xref: /openbmc/linux/drivers/bluetooth/btusb.c (revision 174cd4b1)
1 /*
2  *
3  *  Generic Bluetooth USB driver
4  *
5  *  Copyright (C) 2005-2008  Marcel Holtmann <marcel@holtmann.org>
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/usb.h>
26 #include <linux/firmware.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <asm/unaligned.h>
30 
31 #include <net/bluetooth/bluetooth.h>
32 #include <net/bluetooth/hci_core.h>
33 
34 #include "btintel.h"
35 #include "btbcm.h"
36 #include "btrtl.h"
37 
38 #define VERSION "0.8"
39 
40 static bool disable_scofix;
41 static bool force_scofix;
42 
43 static bool reset = true;
44 
45 static struct usb_driver btusb_driver;
46 
47 #define BTUSB_IGNORE		0x01
48 #define BTUSB_DIGIANSWER	0x02
49 #define BTUSB_CSR		0x04
50 #define BTUSB_SNIFFER		0x08
51 #define BTUSB_BCM92035		0x10
52 #define BTUSB_BROKEN_ISOC	0x20
53 #define BTUSB_WRONG_SCO_MTU	0x40
54 #define BTUSB_ATH3012		0x80
55 #define BTUSB_INTEL		0x100
56 #define BTUSB_INTEL_BOOT	0x200
57 #define BTUSB_BCM_PATCHRAM	0x400
58 #define BTUSB_MARVELL		0x800
59 #define BTUSB_SWAVE		0x1000
60 #define BTUSB_INTEL_NEW		0x2000
61 #define BTUSB_AMP		0x4000
62 #define BTUSB_QCA_ROME		0x8000
63 #define BTUSB_BCM_APPLE		0x10000
64 #define BTUSB_REALTEK		0x20000
65 #define BTUSB_BCM2045		0x40000
66 #define BTUSB_IFNUM_2		0x80000
67 #define BTUSB_CW6622		0x100000
68 
69 static const struct usb_device_id btusb_table[] = {
70 	/* Generic Bluetooth USB device */
71 	{ USB_DEVICE_INFO(0xe0, 0x01, 0x01) },
72 
73 	/* Generic Bluetooth AMP device */
74 	{ USB_DEVICE_INFO(0xe0, 0x01, 0x04), .driver_info = BTUSB_AMP },
75 
76 	/* Generic Bluetooth USB interface */
77 	{ USB_INTERFACE_INFO(0xe0, 0x01, 0x01) },
78 
79 	/* Apple-specific (Broadcom) devices */
80 	{ USB_VENDOR_AND_INTERFACE_INFO(0x05ac, 0xff, 0x01, 0x01),
81 	  .driver_info = BTUSB_BCM_APPLE | BTUSB_IFNUM_2 },
82 
83 	/* MediaTek MT76x0E */
84 	{ USB_DEVICE(0x0e8d, 0x763f) },
85 
86 	/* Broadcom SoftSailing reporting vendor specific */
87 	{ USB_DEVICE(0x0a5c, 0x21e1) },
88 
89 	/* Apple MacBookPro 7,1 */
90 	{ USB_DEVICE(0x05ac, 0x8213) },
91 
92 	/* Apple iMac11,1 */
93 	{ USB_DEVICE(0x05ac, 0x8215) },
94 
95 	/* Apple MacBookPro6,2 */
96 	{ USB_DEVICE(0x05ac, 0x8218) },
97 
98 	/* Apple MacBookAir3,1, MacBookAir3,2 */
99 	{ USB_DEVICE(0x05ac, 0x821b) },
100 
101 	/* Apple MacBookAir4,1 */
102 	{ USB_DEVICE(0x05ac, 0x821f) },
103 
104 	/* Apple MacBookPro8,2 */
105 	{ USB_DEVICE(0x05ac, 0x821a) },
106 
107 	/* Apple MacMini5,1 */
108 	{ USB_DEVICE(0x05ac, 0x8281) },
109 
110 	/* AVM BlueFRITZ! USB v2.0 */
111 	{ USB_DEVICE(0x057c, 0x3800), .driver_info = BTUSB_SWAVE },
112 
113 	/* Bluetooth Ultraport Module from IBM */
114 	{ USB_DEVICE(0x04bf, 0x030a) },
115 
116 	/* ALPS Modules with non-standard id */
117 	{ USB_DEVICE(0x044e, 0x3001) },
118 	{ USB_DEVICE(0x044e, 0x3002) },
119 
120 	/* Ericsson with non-standard id */
121 	{ USB_DEVICE(0x0bdb, 0x1002) },
122 
123 	/* Canyon CN-BTU1 with HID interfaces */
124 	{ USB_DEVICE(0x0c10, 0x0000) },
125 
126 	/* Broadcom BCM20702A0 */
127 	{ USB_DEVICE(0x413c, 0x8197) },
128 
129 	/* Broadcom BCM20702B0 (Dynex/Insignia) */
130 	{ USB_DEVICE(0x19ff, 0x0239), .driver_info = BTUSB_BCM_PATCHRAM },
131 
132 	/* Broadcom BCM43142A0 (Foxconn/Lenovo) */
133 	{ USB_DEVICE(0x105b, 0xe065), .driver_info = BTUSB_BCM_PATCHRAM },
134 
135 	/* Broadcom BCM920703 (HTC Vive) */
136 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0bb4, 0xff, 0x01, 0x01),
137 	  .driver_info = BTUSB_BCM_PATCHRAM },
138 
139 	/* Foxconn - Hon Hai */
140 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0489, 0xff, 0x01, 0x01),
141 	  .driver_info = BTUSB_BCM_PATCHRAM },
142 
143 	/* Lite-On Technology - Broadcom based */
144 	{ USB_VENDOR_AND_INTERFACE_INFO(0x04ca, 0xff, 0x01, 0x01),
145 	  .driver_info = BTUSB_BCM_PATCHRAM },
146 
147 	/* Broadcom devices with vendor specific id */
148 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01),
149 	  .driver_info = BTUSB_BCM_PATCHRAM },
150 
151 	/* ASUSTek Computer - Broadcom based */
152 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0b05, 0xff, 0x01, 0x01),
153 	  .driver_info = BTUSB_BCM_PATCHRAM },
154 
155 	/* Belkin F8065bf - Broadcom based */
156 	{ USB_VENDOR_AND_INTERFACE_INFO(0x050d, 0xff, 0x01, 0x01),
157 	  .driver_info = BTUSB_BCM_PATCHRAM },
158 
159 	/* IMC Networks - Broadcom based */
160 	{ USB_VENDOR_AND_INTERFACE_INFO(0x13d3, 0xff, 0x01, 0x01),
161 	  .driver_info = BTUSB_BCM_PATCHRAM },
162 
163 	/* Dell Computer - Broadcom based  */
164 	{ USB_VENDOR_AND_INTERFACE_INFO(0x413c, 0xff, 0x01, 0x01),
165 	  .driver_info = BTUSB_BCM_PATCHRAM },
166 
167 	/* Toshiba Corp - Broadcom based */
168 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0930, 0xff, 0x01, 0x01),
169 	  .driver_info = BTUSB_BCM_PATCHRAM },
170 
171 	/* Intel Bluetooth USB Bootloader (RAM module) */
172 	{ USB_DEVICE(0x8087, 0x0a5a),
173 	  .driver_info = BTUSB_INTEL_BOOT | BTUSB_BROKEN_ISOC },
174 
175 	{ }	/* Terminating entry */
176 };
177 
178 MODULE_DEVICE_TABLE(usb, btusb_table);
179 
180 static const struct usb_device_id blacklist_table[] = {
181 	/* CSR BlueCore devices */
182 	{ USB_DEVICE(0x0a12, 0x0001), .driver_info = BTUSB_CSR },
183 
184 	/* Broadcom BCM2033 without firmware */
185 	{ USB_DEVICE(0x0a5c, 0x2033), .driver_info = BTUSB_IGNORE },
186 
187 	/* Broadcom BCM2045 devices */
188 	{ USB_DEVICE(0x0a5c, 0x2045), .driver_info = BTUSB_BCM2045 },
189 
190 	/* Atheros 3011 with sflash firmware */
191 	{ USB_DEVICE(0x0489, 0xe027), .driver_info = BTUSB_IGNORE },
192 	{ USB_DEVICE(0x0489, 0xe03d), .driver_info = BTUSB_IGNORE },
193 	{ USB_DEVICE(0x04f2, 0xaff1), .driver_info = BTUSB_IGNORE },
194 	{ USB_DEVICE(0x0930, 0x0215), .driver_info = BTUSB_IGNORE },
195 	{ USB_DEVICE(0x0cf3, 0x3002), .driver_info = BTUSB_IGNORE },
196 	{ USB_DEVICE(0x0cf3, 0xe019), .driver_info = BTUSB_IGNORE },
197 	{ USB_DEVICE(0x13d3, 0x3304), .driver_info = BTUSB_IGNORE },
198 
199 	/* Atheros AR9285 Malbec with sflash firmware */
200 	{ USB_DEVICE(0x03f0, 0x311d), .driver_info = BTUSB_IGNORE },
201 
202 	/* Atheros 3012 with sflash firmware */
203 	{ USB_DEVICE(0x0489, 0xe04d), .driver_info = BTUSB_ATH3012 },
204 	{ USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
205 	{ USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
206 	{ USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
207 	{ USB_DEVICE(0x0489, 0xe05f), .driver_info = BTUSB_ATH3012 },
208 	{ USB_DEVICE(0x0489, 0xe076), .driver_info = BTUSB_ATH3012 },
209 	{ USB_DEVICE(0x0489, 0xe078), .driver_info = BTUSB_ATH3012 },
210 	{ USB_DEVICE(0x0489, 0xe095), .driver_info = BTUSB_ATH3012 },
211 	{ USB_DEVICE(0x04c5, 0x1330), .driver_info = BTUSB_ATH3012 },
212 	{ USB_DEVICE(0x04ca, 0x3004), .driver_info = BTUSB_ATH3012 },
213 	{ USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
214 	{ USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
215 	{ USB_DEVICE(0x04ca, 0x3007), .driver_info = BTUSB_ATH3012 },
216 	{ USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
217 	{ USB_DEVICE(0x04ca, 0x300b), .driver_info = BTUSB_ATH3012 },
218 	{ USB_DEVICE(0x04ca, 0x300d), .driver_info = BTUSB_ATH3012 },
219 	{ USB_DEVICE(0x04ca, 0x300f), .driver_info = BTUSB_ATH3012 },
220 	{ USB_DEVICE(0x04ca, 0x3010), .driver_info = BTUSB_ATH3012 },
221 	{ USB_DEVICE(0x04ca, 0x3014), .driver_info = BTUSB_ATH3012 },
222 	{ USB_DEVICE(0x04ca, 0x3018), .driver_info = BTUSB_ATH3012 },
223 	{ USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
224 	{ USB_DEVICE(0x0930, 0x021c), .driver_info = BTUSB_ATH3012 },
225 	{ USB_DEVICE(0x0930, 0x0220), .driver_info = BTUSB_ATH3012 },
226 	{ USB_DEVICE(0x0930, 0x0227), .driver_info = BTUSB_ATH3012 },
227 	{ USB_DEVICE(0x0b05, 0x17d0), .driver_info = BTUSB_ATH3012 },
228 	{ USB_DEVICE(0x0cf3, 0x0036), .driver_info = BTUSB_ATH3012 },
229 	{ USB_DEVICE(0x0cf3, 0x3004), .driver_info = BTUSB_ATH3012 },
230 	{ USB_DEVICE(0x0cf3, 0x3008), .driver_info = BTUSB_ATH3012 },
231 	{ USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 },
232 	{ USB_DEVICE(0x0cf3, 0x311e), .driver_info = BTUSB_ATH3012 },
233 	{ USB_DEVICE(0x0cf3, 0x311f), .driver_info = BTUSB_ATH3012 },
234 	{ USB_DEVICE(0x0cf3, 0x3121), .driver_info = BTUSB_ATH3012 },
235 	{ USB_DEVICE(0x0cf3, 0x817a), .driver_info = BTUSB_ATH3012 },
236 	{ USB_DEVICE(0x0cf3, 0x817b), .driver_info = BTUSB_ATH3012 },
237 	{ USB_DEVICE(0x0cf3, 0xe003), .driver_info = BTUSB_ATH3012 },
238 	{ USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
239 	{ USB_DEVICE(0x0cf3, 0xe005), .driver_info = BTUSB_ATH3012 },
240 	{ USB_DEVICE(0x0cf3, 0xe006), .driver_info = BTUSB_ATH3012 },
241 	{ USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
242 	{ USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
243 	{ USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
244 	{ USB_DEVICE(0x13d3, 0x3395), .driver_info = BTUSB_ATH3012 },
245 	{ USB_DEVICE(0x13d3, 0x3402), .driver_info = BTUSB_ATH3012 },
246 	{ USB_DEVICE(0x13d3, 0x3408), .driver_info = BTUSB_ATH3012 },
247 	{ USB_DEVICE(0x13d3, 0x3423), .driver_info = BTUSB_ATH3012 },
248 	{ USB_DEVICE(0x13d3, 0x3432), .driver_info = BTUSB_ATH3012 },
249 	{ USB_DEVICE(0x13d3, 0x3472), .driver_info = BTUSB_ATH3012 },
250 	{ USB_DEVICE(0x13d3, 0x3474), .driver_info = BTUSB_ATH3012 },
251 	{ USB_DEVICE(0x13d3, 0x3487), .driver_info = BTUSB_ATH3012 },
252 	{ USB_DEVICE(0x13d3, 0x3490), .driver_info = BTUSB_ATH3012 },
253 
254 	/* Atheros AR5BBU12 with sflash firmware */
255 	{ USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE },
256 
257 	/* Atheros AR5BBU12 with sflash firmware */
258 	{ USB_DEVICE(0x0489, 0xe036), .driver_info = BTUSB_ATH3012 },
259 	{ USB_DEVICE(0x0489, 0xe03c), .driver_info = BTUSB_ATH3012 },
260 
261 	/* QCA ROME chipset */
262 	{ USB_DEVICE(0x0cf3, 0xe007), .driver_info = BTUSB_QCA_ROME },
263 	{ USB_DEVICE(0x0cf3, 0xe009), .driver_info = BTUSB_QCA_ROME },
264 	{ USB_DEVICE(0x0cf3, 0xe300), .driver_info = BTUSB_QCA_ROME },
265 	{ USB_DEVICE(0x0cf3, 0xe360), .driver_info = BTUSB_QCA_ROME },
266 	{ USB_DEVICE(0x0489, 0xe092), .driver_info = BTUSB_QCA_ROME },
267 	{ USB_DEVICE(0x04ca, 0x3011), .driver_info = BTUSB_QCA_ROME },
268 
269 	/* Broadcom BCM2035 */
270 	{ USB_DEVICE(0x0a5c, 0x2009), .driver_info = BTUSB_BCM92035 },
271 	{ USB_DEVICE(0x0a5c, 0x200a), .driver_info = BTUSB_WRONG_SCO_MTU },
272 	{ USB_DEVICE(0x0a5c, 0x2035), .driver_info = BTUSB_WRONG_SCO_MTU },
273 
274 	/* Broadcom BCM2045 */
275 	{ USB_DEVICE(0x0a5c, 0x2039), .driver_info = BTUSB_WRONG_SCO_MTU },
276 	{ USB_DEVICE(0x0a5c, 0x2101), .driver_info = BTUSB_WRONG_SCO_MTU },
277 
278 	/* IBM/Lenovo ThinkPad with Broadcom chip */
279 	{ USB_DEVICE(0x0a5c, 0x201e), .driver_info = BTUSB_WRONG_SCO_MTU },
280 	{ USB_DEVICE(0x0a5c, 0x2110), .driver_info = BTUSB_WRONG_SCO_MTU },
281 
282 	/* HP laptop with Broadcom chip */
283 	{ USB_DEVICE(0x03f0, 0x171d), .driver_info = BTUSB_WRONG_SCO_MTU },
284 
285 	/* Dell laptop with Broadcom chip */
286 	{ USB_DEVICE(0x413c, 0x8126), .driver_info = BTUSB_WRONG_SCO_MTU },
287 
288 	/* Dell Wireless 370 and 410 devices */
289 	{ USB_DEVICE(0x413c, 0x8152), .driver_info = BTUSB_WRONG_SCO_MTU },
290 	{ USB_DEVICE(0x413c, 0x8156), .driver_info = BTUSB_WRONG_SCO_MTU },
291 
292 	/* Belkin F8T012 and F8T013 devices */
293 	{ USB_DEVICE(0x050d, 0x0012), .driver_info = BTUSB_WRONG_SCO_MTU },
294 	{ USB_DEVICE(0x050d, 0x0013), .driver_info = BTUSB_WRONG_SCO_MTU },
295 
296 	/* Asus WL-BTD202 device */
297 	{ USB_DEVICE(0x0b05, 0x1715), .driver_info = BTUSB_WRONG_SCO_MTU },
298 
299 	/* Kensington Bluetooth USB adapter */
300 	{ USB_DEVICE(0x047d, 0x105e), .driver_info = BTUSB_WRONG_SCO_MTU },
301 
302 	/* RTX Telecom based adapters with buggy SCO support */
303 	{ USB_DEVICE(0x0400, 0x0807), .driver_info = BTUSB_BROKEN_ISOC },
304 	{ USB_DEVICE(0x0400, 0x080a), .driver_info = BTUSB_BROKEN_ISOC },
305 
306 	/* CONWISE Technology based adapters with buggy SCO support */
307 	{ USB_DEVICE(0x0e5e, 0x6622),
308 	  .driver_info = BTUSB_BROKEN_ISOC | BTUSB_CW6622},
309 
310 	/* Roper Class 1 Bluetooth Dongle (Silicon Wave based) */
311 	{ USB_DEVICE(0x1310, 0x0001), .driver_info = BTUSB_SWAVE },
312 
313 	/* Digianswer devices */
314 	{ USB_DEVICE(0x08fd, 0x0001), .driver_info = BTUSB_DIGIANSWER },
315 	{ USB_DEVICE(0x08fd, 0x0002), .driver_info = BTUSB_IGNORE },
316 
317 	/* CSR BlueCore Bluetooth Sniffer */
