xref: /openbmc/linux/drivers/bluetooth/btintel.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <asm/unaligned.h>
13 
14 #include <net/bluetooth/bluetooth.h>
15 #include <net/bluetooth/hci_core.h>
16 
17 #include "btintel.h"
18 
19 #define VERSION "0.1"
20 
21 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
22 #define RSA_HEADER_LEN		644
23 #define CSS_HEADER_OFFSET	8
24 #define ECDSA_OFFSET		644
25 #define ECDSA_HEADER_LEN	320
26 
27 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
28 struct cmd_write_boot_params {
29 	u32 boot_addr;
30 	u8  fw_build_num;
31 	u8  fw_build_ww;
32 	u8  fw_build_yy;
33 } __packed;
34 
35 int btintel_check_bdaddr(struct hci_dev *hdev)
36 {
37 	struct hci_rp_read_bd_addr *bda;
38 	struct sk_buff *skb;
39 
40 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
41 			     HCI_INIT_TIMEOUT);
42 	if (IS_ERR(skb)) {
43 		int err = PTR_ERR(skb);
44 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
45 			   err);
46 		return err;
47 	}
48 
49 	if (skb->len != sizeof(*bda)) {
50 		bt_dev_err(hdev, "Intel device address length mismatch");
51 		kfree_skb(skb);
52 		return -EIO;
53 	}
54 
55 	bda = (struct hci_rp_read_bd_addr *)skb->data;
56 
57 	/* For some Intel based controllers, the default Bluetooth device
58 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
59 	 * fully operational, but have the danger of duplicate addresses
60 	 * and that in turn can cause problems with Bluetooth operation.
61 	 */
62 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
63 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
64 			   &bda->bdaddr);
65 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
66 	}
67 
68 	kfree_skb(skb);
69 
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
73 
74 int btintel_enter_mfg(struct hci_dev *hdev)
75 {
76 	static const u8 param[] = { 0x01, 0x00 };
77 	struct sk_buff *skb;
78 
79 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
80 	if (IS_ERR(skb)) {
81 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
82 			   PTR_ERR(skb));
83 		return PTR_ERR(skb);
84 	}
85 	kfree_skb(skb);
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
90 
91 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
92 {
93 	u8 param[] = { 0x00, 0x00 };
94 	struct sk_buff *skb;
95 
96 	/* The 2nd command parameter specifies the manufacturing exit method:
97 	 * 0x00: Just disable the manufacturing mode (0x00).
98 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
99 	 * 0x02: Disable manufacturing mode and reset with patches activated.
100 	 */
101 	if (reset)
102 		param[1] |= patched ? 0x02 : 0x01;
103 
104 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
105 	if (IS_ERR(skb)) {
106 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
107 			   PTR_ERR(skb));
108 		return PTR_ERR(skb);
109 	}
110 	kfree_skb(skb);
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
115 
116 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
117 {
118 	struct sk_buff *skb;
119 	int err;
120 
121 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
122 	if (IS_ERR(skb)) {
123 		err = PTR_ERR(skb);
124 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
125 			   err);
126 		return err;
127 	}
128 	kfree_skb(skb);
129 
130 	return 0;
131 }
132 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
133 
134 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
135 {
136 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
137 	struct sk_buff *skb;
138 	int err;
139 
140 	if (debug)
141 		mask[1] |= 0x62;
142 
143 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
144 	if (IS_ERR(skb)) {
145 		err = PTR_ERR(skb);
146 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
147 		return err;
148 	}
149 	kfree_skb(skb);
150 
151 	return 0;
152 }
153 
154 int btintel_set_diag(struct hci_dev *hdev, bool enable)
155 {
156 	struct sk_buff *skb;
157 	u8 param[3];
158 	int err;
159 
160 	if (enable) {
161 		param[0] = 0x03;
162 		param[1] = 0x03;
163 		param[2] = 0x03;
164 	} else {
165 		param[0] = 0x00;
166 		param[1] = 0x00;
167 		param[2] = 0x00;
168 	}
169 
170 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
171 	if (IS_ERR(skb)) {
172 		err = PTR_ERR(skb);
173 		if (err == -ENODATA)
174 			goto done;
175 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
176 			   err);
177 		return err;
178 	}
179 	kfree_skb(skb);
180 
181 done:
182 	btintel_set_event_mask(hdev, enable);
183 	return 0;
184 }
185 EXPORT_SYMBOL_GPL(btintel_set_diag);
186 
187 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
188 {
189 	int err, ret;
190 
191 	err = btintel_enter_mfg(hdev);
192 	if (err)
193 		return err;
194 
195 	ret = btintel_set_diag(hdev, enable);
196 
197 	err = btintel_exit_mfg(hdev, false, false);
198 	if (err)
199 		return err;
200 
201 	return ret;
202 }
203 
204 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
205 {
206 	int ret;
207 
208 	/* Legacy ROM device needs to be in the manufacturer mode to apply
209 	 * diagnostic setting
210 	 *
211 	 * This flag is set after reading the Intel version.
212 	 */
213 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
214 		ret = btintel_set_diag_mfg(hdev, enable);
215 	else
216 		ret = btintel_set_diag(hdev, enable);
217 
218 	return ret;
219 }
220 
221 static void btintel_hw_error(struct hci_dev *hdev, u8 code)
222 {
223 	struct sk_buff *skb;
224 	u8 type = 0x00;
225 
226 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
227 
228 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
229 	if (IS_ERR(skb)) {
230 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
231 			   PTR_ERR(skb));
232 		return;
233 	}
234 	kfree_skb(skb);
235 
236 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
237 	if (IS_ERR(skb)) {
238 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
239 			   PTR_ERR(skb));
240 		return;
241 	}
242 
243 	if (skb->len != 13) {
244 		bt_dev_err(hdev, "Exception info size mismatch");
245 		kfree_skb(skb);
246 		return;
247 	}
248 
249 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
250 
251 	kfree_skb(skb);
252 }
253 
254 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
255 {
256 	const char *variant;
257 
258 	/* The hardware platform number has a fixed value of 0x37 and
259 	 * for now only accept this single value.
260 	 */
261 	if (ver->hw_platform != 0x37) {
262 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
263 			   ver->hw_platform);
264 		return -EINVAL;
265 	}
266 
267 	/* Check for supported iBT hardware variants of this firmware
268 	 * loading method.
269 	 *
270 	 * This check has been put in place to ensure correct forward
271 	 * compatibility options when newer hardware variants come along.
