diag) {
3240 		usb_driver_release_interface(&btusb_driver, data->intf);
3241 		if (data->isoc)
3242 			usb_driver_release_interface(&btusb_driver, data->isoc);
3243 	}
3244 
3245 	if (data->oob_wake_irq)
3246 		device_init_wakeup(&data->udev->dev, false);
3247 
3248 	hci_free_dev(hdev);
3249 }
3250 
3251 #ifdef CONFIG_PM
3252 static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
3253 {
3254 	struct btusb_data *data = usb_get_intfdata(intf);
3255 
3256 	BT_DBG("intf %p", intf);
3257 
3258 	if (data->suspend_count++)
3259 		return 0;
3260 
3261 	spin_lock_irq(&data->txlock);
3262 	if (!(PMSG_IS_AUTO(message) && data->tx_in_flight)) {
3263 		set_bit(BTUSB_SUSPENDING, &data->flags);
3264 		spin_unlock_irq(&data->txlock);
3265 	} else {
3266 		spin_unlock_irq(&data->txlock);
3267 		data->suspend_count--;
3268 		return -EBUSY;
3269 	}
3270 
3271 	cancel_work_sync(&data->work);
3272 
3273 	btusb_stop_traffic(data);
3274 	usb_kill_anchored_urbs(&data->tx_anchor);
3275 
3276 	if (data->oob_wake_irq && device_may_wakeup(&data->udev->dev)) {
3277 		set_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags);
3278 		enable_irq_wake(data->oob_wake_irq);
3279 		enable_irq(data->oob_wake_irq);
3280 	}
3281 
3282 	/* Optionally request a device reset on resume, but only when
3283 	 * wakeups are disabled. If wakeups are enabled we assume the
3284 	 * device will stay powered up throughout suspend.
3285 	 */
3286 	if (test_bit(BTUSB_RESET_RESUME, &data->flags) &&
3287 	    !device_may_wakeup(&data->udev->dev))
3288 		data->udev->reset_resume = 1;
3289 
3290 	return 0;
3291 }
3292 
3293 static void play_deferred(struct btusb_data *data)
3294 {
3295 	struct urb *urb;
3296 	int err;
3297 
3298 	while ((urb = usb_get_from_anchor(&data->deferred))) {
3299 		usb_anchor_urb(urb, &data->tx_anchor);
3300 
3301 		err = usb_submit_urb(urb, GFP_ATOMIC);
3302 		if (err < 0) {
3303 			if (err != -EPERM && err != -ENODEV)
3304 				BT_ERR("%s urb %p submission failed (%d)",
3305 				       data->hdev->name, urb, -err);
3306 			kfree(urb->setup_packet);
3307 			usb_unanchor_urb(urb);
3308 			usb_free_urb(urb);
3309 			break;
3310 		}
3311 
3312 		data->tx_in_flight++;
3313 		usb_free_urb(urb);
3314 	}
3315 
3316 	/* Cleanup the rest deferred urbs. */
3317 	while ((urb = usb_get_from_anchor(&data->deferred))) {
3318 		kfree(urb->setup_packet);
3319 		usb_free_urb(urb);
3320 	}
3321 }
3322 
3323 static int btusb_resume(struct usb_interface *intf)
3324 {
3325 	struct btusb_data *data = usb_get_intfdata(intf);
3326 	struct hci_dev *hdev = data->hdev;
3327 	int err = 0;
3328 
3329 	BT_DBG("intf %p", intf);
3330 
3331 	if (--data->suspend_count)
3332 		return 0;
3333 
3334 	/* Disable only if not already disabled (keep it balanced) */
3335 	if (test_and_clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags)) {
3336 		disable_irq(data->oob_wake_irq);
3337 		disable_irq_wake(data->oob_wake_irq);
3338 	}
3339 
3340 	if (!test_bit(HCI_RUNNING, &hdev->flags))
3341 		goto done;
3342 
3343 	if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
3344 		err = btusb_submit_intr_urb(hdev, GFP_NOIO);
3345 		if (err < 0) {
3346 			clear_bit(BTUSB_INTR_RUNNING, &data->flags);
3347 			goto failed;
3348 		}
3349 	}
3350 
3351 	if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
3352 		err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
3353 		if (err < 0) {
3354 			clear_bit(BTUSB_BULK_RUNNING, &data->flags);
3355 			goto failed;
3356 		}
3357 
3358 		btusb_submit_bulk_urb(hdev, GFP_NOIO);
3359 	}
3360 
3361 	if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
3362 		if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
3363 			clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
3364 		else
3365 			btusb_submit_isoc_urb(hdev, GFP_NOIO);
3366 	}
3367 
3368 	spin_lock_irq(&data->txlock);
3369 	play_deferred(data);
3370 	clear_bit(BTUSB_SUSPENDING, &data->flags);
3371 	spin_unlock_irq(&data->txlock);
3372 	schedule_work(&data->work);
3373 
3374 	return 0;
3375 
3376 failed:
3377 	usb_scuttle_anchored_urbs(&data->deferred);
3378 done:
3379 	spin_lock_irq(&data->txlock);
3380 	clear_bit(BTUSB_SUSPENDING, &data->flags);
3381 	spin_unlock_irq(&data->txlock);
3382 
3383 	return err;
3384 }
3385 #endif
3386 
3387 static struct usb_driver btusb_driver = {
3388 	.name		= "btusb",
3389 	.probe		= btusb_probe,
3390 	.disconnect	= btusb_disconnect,
3391 #ifdef CONFIG_PM
3392 	.suspend	= btusb_suspend,
3393 	.resume		= btusb_resume,
3394 #endif
3395 	.id_table	= btusb_table,
3396 	.supports_autosuspend = 1,
3397 	.disable_hub_initiated_lpm = 1,
3398 };
3399 
3400 module_usb_driver(btusb_driver);
3401 
3402 module_param(disable_scofix, bool, 0644);
3403 MODULE_PARM_DESC(disable_scofix, "Disable fixup of wrong SCO buffer size");
3404 
3405 module_param(force_scofix, bool, 0644);
3406 MODULE_PARM_DESC(force_scofix, "Force fixup of wrong SCO buffers size");
3407 
3408 module_param(reset, bool, 0644);
3409 MODULE_PARM_DESC(reset, "Send HCI reset command on initialization");
3410 
3411 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3412 MODULE_DESCRIPTION("Generic Bluetooth USB driver ver " VERSION);
3413 MODULE_VERSION(VERSION);
3414 MODULE_LICENSE("GPL");
3415