318 	{ USB_DEVICE(0x0a12, 0x0002),
319 	  .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
320 
321 	/* Frontline ComProbe Bluetooth Sniffer */
322 	{ USB_DEVICE(0x16d3, 0x0002),
323 	  .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
324 
325 	/* Marvell Bluetooth devices */
326 	{ USB_DEVICE(0x1286, 0x2044), .driver_info = BTUSB_MARVELL },
327 	{ USB_DEVICE(0x1286, 0x2046), .driver_info = BTUSB_MARVELL },
328 	{ USB_DEVICE(0x1286, 0x204e), .driver_info = BTUSB_MARVELL },
329 
330 	/* Intel Bluetooth devices */
331 	{ USB_DEVICE(0x8087, 0x07da), .driver_info = BTUSB_CSR },
332 	{ USB_DEVICE(0x8087, 0x07dc), .driver_info = BTUSB_INTEL },
333 	{ USB_DEVICE(0x8087, 0x0a2a), .driver_info = BTUSB_INTEL },
334 	{ USB_DEVICE(0x8087, 0x0a2b), .driver_info = BTUSB_INTEL_NEW },
335 	{ USB_DEVICE(0x8087, 0x0aa7), .driver_info = BTUSB_INTEL },
336 
337 	/* Other Intel Bluetooth devices */
338 	{ USB_VENDOR_AND_INTERFACE_INFO(0x8087, 0xe0, 0x01, 0x01),
339 	  .driver_info = BTUSB_IGNORE },
340 
341 	/* Realtek Bluetooth devices */
342 	{ USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01),
343 	  .driver_info = BTUSB_REALTEK },
344 
345 	/* Additional Realtek 8723AE Bluetooth devices */
346 	{ USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK },
347 	{ USB_DEVICE(0x13d3, 0x3394), .driver_info = BTUSB_REALTEK },
348 
349 	/* Additional Realtek 8723BE Bluetooth devices */
350 	{ USB_DEVICE(0x0489, 0xe085), .driver_info = BTUSB_REALTEK },
351 	{ USB_DEVICE(0x0489, 0xe08b), .driver_info = BTUSB_REALTEK },
352 	{ USB_DEVICE(0x13d3, 0x3410), .driver_info = BTUSB_REALTEK },
353 	{ USB_DEVICE(0x13d3, 0x3416), .driver_info = BTUSB_REALTEK },
354 	{ USB_DEVICE(0x13d3, 0x3459), .driver_info = BTUSB_REALTEK },
355 
356 	/* Additional Realtek 8821AE Bluetooth devices */
357 	{ USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK },
358 	{ USB_DEVICE(0x13d3, 0x3414), .driver_info = BTUSB_REALTEK },
359 	{ USB_DEVICE(0x13d3, 0x3458), .driver_info = BTUSB_REALTEK },
360 	{ USB_DEVICE(0x13d3, 0x3461), .driver_info = BTUSB_REALTEK },
361 	{ USB_DEVICE(0x13d3, 0x3462), .driver_info = BTUSB_REALTEK },
362 
363 	/* Silicon Wave based devices */
364 	{ USB_DEVICE(0x0c10, 0x0000), .driver_info = BTUSB_SWAVE },
365 
366 	{ }	/* Terminating entry */
367 };
368 
369 #define BTUSB_MAX_ISOC_FRAMES	10
370 
371 #define BTUSB_INTR_RUNNING	0
372 #define BTUSB_BULK_RUNNING	1
373 #define BTUSB_ISOC_RUNNING	2
374 #define BTUSB_SUSPENDING	3
375 #define BTUSB_DID_ISO_RESUME	4
376 #define BTUSB_BOOTLOADER	5
377 #define BTUSB_DOWNLOADING	6
378 #define BTUSB_FIRMWARE_LOADED	7
379 #define BTUSB_FIRMWARE_FAILED	8
380 #define BTUSB_BOOTING		9
381 #define BTUSB_RESET_RESUME	10
382 #define BTUSB_DIAG_RUNNING	11
383 #define BTUSB_OOB_WAKE_ENABLED	12
384 
385 struct btusb_data {
386 	struct hci_dev       *hdev;
387 	struct usb_device    *udev;
388 	struct usb_interface *intf;
389 	struct usb_interface *isoc;
390 	struct usb_interface *diag;
391 
392 	unsigned long flags;
393 
394 	struct work_struct work;
395 	struct work_struct waker;
396 
397 	struct usb_anchor deferred;
398 	struct usb_anchor tx_anchor;
399 	int tx_in_flight;
400 	spinlock_t txlock;
401 
402 	struct usb_anchor intr_anchor;
403 	struct usb_anchor bulk_anchor;
404 	struct usb_anchor isoc_anchor;
405 	struct usb_anchor diag_anchor;
406 	spinlock_t rxlock;
407 
408 	struct sk_buff *evt_skb;
409 	struct sk_buff *acl_skb;
410 	struct sk_buff *sco_skb;
411 
412 	struct usb_endpoint_descriptor *intr_ep;
413 	struct usb_endpoint_descriptor *bulk_tx_ep;
414 	struct usb_endpoint_descriptor *bulk_rx_ep;
415 	struct usb_endpoint_descriptor *isoc_tx_ep;
416 	struct usb_endpoint_descriptor *isoc_rx_ep;
417 	struct usb_endpoint_descriptor *diag_tx_ep;
418 	struct usb_endpoint_descriptor *diag_rx_ep;
419 
420 	__u8 cmdreq_type;
421 	__u8 cmdreq;
422 
423 	unsigned int sco_num;
424 	int isoc_altsetting;
425 	int suspend_count;
426 
427 	int (*recv_event)(struct hci_dev *hdev, struct sk_buff *skb);
428 	int (*recv_bulk)(struct btusb_data *data, void *buffer, int count);
429 
430 	int (*setup_on_usb)(struct hci_dev *hdev);
431 
432 	int oob_wake_irq;   /* irq for out-of-band wake-on-bt */
433 };
434 
435 static inline void btusb_free_frags(struct btusb_data *data)
436 {
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&data->rxlock, flags);
440 
441 	kfree_skb(data->evt_skb);
442 	data->evt_skb = NULL;
443 
444 	kfree_skb(data->acl_skb);
445 	data->acl_skb = NULL;
446 
447 	kfree_skb(data->sco_skb);
448 	data->sco_skb = NULL;
449 
450 	spin_unlock_irqrestore(&data->rxlock, flags);
451 }
452 
453 static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count)
454 {
455 	struct sk_buff *skb;
456 	int err = 0;
457 
458 	spin_lock(&data->rxlock);
459 	skb = data->evt_skb;
460 
461 	while (count) {
462 		int len;
463 
464 		if (!skb) {
465 			skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC);
466 			if (!skb) {
467 				err = -ENOMEM;
468 				break;
469 			}
470 
471 			hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
472 			hci_skb_expect(skb) = HCI_EVENT_HDR_SIZE;
473 		}
474 
475 		len = min_t(uint, hci_skb_expect(skb), count);
476 		memcpy(skb_put(skb, len), buffer, len);
477 
478 		count -= len;
479 		buffer += len;
480 		hci_skb_expect(skb) -= len;
481 
482 		if (skb->len == HCI_EVENT_HDR_SIZE) {
483 			/* Complete event header */
484 			hci_skb_expect(skb) = hci_event_hdr(skb)->plen;
485 
486 			if (skb_tailroom(skb) < hci_skb_expect(skb)) {
487 				kfree_skb(skb);
488 				skb = NULL;
489 
490 				err = -EILSEQ;
491 				break;
492 			}
493 		}
494 
495 		if (!hci_skb_expect(skb)) {
496 			/* Complete frame */
497 			data->recv_event(data->hdev, skb);
498 			skb = NULL;
499 		}
500 	}
501 
502 	data->evt_skb = skb;
503 	spin_unlock(&data->rxlock);
504 
505 	return err;
506 }
507 
508 static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count)
509 {
510 	struct sk_buff *skb;
511 	int err = 0;
512 
513 	spin_lock(&data->rxlock);
514 	skb = data->acl_skb;
515 
516 	while (count) {
517 		int len;
518 
519 		if (!skb) {
520 			skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC);
521 			if (!skb) {
522 				err = -ENOMEM;
523 				break;
524 			}
525 
526 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
527 			hci_skb_expect(skb) = HCI_ACL_HDR_SIZE;
528 		}
529 
530 		len = min_t(uint, hci_skb_expect(skb), count);
531 		memcpy(skb_put(skb, len), buffer, len);
532 
533 		count -= len;
534 		buffer += len;
535 		hci_skb_expect(skb) -= len;
536 
537 		if (skb->len == HCI_ACL_HDR_SIZE) {
538 			__le16 dlen = hci_acl_hdr(skb)->dlen;
539 
540 			/* Complete ACL header */
541 			hci_skb_expect(skb) = __le16_to_cpu(dlen);
542 
543 			if (skb_tailroom(skb) < hci_skb_expect(skb)) {
544 				kfree_skb(skb);
545 				skb = NULL;
546 
547 				err = -EILSEQ;
548 				break;
549 			}
550 		}
551 
552 		if (!hci_skb_expect(skb)) {
553 			/* Complete frame */
554 			hci_recv_frame(data->hdev, skb);
555 			skb = NULL;
556 		}
557 	}
558 
559 	data->acl_skb = skb;
560 	spin_unlock(&data->rxlock);
561 
562 	return err;
563 }
564 
565 static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
566 {
567 	struct sk_buff *skb;
568 	int err = 0;
569 
570 	spin_lock(&data->rxlock);
571 	skb = data->sco_skb;
572 
573 	while (count) {
574 		int len;
575 
576 		if (!skb) {
577 			skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC);
578 			if (!skb) {
579 				err = -ENOMEM;
580 				break;
581 			}
582 
583 			hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
584 			hci_skb_expect(skb) = HCI_SCO_HDR_SIZE;
585 		}
586 
587 		len = min_t(uint, hci_skb_expect(skb), count);
588 		memcpy(skb_put(skb, len), buffer, len);
589 
590 		count -= len;
591 		buffer += len;
592 		hci_skb_expect(skb) -= len;
593 
594 		if (skb->len == HCI_SCO_HDR_SIZE) {
595 			/* Complete SCO header */
596 			hci_skb_expect(skb) = hci_sco_hdr(skb)->dlen;
597 
598 			if (skb_tailroom(skb) < hci_skb_expect(skb)) {
599 				kfree_skb(skb);
600 				skb = NULL;
601 
602 				err = -EILSEQ;
603 				break;
604 			}
605 		}
606 
607 		if (!hci_skb_expect(skb)) {
608 			/* Complete frame */
609 			hci_recv_frame(data->hdev, skb);
610 			skb = NULL;
611 		}
612 	}
613 
614 	data->sco_skb = skb;
615 	spin_unlock(&data->rxlock);
616 
617 	return err;
618 }
619 
620 static void btusb_intr_complete(struct urb *urb)
621 {
622 	struct hci_dev *hdev = urb->context;
623 	struct btusb_data *data = hci_get_drvdata(hdev);
624 	int err;
625 
626 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
627 	       urb->actual_length);
628 
629 	if (!test_bit(HCI_RUNNING, &hdev->flags))
630 		return;
631 
632 	if (urb->status == 0) {
633 		hdev->stat.byte_rx += urb->actual_length;
634 
635 		if (btusb_recv_intr(data, urb->transfer_buffer,
636 				    urb->actual_length) < 0) {
637 			BT_ERR("%s corrupted event packet", hdev->name);
638 			hdev->stat.err_rx++;
639 		}
640 	} else if (urb->status == -ENOENT) {
641 		/* Avoid suspend failed when usb_kill_urb */
642 		return;
643 	}
644 
645 	if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
646 		return;
647 
648 	usb_mark_last_busy(data->udev);
649 	usb_anchor_urb(urb, &data->intr_anchor);
650 
651 	err = usb_submit_urb(urb, GFP_ATOMIC);
652 	if (err < 0) {
653 		/* -EPERM: urb is being killed;
654 		 * -ENODEV: device got disconnected */
655 		if (err != -EPERM && err != -ENODEV)
656 			BT_ERR("%s urb %p failed to resubmit (%d)",
657 			       hdev->name, urb, -err);
658 		usb_unanchor_urb(urb);
659 	}
660 }
661 
662 static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
663 {
664 	struct btusb_data *data = hci_get_drvdata(hdev);
665 	struct urb *urb;
666 	unsigned char *buf;
667 	unsigned int pipe;
668 	int err, size;
669 
670 	BT_DBG("%s", hdev->name);
671 
672 	if (!data->intr_ep)
673 		return -ENODEV;
674 
675 	urb = usb_alloc_urb(0, mem_flags);
676 	if (!urb)
677 		return -ENOMEM;
678 
679 	size = le16_to_cpu(data->intr_ep->wMaxPacketSize);
680 
681 	buf = kmalloc(size, mem_flags);
682 	if (!buf) {
683 		usb_free_urb(urb);
684 		return -ENOMEM;
685 	}
686 
687 	pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);
688 
689 	usb_fill_int_urb(urb, data->udev, pipe, buf, size,
690 			 btusb_intr_complete, hdev, data->intr_ep->bInterval);
691 
692 	urb->transfer_flags |= URB_FREE_BUFFER;
693 
694 	usb_anchor_urb(urb, &data->intr_anchor);
695 
696 	err = usb_submit_urb(urb, mem_flags);
697 	if (err < 0) {
698 		if (err != -EPERM && err != -ENODEV)
699 			BT_ERR("%s urb %p submission failed (%d)",
700 			       hdev->name, urb, -err);
701 		usb_unanchor_urb(urb);
702 	}
703 
704 	usb_free_urb(urb);
705 
706 	return err;
707 }
708 
709 static void btusb_bulk_complete(struct urb *urb)
710 {
711 	struct hci_dev *hdev = urb->context;
712 	struct btusb_data *data = hci_get_drvdata(hdev);
713 	int err;
714 
715 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
716 	       urb->actual_length);
717 
718 	if (!test_bit(HCI_RUNNING, &hdev->flags))
719 		return;
720 
721 	if (urb->status == 0) {
722 		hdev->stat.byte_rx += urb->actual_length;
723 
724 		if (data->recv_bulk(data, urb->transfer_buffer,
725 				    urb->actual_length) < 0) {
726 			BT_ERR("%s corrupted ACL packet", hdev->name);
727 			hdev->stat.err_rx++;
728 		}
729 	} else if (urb->status == -ENOENT) {
730 		/* Avoid suspend failed when usb_kill_urb */
731 		return;
732 	}
733 
734 	if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
735 		return;
736 
737 	usb_anchor_urb(urb, &data->bulk_anchor);
738 	usb_mark_last_busy(data->udev);
739 
740 	err = usb_submit_urb(urb, GFP_ATOMIC);
741 	if (err < 0) {
742 		/* -EPERM: urb is being killed;
743 		 * -ENODEV: device got disconnected */
744 		if (err != -EPERM && err != -ENODEV)
745 			BT_ERR("%s urb %p failed to resubmit (%d)",
746 			       hdev->name, urb, -err);
747 		usb_unanchor_urb(urb);
748 	}
749 }
750 
751 static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
752 {
753 	struct btusb_data *data = hci_get_drvdata(hdev);
754 	struct urb *urb;
755 	unsigned char *buf;
756 	unsigned int pipe;
757 	int err, size = HCI_MAX_FRAME_SIZE;
758 
759 	BT_DBG("%s", hdev->name);
760 
761 	if (!data->bulk_rx_ep)
762 		return -ENODEV;
763 
764 	urb = usb_alloc_urb(0, mem_flags);
765 	if (!urb)
766 		return -ENOMEM;
767 
768 	buf = kmalloc(size, mem_flags);
769 	if (!buf) {
770 		usb_free_urb(urb);
771 		return -ENOMEM;
772 	}
773 
774 	pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);