272 	 */
273 	switch (ver->hw_variant) {
274 	case 0x07:	/* WP - Legacy ROM */
275 	case 0x08:	/* StP - Legacy ROM */
276 	case 0x0b:      /* SfP */
277 	case 0x0c:      /* WsP */
278 	case 0x11:      /* JfP */
279 	case 0x12:      /* ThP */
280 	case 0x13:      /* HrP */
281 	case 0x14:      /* CcP */
282 		break;
283 	default:
284 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
285 			   ver->hw_variant);
286 		return -EINVAL;
287 	}
288 
289 	switch (ver->fw_variant) {
290 	case 0x01:
291 		variant = "Legacy ROM 2.5";
292 		break;
293 	case 0x06:
294 		variant = "Bootloader";
295 		break;
296 	case 0x22:
297 		variant = "Legacy ROM 2.x";
298 		break;
299 	case 0x23:
300 		variant = "Firmware";
301 		break;
302 	default:
303 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
304 		return -EINVAL;
305 	}
306 
307 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
308 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
309 		    ver->fw_build_num, ver->fw_build_ww,
310 		    2000 + ver->fw_build_yy);
311 
312 	return 0;
313 }
314 EXPORT_SYMBOL_GPL(btintel_version_info);
315 
316 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
317 			       const void *param)
318 {
319 	while (plen > 0) {
320 		struct sk_buff *skb;
321 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
322 
323 		cmd_param[0] = fragment_type;
324 		memcpy(cmd_param + 1, param, fragment_len);
325 
326 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
327 				     cmd_param, HCI_INIT_TIMEOUT);
328 		if (IS_ERR(skb))
329 			return PTR_ERR(skb);
330 
331 		kfree_skb(skb);
332 
333 		plen -= fragment_len;
334 		param += fragment_len;
335 	}
336 
337 	return 0;
338 }
339 
340 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
341 {
342 	const struct firmware *fw;
343 	struct sk_buff *skb;
344 	const u8 *fw_ptr;
345 	int err;
346 
347 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
348 	if (err < 0) {
349 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
350 			   ddc_name, err);
351 		return err;
352 	}
353 
354 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
355 
356 	fw_ptr = fw->data;
357 
358 	/* DDC file contains one or more DDC structure which has
359 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
360 	 */
361 	while (fw->size > fw_ptr - fw->data) {
362 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
363 
364 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
365 				     HCI_INIT_TIMEOUT);
366 		if (IS_ERR(skb)) {
367 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
368 				   PTR_ERR(skb));
369 			release_firmware(fw);
370 			return PTR_ERR(skb);
371 		}
372 
373 		fw_ptr += cmd_plen;
374 		kfree_skb(skb);
375 	}
376 
377 	release_firmware(fw);
378 
379 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
380 
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
384 
385 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
386 {
387 	int err, ret;
388 
389 	err = btintel_enter_mfg(hdev);
390 	if (err)
391 		return err;
392 
393 	ret = btintel_set_event_mask(hdev, debug);
394 
395 	err = btintel_exit_mfg(hdev, false, false);
396 	if (err)
397 		return err;
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
402 
403 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
404 {
405 	struct sk_buff *skb;
406 
407 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
408 	if (IS_ERR(skb)) {
409 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
410 			   PTR_ERR(skb));
411 		return PTR_ERR(skb);
412 	}
413 
414 	if (skb->len != sizeof(*ver)) {
415 		bt_dev_err(hdev, "Intel version event size mismatch");
416 		kfree_skb(skb);
417 		return -EILSEQ;
418 	}
419 
420 	memcpy(ver, skb->data, sizeof(*ver));
421 
422 	kfree_skb(skb);
423 
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(btintel_read_version);
427 
428 static int btintel_version_info_tlv(struct hci_dev *hdev,
429 				    struct intel_version_tlv *version)
430 {
431 	const char *variant;
432 
433 	/* The hardware platform number has a fixed value of 0x37 and
434 	 * for now only accept this single value.
435 	 */
436 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
437 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
438 			   INTEL_HW_PLATFORM(version->cnvi_bt));
439 		return -EINVAL;
440 	}
441 
442 	/* Check for supported iBT hardware variants of this firmware
443 	 * loading method.
444 	 *
445 	 * This check has been put in place to ensure correct forward
446 	 * compatibility options when newer hardware variants come along.
447 	 */
448 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
449 	case 0x17:	/* TyP */
450 	case 0x18:	/* Slr */
451 	case 0x19:	/* Slr-F */
452 		break;
453 	default:
454 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
455 			   INTEL_HW_VARIANT(version->cnvi_bt));
456 		return -EINVAL;
457 	}
458 
459 	switch (version->img_type) {
460 	case 0x01:
461 		variant = "Bootloader";
462 		/* It is required that every single firmware fragment is acknowledged
463 		 * with a command complete event. If the boot parameters indicate
464 		 * that this bootloader does not send them, then abort the setup.
465 		 */
466 		if (version->limited_cce != 0x00) {
467 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
468 				   version->limited_cce);
469 			return -EINVAL;
470 		}
471 
472 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
473 		if (version->sbe_type > 0x01) {
474 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
475 				   version->sbe_type);
476 			return -EINVAL;
477 		}
478 
479 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
480 		bt_dev_info(hdev, "Secure boot is %s",
481 			    version->secure_boot ? "enabled" : "disabled");
482 		bt_dev_info(hdev, "OTP lock is %s",
483 			    version->otp_lock ? "enabled" : "disabled");
484 		bt_dev_info(hdev, "API lock is %s",
485 			    version->api_lock ? "enabled" : "disabled");
486 		bt_dev_info(hdev, "Debug lock is %s",
487 			    version->debug_lock ? "enabled" : "disabled");
488 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
489 			    version->min_fw_build_nn, version->min_fw_build_cw,
490 			    2000 + version->min_fw_build_yy);
491 		break;
492 	case 0x03:
493 		variant = "Firmware";
494 		break;
495 	default:
496 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
497 		return -EINVAL;
498 	}
499 
500 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
501 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
502 		    version->build_type, version->build_num);
503 
504 	return 0;
505 }
506 
507 static int btintel_parse_version_tlv(struct hci_dev *hdev,
508 				     struct intel_version_tlv *version,
509 				     struct sk_buff *skb)
510 {
511 	/* Consume Command Complete Status field */
512 	skb_pull(skb, 1);
513 
514 	/* Event parameters contatin multiple TLVs. Read each of them
515 	 * and only keep the required data. Also, it use existing legacy
516 	 * version field like hw_platform, hw_variant, and fw_variant
517 	 * to keep the existing setup flow
518 	 */
519 	while (skb->len) {
520 		struct intel_tlv *tlv;
521 
522 		/* Make sure skb has a minimum length of the header */
523 		if (skb->len < sizeof(*tlv))
524 			return -EINVAL;
525 
526 		tlv = (struct intel_tlv *)skb->data;
527 
528 		/* Make sure skb has a enough data */
529 		if (skb->len < tlv->len + sizeof(*tlv))
530 			return -EINVAL;
531 
532 		switch (tlv->type) {
533 		case INTEL_TLV_CNVI_TOP:
534 			version->cnvi_top = get_unaligned_le32(tlv->val);
535 			break;
536 		case INTEL_TLV_CNVR_TOP:
537 			version->cnvr_top = get_unaligned_le32(tlv->val);
538 			break;
539 		case INTEL_TLV_CNVI_BT:
540 			version->cnvi_bt = get_unaligned_le32(tlv->val);
541 			break;
542 		case INTEL_TLV_CNVR_BT:
543 			version->cnvr_bt = get_unaligned_le32(tlv->val);
544 			break;
545 		case INTEL_TLV_DEV_REV_ID:
546 			version->dev_rev_id = get_unaligned_le16(tlv->val);
547 			break;
548 		case INTEL_TLV_IMAGE_TYPE:
549 			version->img_type = tlv->val[0];
550 			break;
551 		case INTEL_TLV_TIME_STAMP:
552 			/* If image type is Operational firmware (0x03), then
553 			 * running FW Calendar Week and Year information can
554 			 * be extracted from Timestamp information
555 			 */
556 			version->min_fw_build_cw = tlv->val[0];
557 			version->min_fw_build_yy = tlv->val[1];
558 			version->timestamp = get_unaligned_le16(tlv->val);
559 			break;
560 		case INTEL_TLV_BUILD_TYPE:
561 			version->build_type = tlv->val[0];
562 			break;
563 		case INTEL_TLV_BUILD_NUM:
564 			/* If image type is Operational firmware (0x03), then
565 			 * running FW build number can be extracted from the
566 			 * Build information
567 			 */
568 			version->min_fw_build_nn = tlv->val[0];
569 			version->build_num = get_unaligned_le32(tlv->val);
570 			break;
571 		case INTEL_TLV_SECURE_BOOT:
572 			version->secure_boot = tlv->val[0];
573 			break;
574 		case INTEL_TLV_OTP_LOCK:
575 			version->otp_lock = tlv->val[0];
576 			break;
577 		case INTEL_TLV_API_LOCK:
578 			version->api_lock = tlv->val[0];
579 			break;
580 		case INTEL_TLV_DEBUG_LOCK:
581 			version->debug_lock = tlv->val[0];
582 			break;
583 		case INTEL_TLV_MIN_FW:
584 			version->min_fw_build_nn = tlv->val[0];
585 			version->min_fw_build_cw = tlv->val[1];
586 			version->min_fw_build_yy = tlv->val[2];
587 			break;
588 		case INTEL_TLV_LIMITED_CCE:
589 			version->limited_cce = tlv->val[0];
590 			break;
591 		case INTEL_TLV_SBE_TYPE:
592 			version->sbe_type = tlv->val[0];
593 			break;
594 		case INTEL_TLV_OTP_BDADDR:
595 			memcpy(&version->otp_bd_addr, tlv->val,
596 							sizeof(bdaddr_t));
597 			break;
598 		default:
599 			/* Ignore rest of information */
600 			break;
601 		}
602 		/* consume the current tlv and move to next*/
603 		skb_pull(skb, tlv->len + sizeof(*tlv));
604 	}
605 
606 	return 0;
607 }
608 
609 static int btintel_read_version_tlv(struct hci_dev *hdev,
610 				    struct intel_version_tlv *version)
611 {
612 	struct sk_buff *skb;
613 	const u8 param[1] = { 0xFF };
614 
615 	if (!version)
616 		return -EINVAL;
617 
618 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
619 	if (IS_ERR(skb)) {
620 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
621 			   PTR_ERR(skb));
622 		return PTR_ERR(skb);
623 	}
624 
625 	if (skb->data[0]) {
626 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
627 			   skb->data[0]);
628 		kfree_skb(skb);
629 		return -EIO;
630 	}
631 
632 	btintel_parse_version_tlv(hdev, version, skb);
633 
634 	kfree_skb(skb);
635 	return 0;
636 }
637 
638 /* ------- REGMAP IBT SUPPORT ------- */
639 
640 #define IBT_REG_MODE_8BIT  0x00
641 #define IBT_REG_MODE_16BIT 0x01
642 #define IBT_REG_MODE_32BIT 0x02
643 
644 struct regmap_ibt_context {
645 	struct hci_dev *hdev;
646 	__u16 op_write;
647 	__u16 op_read;
648 };
649 
650 struct ibt_cp_reg_access {
651 	__le32  addr;
652 	__u8    mode;
653 	__u8    len;
654 	__u8    data[];
655 } __packed;
656 
657 struct ibt_rp_reg_access {
658 	__u8    status;
659 	__le32  addr;
660 	__u8    data[];
661 } __packed;
662 
663 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
664 			   void *val, size_t val_size)
665 {
666 	struct regmap_ibt_context *ctx = context;
667 	struct ibt_cp_reg_access cp;
668 	struct ibt_rp_reg_access *rp;
669 	struct sk_buff *skb;
670 	int err = 0;
671 
672 	if (reg_size != sizeof(__le32))
673 		return -EINVAL;
674 
675 	switch (val_size) {
676 	case 1:
677 		cp.mode = IBT_REG_MODE_8BIT;
678 		break;
679 	case 2:
680 		cp.mode = IBT_REG_MODE_16BIT;
681 		break;
682 	case 4:
683 		cp.mode = IBT_REG_MODE_32BIT;
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 
689 	/* regmap provides a little-endian formatted addr */
690 	cp.addr = *(__le32 *)addr;
691 	cp.len = val_size;
692 
693 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
694 
695 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
696 			   HCI_CMD_TIMEOUT);
697 	if (IS_ERR(skb)) {
698 		err = PTR_ERR(skb);
699 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
700 			   le32_to_cpu(cp.addr), err);
701 		return err;
702 	}
703 
704 	if (skb->len != sizeof(*rp) + val_size) {
705 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
706 			   le32_to_cpu(cp.addr));
707 		err = -EINVAL;
708 		goto done;
709 	}
710 
711 	rp = (struct ibt_rp_reg_access *)skb->data;
712 
713 	if (rp->addr != cp.addr) {
714 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
715 			   le32_to_cpu(rp->addr));
716 		err = -EINVAL;
717 		goto done;
718 	}
719 
720 	memcpy(val, rp->data, val_size);
721 
722 done:
723 	kfree_skb(skb);
724 	return err;
725 }
726 
727 static int regmap_ibt_gather_write(void *context,
728 				   const void *addr, size_t reg_size,
729 				   const void *val, size_t val_size)
730 {
731 	struct regmap_ibt_context *ctx = context;
732 	struct ibt_cp_reg_access *cp;
733 	struct sk_buff *skb;
734 	int plen = sizeof(*cp) + val_size;
735 	u8 mode;
736 	int err = 0;
737 
738 	if (reg_size != sizeof(__le32))
739 		return -EINVAL;
740 
741 	switch (val_size) {
742 	case 1:
743 		mode = IBT_REG_MODE_8BIT;
744 		break;
745 	case 2:
746 		mode = IBT_REG_MODE_16BIT;
747 		break;
748 	case 4:
749 		mode = IBT_REG_MODE_32BIT;
750 		break;
751 	default:
752 		return -EINVAL;
753 	}
754 
755 	cp = kmalloc(plen, GFP_KERNEL);
756 	if (!cp)
757 		return -ENOMEM;
758 
759 	/* regmap provides a little-endian formatted addr/value */
760 	cp->addr = *(__le32 *)addr;
761 	cp->mode = mode;
762 	cp->len = val_size;
763 	memcpy(&cp->data, val, val_size);
764 
765 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
766 
767 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
768 	if (IS_ERR(skb)) {
769 		err = PTR_ERR(skb);
770 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
771 			   le32_to_cpu(cp->addr), err);
772 		goto done;
773 	}
774 	kfree_skb(skb);
775 
776 done:
777 	kfree(cp);
778 	return err;
779 }
780 
781 static int regmap_ibt_write(void *context, const void *data, size_t count)
782 {
783 	/* data contains register+value, since we only support 32bit addr,
784 	 * minimum data size is 4 bytes.
785 	 */
786 	if (WARN_ONCE(count < 4, "Invalid register access"))
787 		return -EINVAL;
788 
789 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
790 }
791 
792 static void regmap_ibt_free_context(void *context)
793 {
794 	kfree(context);
795 }
796 
797 static struct regmap_bus regmap_ibt = {
798 	.read = regmap_ibt_read,
799 	.write = regmap_ibt_write,
800 	.gather_write = regmap_ibt_gather_write,
801 	.free_context = regmap_ibt_free_context,
802 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
803 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
804 };
805 
806 /* Config is the same for all register regions */
807 static const struct regmap_config regmap_ibt_cfg = {
808 	.name      = "btintel_regmap",
809 	.reg_bits  = 32,
810 	.val_bits  = 32,
811 };
812 
813 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
814 				   u16 opcode_write)
815 {
816 	struct regmap_ibt_context *ctx;
817 
818 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
819 		    opcode_write);
820 
821 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
822 	if (!ctx)
823 		return ERR_PTR(-ENOMEM);
824 
825 	ctx->op_read = opcode_read;
826 	ctx->op_write = opcode_write;
827 	ctx->hdev = hdev;
828 
829 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
830 }
831 EXPORT_SYMBOL_GPL(btintel_regmap_init);
832 
833 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
834 {
835 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
836 	struct sk_buff *skb;
837 
838 	params.boot_param = cpu_to_le32(boot_param);
839 
840 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
841 			     HCI_INIT_TIMEOUT);
842 	if (IS_ERR(skb)) {
843 		bt_dev_err(hdev, "Failed to send Intel Reset command");
844 		return PTR_ERR(skb);
845 	}
846 
847 	kfree_skb(skb);
848 
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
852 
853 int btintel_read_boot_params(struct hci_dev *hdev,
854 			     struct intel_boot_params *params)
855 {
856 	struct sk_buff *skb;
857 
858 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
859 	if (IS_ERR(skb)) {
860 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
861 			   PTR_ERR(skb));
862 		return PTR_ERR(skb);
863 	}
864 
865 	if (skb->len != sizeof(*params)) {
866 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
867 		kfree_skb(skb);
868 		return -EILSEQ;
869 	}
870 
871 	memcpy(params, skb->data, sizeof(*params));
872 
873 	kfree_skb(skb);
874 
875 	if (params->status) {
876 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
877 			   params->status);
878 		return -bt_to_errno(params->status);
879 	}
880 
881 	bt_dev_info(hdev, "Device revision is %u",
882 		    le16_to_cpu(params->dev_revid));
883 
884 	bt_dev_info(hdev, "Secure boot is %s",
885 		    params->secure_boot ? "enabled" : "disabled");
886 
887 	bt_dev_info(hdev, "OTP lock is %s",
888 		    params->otp_lock ? "enabled" : "disabled");
889 
890 	bt_dev_info(hdev, "API lock is %s",
891 		    params->api_lock ? "enabled" : "disabled");
892 
893 	bt_dev_info(hdev, "Debug lock is %s",
894 		    params->debug_lock ? "enabled" : "disabled");
895 
896 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
897 		    params->min_fw_build_nn, params->min_fw_build_cw,
898 		    2000 + params->min_fw_build_yy);
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
903 
904 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
905 					      const struct firmware *fw)
906 {
907 	int err;
908 
909 	/* Start the firmware download transaction with the Init fragment
910 	 * represented by the 128 bytes of CSS header.