775 
776 	usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
777 			  btusb_bulk_complete, hdev);
778 
779 	urb->transfer_flags |= URB_FREE_BUFFER;
780 
781 	usb_mark_last_busy(data->udev);
782 	usb_anchor_urb(urb, &data->bulk_anchor);
783 
784 	err = usb_submit_urb(urb, mem_flags);
785 	if (err < 0) {
786 		if (err != -EPERM && err != -ENODEV)
787 			BT_ERR("%s urb %p submission failed (%d)",
788 			       hdev->name, urb, -err);
789 		usb_unanchor_urb(urb);
790 	}
791 
792 	usb_free_urb(urb);
793 
794 	return err;
795 }
796 
797 static void btusb_isoc_complete(struct urb *urb)
798 {
799 	struct hci_dev *hdev = urb->context;
800 	struct btusb_data *data = hci_get_drvdata(hdev);
801 	int i, err;
802 
803 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
804 	       urb->actual_length);
805 
806 	if (!test_bit(HCI_RUNNING, &hdev->flags))
807 		return;
808 
809 	if (urb->status == 0) {
810 		for (i = 0; i < urb->number_of_packets; i++) {
811 			unsigned int offset = urb->iso_frame_desc[i].offset;
812 			unsigned int length = urb->iso_frame_desc[i].actual_length;
813 
814 			if (urb->iso_frame_desc[i].status)
815 				continue;
816 
817 			hdev->stat.byte_rx += length;
818 
819 			if (btusb_recv_isoc(data, urb->transfer_buffer + offset,
820 					    length) < 0) {
821 				BT_ERR("%s corrupted SCO packet", hdev->name);
822 				hdev->stat.err_rx++;
823 			}
824 		}
825 	} else if (urb->status == -ENOENT) {
826 		/* Avoid suspend failed when usb_kill_urb */
827 		return;
828 	}
829 
830 	if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags))
831 		return;
832 
833 	usb_anchor_urb(urb, &data->isoc_anchor);
834 
835 	err = usb_submit_urb(urb, GFP_ATOMIC);
836 	if (err < 0) {
837 		/* -EPERM: urb is being killed;
838 		 * -ENODEV: device got disconnected */
839 		if (err != -EPERM && err != -ENODEV)
840 			BT_ERR("%s urb %p failed to resubmit (%d)",
841 			       hdev->name, urb, -err);
842 		usb_unanchor_urb(urb);
843 	}
844 }
845 
846 static inline void __fill_isoc_descriptor(struct urb *urb, int len, int mtu)
847 {
848 	int i, offset = 0;
849 
850 	BT_DBG("len %d mtu %d", len, mtu);
851 
852 	for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
853 					i++, offset += mtu, len -= mtu) {
854 		urb->iso_frame_desc[i].offset = offset;
855 		urb->iso_frame_desc[i].length = mtu;
856 	}
857 
858 	if (len && i < BTUSB_MAX_ISOC_FRAMES) {
859 		urb->iso_frame_desc[i].offset = offset;
860 		urb->iso_frame_desc[i].length = len;
861 		i++;
862 	}
863 
864 	urb->number_of_packets = i;
865 }
866 
867 static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
868 {
869 	struct btusb_data *data = hci_get_drvdata(hdev);
870 	struct urb *urb;
871 	unsigned char *buf;
872 	unsigned int pipe;
873 	int err, size;
874 
875 	BT_DBG("%s", hdev->name);
876 
877 	if (!data->isoc_rx_ep)
878 		return -ENODEV;
879 
880 	urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
881 	if (!urb)
882 		return -ENOMEM;
883 
884 	size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
885 						BTUSB_MAX_ISOC_FRAMES;
886 
887 	buf = kmalloc(size, mem_flags);
888 	if (!buf) {
889 		usb_free_urb(urb);
890 		return -ENOMEM;
891 	}
892 
893 	pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);
894 
895 	usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_isoc_complete,
896 			 hdev, data->isoc_rx_ep->bInterval);
897 
898 	urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP;
899 
900 	__fill_isoc_descriptor(urb, size,
901 			       le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));
902 
903 	usb_anchor_urb(urb, &data->isoc_anchor);
904 
905 	err = usb_submit_urb(urb, mem_flags);
906 	if (err < 0) {
907 		if (err != -EPERM && err != -ENODEV)
908 			BT_ERR("%s urb %p submission failed (%d)",
909 			       hdev->name, urb, -err);
910 		usb_unanchor_urb(urb);
911 	}
912 
913 	usb_free_urb(urb);
914 
915 	return err;
916 }
917 
918 static void btusb_diag_complete(struct urb *urb)
919 {
920 	struct hci_dev *hdev = urb->context;
921 	struct btusb_data *data = hci_get_drvdata(hdev);
922 	int err;
923 
924 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
925 	       urb->actual_length);
926 
927 	if (urb->status == 0) {
928 		struct sk_buff *skb;
929 
930 		skb = bt_skb_alloc(urb->actual_length, GFP_ATOMIC);
931 		if (skb) {
932 			memcpy(skb_put(skb, urb->actual_length),
933 			       urb->transfer_buffer, urb->actual_length);
934 			hci_recv_diag(hdev, skb);
935 		}
936 	} else if (urb->status == -ENOENT) {
937 		/* Avoid suspend failed when usb_kill_urb */
938 		return;
939 	}
940 
941 	if (!test_bit(BTUSB_DIAG_RUNNING, &data->flags))
942 		return;
943 
944 	usb_anchor_urb(urb, &data->diag_anchor);
945 	usb_mark_last_busy(data->udev);
946 
947 	err = usb_submit_urb(urb, GFP_ATOMIC);
948 	if (err < 0) {
949 		/* -EPERM: urb is being killed;
950 		 * -ENODEV: device got disconnected */
951 		if (err != -EPERM && err != -ENODEV)
952 			BT_ERR("%s urb %p failed to resubmit (%d)",
953 			       hdev->name, urb, -err);
954 		usb_unanchor_urb(urb);
955 	}
956 }
957 
958 static int btusb_submit_diag_urb(struct hci_dev *hdev, gfp_t mem_flags)
959 {
960 	struct btusb_data *data = hci_get_drvdata(hdev);
961 	struct urb *urb;
962 	unsigned char *buf;
963 	unsigned int pipe;
964 	int err, size = HCI_MAX_FRAME_SIZE;
965 
966 	BT_DBG("%s", hdev->name);
967 
968 	if (!data->diag_rx_ep)
969 		return -ENODEV;
970 
971 	urb = usb_alloc_urb(0, mem_flags);
972 	if (!urb)
973 		return -ENOMEM;
974 
975 	buf = kmalloc(size, mem_flags);
976 	if (!buf) {
977 		usb_free_urb(urb);
978 		return -ENOMEM;
979 	}
980 
981 	pipe = usb_rcvbulkpipe(data->udev, data->diag_rx_ep->bEndpointAddress);
982 
983 	usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
984 			  btusb_diag_complete, hdev);
985 
986 	urb->transfer_flags |= URB_FREE_BUFFER;
987 
988 	usb_mark_last_busy(data->udev);
989 	usb_anchor_urb(urb, &data->diag_anchor);
990 
991 	err = usb_submit_urb(urb, mem_flags);
992 	if (err < 0) {
993 		if (err != -EPERM && err != -ENODEV)
994 			BT_ERR("%s urb %p submission failed (%d)",
995 			       hdev->name, urb, -err);
996 		usb_unanchor_urb(urb);
997 	}
998 
999 	usb_free_urb(urb);
1000 
1001 	return err;
1002 }
1003 
1004 static void btusb_tx_complete(struct urb *urb)
1005 {
1006 	struct sk_buff *skb = urb->context;
1007 	struct hci_dev *hdev = (struct hci_dev *)skb->dev;
1008 	struct btusb_data *data = hci_get_drvdata(hdev);
1009 
1010 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
1011 	       urb->actual_length);
1012 
1013 	if (!test_bit(HCI_RUNNING, &hdev->flags))
1014 		goto done;
1015 
1016 	if (!urb->status)
1017 		hdev->stat.byte_tx += urb->transfer_buffer_length;
1018 	else
1019 		hdev->stat.err_tx++;
1020 
1021 done:
1022 	spin_lock(&data->txlock);
1023 	data->tx_in_flight--;
1024 	spin_unlock(&data->txlock);
1025 
1026 	kfree(urb->setup_packet);
1027 
1028 	kfree_skb(skb);
1029 }
1030 
1031 static void btusb_isoc_tx_complete(struct urb *urb)
1032 {
1033 	struct sk_buff *skb = urb->context;
1034 	struct hci_dev *hdev = (struct hci_dev *)skb->dev;
1035 
1036 	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
1037 	       urb->actual_length);
1038 
1039 	if (!test_bit(HCI_RUNNING, &hdev->flags))
1040 		goto done;
1041 
1042 	if (!urb->status)
1043 		hdev->stat.byte_tx += urb->transfer_buffer_length;
1044 	else
1045 		hdev->stat.err_tx++;
1046 
1047 done:
1048 	kfree(urb->setup_packet);
1049 
1050 	kfree_skb(skb);
1051 }
1052 
1053 static int btusb_open(struct hci_dev *hdev)
1054 {
1055 	struct btusb_data *data = hci_get_drvdata(hdev);
1056 	int err;
1057 
1058 	BT_DBG("%s", hdev->name);
1059 
1060 	err = usb_autopm_get_interface(data->intf);
1061 	if (err < 0)
1062 		return err;
1063 
1064 	/* Patching USB firmware files prior to starting any URBs of HCI path
1065 	 * It is more safe to use USB bulk channel for downloading USB patch
1066 	 */
1067 	if (data->setup_on_usb) {
1068 		err = data->setup_on_usb(hdev);
1069 		if (err < 0)
1070 			return err;
1071 	}
1072 
1073 	data->intf->needs_remote_wakeup = 1;
1074 
1075 	if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
1076 		goto done;
1077 
1078 	err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
1079 	if (err < 0)
1080 		goto failed;
1081 
1082 	err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
1083 	if (err < 0) {
1084 		usb_kill_anchored_urbs(&data->intr_anchor);
1085 		goto failed;
1086 	}
1087 
1088 	set_bit(BTUSB_BULK_RUNNING, &data->flags);
1089 	btusb_submit_bulk_urb(hdev, GFP_KERNEL);
1090 
1091 	if (data->diag) {
1092 		if (!btusb_submit_diag_urb(hdev, GFP_KERNEL))
1093 			set_bit(BTUSB_DIAG_RUNNING, &data->flags);
1094 	}
1095 
1096 done:
1097 	usb_autopm_put_interface(data->intf);
1098 	return 0;
1099 
1100 failed:
1101 	clear_bit(BTUSB_INTR_RUNNING, &data->flags);
1102 	usb_autopm_put_interface(data->intf);
1103 	return err;
1104 }
1105 
1106 static void btusb_stop_traffic(struct btusb_data *data)
1107 {
1108 	usb_kill_anchored_urbs(&data->intr_anchor);
1109 	usb_kill_anchored_urbs(&data->bulk_anchor);
1110 	usb_kill_anchored_urbs(&data->isoc_anchor);
1111 	usb_kill_anchored_urbs(&data->diag_anchor);
1112 }
1113 
1114 static int btusb_close(struct hci_dev *hdev)
1115 {
1116 	struct btusb_data *data = hci_get_drvdata(hdev);
1117 	int err;
1118 
1119 	BT_DBG("%s", hdev->name);
1120 
1121 	cancel_work_sync(&data->work);
1122 	cancel_work_sync(&data->waker);
1123 
1124 	clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1125 	clear_bit(BTUSB_BULK_RUNNING, &data->flags);
1126 	clear_bit(BTUSB_INTR_RUNNING, &data->flags);
1127 	clear_bit(BTUSB_DIAG_RUNNING, &data->flags);
1128 
1129 	btusb_stop_traffic(data);
1130 	btusb_free_frags(data);
1131 
1132 	err = usb_autopm_get_interface(data->intf);
1133 	if (err < 0)
1134 		goto failed;
1135 
1136 	data->intf->needs_remote_wakeup = 0;
1137 	usb_autopm_put_interface(data->intf);
1138 
1139 failed:
1140 	usb_scuttle_anchored_urbs(&data->deferred);
1141 	return 0;
1142 }
1143 
1144 static int btusb_flush(struct hci_dev *hdev)
1145 {
1146 	struct btusb_data *data = hci_get_drvdata(hdev);
1147 
1148 	BT_DBG("%s", hdev->name);
1149 
1150 	usb_kill_anchored_urbs(&data->tx_anchor);
1151 	btusb_free_frags(data);
1152 
1153 	return 0;
1154 }
1155 
1156 static struct urb *alloc_ctrl_urb(struct hci_dev *hdev, struct sk_buff *skb)
1157 {
1158 	struct btusb_data *data = hci_get_drvdata(hdev);
1159 	struct usb_ctrlrequest *dr;
1160 	struct urb *urb;
1161 	unsigned int pipe;
1162 
1163 	urb = usb_alloc_urb(0, GFP_KERNEL);
1164 	if (!urb)
1165 		return ERR_PTR(-ENOMEM);
1166 
1167 	dr = kmalloc(sizeof(*dr), GFP_KERNEL);
1168 	if (!dr) {
1169 		usb_free_urb(urb);
1170 		return ERR_PTR(-ENOMEM);
1171 	}
1172 
1173 	dr->bRequestType = data->cmdreq_type;
1174 	dr->bRequest     = data->cmdreq;
1175 	dr->wIndex       = 0;
1176 	dr->wValue       = 0;
1177 	dr->wLength      = __cpu_to_le16(skb->len);
1178 
1179 	pipe = usb_sndctrlpipe(data->udev, 0x00);
1180 
1181 	usb_fill_control_urb(urb, data->udev, pipe, (void *)dr,
1182 			     skb->data, skb->len, btusb_tx_complete, skb);
1183 
1184 	skb->dev = (void *)hdev;
1185 
1186 	return urb;
1187 }
1188 
1189 static struct urb *alloc_bulk_urb(struct hci_dev *hdev, struct sk_buff *skb)
1190 {
1191 	struct btusb_data *data = hci_get_drvdata(hdev);
1192 	struct urb *urb;
1193 	unsigned int pipe;
1194 
1195 	if (!data->bulk_tx_ep)
1196 		return ERR_PTR(-ENODEV);
1197 
1198 	urb = usb_alloc_urb(0, GFP_KERNEL);
1199 	if (!urb)
1200 		return ERR_PTR(-ENOMEM);
1201 
1202 	pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress);
1203 
1204 	usb_fill_bulk_urb(urb, data->udev, pipe,
1205 			  skb->data, skb->len, btusb_tx_complete, skb);
1206 
1207 	skb->dev = (void *)hdev;
1208 
1209 	return urb;
1210 }
1211 
1212 static struct urb *alloc_isoc_urb(struct hci_dev *hdev, struct sk_buff *skb)
1213 {
1214 	struct btusb_data *data = hci_get_drvdata(hdev);
1215 	struct urb *urb;
1216 	unsigned int pipe;
1217 
1218 	if (!data->isoc_tx_ep)
1219 		return ERR_PTR(-ENODEV);
1220 
1221 	urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_KERNEL);
1222 	if (!urb)
1223 		return ERR_PTR(-ENOMEM);
1224 
1225 	pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);
1226 
1227 	usb_fill_int_urb(urb, data->udev, pipe,
1228 			 skb->data, skb->len, btusb_isoc_tx_complete,
1229 			 skb, data->isoc_tx_ep->bInterval);
1230 
1231 	urb->transfer_flags  = URB_ISO_ASAP;