911 	 */
912 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
913 	if (err < 0) {
914 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
915 		goto done;
916 	}
917 
918 	/* Send the 256 bytes of public key information from the firmware
919 	 * as the PKey fragment.
920 	 */
921 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
922 	if (err < 0) {
923 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
924 		goto done;
925 	}
926 
927 	/* Send the 256 bytes of signature information from the firmware
928 	 * as the Sign fragment.
929 	 */
930 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
931 	if (err < 0) {
932 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
933 		goto done;
934 	}
935 
936 done:
937 	return err;
938 }
939 
940 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
941 						const struct firmware *fw)
942 {
943 	int err;
944 
945 	/* Start the firmware download transaction with the Init fragment
946 	 * represented by the 128 bytes of CSS header.
947 	 */
948 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
949 	if (err < 0) {
950 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
951 		return err;
952 	}
953 
954 	/* Send the 96 bytes of public key information from the firmware
955 	 * as the PKey fragment.
956 	 */
957 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
958 	if (err < 0) {
959 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
960 		return err;
961 	}
962 
963 	/* Send the 96 bytes of signature information from the firmware
964 	 * as the Sign fragment
965 	 */
966 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
967 	if (err < 0) {
968 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
969 			   err);
970 		return err;
971 	}
972 	return 0;
973 }
974 
975 static int btintel_download_firmware_payload(struct hci_dev *hdev,
976 					     const struct firmware *fw,
977 					     size_t offset)
978 {
979 	int err;
980 	const u8 *fw_ptr;
981 	u32 frag_len;
982 
983 	fw_ptr = fw->data + offset;
984 	frag_len = 0;
985 	err = -EINVAL;
986 
987 	while (fw_ptr - fw->data < fw->size) {
988 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
989 
990 		frag_len += sizeof(*cmd) + cmd->plen;
991 
992 		/* The parameter length of the secure send command requires
993 		 * a 4 byte alignment. It happens so that the firmware file
994 		 * contains proper Intel_NOP commands to align the fragments
995 		 * as needed.
996 		 *
997 		 * Send set of commands with 4 byte alignment from the
998 		 * firmware data buffer as a single Data fragement.
999 		 */
1000 		if (!(frag_len % 4)) {
1001 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1002 			if (err < 0) {
1003 				bt_dev_err(hdev,
1004 					   "Failed to send firmware data (%d)",
1005 					   err);
1006 				goto done;
1007 			}
1008 
1009 			fw_ptr += frag_len;
1010 			frag_len = 0;
1011 		}
1012 	}
1013 
1014 done:
1015 	return err;
1016 }
1017 
1018 static bool btintel_firmware_version(struct hci_dev *hdev,
1019 				     u8 num, u8 ww, u8 yy,
1020 				     const struct firmware *fw,
1021 				     u32 *boot_addr)
1022 {
1023 	const u8 *fw_ptr;
1024 
1025 	fw_ptr = fw->data;
1026 
1027 	while (fw_ptr - fw->data < fw->size) {
1028 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1029 
1030 		/* Each SKU has a different reset parameter to use in the
1031 		 * HCI_Intel_Reset command and it is embedded in the firmware
1032 		 * data. So, instead of using static value per SKU, check
1033 		 * the firmware data and save it for later use.
1034 		 */
1035 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1036 			struct cmd_write_boot_params *params;
1037 
1038 			params = (void *)(fw_ptr + sizeof(*cmd));
1039 
1040 			*boot_addr = le32_to_cpu(params->boot_addr);
1041 
1042 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1043 
1044 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1045 				    params->fw_build_num, params->fw_build_ww,
1046 				    params->fw_build_yy);
1047 
1048 			return (num == params->fw_build_num &&
1049 				ww == params->fw_build_ww &&
1050 				yy == params->fw_build_yy);
1051 		}
1052 
1053 		fw_ptr += sizeof(*cmd) + cmd->plen;
1054 	}
1055 
1056 	return false;
1057 }
1058 
1059 int btintel_download_firmware(struct hci_dev *hdev,
1060 			      struct intel_version *ver,
1061 			      const struct firmware *fw,
1062 			      u32 *boot_param)
1063 {
1064 	int err;
1065 
1066 	/* SfP and WsP don't seem to update the firmware version on file
1067 	 * so version checking is currently not possible.
1068 	 */
1069 	switch (ver->hw_variant) {
1070 	case 0x0b:	/* SfP */
1071 	case 0x0c:	/* WsP */
1072 		/* Skip version checking */
1073 		break;
1074 	default:
1075 
1076 		/* Skip download if firmware has the same version */
1077 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1078 					     ver->fw_build_ww, ver->fw_build_yy,
1079 					     fw, boot_param)) {
1080 			bt_dev_info(hdev, "Firmware already loaded");
1081 			/* Return -EALREADY to indicate that the firmware has
1082 			 * already been loaded.
1083 			 */
1084 			return -EALREADY;
1085 		}
1086 	}
1087 
1088 	/* The firmware variant determines if the device is in bootloader
1089 	 * mode or is running operational firmware. The value 0x06 identifies
1090 	 * the bootloader and the value 0x23 identifies the operational
1091 	 * firmware.
1092 	 *
1093 	 * If the firmware version has changed that means it needs to be reset
1094 	 * to bootloader when operational so the new firmware can be loaded.
1095 	 */
1096 	if (ver->fw_variant == 0x23)
1097 		return -EINVAL;
1098 
1099 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1100 	if (err)
1101 		return err;
1102 
1103 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1104 }
1105 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1106 
1107 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1108 				   struct intel_version_tlv *ver,
1109 				   const struct firmware *fw, u32 *boot_param,
1110 				   u8 hw_variant, u8 sbe_type)
1111 {
1112 	int err;
1113 	u32 css_header_ver;
1114 
1115 	/* Skip download if firmware has the same version */
1116 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1117 				     ver->min_fw_build_cw,
1118 				     ver->min_fw_build_yy,
1119 				     fw, boot_param)) {
1120 		bt_dev_info(hdev, "Firmware already loaded");
1121 		/* Return -EALREADY to indicate that firmware has
1122 		 * already been loaded.
1123 		 */
1124 		return -EALREADY;
1125 	}
1126 
1127 	/* The firmware variant determines if the device is in bootloader
1128 	 * mode or is running operational firmware. The value 0x01 identifies
1129 	 * the bootloader and the value 0x03 identifies the operational
1130 	 * firmware.
1131 	 *
1132 	 * If the firmware version has changed that means it needs to be reset
1133 	 * to bootloader when operational so the new firmware can be loaded.
1134 	 */
1135 	if (ver->img_type == 0x03)
1136 		return -EINVAL;
1137 
1138 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1139 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1140 	 * have RSA header of 644 bytes followed by Command Buffer.
1141 	 *
1142 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1143 	 * secure boot engine. As a result, the corresponding sfi file will
1144 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1145 	 * Command Buffer.
1146 	 *
1147 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1148 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1149 	 */
1150 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1151 	if (css_header_ver != 0x00010000) {
1152 		bt_dev_err(hdev, "Invalid CSS Header version");
1153 		return -EINVAL;
1154 	}
1155 
1156 	if (hw_variant <= 0x14) {
1157 		if (sbe_type != 0x00) {
1158 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1159 				   hw_variant);
1160 			return -EINVAL;
1161 		}
1162 
1163 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1164 		if (err)
1165 			return err;
1166 
1167 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1168 		if (err)
1169 			return err;
1170 	} else if (hw_variant >= 0x17) {
1171 		/* Check if CSS header for ECDSA follows the RSA header */
1172 		if (fw->data[ECDSA_OFFSET] != 0x06)
1173 			return -EINVAL;
1174 
1175 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1176 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1177 		if (css_header_ver != 0x00020000) {
1178 			bt_dev_err(hdev, "Invalid CSS Header version");
1179 			return -EINVAL;
1180 		}
1181 
1182 		if (sbe_type == 0x00) {
1183 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1184 			if (err)
1185 				return err;
1186 
1187 			err = btintel_download_firmware_payload(hdev, fw,
1188 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1189 			if (err)
1190 				return err;
1191 		} else if (sbe_type == 0x01) {
1192 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1193 			if (err)
1194 				return err;
1195 
1196 			err = btintel_download_firmware_payload(hdev, fw,
1197 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1198 			if (err)
1199 				return err;
1200 		}
1201 	}
1202 	return 0;
1203 }
1204 
1205 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1206 {
1207 	struct intel_reset params;
1208 	struct sk_buff *skb;
1209 
1210 	/* Send Intel Reset command. This will result in
1211 	 * re-enumeration of BT controller.
1212 	 *
1213 	 * Intel Reset parameter description:
1214 	 * reset_type :   0x00 (Soft reset),
1215 	 *		  0x01 (Hard reset)
1216 	 * patch_enable : 0x00 (Do not enable),
1217 	 *		  0x01 (Enable)
1218 	 * ddc_reload :   0x00 (Do not reload),
1219 	 *		  0x01 (Reload)
1220 	 * boot_option:   0x00 (Current image),
1221 	 *                0x01 (Specified boot address)
1222 	 * boot_param:    Boot address
1223 	 *
1224 	 */
1225 	params.reset_type = 0x01;
1226 	params.patch_enable = 0x01;
1227 	params.ddc_reload = 0x01;
1228 	params.boot_option = 0x00;
1229 	params.boot_param = cpu_to_le32(0x00000000);
1230 
1231 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1232 			     &params, HCI_INIT_TIMEOUT);
1233 	if (IS_ERR(skb)) {
1234 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1235 			   PTR_ERR(skb));
1236 		return;
1237 	}
1238 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1239 	kfree_skb(skb);
1240 
1241 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1242 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1243 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1244 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1245 	 */
1246 	msleep(150);
1247 }
1248 
1249 static int btintel_read_debug_features(struct hci_dev *hdev,
1250 				       struct intel_debug_features *features)
1251 {
1252 	struct sk_buff *skb;
1253 	u8 page_no = 1;
1254 
1255 	/* Intel controller supports two pages, each page is of 128-bit
1256 	 * feature bit mask. And each bit defines specific feature support
1257 	 */
1258 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1259 			     HCI_INIT_TIMEOUT);
1260 	if (IS_ERR(skb)) {
1261 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1262 			   PTR_ERR(skb));
1263 		return PTR_ERR(skb);
1264 	}
1265 
1266 	if (skb->len != (sizeof(features->page1) + 3)) {
1267 		bt_dev_err(hdev, "Supported features event size mismatch");
1268 		kfree_skb(skb);
1269 		return -EILSEQ;
1270 	}
1271 
1272 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1273 
1274 	/* Read the supported features page2 if required in future.
1275 	 */
1276 	kfree_skb(skb);
1277 	return 0;
1278 }
1279 
1280 static int btintel_set_debug_features(struct hci_dev *hdev,
1281 			       const struct intel_debug_features *features)
1282 {
1283 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1284 			0x00, 0x00, 0x00 };
1285 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1286 	u8 trace_enable = 0x02;
1287 	struct sk_buff *skb;
1288 
1289 	if (!features) {
1290 		bt_dev_warn(hdev, "Debug features not read");
1291 		return -EINVAL;
1292 	}
1293 
1294 	if (!(features->page1[0] & 0x3f)) {
1295 		bt_dev_info(hdev, "Telemetry exception format not supported");
1296 		return 0;
1297 	}
1298 
1299 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1300 	if (IS_ERR(skb)) {
1301 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1302 			   PTR_ERR(skb));
1303 		return PTR_ERR(skb);
1304 	}
1305 	kfree_skb(skb);
1306 
1307 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1308 	if (IS_ERR(skb)) {
1309 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1310 			   PTR_ERR(skb));
1311 		return PTR_ERR(skb);
1312 	}
1313 	kfree_skb(skb);
1314 
1315 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1316 	if (IS_ERR(skb)) {
1317 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1318 			   PTR_ERR(skb));
1319 		return PTR_ERR(skb);
1320 	}
1321 	kfree_skb(skb);
1322 
1323 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1324 		    trace_enable, mask[3]);
1325 
1326 	return 0;
1327 }
1328 
1329 static int btintel_reset_debug_features(struct hci_dev *hdev,
1330 				 const struct intel_debug_features *features)
1331 {
1332 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1333 			0x00, 0x00, 0x00 };
1334 	u8 trace_enable = 0x00;
1335 	struct sk_buff *skb;
1336 
1337 	if (!features) {
1338 		bt_dev_warn(hdev, "Debug features not read");
1339 		return -EINVAL;
1340 	}
1341 
1342 	if (!(features->page1[0] & 0x3f)) {
1343 		bt_dev_info(hdev, "Telemetry exception format not supported");
1344 		return 0;
1345 	}
1346 
1347 	/* Should stop the trace before writing ddc event mask. */
1348 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1349 	if (IS_ERR(skb)) {
1350 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1351 			   PTR_ERR(skb));
1352 		return PTR_ERR(skb);
1353 	}
1354 	kfree_skb(skb);
1355 
1356 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1357 	if (IS_ERR(skb)) {
1358 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1359 			   PTR_ERR(skb));
1360 		return PTR_ERR(skb);
1361 	}
1362 	kfree_skb(skb);
1363 
1364 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1365 		    trace_enable, mask[3]);
1366 
1367 	return 0;
1368 }
1369 
1370 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1371 {
1372 	struct intel_debug_features features;
1373 	int err;
1374 
1375 	bt_dev_dbg(hdev, "enable %d", enable);
1376 
1377 	/* Read the Intel supported features and if new exception formats
1378 	 * supported, need to load the additional DDC config to enable.
1379 	 */
1380 	err = btintel_read_debug_features(hdev, &features);
1381 	if (err)
1382 		return err;
1383 
1384 	/* Set or reset the debug features. */
1385 	if (enable)
1386 		err = btintel_set_debug_features(hdev, &features);
1387 	else
1388 		err = btintel_reset_debug_features(hdev, &features);
1389 
1390 	return err;
1391 }
1392 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1393 
1394 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1395 					       struct intel_version *ver)
1396 {
1397 	const struct firmware *fw;
1398 	char fwname[64];
1399 	int ret;
1400 
1401 	snprintf(fwname, sizeof(fwname),
1402 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1403 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1404 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1405 		 ver->fw_build_ww, ver->fw_build_yy);
1406 
1407 	ret = request_firmware(&fw, fwname, &hdev->dev);
1408 	if (ret < 0) {
1409 		if (ret == -EINVAL) {
1410 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1411 				   ret);
1412 			return NULL;
1413 		}
1414 
1415 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1416 			   fwname, ret);
1417 
1418 		/* If the correct firmware patch file is not found, use the
1419 		 * default firmware patch file instead
1420 		 */
1421 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1422 			 ver->hw_platform, ver->hw_variant);
1423 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1424 			bt_dev_err(hdev, "failed to open default fw file: %s",
1425 				   fwname);
1426 			return NULL;
1427 		}
1428 	}
1429 
1430 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1431 
1432 	return fw;
1433 }
1434 
1435 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1436 				      const struct firmware *fw,
1437 				      const u8 **fw_ptr, int *disable_patch)
1438 {
1439 	struct sk_buff *skb;
1440 	struct hci_command_hdr *cmd;
1441 	const u8 *cmd_param;
1442 	struct hci_event_hdr *evt = NULL;
1443 	const u8 *evt_param = NULL;
1444 	int remain = fw->size - (*fw_ptr - fw->data);
1445 
1446 	/* The first byte indicates the types of the patch command or event.