1232 
1233 	__fill_isoc_descriptor(urb, skb->len,
1234 			       le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));
1235 
1236 	skb->dev = (void *)hdev;
1237 
1238 	return urb;
1239 }
1240 
1241 static int submit_tx_urb(struct hci_dev *hdev, struct urb *urb)
1242 {
1243 	struct btusb_data *data = hci_get_drvdata(hdev);
1244 	int err;
1245 
1246 	usb_anchor_urb(urb, &data->tx_anchor);
1247 
1248 	err = usb_submit_urb(urb, GFP_KERNEL);
1249 	if (err < 0) {
1250 		if (err != -EPERM && err != -ENODEV)
1251 			BT_ERR("%s urb %p submission failed (%d)",
1252 			       hdev->name, urb, -err);
1253 		kfree(urb->setup_packet);
1254 		usb_unanchor_urb(urb);
1255 	} else {
1256 		usb_mark_last_busy(data->udev);
1257 	}
1258 
1259 	usb_free_urb(urb);
1260 	return err;
1261 }
1262 
1263 static int submit_or_queue_tx_urb(struct hci_dev *hdev, struct urb *urb)
1264 {
1265 	struct btusb_data *data = hci_get_drvdata(hdev);
1266 	unsigned long flags;
1267 	bool suspending;
1268 
1269 	spin_lock_irqsave(&data->txlock, flags);
1270 	suspending = test_bit(BTUSB_SUSPENDING, &data->flags);
1271 	if (!suspending)
1272 		data->tx_in_flight++;
1273 	spin_unlock_irqrestore(&data->txlock, flags);
1274 
1275 	if (!suspending)
1276 		return submit_tx_urb(hdev, urb);
1277 
1278 	usb_anchor_urb(urb, &data->deferred);
1279 	schedule_work(&data->waker);
1280 
1281 	usb_free_urb(urb);
1282 	return 0;
1283 }
1284 
1285 static int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1286 {
1287 	struct urb *urb;
1288 
1289 	BT_DBG("%s", hdev->name);
1290 
1291 	switch (hci_skb_pkt_type(skb)) {
1292 	case HCI_COMMAND_PKT:
1293 		urb = alloc_ctrl_urb(hdev, skb);
1294 		if (IS_ERR(urb))
1295 			return PTR_ERR(urb);
1296 
1297 		hdev->stat.cmd_tx++;
1298 		return submit_or_queue_tx_urb(hdev, urb);
1299 
1300 	case HCI_ACLDATA_PKT:
1301 		urb = alloc_bulk_urb(hdev, skb);
1302 		if (IS_ERR(urb))
1303 			return PTR_ERR(urb);
1304 
1305 		hdev->stat.acl_tx++;
1306 		return submit_or_queue_tx_urb(hdev, urb);
1307 
1308 	case HCI_SCODATA_PKT:
1309 		if (hci_conn_num(hdev, SCO_LINK) < 1)
1310 			return -ENODEV;
1311 
1312 		urb = alloc_isoc_urb(hdev, skb);
1313 		if (IS_ERR(urb))
1314 			return PTR_ERR(urb);
1315 
1316 		hdev->stat.sco_tx++;
1317 		return submit_tx_urb(hdev, urb);
1318 	}
1319 
1320 	return -EILSEQ;
1321 }
1322 
1323 static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
1324 {
1325 	struct btusb_data *data = hci_get_drvdata(hdev);
1326 
1327 	BT_DBG("%s evt %d", hdev->name, evt);
1328 
1329 	if (hci_conn_num(hdev, SCO_LINK) != data->sco_num) {
1330 		data->sco_num = hci_conn_num(hdev, SCO_LINK);
1331 		schedule_work(&data->work);
1332 	}
1333 }
1334 
1335 static inline int __set_isoc_interface(struct hci_dev *hdev, int altsetting)
1336 {
1337 	struct btusb_data *data = hci_get_drvdata(hdev);
1338 	struct usb_interface *intf = data->isoc;
1339 	struct usb_endpoint_descriptor *ep_desc;
1340 	int i, err;
1341 
1342 	if (!data->isoc)
1343 		return -ENODEV;
1344 
1345 	err = usb_set_interface(data->udev, 1, altsetting);
1346 	if (err < 0) {
1347 		BT_ERR("%s setting interface failed (%d)", hdev->name, -err);
1348 		return err;
1349 	}
1350 
1351 	data->isoc_altsetting = altsetting;
1352 
1353 	data->isoc_tx_ep = NULL;
1354 	data->isoc_rx_ep = NULL;
1355 
1356 	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
1357 		ep_desc = &intf->cur_altsetting->endpoint[i].desc;
1358 
1359 		if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
1360 			data->isoc_tx_ep = ep_desc;
1361 			continue;
1362 		}
1363 
1364 		if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
1365 			data->isoc_rx_ep = ep_desc;
1366 			continue;
1367 		}
1368 	}
1369 
1370 	if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
1371 		BT_ERR("%s invalid SCO descriptors", hdev->name);
1372 		return -ENODEV;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static void btusb_work(struct work_struct *work)
1379 {
1380 	struct btusb_data *data = container_of(work, struct btusb_data, work);
1381 	struct hci_dev *hdev = data->hdev;
1382 	int new_alts;
1383 	int err;
1384 
1385 	if (data->sco_num > 0) {
1386 		if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
1387 			err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
1388 			if (err < 0) {
1389 				clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1390 				usb_kill_anchored_urbs(&data->isoc_anchor);
1391 				return;
1392 			}
1393 
1394 			set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
1395 		}
1396 
1397 		if (hdev->voice_setting & 0x0020) {
1398 			static const int alts[3] = { 2, 4, 5 };
1399 
1400 			new_alts = alts[data->sco_num - 1];
1401 		} else {
1402 			new_alts = data->sco_num;
1403 		}
1404 
1405 		if (data->isoc_altsetting != new_alts) {
1406 			unsigned long flags;
1407 
1408 			clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1409 			usb_kill_anchored_urbs(&data->isoc_anchor);
1410 
1411 			/* When isochronous alternate setting needs to be
1412 			 * changed, because SCO connection has been added
1413 			 * or removed, a packet fragment may be left in the
1414 			 * reassembling state. This could lead to wrongly
1415 			 * assembled fragments.
1416 			 *
1417 			 * Clear outstanding fragment when selecting a new
1418 			 * alternate setting.
1419 			 */
1420 			spin_lock_irqsave(&data->rxlock, flags);
1421 			kfree_skb(data->sco_skb);
1422 			data->sco_skb = NULL;
1423 			spin_unlock_irqrestore(&data->rxlock, flags);
1424 
1425 			if (__set_isoc_interface(hdev, new_alts) < 0)
1426 				return;
1427 		}
1428 
1429 		if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
1430 			if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
1431 				clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1432 			else
1433 				btusb_submit_isoc_urb(hdev, GFP_KERNEL);
1434 		}
1435 	} else {
1436 		clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1437 		usb_kill_anchored_urbs(&data->isoc_anchor);
1438 
1439 		__set_isoc_interface(hdev, 0);
1440 		if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
1441 			usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
1442 	}
1443 }
1444 
1445 static void btusb_waker(struct work_struct *work)
1446 {
1447 	struct btusb_data *data = container_of(work, struct btusb_data, waker);
1448 	int err;
1449 
1450 	err = usb_autopm_get_interface(data->intf);
1451 	if (err < 0)
1452 		return;
1453 
1454 	usb_autopm_put_interface(data->intf);
1455 }
1456 
1457 static int btusb_setup_bcm92035(struct hci_dev *hdev)
1458 {
1459 	struct sk_buff *skb;
1460 	u8 val = 0x00;
1461 
1462 	BT_DBG("%s", hdev->name);
1463 
1464 	skb = __hci_cmd_sync(hdev, 0xfc3b, 1, &val, HCI_INIT_TIMEOUT);
1465 	if (IS_ERR(skb))
1466 		BT_ERR("BCM92035 command failed (%ld)", -PTR_ERR(skb));
1467 	else
1468 		kfree_skb(skb);
1469 
1470 	return 0;
1471 }
1472 
1473 static int btusb_setup_csr(struct hci_dev *hdev)
1474 {
1475 	struct hci_rp_read_local_version *rp;
1476 	struct sk_buff *skb;
1477 
1478 	BT_DBG("%s", hdev->name);
1479 
1480 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
1481 			     HCI_INIT_TIMEOUT);
1482 	if (IS_ERR(skb)) {
1483 		int err = PTR_ERR(skb);
1484 		BT_ERR("%s: CSR: Local version failed (%d)", hdev->name, err);
1485 		return err;
1486 	}
1487 
1488 	if (skb->len != sizeof(struct hci_rp_read_local_version)) {
1489 		BT_ERR("%s: CSR: Local version length mismatch", hdev->name);
1490 		kfree_skb(skb);
1491 		return -EIO;
1492 	}
1493 
1494 	rp = (struct hci_rp_read_local_version *)skb->data;
1495 
1496 	/* Detect controllers which aren't real CSR ones. */
1497 	if (le16_to_cpu(rp->manufacturer) != 10 ||
1498 	    le16_to_cpu(rp->lmp_subver) == 0x0c5c) {
1499 		/* Clear the reset quirk since this is not an actual
1500 		 * early Bluetooth 1.1 device from CSR.
1501 		 */
1502 		clear_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
1503 
1504 		/* These fake CSR controllers have all a broken
1505 		 * stored link key handling and so just disable it.
1506 		 */
1507 		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
1508 	}
1509 
1510 	kfree_skb(skb);
1511 
1512 	return 0;
1513 }
1514 
1515 static const struct firmware *btusb_setup_intel_get_fw(struct hci_dev *hdev,
1516 						       struct intel_version *ver)
1517 {
1518 	const struct firmware *fw;
1519 	char fwname[64];
1520 	int ret;
1521 
1522 	snprintf(fwname, sizeof(fwname),
1523 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1524 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1525 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1526 		 ver->fw_build_ww, ver->fw_build_yy);
1527 
1528 	ret = request_firmware(&fw, fwname, &hdev->dev);
1529 	if (ret < 0) {
1530 		if (ret == -EINVAL) {
1531 			BT_ERR("%s Intel firmware file request failed (%d)",
1532 			       hdev->name, ret);
1533 			return NULL;
1534 		}
1535 
1536 		BT_ERR("%s failed to open Intel firmware file: %s(%d)",
1537 		       hdev->name, fwname, ret);
1538 
1539 		/* If the correct firmware patch file is not found, use the
1540 		 * default firmware patch file instead
1541 		 */
1542 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1543 			 ver->hw_platform, ver->hw_variant);
1544 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1545 			BT_ERR("%s failed to open default Intel fw file: %s",
1546 			       hdev->name, fwname);
1547 			return NULL;
1548 		}
1549 	}
1550 
1551 	BT_INFO("%s: Intel Bluetooth firmware file: %s", hdev->name, fwname);
1552 
1553 	return fw;
1554 }
1555 
1556 static int btusb_setup_intel_patching(struct hci_dev *hdev,
1557 				      const struct firmware *fw,
1558 				      const u8 **fw_ptr, int *disable_patch)
1559 {
1560 	struct sk_buff *skb;
1561 	struct hci_command_hdr *cmd;
1562 	const u8 *cmd_param;
1563 	struct hci_event_hdr *evt = NULL;
1564 	const u8 *evt_param = NULL;
1565 	int remain = fw->size - (*fw_ptr - fw->data);
1566 
1567 	/* The first byte indicates the types of the patch command or event.
1568 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1569 	 * in the current firmware buffer doesn't start with 0x01 or
1570 	 * the size of remain buffer is smaller than HCI command header,
1571 	 * the firmware file is corrupted and it should stop the patching
1572 	 * process.
1573 	 */
1574 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1575 		BT_ERR("%s Intel fw corrupted: invalid cmd read", hdev->name);
1576 		return -EINVAL;
1577 	}
1578 	(*fw_ptr)++;
1579 	remain--;
1580 
1581 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1582 	*fw_ptr += sizeof(*cmd);
1583 	remain -= sizeof(*cmd);
1584 
1585 	/* Ensure that the remain firmware data is long enough than the length
1586 	 * of command parameter. If not, the firmware file is corrupted.
1587 	 */
1588 	if (remain < cmd->plen) {
1589 		BT_ERR("%s Intel fw corrupted: invalid cmd len", hdev->name);
1590 		return -EFAULT;
1591 	}
1592 
1593 	/* If there is a command that loads a patch in the firmware
1594 	 * file, then enable the patch upon success, otherwise just
1595 	 * disable the manufacturer mode, for example patch activation
1596 	 * is not required when the default firmware patch file is used
1597 	 * because there are no patch data to load.
1598 	 */
1599 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1600 		*disable_patch = 0;
1601 
1602 	cmd_param = *fw_ptr;
1603 	*fw_ptr += cmd->plen;
1604 	remain -= cmd->plen;
1605 
1606 	/* This reads the expected events when the above command is sent to the
1607 	 * device. Some vendor commands expects more than one events, for
1608 	 * example command status event followed by vendor specific event.
1609 	 * For this case, it only keeps the last expected event. so the command
1610 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1611 	 * last expected event.
1612 	 */
1613 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1614 		(*fw_ptr)++;
1615 		remain--;
1616 
1617 		evt = (struct hci_event_hdr *)(*fw_ptr);
1618 		*fw_ptr += sizeof(*evt);
1619 		remain -= sizeof(*evt);
1620 
1621 		if (remain < evt->plen) {
1622 			BT_ERR("%s Intel fw corrupted: invalid evt len",
1623 			       hdev->name);
1624 			return -EFAULT;
1625 		}
1626 
1627 		evt_param = *fw_ptr;
1628 		*fw_ptr += evt->plen;
1629 		remain -= evt->plen;
1630 	}
1631 
1632 	/* Every HCI commands in the firmware file has its correspond event.
1633 	 * If event is not found or remain is smaller than zero, the firmware
1634 	 * file is corrupted.
1635 	 */
1636 	if (!evt || !evt_param || remain < 0) {
1637 		BT_ERR("%s Intel fw corrupted: invalid evt read", hdev->name);
1638 		return -EFAULT;
1639 	}
1640 
1641 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1642 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1643 	if (IS_ERR(skb)) {
1644 		BT_ERR("%s sending Intel patch command (0x%4.4x) failed (%ld)",
1645 		       hdev->name, cmd->opcode, PTR_ERR(skb));
1646 		return PTR_ERR(skb);
1647 	}
1648 
1649 	/* It ensures that the returned event matches the event data read from
1650 	 * the firmware file. At fist, it checks the length and then
1651 	 * the contents of the event.
1652 	 */
1653 	if (skb->len != evt->plen) {
1654 		BT_ERR("%s mismatch event length (opcode 0x%4.4x)", hdev->name,
1655 		       le16_to_cpu(cmd->opcode));
1656 		kfree_skb(skb);
1657 		return -EFAULT;
1658 	}
1659 
1660 	if (memcmp(skb->data, evt_param, evt->plen)) {
1661 		BT_ERR("%s mismatch event parameter (opcode 0x%4.4x)",
1662 		       hdev->name, le16_to_cpu(cmd->opcode));
1663 		kfree_skb(skb);
1664 		return -EFAULT;
1665 	}
1666 	kfree_skb(skb);
1667 
1668 	return 0;
1669 }
1670 
1671 static int btusb_setup_intel(struct hci_dev *hdev)
1672 {
1673 	struct sk_buff *skb;
1674 	const struct firmware *fw;
1675 	const u8 *fw_ptr;
1676 	int disable_patch, err;
1677 	struct intel_version ver;
1678 
1679 	BT_DBG("%s", hdev->name);
1680 
1681 	/* The controller has a bug with the first HCI command sent to it
1682 	 * returning number of completed commands as zero. This would stall the
1683 	 * command processing in the Bluetooth core.
1684 	 *
1685 	 * As a workaround, send HCI Reset command first which will reset the
1686 	 * number of completed commands and allow normal command processing
1687 	 * from now on.
1688 	 */
1689 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
1690 	if (IS_ERR(skb)) {
1691 		BT_ERR("%s sending initial HCI reset command failed (%ld)",
1692 		       hdev->name, PTR_ERR(skb));
1693 		return PTR_ERR(skb);
1694 	}
1695 	kfree_skb(skb);
1696 
1697 	/* Read Intel specific controller version first to allow selection of
1698 	 * which firmware file to load.
1699 	 *
1700 	 * The returned information are hardware variant and revision plus
1701 	 * firmware variant, revision and build number.
1702 	 */
1703 	err = btintel_read_version(hdev, &ver);
1704 	if (err)
1705 		return err;
1706 
1707 	BT_INFO("%s: read Intel version: %02x%02x%02x%02x%02x%02x%02x%02x%02x",
1708 		hdev->name, ver.hw_platform, ver.hw_variant, ver.hw_revision,
1709 		ver.fw_variant,  ver.fw_revision, ver.fw_build_num,
1710 		ver.fw_build_ww, ver.fw_build_yy, ver.fw_patch_num);
1711 
1712 	/* fw_patch_num indicates the version of patch the device currently
1713 	 * have. If there is no patch data in the device, it is always 0x00.
1714 	 * So, if it is other than 0x00, no need to patch the device again.
1715 	 */
1716 	if (ver.fw_patch_num) {
1717 		BT_INFO("%s: Intel device is already patched. patch num: %02x",
1718 			hdev->name, ver.fw_patch_num);
1719 		goto complete;
1720 	}
1721 
1722 	/* Opens the firmware patch file based on the firmware version read
1723 	 * from the controller. If it fails to open the matching firmware
1724 	 * patch file, it tries to open the default firmware patch file.
1725 	 * If no patch file is found, allow the device to operate without
1726 	 * a patch.
1727 	 */
1728 	fw = btusb_setup_intel_get_fw(hdev, &ver);
1729 	if (!fw)
1730 		goto complete;
1731 	fw_ptr = fw->data;
1732 
1733 	/* Enable the manufacturer mode of the controller.
1734 	 * Only while this mode is enabled, the driver can download the
1735 	 * firmware patch data and configuration parameters.
1736 	 */
1737 	err = btintel_enter_mfg(hdev);
1738 	if (err) {
1739 		release_firmware(fw);
1740 		return err;
1741 	}
1742 
1743 	disable_patch = 1;
1744 
1745 	/* The firmware data file consists of list of Intel specific HCI
1746 	 * commands and its expected events. The first byte indicates the
1747 	 * type of the message, either HCI command or HCI event.
1748 	 *
1749 	 * It reads the command and its expected event from the firmware file,
1750 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1751 	 * the returned event is compared with the event read from the firmware
1752 	 * file and it will continue until all the messages are downloaded to
1753 	 * the controller.
1754 	 *
1755 	 * Once the firmware patching is completed successfully,
1756 	 * the manufacturer mode is disabled with reset and activating the
1757 	 * downloaded patch.
1758 	 *
1759 	 * If the firmware patching fails, the manufacturer mode is
1760 	 * disabled with reset and deactivating the patch.
1761 	 *
1762 	 * If the default patch file is used, no reset is done when disabling
1763 	 * the manufacturer.
1764 	 */
1765 	while (fw->size > fw_ptr - fw->data) {
1766 		int ret;
1767 
1768 		ret = btusb_setup_intel_patching(hdev, fw, &fw_ptr,
1769 						 &disable_patch);
1770 		if (ret < 0)
1771 			goto exit_mfg_deactivate;
1772 	}
1773 
1774 	release_firmware(fw);
1775 
1776 	if (disable_patch)
1777 		goto exit_mfg_disable;
1778 
1779 	/* Patching completed successfully and disable the manufacturer mode
1780 	 * with reset and activate the downloaded firmware patches.
1781 	 */
1782 	err = btintel_exit_mfg(hdev, true, true);
1783 	if (err)
1784 		return err;
1785 
1786 	BT_INFO("%s: Intel Bluetooth firmware patch completed and activated",
1787 		hdev->name);
1788 
1789 	goto complete;
1790 
1791 exit_mfg_disable:
1792 	/* Disable the manufacturer mode without reset */
1793 	err = btintel_exit_mfg(hdev, false, false);
1794 	if (err)
1795 		return err;
1796 
1797 	BT_INFO("%s: Intel Bluetooth firmware patch completed", hdev->name);
1798 
1799 	goto complete;
1800 
1801 exit_mfg_deactivate:
1802 	release_firmware(fw);
1803 
1804 	/* Patching failed. Disable the manufacturer mode with reset and
1805 	 * deactivate the downloaded firmware patches.
1806 	 */
1807 	err = btintel_exit_mfg(hdev, true, false);
1808 	if (err)
1809 		return err;
1810 
1811 	BT_INFO("%s: Intel Bluetooth firmware patch completed and deactivated",
1812 		hdev->name);
1813 
1814 complete:
1815 	/* Set the event mask for Intel specific vendor events. This enables
1816 	 * a few extra events that are useful during general operation.
1817 	 */
1818 	btintel_set_event_mask_mfg(hdev, false);
1819 
1820 	btintel_check_bdaddr(hdev);
1821 	return 0;
1822 }
1823 
1824 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1825 {
1826 	struct sk_buff *skb;
1827 	struct hci_event_hdr *hdr;
1828 	struct hci_ev_cmd_complete *evt;
1829 
1830 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
1831 	if (!skb)
1832 		return -ENOMEM;
1833 
1834 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1835 	hdr->evt = HCI_EV_CMD_COMPLETE;
1836 	hdr->plen = sizeof(*evt) + 1;
1837 
1838 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1839 	evt->ncmd = 0x01;
1840 	evt->opcode = cpu_to_le16(opcode);
1841 
1842 	*skb_put(skb, 1) = 0x00;
1843 
1844 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1845 
1846 	return hci_recv_frame(hdev, skb);
1847 }
1848 
1849 static int btusb_recv_bulk_intel(struct btusb_data *data, void *buffer,
1850 				 int count)
1851 {
1852 	/* When the device is in bootloader mode, then it can send
1853 	 * events via the bulk endpoint. These events are treated the
1854 	 * same way as the ones received from the interrupt endpoint.
1855 	 */
1856 	if (test_bit(BTUSB_BOOTLOADER, &data->flags))
1857 		return btusb_recv_intr(data, buffer, count);
1858 
1859 	return btusb_recv_bulk(data, buffer, count);
1860 }
1861 
1862 static void btusb_intel_bootup(struct btusb_data *data, const void *ptr,
1863 			       unsigned int len)
1864 {
1865 	const struct intel_bootup *evt = ptr;
1866 
1867 	if (len != sizeof(*evt))
1868 		return;
1869 
1870 	if (test_and_clear_bit(BTUSB_BOOTING, &data->flags)) {
1871 		smp_mb__after_atomic();
1872 		wake_up_bit(&data->flags, BTUSB_BOOTING);
1873 	}
1874 }
1875 
1876 static void btusb_intel_secure_send_result(struct btusb_data *data,
1877 					   const void *ptr, unsigned int len)
1878 {
1879 	const struct intel_secure_send_result *evt = ptr;
1880 
1881 	if (len != sizeof(*evt))
1882 		return;
1883 
1884 	if (evt->result)
1885 		set_bit(BTUSB_FIRMWARE_FAILED, &data->flags);
1886 
1887 	if (test_and_clear_bit(BTUSB_DOWNLOADING, &data->flags) &&
1888 	    test_bit(BTUSB_FIRMWARE_LOADED, &data->flags)) {
1889 		smp_mb__after_atomic();
1890 		wake_up_bit(&data->flags, BTUSB_DOWNLOADING);
1891 	}
1892 }
1893 
1894 static int btusb_recv_event_intel(struct hci_dev *hdev, struct sk_buff *skb)
1895 {
1896 	struct btusb_data *data = hci_get_drvdata(hdev);
1897 
1898 	if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
1899 		struct hci_event_hdr *hdr = (void *)skb->data;
1900 
1901 		if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
1902 		    hdr->plen > 0) {
1903 			const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
1904 			unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
1905 
1906 			switch (skb->data[2]) {
1907 			case 0x02:
1908 				/* When switching to the operational firmware
1909 				 * the device sends a vendor specific event
1910 				 * indicating that the bootup completed.
1911 				 */
1912 				btusb_intel_bootup(data, ptr, len);
1913 				break;
1914 			case 0x06:
1915 				/* When the firmware loading completes the
1916 				 * device sends out a vendor specific event
1917 				 * indicating the result of the firmware
1918 				 * loading.
1919 				 */
1920 				btusb_intel_secure_send_result(data, ptr, len);
1921 				break;
1922 			}
1923 		}
1924 	}
1925 
1926 	return hci_recv_frame(hdev, skb);
1927 }
1928 
1929 static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb)
1930 {
1931 	struct btusb_data *data = hci_get_drvdata(hdev);
1932 	struct urb *urb;
1933 
1934 	BT_DBG("%s", hdev->name);
1935 
1936 	switch (hci_skb_pkt_type(skb)) {
1937 	case HCI_COMMAND_PKT:
1938 		if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
1939 			struct hci_command_hdr *cmd = (void *)skb->data;
1940 			__u16 opcode = le16_to_cpu(cmd->opcode);
1941 
1942 			/* When in bootloader mode and the command 0xfc09
1943 			 * is received, it needs to be send down the
1944 			 * bulk endpoint. So allocate a bulk URB instead.
1945 			 */
1946 			if (opcode == 0xfc09)
1947 				urb = alloc_bulk_urb(hdev, skb);
1948 			else
1949 				urb = alloc_ctrl_urb(hdev, skb);
1950 
1951 			/* When the 0xfc01 command is issued to boot into
1952 			 * the operational firmware, it will actually not
1953 			 * send a command complete event. To keep the flow
1954 			 * control working inject that event here.
1955 			 */
1956 			if (opcode == 0xfc01)
1957 				inject_cmd_complete(hdev, opcode);
1958 		} else {
1959 			urb = alloc_ctrl_urb(hdev, skb);
1960 		}
1961 		if (IS_ERR(urb))
1962 			return PTR_ERR(urb);
1963 
1964 		hdev->stat.cmd_tx++;
1965 		return submit_or_queue_tx_urb(hdev, urb);
1966 
1967 	case HCI_ACLDATA_PKT:
1968 		urb = alloc_bulk_urb(hdev, skb);
1969 		if (IS_ERR(urb))
1970 			return PTR_ERR(urb);
1971 
1972 		hdev->stat.acl_tx++;
1973 		return submit_or_queue_tx_urb(hdev, urb);
1974 
1975 	case HCI_SCODATA_PKT:
1976 		if (hci_conn_num(hdev, SCO_LINK) < 1)
1977 			return -ENODEV;
1978 
1979 		urb = alloc_isoc_urb(hdev, skb);
1980 		if (IS_ERR(urb))
1981 			return PTR_ERR(urb);
1982 
1983 		hdev->stat.sco_tx++;
1984 		return submit_tx_urb(hdev, urb);
1985 	}
1986 
1987 	return -EILSEQ;
1988 }
1989 
1990 static int btusb_setup_intel_new(struct hci_dev *hdev)
1991 {
1992 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
1993 					  0x00, 0x08, 0x04, 0x00 };
1994 	struct btusb_data *data = hci_get_drvdata(hdev);
1995 	struct sk_buff *skb;
1996 	struct intel_version ver;
1997 	struct intel_boot_params *params;
1998 	const struct firmware *fw;
1999 	const u8 *fw_ptr;
2000 	u32 frag_len;
2001 	char fwname[64];
2002 	ktime_t calltime, delta, rettime;
2003 	unsigned long long duration;
2004 	int err;
2005 
2006 	BT_DBG("%s", hdev->name);
2007 
2008 	calltime = ktime_get();
2009 
2010 	/* Read the Intel version information to determine if the device
2011 	 * is in bootloader mode or if it already has operational firmware
2012 	 * loaded.
2013 	 */
2014 	err = btintel_read_version(hdev, &ver);
2015 	if (err)
2016 		return err;
2017 
2018 	/* The hardware platform number has a fixed value of 0x37 and
2019 	 * for now only accept this single value.
2020 	 */
2021 	if (ver.hw_platform != 0x37) {
2022 		BT_ERR("%s: Unsupported Intel hardware platform (%u)",
2023 		       hdev->name, ver.hw_platform);
2024 		return -EINVAL;
2025 	}
2026 
2027 	/* At the moment the iBT 3.0 hardware variants 0x0b (LnP/SfP)
2028 	 * and 0x0c (WsP) are supported by this firmware loading method.
2029 	 *
2030 	 * This check has been put in place to ensure correct forward
2031 	 * compatibility options when newer hardware variants come along.
2032 	 */
2033 	if (ver.hw_variant != 0x0b && ver.hw_variant != 0x0c) {
2034 		BT_ERR("%s: Unsupported Intel hardware variant (%u)",
2035 		       hdev->name, ver.hw_variant);
2036 		return -EINVAL;
2037 	}
2038 
2039 	btintel_version_info(hdev, &ver);
2040 
2041 	/* The firmware variant determines if the device is in bootloader
2042 	 * mode or is running operational firmware. The value 0x06 identifies
2043 	 * the bootloader and the value 0x23 identifies the operational
2044 	 * firmware.
2045 	 *
2046 	 * When the operational firmware is already present, then only
2047 	 * the check for valid Bluetooth device address is needed. This
2048 	 * determines if the device will be added as configured or
2049 	 * unconfigured controller.
2050 	 *
2051 	 * It is not possible to use the Secure Boot Parameters in this
2052 	 * case since that command is only available in bootloader mode.
2053 	 */
2054 	if (ver.fw_variant == 0x23) {
2055 		clear_bit(BTUSB_BOOTLOADER, &data->flags);
2056 		btintel_check_bdaddr(hdev);
2057 		return 0;
2058 	}
2059 
2060 	/* If the device is not in bootloader mode, then the only possible
2061 	 * choice is to return an error and abort the device initialization.