1447 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1448 	 * in the current firmware buffer doesn't start with 0x01 or
1449 	 * the size of remain buffer is smaller than HCI command header,
1450 	 * the firmware file is corrupted and it should stop the patching
1451 	 * process.
1452 	 */
1453 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1454 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1455 		return -EINVAL;
1456 	}
1457 	(*fw_ptr)++;
1458 	remain--;
1459 
1460 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1461 	*fw_ptr += sizeof(*cmd);
1462 	remain -= sizeof(*cmd);
1463 
1464 	/* Ensure that the remain firmware data is long enough than the length
1465 	 * of command parameter. If not, the firmware file is corrupted.
1466 	 */
1467 	if (remain < cmd->plen) {
1468 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1469 		return -EFAULT;
1470 	}
1471 
1472 	/* If there is a command that loads a patch in the firmware
1473 	 * file, then enable the patch upon success, otherwise just
1474 	 * disable the manufacturer mode, for example patch activation
1475 	 * is not required when the default firmware patch file is used
1476 	 * because there are no patch data to load.
1477 	 */
1478 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1479 		*disable_patch = 0;
1480 
1481 	cmd_param = *fw_ptr;
1482 	*fw_ptr += cmd->plen;
1483 	remain -= cmd->plen;
1484 
1485 	/* This reads the expected events when the above command is sent to the
1486 	 * device. Some vendor commands expects more than one events, for
1487 	 * example command status event followed by vendor specific event.
1488 	 * For this case, it only keeps the last expected event. so the command
1489 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1490 	 * last expected event.
1491 	 */
1492 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1493 		(*fw_ptr)++;
1494 		remain--;
1495 
1496 		evt = (struct hci_event_hdr *)(*fw_ptr);
1497 		*fw_ptr += sizeof(*evt);
1498 		remain -= sizeof(*evt);
1499 
1500 		if (remain < evt->plen) {
1501 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1502 			return -EFAULT;
1503 		}
1504 
1505 		evt_param = *fw_ptr;
1506 		*fw_ptr += evt->plen;
1507 		remain -= evt->plen;
1508 	}
1509 
1510 	/* Every HCI commands in the firmware file has its correspond event.
1511 	 * If event is not found or remain is smaller than zero, the firmware
1512 	 * file is corrupted.
1513 	 */
1514 	if (!evt || !evt_param || remain < 0) {
1515 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1516 		return -EFAULT;
1517 	}
1518 
1519 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1520 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1521 	if (IS_ERR(skb)) {
1522 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1523 			   cmd->opcode, PTR_ERR(skb));
1524 		return PTR_ERR(skb);
1525 	}
1526 
1527 	/* It ensures that the returned event matches the event data read from
1528 	 * the firmware file. At fist, it checks the length and then
1529 	 * the contents of the event.
1530 	 */
1531 	if (skb->len != evt->plen) {
1532 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1533 			   le16_to_cpu(cmd->opcode));
1534 		kfree_skb(skb);
1535 		return -EFAULT;
1536 	}
1537 
1538 	if (memcmp(skb->data, evt_param, evt->plen)) {
1539 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1540 			   le16_to_cpu(cmd->opcode));
1541 		kfree_skb(skb);
1542 		return -EFAULT;
1543 	}
1544 	kfree_skb(skb);
1545 
1546 	return 0;
1547 }
1548 
1549 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1550 				    struct intel_version *ver)
1551 {
1552 	const struct firmware *fw;
1553 	const u8 *fw_ptr;
1554 	int disable_patch, err;
1555 	struct intel_version new_ver;
1556 
1557 	BT_DBG("%s", hdev->name);
1558 
1559 	/* fw_patch_num indicates the version of patch the device currently
1560 	 * have. If there is no patch data in the device, it is always 0x00.
1561 	 * So, if it is other than 0x00, no need to patch the device again.
1562 	 */
1563 	if (ver->fw_patch_num) {
1564 		bt_dev_info(hdev,
1565 			    "Intel device is already patched. patch num: %02x",
1566 			    ver->fw_patch_num);
1567 		goto complete;
1568 	}
1569 
1570 	/* Opens the firmware patch file based on the firmware version read
1571 	 * from the controller. If it fails to open the matching firmware
1572 	 * patch file, it tries to open the default firmware patch file.
1573 	 * If no patch file is found, allow the device to operate without
1574 	 * a patch.
1575 	 */
1576 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1577 	if (!fw)
1578 		goto complete;
1579 	fw_ptr = fw->data;
1580 
1581 	/* Enable the manufacturer mode of the controller.
1582 	 * Only while this mode is enabled, the driver can download the
1583 	 * firmware patch data and configuration parameters.
1584 	 */
1585 	err = btintel_enter_mfg(hdev);
1586 	if (err) {
1587 		release_firmware(fw);
1588 		return err;
1589 	}
1590 
1591 	disable_patch = 1;
1592 
1593 	/* The firmware data file consists of list of Intel specific HCI
1594 	 * commands and its expected events. The first byte indicates the
1595 	 * type of the message, either HCI command or HCI event.
1596 	 *
1597 	 * It reads the command and its expected event from the firmware file,
1598 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1599 	 * the returned event is compared with the event read from the firmware
1600 	 * file and it will continue until all the messages are downloaded to
1601 	 * the controller.
1602 	 *
1603 	 * Once the firmware patching is completed successfully,
1604 	 * the manufacturer mode is disabled with reset and activating the
1605 	 * downloaded patch.
1606 	 *
1607 	 * If the firmware patching fails, the manufacturer mode is
1608 	 * disabled with reset and deactivating the patch.
1609 	 *
1610 	 * If the default patch file is used, no reset is done when disabling
1611 	 * the manufacturer.
1612 	 */
1613 	while (fw->size > fw_ptr - fw->data) {
1614 		int ret;
1615 
1616 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1617 						 &disable_patch);
1618 		if (ret < 0)
1619 			goto exit_mfg_deactivate;
1620 	}
1621 
1622 	release_firmware(fw);
1623 
1624 	if (disable_patch)
1625 		goto exit_mfg_disable;
1626 
1627 	/* Patching completed successfully and disable the manufacturer mode
1628 	 * with reset and activate the downloaded firmware patches.
1629 	 */
1630 	err = btintel_exit_mfg(hdev, true, true);
1631 	if (err)
1632 		return err;
1633 
1634 	/* Need build number for downloaded fw patches in
1635 	 * every power-on boot
1636 	 */
1637 	err = btintel_read_version(hdev, &new_ver);
1638 	if (err)
1639 		return err;
1640 
1641 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1642 		    new_ver.fw_patch_num);
1643 
1644 	goto complete;
1645 
1646 exit_mfg_disable:
1647 	/* Disable the manufacturer mode without reset */
1648 	err = btintel_exit_mfg(hdev, false, false);
1649 	if (err)
1650 		return err;
1651 
1652 	bt_dev_info(hdev, "Intel firmware patch completed");
1653 
1654 	goto complete;
1655 
1656 exit_mfg_deactivate:
1657 	release_firmware(fw);
1658 
1659 	/* Patching failed. Disable the manufacturer mode with reset and
1660 	 * deactivate the downloaded firmware patches.