2062 	 */
2063 	if (ver.fw_variant != 0x06) {
2064 		BT_ERR("%s: Unsupported Intel firmware variant (%u)",
2065 		       hdev->name, ver.fw_variant);
2066 		return -ENODEV;
2067 	}
2068 
2069 	/* Read the secure boot parameters to identify the operating
2070 	 * details of the bootloader.
2071 	 */
2072 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
2073 	if (IS_ERR(skb)) {
2074 		BT_ERR("%s: Reading Intel boot parameters failed (%ld)",
2075 		       hdev->name, PTR_ERR(skb));
2076 		return PTR_ERR(skb);
2077 	}
2078 
2079 	if (skb->len != sizeof(*params)) {
2080 		BT_ERR("%s: Intel boot parameters size mismatch", hdev->name);
2081 		kfree_skb(skb);
2082 		return -EILSEQ;
2083 	}
2084 
2085 	params = (struct intel_boot_params *)skb->data;
2086 
2087 	BT_INFO("%s: Device revision is %u", hdev->name,
2088 		le16_to_cpu(params->dev_revid));
2089 
2090 	BT_INFO("%s: Secure boot is %s", hdev->name,
2091 		params->secure_boot ? "enabled" : "disabled");
2092 
2093 	BT_INFO("%s: OTP lock is %s", hdev->name,
2094 		params->otp_lock ? "enabled" : "disabled");
2095 
2096 	BT_INFO("%s: API lock is %s", hdev->name,
2097 		params->api_lock ? "enabled" : "disabled");
2098 
2099 	BT_INFO("%s: Debug lock is %s", hdev->name,
2100 		params->debug_lock ? "enabled" : "disabled");
2101 
2102 	BT_INFO("%s: Minimum firmware build %u week %u %u", hdev->name,
2103 		params->min_fw_build_nn, params->min_fw_build_cw,
2104 		2000 + params->min_fw_build_yy);
2105 
2106 	/* It is required that every single firmware fragment is acknowledged
2107 	 * with a command complete event. If the boot parameters indicate
2108 	 * that this bootloader does not send them, then abort the setup.
2109 	 */
2110 	if (params->limited_cce != 0x00) {
2111 		BT_ERR("%s: Unsupported Intel firmware loading method (%u)",
2112 		       hdev->name, params->limited_cce);
2113 		kfree_skb(skb);
2114 		return -EINVAL;
2115 	}
2116 
2117 	/* If the OTP has no valid Bluetooth device address, then there will
2118 	 * also be no valid address for the operational firmware.
2119 	 */
2120 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2121 		BT_INFO("%s: No device address configured", hdev->name);
2122 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2123 	}
2124 
2125 	/* With this Intel bootloader only the hardware variant and device
2126 	 * revision information are used to select the right firmware.
2127 	 *
2128 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2129 	 *
2130 	 * Currently the supported hardware variants are:
2131 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
2132 	 *   12 (0x0c) for iBT3.5 (WsP)
2133 	 */
2134 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
2135 		 le16_to_cpu(ver.hw_variant),
2136 		 le16_to_cpu(params->dev_revid));
2137 
2138 	err = request_firmware(&fw, fwname, &hdev->dev);
2139 	if (err < 0) {
2140 		BT_ERR("%s: Failed to load Intel firmware file (%d)",
2141 		       hdev->name, err);
2142 		kfree_skb(skb);
2143 		return err;
2144 	}
2145 
2146 	BT_INFO("%s: Found device firmware: %s", hdev->name, fwname);
2147 
2148 	/* Save the DDC file name for later use to apply once the firmware
2149 	 * downloading is done.
2150 	 */
2151 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
2152 		 le16_to_cpu(ver.hw_variant),
2153 		 le16_to_cpu(params->dev_revid));
2154 
2155 	kfree_skb(skb);
2156 
2157 	if (fw->size < 644) {
2158 		BT_ERR("%s: Invalid size of firmware file (%zu)",
2159 		       hdev->name, fw->size);
2160 		err = -EBADF;
2161 		goto done;
2162 	}
2163 
2164 	set_bit(BTUSB_DOWNLOADING, &data->flags);
2165 
2166 	/* Start the firmware download transaction with the Init fragment
2167 	 * represented by the 128 bytes of CSS header.
2168 	 */
2169 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
2170 	if (err < 0) {
2171 		BT_ERR("%s: Failed to send firmware header (%d)",
2172 		       hdev->name, err);
2173 		goto done;
2174 	}
2175 
2176 	/* Send the 256 bytes of public key information from the firmware
2177 	 * as the PKey fragment.
2178 	 */
2179 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
2180 	if (err < 0) {
2181 		BT_ERR("%s: Failed to send firmware public key (%d)",
2182 		       hdev->name, err);
2183 		goto done;
2184 	}
2185 
2186 	/* Send the 256 bytes of signature information from the firmware
2187 	 * as the Sign fragment.
2188 	 */
2189 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
2190 	if (err < 0) {
2191 		BT_ERR("%s: Failed to send firmware signature (%d)",
2192 		       hdev->name, err);
2193 		goto done;
2194 	}
2195 
2196 	fw_ptr = fw->data + 644;
2197 	frag_len = 0;
2198 
2199 	while (fw_ptr - fw->data < fw->size) {
2200 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
2201 
2202 		frag_len += sizeof(*cmd) + cmd->plen;
2203 
2204 		/* The parameter length of the secure send command requires
2205 		 * a 4 byte alignment. It happens so that the firmware file
2206 		 * contains proper Intel_NOP commands to align the fragments
2207 		 * as needed.
2208 		 *
2209 		 * Send set of commands with 4 byte alignment from the
2210 		 * firmware data buffer as a single Data fragement.
2211 		 */
2212 		if (!(frag_len % 4)) {
2213 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
2214 			if (err < 0) {
2215 				BT_ERR("%s: Failed to send firmware data (%d)",
2216 				       hdev->name, err);
2217 				goto done;
2218 			}
2219 
2220 			fw_ptr += frag_len;
2221 			frag_len = 0;
2222 		}
2223 	}
2224 
2225 	set_bit(BTUSB_FIRMWARE_LOADED, &data->flags);
2226 
2227 	BT_INFO("%s: Waiting for firmware download to complete", hdev->name);
2228 
2229 	/* Before switching the device into operational mode and with that
2230 	 * booting the loaded firmware, wait for the bootloader notification
2231 	 * that all fragments have been successfully received.
2232 	 *
2233 	 * When the event processing receives the notification, then the
2234 	 * BTUSB_DOWNLOADING flag will be cleared.
2235 	 *
2236 	 * The firmware loading should not take longer than 5 seconds
2237 	 * and thus just timeout if that happens and fail the setup
2238 	 * of this device.
2239 	 */
2240 	err = wait_on_bit_timeout(&data->flags, BTUSB_DOWNLOADING,
2241 				  TASK_INTERRUPTIBLE,
2242 				  msecs_to_jiffies(5000));
2243 	if (err == -EINTR) {
2244 		BT_ERR("%s: Firmware loading interrupted", hdev->name);
2245 		goto done;
2246 	}
2247 
2248 	if (err) {
2249 		BT_ERR("%s: Firmware loading timeout", hdev->name);
2250 		err = -ETIMEDOUT;
2251 		goto done;
2252 	}
2253 
2254 	if (test_bit(BTUSB_FIRMWARE_FAILED, &data->flags)) {
2255 		BT_ERR("%s: Firmware loading failed", hdev->name);
2256 		err = -ENOEXEC;
2257 		goto done;
2258 	}
2259 
2260 	rettime = ktime_get();
2261 	delta = ktime_sub(rettime, calltime);
2262 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
2263 
2264 	BT_INFO("%s: Firmware loaded in %llu usecs", hdev->name, duration);
2265 
2266 done:
2267 	release_firmware(fw);
2268 
2269 	if (err < 0)
2270 		return err;
2271 
2272 	calltime = ktime_get();
2273 
2274 	set_bit(BTUSB_BOOTING, &data->flags);
2275 
2276 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
2277 			     HCI_INIT_TIMEOUT);
2278 	if (IS_ERR(skb))
2279 		return PTR_ERR(skb);
2280 
2281 	kfree_skb(skb);
2282 
2283 	/* The bootloader will not indicate when the device is ready. This
2284 	 * is done by the operational firmware sending bootup notification.
2285 	 *
2286 	 * Booting into operational firmware should not take longer than
2287 	 * 1 second. However if that happens, then just fail the setup
2288 	 * since something went wrong.
2289 	 */
2290 	BT_INFO("%s: Waiting for device to boot", hdev->name);
2291 
2292 	err = wait_on_bit_timeout(&data->flags, BTUSB_BOOTING,
2293 				  TASK_INTERRUPTIBLE,
2294 				  msecs_to_jiffies(1000));
2295 
2296 	if (err == -EINTR) {
2297 		BT_ERR("%s: Device boot interrupted", hdev->name);
2298 		return -EINTR;
2299 	}
2300 
2301 	if (err) {
2302 		BT_ERR("%s: Device boot timeout", hdev->name);
2303 		return -ETIMEDOUT;
2304 	}
2305 
2306 	rettime = ktime_get();
2307 	delta = ktime_sub(rettime, calltime);
2308 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
2309 
2310 	BT_INFO("%s: Device booted in %llu usecs", hdev->name, duration);
2311 
2312 	clear_bit(BTUSB_BOOTLOADER, &data->flags);
2313 
2314 	/* Once the device is running in operational mode, it needs to apply
2315 	 * the device configuration (DDC) parameters.
2316 	 *
2317 	 * The device can work without DDC parameters, so even if it fails
2318 	 * to load the file, no need to fail the setup.
2319 	 */
2320 	btintel_load_ddc_config(hdev, fwname);
2321 
2322 	/* Set the event mask for Intel specific vendor events. This enables
2323 	 * a few extra events that are useful during general operation. It
2324 	 * does not enable any debugging related events.
2325 	 *
2326 	 * The device will function correctly without these events enabled
2327 	 * and thus no need to fail the setup.
2328 	 */
2329 	btintel_set_event_mask(hdev, false);
2330 
2331 	return 0;
2332 }
2333 
2334 static int btusb_shutdown_intel(struct hci_dev *hdev)
2335 {
2336 	struct sk_buff *skb;
2337 	long ret;
2338 
2339 	/* Some platforms have an issue with BT LED when the interface is
2340 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
2341 	 * goes off. This command turns off the BT LED immediately.
2342 	 */
2343 	skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
2344 	if (IS_ERR(skb)) {
2345 		ret = PTR_ERR(skb);
2346 		BT_ERR("%s: turning off Intel device LED failed (%ld)",
2347 		       hdev->name, ret);
2348 		return ret;
2349 	}
2350 	kfree_skb(skb);
2351 
2352 	return 0;
2353 }
2354 
2355 #ifdef CONFIG_PM
2356 /* Configure an out-of-band gpio as wake-up pin, if specified in device tree */
2357 static int marvell_config_oob_wake(struct hci_dev *hdev)
2358 {
2359 	struct sk_buff *skb;
2360 	struct btusb_data *data = hci_get_drvdata(hdev);
2361 	struct device *dev = &data->udev->dev;
2362 	u16 pin, gap, opcode;
2363 	int ret;
2364 	u8 cmd[5];
2365 
2366 	/* Move on if no wakeup pin specified */
2367 	if (of_property_read_u16(dev->of_node, "marvell,wakeup-pin", &pin) ||
2368 	    of_property_read_u16(dev->of_node, "marvell,wakeup-gap-ms", &gap))
2369 		return 0;
2370 
2371 	/* Vendor specific command to configure a GPIO as wake-up pin */
2372 	opcode = hci_opcode_pack(0x3F, 0x59);
2373 	cmd[0] = opcode & 0xFF;
2374 	cmd[1] = opcode >> 8;
2375 	cmd[2] = 2; /* length of parameters that follow */
2376 	cmd[3] = pin;
2377 	cmd[4] = gap; /* time in ms, for which wakeup pin should be asserted */
2378 
2379 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
2380 	if (!skb) {
2381 		bt_dev_err(hdev, "%s: No memory\n", __func__);
2382 		return -ENOMEM;
2383 	}
2384 
2385 	memcpy(skb_put(skb, sizeof(cmd)), cmd, sizeof(cmd));
2386 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
2387 
2388 	ret = btusb_send_frame(hdev, skb);
2389 	if (ret) {
2390 		bt_dev_err(hdev, "%s: configuration failed\n", __func__);
2391 		kfree_skb(skb);
2392 		return ret;
2393 	}
2394 
2395 	return 0;
2396 }
2397 #endif
2398 
2399 static int btusb_set_bdaddr_marvell(struct hci_dev *hdev,
2400 				    const bdaddr_t *bdaddr)
2401 {
2402 	struct sk_buff *skb;
2403 	u8 buf[8];
2404 	long ret;
2405 
2406 	buf[0] = 0xfe;
2407 	buf[1] = sizeof(bdaddr_t);
2408 	memcpy(buf + 2, bdaddr, sizeof(bdaddr_t));
2409 
2410 	skb = __hci_cmd_sync(hdev, 0xfc22, sizeof(buf), buf, HCI_INIT_TIMEOUT);
2411 	if (IS_ERR(skb)) {
2412 		ret = PTR_ERR(skb);
2413 		BT_ERR("%s: changing Marvell device address failed (%ld)",
2414 		       hdev->name, ret);
2415 		return ret;
2416 	}
2417 	kfree_skb(skb);
2418 
2419 	return 0;
2420 }
2421 
2422 static int btusb_set_bdaddr_ath3012(struct hci_dev *hdev,
2423 				    const bdaddr_t *bdaddr)
2424 {
2425 	struct sk_buff *skb;
2426 	u8 buf[10];
2427 	long ret;
2428 
2429 	buf[0] = 0x01;
2430 	buf[1] = 0x01;
2431 	buf[2] = 0x00;
2432 	buf[3] = sizeof(bdaddr_t);
2433 	memcpy(buf + 4, bdaddr, sizeof(bdaddr_t));
2434 
2435 	skb = __hci_cmd_sync(hdev, 0xfc0b, sizeof(buf), buf, HCI_INIT_TIMEOUT);
2436 	if (IS_ERR(skb)) {
2437 		ret = PTR_ERR(skb);
2438 		BT_ERR("%s: Change address command failed (%ld)",
2439 		       hdev->name, ret);
2440 		return ret;
2441 	}
2442 	kfree_skb(skb);
2443 
2444 	return 0;
2445 }
2446 
2447 #define QCA_DFU_PACKET_LEN	4096
2448 
2449 #define QCA_GET_TARGET_VERSION	0x09
2450 #define QCA_CHECK_STATUS	0x05
2451 #define QCA_DFU_DOWNLOAD	0x01
2452 
2453 #define QCA_SYSCFG_UPDATED	0x40
2454 #define QCA_PATCH_UPDATED	0x80
2455 #define QCA_DFU_TIMEOUT		3000
2456 
2457 struct qca_version {
2458 	__le32	rom_version;
2459 	__le32	patch_version;
2460 	__le32	ram_version;
2461 	__le32	ref_clock;
2462 	__u8	reserved[4];
2463 } __packed;
2464 
2465 struct qca_rampatch_version {
2466 	__le16	rom_version;
2467 	__le16	patch_version;
2468 } __packed;
2469 
2470 struct qca_device_info {
2471 	u32	rom_version;
2472 	u8	rampatch_hdr;	/* length of header in rampatch */
2473 	u8	nvm_hdr;	/* length of header in NVM */
2474 	u8	ver_offset;	/* offset of version structure in rampatch */
2475 };
2476 
2477 static const struct qca_device_info qca_devices_table[] = {
2478 	{ 0x00000100, 20, 4, 10 }, /* Rome 1.0 */
2479 	{ 0x00000101, 20, 4, 10 }, /* Rome 1.1 */
2480 	{ 0x00000200, 28, 4, 18 }, /* Rome 2.0 */
2481 	{ 0x00000201, 28, 4, 18 }, /* Rome 2.1 */
2482 	{ 0x00000300, 28, 4, 18 }, /* Rome 3.0 */
2483 	{ 0x00000302, 28, 4, 18 }, /* Rome 3.2 */
2484 };
2485 
2486 static int btusb_qca_send_vendor_req(struct hci_dev *hdev, u8 request,
2487 				     void *data, u16 size)
2488 {
2489 	struct btusb_data *btdata = hci_get_drvdata(hdev);
2490 	struct usb_device *udev = btdata->udev;
2491 	int pipe, err;
2492 	u8 *buf;
2493 
2494 	buf = kmalloc(size, GFP_KERNEL);
2495 	if (!buf)
2496 		return -ENOMEM;
2497 
2498 	/* Found some of USB hosts have IOT issues with ours so that we should
2499 	 * not wait until HCI layer is ready.