1661 	 */
1662 	err = btintel_exit_mfg(hdev, true, false);
1663 	if (err)
1664 		return err;
1665 
1666 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1667 
1668 complete:
1669 	/* Set the event mask for Intel specific vendor events. This enables
1670 	 * a few extra events that are useful during general operation.
1671 	 */
1672 	btintel_set_event_mask_mfg(hdev, false);
1673 
1674 	btintel_check_bdaddr(hdev);
1675 
1676 	return 0;
1677 }
1678 
1679 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1680 {
1681 	ktime_t delta, rettime;
1682 	unsigned long long duration;
1683 	int err;
1684 
1685 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1686 
1687 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1688 
1689 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1690 					   TASK_INTERRUPTIBLE,
1691 					   msecs_to_jiffies(msec));
1692 	if (err == -EINTR) {
1693 		bt_dev_err(hdev, "Firmware loading interrupted");
1694 		return err;
1695 	}
1696 
1697 	if (err) {
1698 		bt_dev_err(hdev, "Firmware loading timeout");
1699 		return -ETIMEDOUT;
1700 	}
1701 
1702 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1703 		bt_dev_err(hdev, "Firmware loading failed");
1704 		return -ENOEXEC;
1705 	}
1706 
1707 	rettime = ktime_get();
1708 	delta = ktime_sub(rettime, calltime);
1709 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1710 
1711 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1712 
1713 	return 0;
1714 }
1715 
1716 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1717 {
1718 	ktime_t delta, rettime;
1719 	unsigned long long duration;
1720 	int err;
1721 
1722 	bt_dev_info(hdev, "Waiting for device to boot");
1723 
1724 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1725 					   TASK_INTERRUPTIBLE,
1726 					   msecs_to_jiffies(msec));
1727 	if (err == -EINTR) {
1728 		bt_dev_err(hdev, "Device boot interrupted");
1729 		return -EINTR;
1730 	}
1731 
1732 	if (err) {
1733 		bt_dev_err(hdev, "Device boot timeout");
1734 		return -ETIMEDOUT;
1735 	}
1736 
1737 	rettime = ktime_get();
1738 	delta = ktime_sub(rettime, calltime);
1739 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1740 
1741 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1742 
1743 	return 0;
1744 }
1745 
1746 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1747 {
1748 	ktime_t calltime;
1749 	int err;
1750 
1751 	calltime = ktime_get();
1752 
1753 	btintel_set_flag(hdev, INTEL_BOOTING);
1754 
1755 	err = btintel_send_intel_reset(hdev, boot_addr);
1756 	if (err) {
1757 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1758 		btintel_reset_to_bootloader(hdev);
1759 		return err;
1760 	}
1761 
1762 	/* The bootloader will not indicate when the device is ready. This
1763 	 * is done by the operational firmware sending bootup notification.
1764 	 *
1765 	 * Booting into operational firmware should not take longer than
1766 	 * 1 second. However if that happens, then just fail the setup
1767 	 * since something went wrong.
1768 	 */
1769 	err = btintel_boot_wait(hdev, calltime, 1000);
1770 	if (err == -ETIMEDOUT)
1771 		btintel_reset_to_bootloader(hdev);
1772 
1773 	return err;
1774 }
1775 
1776 static int btintel_get_fw_name(struct intel_version *ver,
1777 					     struct intel_boot_params *params,
1778 					     char *fw_name, size_t len,
1779 					     const char *suffix)
1780 {
1781 	switch (ver->hw_variant) {
1782 	case 0x0b:	/* SfP */
1783 	case 0x0c:	/* WsP */
1784 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1785 			le16_to_cpu(ver->hw_variant),
1786 			le16_to_cpu(params->dev_revid),
1787 			suffix);
1788 		break;
1789 	case 0x11:	/* JfP */
1790 	case 0x12:	/* ThP */
1791 	case 0x13:	/* HrP */
1792 	case 0x14:	/* CcP */
1793 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1794 			le16_to_cpu(ver->hw_variant),
1795 			le16_to_cpu(ver->hw_revision),
1796 			le16_to_cpu(ver->fw_revision),
1797 			suffix);
1798 		break;
1799 	default:
1800 		return -EINVAL;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static int btintel_download_fw(struct hci_dev *hdev,
1807 					 struct intel_version *ver,
1808 					 struct intel_boot_params *params,
1809 					 u32 *boot_param)
1810 {
1811 	const struct firmware *fw;
1812 	char fwname[64];
1813 	int err;
1814 	ktime_t calltime;
1815 
1816 	if (!ver || !params)
1817 		return -EINVAL;
1818 
1819 	/* The firmware variant determines if the device is in bootloader
1820 	 * mode or is running operational firmware. The value 0x06 identifies
1821 	 * the bootloader and the value 0x23 identifies the operational
1822 	 * firmware.
1823 	 *
1824 	 * When the operational firmware is already present, then only
1825 	 * the check for valid Bluetooth device address is needed. This
1826 	 * determines if the device will be added as configured or
1827 	 * unconfigured controller.
1828 	 *
1829 	 * It is not possible to use the Secure Boot Parameters in this
1830 	 * case since that command is only available in bootloader mode.
1831 	 */
1832 	if (ver->fw_variant == 0x23) {
1833 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1834 		btintel_check_bdaddr(hdev);
1835 
1836 		/* SfP and WsP don't seem to update the firmware version on file
1837 		 * so version checking is currently possible.
1838 		 */
1839 		switch (ver->hw_variant) {
1840 		case 0x0b:	/* SfP */
1841 		case 0x0c:	/* WsP */
1842 			return 0;
1843 		}
1844 
1845 		/* Proceed to download to check if the version matches */
1846 		goto download;
1847 	}
1848 
1849 	/* Read the secure boot parameters to identify the operating
1850 	 * details of the bootloader.
1851 	 */
1852 	err = btintel_read_boot_params(hdev, params);
1853 	if (err)
1854 		return err;
1855 
1856 	/* It is required that every single firmware fragment is acknowledged
1857 	 * with a command complete event. If the boot parameters indicate
1858 	 * that this bootloader does not send them, then abort the setup.
1859 	 */
1860 	if (params->limited_cce != 0x00) {
1861 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
1862 			   params->limited_cce);
1863 		return -EINVAL;
1864 	}
1865 
1866 	/* If the OTP has no valid Bluetooth device address, then there will
1867 	 * also be no valid address for the operational firmware.
1868 	 */
1869 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
1870 		bt_dev_info(hdev, "No device address configured");
1871 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
1872 	}
1873 
1874 download:
1875 	/* With this Intel bootloader only the hardware variant and device
1876 	 * revision information are used to select the right firmware for SfP
1877 	 * and WsP.
1878 	 *
1879 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
1880 	 *
1881 	 * Currently the supported hardware variants are:
1882 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
1883 	 *   12 (0x0c) for iBT3.5 (WsP)
1884 	 *
1885 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
1886 	 * variant, HW revision and FW revision, as these are dependent on CNVi
1887 	 * and RF Combination.
1888 	 *
1889 	 *   17 (0x11) for iBT3.5 (JfP)
1890 	 *   18 (0x12) for iBT3.5 (ThP)
1891 	 *
1892 	 * The firmware file name for these will be
1893 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
1894 	 *
1895 	 */
1896 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
1897 	if (err < 0) {
1898 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1899 			/* Firmware has already been loaded */
1900 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1901 			return 0;
1902 		}
1903 
1904 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
1905 		return -EINVAL;
1906 	}
1907 
1908 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
1909 	if (err < 0) {
1910 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1911 			/* Firmware has already been loaded */
1912 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1913 			return 0;
1914 		}
1915 
1916 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
1917 			   fwname, err);
1918 		return err;
1919 	}
1920 
1921 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
1922 
1923 	if (fw->size < 644) {
1924 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
1925 			   fw->size);
1926 		err = -EBADF;
1927 		goto done;
1928 	}
1929 
1930 	calltime = ktime_get();
1931 
1932 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
1933 
1934 	/* Start firmware downloading and get boot parameter */
1935 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
1936 	if (err < 0) {
1937 		if (err == -EALREADY) {
1938 			/* Firmware has already been loaded */
1939 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1940 			err = 0;
1941 			goto done;
1942 		}
1943 
1944 		/* When FW download fails, send Intel Reset to retry
1945 		 * FW download.