2500 	 */
2501 	pipe = usb_rcvctrlpipe(udev, 0);
2502 	err = usb_control_msg(udev, pipe, request, USB_TYPE_VENDOR | USB_DIR_IN,
2503 			      0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
2504 	if (err < 0) {
2505 		BT_ERR("%s: Failed to access otp area (%d)", hdev->name, err);
2506 		goto done;
2507 	}
2508 
2509 	memcpy(data, buf, size);
2510 
2511 done:
2512 	kfree(buf);
2513 
2514 	return err;
2515 }
2516 
2517 static int btusb_setup_qca_download_fw(struct hci_dev *hdev,
2518 				       const struct firmware *firmware,
2519 				       size_t hdr_size)
2520 {
2521 	struct btusb_data *btdata = hci_get_drvdata(hdev);
2522 	struct usb_device *udev = btdata->udev;
2523 	size_t count, size, sent = 0;
2524 	int pipe, len, err;
2525 	u8 *buf;
2526 
2527 	buf = kmalloc(QCA_DFU_PACKET_LEN, GFP_KERNEL);
2528 	if (!buf)
2529 		return -ENOMEM;
2530 
2531 	count = firmware->size;
2532 
2533 	size = min_t(size_t, count, hdr_size);
2534 	memcpy(buf, firmware->data, size);
2535 
2536 	/* USB patches should go down to controller through USB path
2537 	 * because binary format fits to go down through USB channel.
2538 	 * USB control path is for patching headers and USB bulk is for
2539 	 * patch body.
2540 	 */
2541 	pipe = usb_sndctrlpipe(udev, 0);
2542 	err = usb_control_msg(udev, pipe, QCA_DFU_DOWNLOAD, USB_TYPE_VENDOR,
2543 			      0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
2544 	if (err < 0) {
2545 		BT_ERR("%s: Failed to send headers (%d)", hdev->name, err);
2546 		goto done;
2547 	}
2548 
2549 	sent += size;
2550 	count -= size;
2551 
2552 	while (count) {
2553 		size = min_t(size_t, count, QCA_DFU_PACKET_LEN);
2554 
2555 		memcpy(buf, firmware->data + sent, size);
2556 
2557 		pipe = usb_sndbulkpipe(udev, 0x02);
2558 		err = usb_bulk_msg(udev, pipe, buf, size, &len,
2559 				   QCA_DFU_TIMEOUT);
2560 		if (err < 0) {
2561 			BT_ERR("%s: Failed to send body at %zd of %zd (%d)",
2562 			       hdev->name, sent, firmware->size, err);
2563 			break;
2564 		}
2565 
2566 		if (size != len) {
2567 			BT_ERR("%s: Failed to get bulk buffer", hdev->name);
2568 			err = -EILSEQ;
2569 			break;
2570 		}
2571 
2572 		sent  += size;
2573 		count -= size;
2574 	}
2575 
2576 done:
2577 	kfree(buf);
2578 	return err;
2579 }
2580 
2581 static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev,
2582 					 struct qca_version *ver,
2583 					 const struct qca_device_info *info)
2584 {
2585 	struct qca_rampatch_version *rver;
2586 	const struct firmware *fw;
2587 	u32 ver_rom, ver_patch;
2588 	u16 rver_rom, rver_patch;
2589 	char fwname[64];
2590 	int err;
2591 
2592 	ver_rom = le32_to_cpu(ver->rom_version);
2593 	ver_patch = le32_to_cpu(ver->patch_version);
2594 
2595 	snprintf(fwname, sizeof(fwname), "qca/rampatch_usb_%08x.bin", ver_rom);
2596 
2597 	err = request_firmware(&fw, fwname, &hdev->dev);
2598 	if (err) {
2599 		BT_ERR("%s: failed to request rampatch file: %s (%d)",
2600 		       hdev->name, fwname, err);
2601 		return err;
2602 	}
2603 
2604 	BT_INFO("%s: using rampatch file: %s", hdev->name, fwname);
2605 
2606 	rver = (struct qca_rampatch_version *)(fw->data + info->ver_offset);
2607 	rver_rom = le16_to_cpu(rver->rom_version);
2608 	rver_patch = le16_to_cpu(rver->patch_version);
2609 
2610 	BT_INFO("%s: QCA: patch rome 0x%x build 0x%x, firmware rome 0x%x "
2611 		"build 0x%x", hdev->name, rver_rom, rver_patch, ver_rom,
2612 		ver_patch);
2613 
2614 	if (rver_rom != ver_rom || rver_patch <= ver_patch) {
2615 		BT_ERR("%s: rampatch file version did not match with firmware",
2616 		       hdev->name);
2617 		err = -EINVAL;
2618 		goto done;
2619 	}
2620 
2621 	err = btusb_setup_qca_download_fw(hdev, fw, info->rampatch_hdr);
2622 
2623 done:
2624 	release_firmware(fw);
2625 
2626 	return err;
2627 }
2628 
2629 static int btusb_setup_qca_load_nvm(struct hci_dev *hdev,
2630 				    struct qca_version *ver,
2631 				    const struct qca_device_info *info)
2632 {
2633 	const struct firmware *fw;
2634 	char fwname[64];
2635 	int err;
2636 
2637 	snprintf(fwname, sizeof(fwname), "qca/nvm_usb_%08x.bin",
2638 		 le32_to_cpu(ver->rom_version));
2639 
2640 	err = request_firmware(&fw, fwname, &hdev->dev);
2641 	if (err) {
2642 		BT_ERR("%s: failed to request NVM file: %s (%d)",
2643 		       hdev->name, fwname, err);
2644 		return err;
2645 	}
2646 
2647 	BT_INFO("%s: using NVM file: %s", hdev->name, fwname);
2648 
2649 	err = btusb_setup_qca_download_fw(hdev, fw, info->nvm_hdr);
2650 
2651 	release_firmware(fw);
2652 
2653 	return err;
2654 }
2655 
2656 static int btusb_setup_qca(struct hci_dev *hdev)
2657 {
2658 	const struct qca_device_info *info = NULL;
2659 	struct qca_version ver;
2660 	u32 ver_rom;
2661 	u8 status;
2662 	int i, err;
2663 
2664 	err = btusb_qca_send_vendor_req(hdev, QCA_GET_TARGET_VERSION, &ver,
2665 					sizeof(ver));
2666 	if (err < 0)
2667 		return err;
2668 
2669 	ver_rom = le32_to_cpu(ver.rom_version);
2670 	for (i = 0; i < ARRAY_SIZE(qca_devices_table); i++) {
2671 		if (ver_rom == qca_devices_table[i].rom_version)
2672 			info = &qca_devices_table[i];
2673 	}
2674 	if (!info) {
2675 		BT_ERR("%s: don't support firmware rome 0x%x", hdev->name,
2676 		       ver_rom);
2677 		return -ENODEV;
2678 	}
2679 
2680 	err = btusb_qca_send_vendor_req(hdev, QCA_CHECK_STATUS, &status,
2681 					sizeof(status));
2682 	if (err < 0)
2683 		return err;
2684 
2685 	if (!(status & QCA_PATCH_UPDATED)) {
2686 		err = btusb_setup_qca_load_rampatch(hdev, &ver, info);
2687 		if (err < 0)
2688 			return err;
2689 	}
2690 
2691 	if (!(status & QCA_SYSCFG_UPDATED)) {
2692 		err = btusb_setup_qca_load_nvm(hdev, &ver, info);
2693 		if (err < 0)
2694 			return err;
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 #ifdef CONFIG_BT_HCIBTUSB_BCM
2701 static inline int __set_diag_interface(struct hci_dev *hdev)
2702 {
2703 	struct btusb_data *data = hci_get_drvdata(hdev);
2704 	struct usb_interface *intf = data->diag;
2705 	int i;
2706 
2707 	if (!data->diag)
2708 		return -ENODEV;
2709 
2710 	data->diag_tx_ep = NULL;
2711 	data->diag_rx_ep = NULL;
2712 
2713 	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
2714 		struct usb_endpoint_descriptor *ep_desc;
2715 
2716 		ep_desc = &intf->cur_altsetting->endpoint[i].desc;
2717 
2718 		if (!data->diag_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
2719 			data->diag_tx_ep = ep_desc;
2720 			continue;
2721 		}
2722 
2723 		if (!data->diag_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
2724 			data->diag_rx_ep = ep_desc;
2725 			continue;
2726 		}
2727 	}
2728 
2729 	if (!data->diag_tx_ep || !data->diag_rx_ep) {
2730 		BT_ERR("%s invalid diagnostic descriptors", hdev->name);
2731 		return -ENODEV;
2732 	}
2733 
2734 	return 0;
2735 }
2736 
2737 static struct urb *alloc_diag_urb(struct hci_dev *hdev, bool enable)
2738 {
2739 	struct btusb_data *data = hci_get_drvdata(hdev);
2740 	struct sk_buff *skb;
2741 	struct urb *urb;
2742 	unsigned int pipe;
2743 
2744 	if (!data->diag_tx_ep)
2745 		return ERR_PTR(-ENODEV);
2746 
2747 	urb = usb_alloc_urb(0, GFP_KERNEL);
2748 	if (!urb)
2749 		return ERR_PTR(-ENOMEM);
2750 
2751 	skb = bt_skb_alloc(2, GFP_KERNEL);
2752 	if (!skb) {
2753 		usb_free_urb(urb);
2754 		return ERR_PTR(-ENOMEM);
2755 	}
2756 
2757 	*skb_put(skb, 1) = 0xf0;
2758 	*skb_put(skb, 1) = enable;
2759 
2760 	pipe = usb_sndbulkpipe(data->udev, data->diag_tx_ep->bEndpointAddress);
2761 
2762 	usb_fill_bulk_urb(urb, data->udev, pipe,
2763 			  skb->data, skb->len, btusb_tx_complete, skb);
2764 
2765 	skb->dev = (void *)hdev;
2766 
2767 	return urb;
2768 }
2769 
2770 static int btusb_bcm_set_diag(struct hci_dev *hdev, bool enable)
2771 {
2772 	struct btusb_data *data = hci_get_drvdata(hdev);
2773 	struct urb *urb;
2774 
2775 	if (!data->diag)
2776 		return -ENODEV;
2777 
2778 	if (!test_bit(HCI_RUNNING, &hdev->flags))
2779 		return -ENETDOWN;
2780 
2781 	urb = alloc_diag_urb(hdev, enable);
2782 	if (IS_ERR(urb))
2783 		return PTR_ERR(urb);
2784 
2785 	return submit_or_queue_tx_urb(hdev, urb);
2786 }
2787 #endif
2788 
2789 #ifdef CONFIG_PM
2790 static irqreturn_t btusb_oob_wake_handler(int irq, void *priv)
2791 {
2792 	struct btusb_data *data = priv;
2793 
2794 	pm_wakeup_event(&data->udev->dev, 0);
2795 
2796 	/* Disable only if not already disabled (keep it balanced) */
2797 	if (test_and_clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags)) {
2798 		disable_irq_nosync(irq);
2799 		disable_irq_wake(irq);
2800 	}
2801 	return IRQ_HANDLED;
2802 }
2803 
2804 static const struct of_device_id btusb_match_table[] = {
2805 	{ .compatible = "usb1286,204e" },
2806 	{ }
2807 };
2808 MODULE_DEVICE_TABLE(of, btusb_match_table);
2809 
2810 /* Use an oob wakeup pin? */
2811 static int btusb_config_oob_wake(struct hci_dev *hdev)
2812 {
2813 	struct btusb_data *data = hci_get_drvdata(hdev);
2814 	struct device *dev = &data->udev->dev;
2815 	int irq, ret;
2816 
2817 	clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags);
2818 
2819 	if (!of_match_device(btusb_match_table, dev))
2820 		return 0;
2821 
2822 	/* Move on if no IRQ specified */
2823 	irq = of_irq_get_byname(dev->of_node, "wakeup");
2824 	if (irq <= 0) {
2825 		bt_dev_dbg(hdev, "%s: no OOB Wakeup IRQ in DT", __func__);
2826 		return 0;
2827 	}
2828 
2829 	ret = devm_request_irq(&hdev->dev, irq, btusb_oob_wake_handler,
2830 			       0, "OOB Wake-on-BT", data);
2831 	if (ret) {
2832 		bt_dev_err(hdev, "%s: IRQ request failed", __func__);
2833 		return ret;
2834 	}
2835 
2836 	ret = device_init_wakeup(dev, true);
2837 	if (ret) {
2838 		bt_dev_err(hdev, "%s: failed to init_wakeup", __func__);
2839 		return ret;
2840 	}
2841 
2842 	data->oob_wake_irq = irq;
2843 	disable_irq(irq);
2844 	bt_dev_info(hdev, "OOB Wake-on-BT configured at IRQ %u", irq);
2845 	return 0;
2846 }
2847 #endif
2848 
2849 static int btusb_probe(struct usb_interface *intf,
2850 		       const struct usb_device_id *id)
2851 {
2852 	struct usb_endpoint_descriptor *ep_desc;
2853 	struct btusb_data *data;
2854 	struct hci_dev *hdev;
2855 	unsigned ifnum_base;
2856 	int i, err;
2857 
2858 	BT_DBG("intf %p id %p", intf, id);
2859 
2860 	/* interface numbers are hardcoded in the spec */
2861 	if (intf->cur_altsetting->desc.bInterfaceNumber != 0) {
2862 		if (!(id->driver_info & BTUSB_IFNUM_2))
2863 			return -ENODEV;
2864 		if (intf->cur_altsetting->desc.bInterfaceNumber != 2)
2865 			return -ENODEV;
2866 	}
2867 
2868 	ifnum_base = intf->cur_altsetting->desc.bInterfaceNumber;
2869 
2870 	if (!id->driver_info) {
2871 		const struct usb_device_id *match;
2872 
2873 		match = usb_match_id(intf, blacklist_table);
2874 		if (match)
2875 			id = match;
2876 	}
2877 
2878 	if (id->driver_info == BTUSB_IGNORE)
2879 		return -ENODEV;
2880 
2881 	if (id->driver_info & BTUSB_ATH3012) {
2882 		struct usb_device *udev = interface_to_usbdev(intf);
2883 
2884 		/* Old firmware would otherwise let ath3k driver load
2885 		 * patch and sysconfig files */
2886 		if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001)
2887 			return -ENODEV;
2888 	}
2889 
2890 	data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
2891 	if (!data)
2892 		return -ENOMEM;
2893 
2894 	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
2895 		ep_desc = &intf->cur_altsetting->endpoint[i].desc;
2896 
2897 		if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
2898 			data->intr_ep = ep_desc;
2899 			continue;
2900 		}
2901 
2902 		if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
2903 			data->bulk_tx_ep = ep_desc;
2904 			continue;
2905 		}
2906 
2907 		if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
2908 			data->bulk_rx_ep = ep_desc;
2909 			continue;
2910 		}
2911 	}
2912 
2913 	if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep)
2914 		return -ENODEV;
2915 
2916 	if (id->driver_info & BTUSB_AMP) {
2917 		data->cmdreq_type = USB_TYPE_CLASS | 0x01;
2918 		data->cmdreq = 0x2b;
2919 	} else {
2920 		data->cmdreq_type = USB_TYPE_CLASS;
2921 		data->cmdreq = 0x00;
2922 	}
2923 
2924 	data->udev = interface_to_usbdev(intf);
2925 	data->intf = intf;
2926 
2927 	INIT_WORK(&data->work, btusb_work);
2928 	INIT_WORK(&data->waker, btusb_waker);
2929 	init_usb_anchor(&data->deferred);
2930 	init_usb_anchor(&data->tx_anchor);
2931 	spin_lock_init(&data->txlock);
2932 
2933 	init_usb_anchor(&data->intr_anchor);
2934 	init_usb_anchor(&data->bulk_anchor);
2935 	init_usb_anchor(&data->isoc_anchor);
2936 	init_usb_anchor(&data->diag_anchor);
2937 	spin_lock_init(&data->rxlock);
2938 
2939 	if (id->driver_info & BTUSB_INTEL_NEW) {
2940 		data->recv_event = btusb_recv_event_intel;
2941 		data->recv_bulk = btusb_recv_bulk_intel;
2942 		set_bit(BTUSB_BOOTLOADER, &data->flags);
2943 	} else {
2944 		data->recv_event = hci_recv_frame;
2945 		data->recv_bulk = btusb_recv_bulk;
2946 	}
2947 
2948 	hdev = hci_alloc_dev();
2949 	if (!hdev)
2950 		return -ENOMEM;
2951 
2952 	hdev->bus = HCI_USB;
2953 	hci_set_drvdata(hdev, data);
2954 
2955 	if (id->driver_info & BTUSB_AMP)
2956 		hdev->dev_type = HCI_AMP;
2957 	else
2958 		hdev->dev_type = HCI_PRIMARY;
2959 
2960 	data->hdev = hdev;
2961 
2962 	SET_HCIDEV_DEV(hdev, &intf->dev);
2963 
2964 	hdev->open   = btusb_open;
2965 	hdev->close  = btusb_close;
2966 	hdev->flush  = btusb_flush;
2967 	hdev->send   = btusb_send_frame;
2968 	hdev->notify = btusb_notify;
2969 
2970 #ifdef CONFIG_PM
2971 	err = btusb_config_oob_wake(hdev);
2972 	if (err)
2973 		goto out_free_dev;
2974 
2975 	/* Marvell devices may need a specific chip configuration */
2976 	if (id->driver_info & BTUSB_MARVELL && data->oob_wake_irq) {
2977 		err = marvell_config_oob_wake(hdev);
2978 		if (err)
2979 			goto out_free_dev;
2980 	}
2981 #endif
2982 	if (id->driver_info & BTUSB_CW6622)
2983 		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
2984 
2985 	if (id->driver_info & BTUSB_BCM2045)
2986 		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
2987 
2988 	if (id->driver_info & BTUSB_BCM92035)
2989 		hdev->setup = btusb_setup_bcm92035;
2990 
2991 #ifdef CONFIG_BT_HCIBTUSB_BCM
2992 	if (id->driver_info & BTUSB_BCM_PATCHRAM) {
2993 		hdev->manufacturer = 15;
2994 		hdev->setup = btbcm_setup_patchram;
2995 		hdev->set_diag = btusb_bcm_set_diag;
2996 		hdev->set_bdaddr = btbcm_set_bdaddr;
2997 
2998 		/* Broadcom LM_DIAG Interface numbers are hardcoded */
2999 		data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
3000 	}
3001 
3002 	if (id->driver_info & BTUSB_BCM_APPLE) {
3003 		hdev->manufacturer = 15;
3004 		hdev->setup = btbcm_setup_apple;
3005 		hdev->set_diag = btusb_bcm_set_diag;
3006 
3007 		/* Broadcom LM_DIAG Interface numbers are hardcoded */
3008 		data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
3009 	}
3010 #endif
3011 
3012 	if (id->driver_info & BTUSB_INTEL) {
3013 		hdev->manufacturer = 2;
3014 		hdev->setup = btusb_setup_intel;
3015 		hdev->shutdown = btusb_shutdown_intel;
3016 		hdev->set_diag = btintel_set_diag_mfg;
3017 		hdev->set_bdaddr = btintel_set_bdaddr;
3018 		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3019 		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3020 		set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3021 	}
3022 
3023 	if (id->driver_info & BTUSB_INTEL_NEW) {
3024 		hdev->manufacturer = 2;
3025 		hdev->send = btusb_send_frame_intel;
3026 		hdev->setup = btusb_setup_intel_new;
3027 		hdev->hw_error = btintel_hw_error;
3028 		hdev->set_diag = btintel_set_diag;
3029 		hdev->set_bdaddr = btintel_set_bdaddr;
3030 		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3031 		set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3032 	}
3033 
3034 	if (id->driver_info & BTUSB_MARVELL)
3035 		hdev->set_bdaddr = btusb_set_bdaddr_marvell;
3036 
3037 	if (id->driver_info & BTUSB_SWAVE) {
3038 		set_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks);
3039 		set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks);
3040 	}
3041 
3042 	if (id->driver_info & BTUSB_INTEL_BOOT) {
3043 		hdev->manufacturer = 2;
3044 		set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
3045 	}
3046 
3047 	if (id->driver_info & BTUSB_ATH3012) {
3048 		hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
3049 		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3050 		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3051 	}
3052 
3053 	if (id->driver_info & BTUSB_QCA_ROME) {
3054 		data->setup_on_usb = btusb_setup_qca;
3055 		hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
3056 	}
3057 
3058 #ifdef CONFIG_BT_HCIBTUSB_RTL
3059 	if (id->driver_info & BTUSB_REALTEK) {
3060 		hdev->setup = btrtl_setup_realtek;
3061 
3062 		/* Realtek devices lose their updated firmware over suspend,
3063 		 * but the USB hub doesn't notice any status change.
3064 		 * Explicitly request a device reset on resume.
3065 		 */
3066 		set_bit(BTUSB_RESET_RESUME, &data->flags);
3067 	}
3068 #endif
3069 
3070 	if (id->driver_info & BTUSB_AMP) {
3071 		/* AMP controllers do not support SCO packets */
3072 		data->isoc = NULL;
3073 	} else {
3074 		/* Interface orders are hardcoded in the specification */
3075 		data->isoc = usb_ifnum_to_if(data->udev, ifnum_base + 1);
3076 	}
3077 
3078 	if (!reset)
3079 		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
3080 
3081 	if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
3082 		if (!disable_scofix)
3083 			set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
3084 	}
3085 
3086 	if (id->driver_info & BTUSB_BROKEN_ISOC)
3087 		data->isoc = NULL;
3088 
3089 	if (id->driver_info & BTUSB_DIGIANSWER) {
3090 		data->cmdreq_type = USB_TYPE_VENDOR;
3091 		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
3092 	}
3093 
3094 	if (id->driver_info & BTUSB_CSR) {
3095 		struct usb_device *udev = data->udev;
3096 		u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice);
3097 
3098 		/* Old firmware would otherwise execute USB reset */
3099 		if (bcdDevice < 0x117)
3100 			set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
3101 
3102 		/* Fake CSR devices with broken commands */
3103 		if (bcdDevice <= 0x100 || bcdDevice == 0x134)
3104 			hdev->setup = btusb_setup_csr;
3105 
3106 		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3107 	}
3108 
3109 	if (id->driver_info & BTUSB_SNIFFER) {
3110 		struct usb_device *udev = data->udev;
3111 
3112 		/* New sniffer firmware has crippled HCI interface */
3113 		if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
3114 			set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
3115 	}
3116 
3117 	if (id->driver_info & BTUSB_INTEL_BOOT) {
3118 		/* A bug in the bootloader causes that interrupt interface is
3119 		 * only enabled after receiving SetInterface(0, AltSetting=0).
3120 		 */
3121 		err = usb_set_interface(data->udev, 0, 0);
3122 		if (err < 0) {
3123 			BT_ERR("failed to set interface 0, alt 0 %d", err);
3124 			goto out_free_dev;
3125 		}
3126 	}
3127 
3128 	if (data->isoc) {
3129 		err = usb_driver_claim_interface(&btusb_driver,
3130 						 data->isoc, data);
3131 		if (err < 0)
3132 			goto out_free_dev;
3133 	}
3134 
3135 #ifdef CONFIG_BT_HCIBTUSB_BCM
3136 	if (data->diag) {
3137 		if (!usb_driver_claim_interface(&btusb_driver,
3138 						data->diag, data))
3139 			__set_diag_interface(hdev);
3140 		else
3141 			data->diag = NULL;
3142 	}
3143 #endif
3144 
3145 	err = hci_register_dev(hdev);
3146 	if (err < 0)
3147 		goto out_free_dev;
3148 
3149 	usb_set_intfdata(intf, data);
3150 
3151 	return 0;
3152 
3153 out_free_dev:
3154 	hci_free_dev(hdev);
3155 	return err;
3156 }
3157 
3158 static void btusb_disconnect(struct usb_interface *intf)
3159 {
3160 	struct btusb_data *data = usb_get_intfdata(intf);
3161 	struct hci_dev *hdev;
3162 
3163 	BT_DBG("intf %p", intf);
3164 
3165 	if (!data)
3166 		return;
3167 
3168 	hdev = data->hdev;
3169 	usb_set_intfdata(data->intf, NULL);
3170 
3171 	if (data->isoc)
3172 		usb_set_intfdata(data->isoc, NULL);
3173 
3174 	if (data->diag)
3175 		usb_set_intfdata(data->diag, NULL);
3176 
3177 	hci_unregister_dev(hdev);
3178 
3179 	if (intf == data->intf) {
3180 		if (data->isoc)
3181 			usb_driver_release_interface(&btusb_driver, data->isoc);
3182 		if (data->diag)
3183 			usb_driver_release_interface(&btusb_driver, data->diag);
3184 	} else if (intf == data->isoc) {
3185 		if (data->diag)
3186 			usb_driver_release_interface(&btusb_driver, data->diag);
3187 		usb_driver_release_interface(&btusb_driver, data->intf);
3188 	} else if (intf == data->diag) {
3189 		usb_driver_release_interface(&btusb_driver, data->intf);
3190 		if (data->isoc)
3191 			usb_driver_release_interface(&btusb_driver, data->isoc);
3192 	}
3193 
3194 	if (data->oob_wake_irq)
3195 		device_init_wakeup(&data->udev->dev, false);
3196 
3197 	hci_free_dev(hdev);
3198 }
3199 
3200 #ifdef CONFIG_PM
3201 static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
3202 {
3203 	struct btusb_data *data = usb_get_intfdata(intf);
3204 
3205 	BT_DBG("intf %p", intf);
3206 
3207 	if (data->suspend_count++)
3208 		return 0;
3209 
3210 	spin_lock_irq(&data->txlock);
3211 	if (!(PMSG_IS_AUTO(message) && data->tx_in_flight)) {
3212 		set_bit(BTUSB_SUSPENDING, &data->flags);
3213 		spin_unlock_irq(&data->txlock);
3214 	} else {
3215 		spin_unlock_irq(&data->txlock);
3216 		data->suspend_count--;
3217 		return -EBUSY;
3218 	}
3219 
3220 	cancel_work_sync(&data->work);
3221 
3222 	btusb_stop_traffic(data);
3223 	usb_kill_anchored_urbs(&data->tx_anchor);
3224 
3225 	if (data->oob_wake_irq && device_may_wakeup(&data->udev->dev)) {
3226 		set_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags);
3227 		enable_irq_wake(data->oob_wake_irq);
3228 		enable_irq(data->oob_wake_irq);
3229 	}
3230 
3231 	/* Optionally request a device reset on resume, but only when
3232 	 * wakeups are disabled. If wakeups are enabled we assume the
3233 	 * device will stay powered up throughout suspend.
3234 	 */
3235 	if (test_bit(BTUSB_RESET_RESUME, &data->flags) &&
3236 	    !device_may_wakeup(&data->udev->dev))
3237 		data->udev->reset_resume = 1;
3238 
3239 	return 0;
3240 }
3241 
3242 static void play_deferred(struct btusb_data *data)
3243 {
3244 	struct urb *urb;
3245 	int err;
3246 
3247 	while ((urb = usb_get_from_anchor(&data->deferred))) {
3248 		err = usb_submit_urb(urb, GFP_ATOMIC);
3249 		if (err < 0)
3250 			break;
3251 
3252 		data->tx_in_flight++;
3253 	}
3254 	usb_scuttle_anchored_urbs(&data->deferred);
3255 }
3256 
3257 static int btusb_resume(struct usb_interface *intf)
3258 {
3259 	struct btusb_data *data = usb_get_intfdata(intf);
3260 	struct hci_dev *hdev = data->hdev;
3261 	int err = 0;
3262 
3263 	BT_DBG("intf %p", intf);
3264 
3265 	if (--data->suspend_count)
3266 		return 0;
3267 
3268 	/* Disable only if not already disabled (keep it balanced) */
3269 	if (test_and_clear_bit(BTUSB_OOB_WAKE_ENABLED, &data->flags)) {
3270 		disable_irq(data->oob_wake_irq);
3271 		disable_irq_wake(data->oob_wake_irq);
3272 	}
3273 
3274 	if (!test_bit(HCI_RUNNING, &hdev->flags))
3275 		goto done;
3276 
3277 	if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
3278 		err = btusb_submit_intr_urb(hdev, GFP_NOIO);
3279 		if (err < 0) {
3280 			clear_bit(BTUSB_INTR_RUNNING, &data->flags);
3281 			goto failed;
3282 		}
3283 	}
3284 
3285 	if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
3286 		err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
3287 		if (err < 0) {
3288 			clear_bit(BTUSB_BULK_RUNNING, &data->flags);
3289 			goto failed;
3290 		}
3291 
3292 		btusb_submit_bulk_urb(hdev, GFP_NOIO);
3293 	}
3294 
3295 	if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
3296 		if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
3297 			clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
3298 		else
3299 			btusb_submit_isoc_urb(hdev, GFP_NOIO);
3300 	}
3301 
3302 	spin_lock_irq(&data->txlock);
3303 	play_deferred(data);
3304 	clear_bit(BTUSB_SUSPENDING, &data->flags);
3305 	spin_unlock_irq(&data->txlock);
3306 	schedule_work(&data->work);
3307 
3308 	return 0;
3309 
3310 failed:
3311 	usb_scuttle_anchored_urbs(&data->deferred);
3312 done:
3313 	spin_lock_irq(&data->txlock);
3314 	clear_bit(BTUSB_SUSPENDING, &data->flags);
3315 	spin_unlock_irq(&data->txlock);
3316 
3317 	return err;
3318 }
3319 #endif
3320 
3321 static struct usb_driver btusb_driver = {
3322 	.name		= "btusb",
3323 	.probe		= btusb_probe,
3324 	.disconnect	= btusb_disconnect,
3325 #ifdef CONFIG_PM
3326 	.suspend	= btusb_suspend,
3327 	.resume		= btusb_resume,
3328 #endif
3329 	.id_table	= btusb_table,
3330 	.supports_autosuspend = 1,
3331 	.disable_hub_initiated_lpm = 1,
3332 };
3333 
3334 module_usb_driver(btusb_driver);
3335 
3336 module_param(disable_scofix, bool, 0644);
3337 MODULE_PARM_DESC(disable_scofix, "Disable fixup of wrong SCO buffer size");
3338 
3339 module_param(force_scofix, bool, 0644);
3340 MODULE_PARM_DESC(force_scofix, "Force fixup of wrong SCO buffers size");
3341 
3342 module_param(reset, bool, 0644);
3343 MODULE_PARM_DESC(reset, "Send HCI reset command on initialization");
3344 
3345 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3346 MODULE_DESCRIPTION("Generic Bluetooth USB driver ver " VERSION);
3347 MODULE_VERSION(VERSION);
3348 MODULE_LICENSE("GPL");
3349