1946 		 */
1947 		btintel_reset_to_bootloader(hdev);
1948 		goto done;
1949 	}
1950 
1951 	/* Before switching the device into operational mode and with that
1952 	 * booting the loaded firmware, wait for the bootloader notification
1953 	 * that all fragments have been successfully received.
1954 	 *
1955 	 * When the event processing receives the notification, then the
1956 	 * INTEL_DOWNLOADING flag will be cleared.
1957 	 *
1958 	 * The firmware loading should not take longer than 5 seconds
1959 	 * and thus just timeout if that happens and fail the setup
1960 	 * of this device.
1961 	 */
1962 	err = btintel_download_wait(hdev, calltime, 5000);
1963 	if (err == -ETIMEDOUT)
1964 		btintel_reset_to_bootloader(hdev);
1965 
1966 done:
1967 	release_firmware(fw);
1968 	return err;
1969 }
1970 
1971 static int btintel_bootloader_setup(struct hci_dev *hdev,
1972 				    struct intel_version *ver)
1973 {
1974 	struct intel_version new_ver;
1975 	struct intel_boot_params params;
1976 	u32 boot_param;
1977 	char ddcname[64];
1978 	int err;
1979 
1980 	BT_DBG("%s", hdev->name);
1981 
1982 	/* Set the default boot parameter to 0x0 and it is updated to
1983 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
1984 	 * command while downloading the firmware.
1985 	 */
1986 	boot_param = 0x00000000;
1987 
1988 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
1989 
1990 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
1991 	if (err)
1992 		return err;
1993 
1994 	/* controller is already having an operational firmware */
1995 	if (ver->fw_variant == 0x23)
1996 		goto finish;
1997 
1998 	err = btintel_boot(hdev, boot_param);
1999 	if (err)
2000 		return err;
2001 
2002 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2003 
2004 	err = btintel_get_fw_name(ver, &params, ddcname,
2005 						sizeof(ddcname), "ddc");
2006 
2007 	if (err < 0) {
2008 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2009 	} else {
2010 		/* Once the device is running in operational mode, it needs to
2011 		 * apply the device configuration (DDC) parameters.
2012 		 *
2013 		 * The device can work without DDC parameters, so even if it
2014 		 * fails to load the file, no need to fail the setup.
2015 		 */
2016 		btintel_load_ddc_config(hdev, ddcname);
2017 	}
2018 
2019 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2020 
2021 	/* Read the Intel version information after loading the FW  */
2022 	err = btintel_read_version(hdev, &new_ver);
2023 	if (err)
2024 		return err;
2025 
2026 	btintel_version_info(hdev, &new_ver);
2027 
2028 finish:
2029 	/* Set the event mask for Intel specific vendor events. This enables
2030 	 * a few extra events that are useful during general operation. It
2031 	 * does not enable any debugging related events.
2032 	 *
2033 	 * The device will function correctly without these events enabled
2034 	 * and thus no need to fail the setup.
2035 	 */
2036 	btintel_set_event_mask(hdev, false);
2037 
2038 	return 0;
2039 }
2040 
2041 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2042 				    char *fw_name, size_t len,
2043 				    const char *suffix)
2044 {
2045 	/* The firmware file name for new generation controllers will be
2046 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2047 	 */
2048 	snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s",
2049 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2050 					  INTEL_CNVX_TOP_STEP(ver->cnvi_top)),
2051 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2052 					  INTEL_CNVX_TOP_STEP(ver->cnvr_top)),
2053 		 suffix);
2054 }
2055 
2056 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2057 					   struct intel_version_tlv *ver,
2058 					   u32 *boot_param)
2059 {
2060 	const struct firmware *fw;
2061 	char fwname[64];
2062 	int err;
2063 	ktime_t calltime;
2064 
2065 	if (!ver || !boot_param)
2066 		return -EINVAL;
2067 
2068 	/* The firmware variant determines if the device is in bootloader
2069 	 * mode or is running operational firmware. The value 0x03 identifies
2070 	 * the bootloader and the value 0x23 identifies the operational
2071 	 * firmware.
2072 	 *
2073 	 * When the operational firmware is already present, then only
2074 	 * the check for valid Bluetooth device address is needed. This
2075 	 * determines if the device will be added as configured or
2076 	 * unconfigured controller.
2077 	 *
2078 	 * It is not possible to use the Secure Boot Parameters in this
2079 	 * case since that command is only available in bootloader mode.
2080 	 */
2081 	if (ver->img_type == 0x03) {
2082 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2083 		btintel_check_bdaddr(hdev);
2084 	}
2085 
2086 	/* If the OTP has no valid Bluetooth device address, then there will
2087 	 * also be no valid address for the operational firmware.
2088 	 */
2089 	if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2090 		bt_dev_info(hdev, "No device address configured");
2091 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2092 	}
2093 
2094 	btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2095 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2096 	if (err < 0) {
2097 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2098 			/* Firmware has already been loaded */
2099 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2100 			return 0;
2101 		}
2102 
2103 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2104 			   fwname, err);
2105 
2106 		return err;
2107 	}
2108 
2109 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2110 
2111 	if (fw->size < 644) {
2112 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2113 			   fw->size);
2114 		err = -EBADF;
2115 		goto done;
2116 	}
2117 
2118 	calltime = ktime_get();
2119 
2120 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2121 
2122 	/* Start firmware downloading and get boot parameter */
2123 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2124 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2125 					       ver->sbe_type);
2126 	if (err < 0) {
2127 		if (err == -EALREADY) {
2128 			/* Firmware has already been loaded */
2129 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2130 			err = 0;
2131 			goto done;
2132 		}
2133 
2134 		/* When FW download fails, send Intel Reset to retry
2135 		 * FW download.
2136 		 */
2137 		btintel_reset_to_bootloader(hdev);
2138 		goto done;
2139 	}
2140 
2141 	/* Before switching the device into operational mode and with that
2142 	 * booting the loaded firmware, wait for the bootloader notification
2143 	 * that all fragments have been successfully received.
2144 	 *
2145 	 * When the event processing receives the notification, then the
2146 	 * BTUSB_DOWNLOADING flag will be cleared.
2147 	 *
2148 	 * The firmware loading should not take longer than 5 seconds
2149 	 * and thus just timeout if that happens and fail the setup
2150 	 * of this device.
2151 	 */
2152 	err = btintel_download_wait(hdev, calltime, 5000);
2153 	if (err == -ETIMEDOUT)
2154 		btintel_reset_to_bootloader(hdev);
2155 
2156 done:
2157 	release_firmware(fw);
2158 	return err;
2159 }
2160 
2161 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2162 					 __u8 link, struct bt_codec *codec,
2163 					 __u8 *ven_len, __u8 **ven_data)
2164 {
2165 	int err = 0;
2166 
2167 	if (!ven_data || !ven_len)
2168 		return -EINVAL;
2169 
2170 	*ven_len = 0;
2171 	*ven_data = NULL;
2172 
2173 	if (link != ESCO_LINK) {
2174 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2175 		return -EINVAL;
2176 	}
2177 
2178 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2179 	if (!*ven_data) {
2180 		err = -ENOMEM;
2181 		goto error;
2182 	}
2183 
2184 	/* supports only CVSD and mSBC offload codecs */
2185 	switch (codec->id) {
2186 	case 0x02:
2187 		**ven_data = 0x00;
2188 		break;
2189 	case 0x05:
2190 		**ven_data = 0x01;
2191 		break;
2192 	default:
2193 		err = -EINVAL;
2194 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2195 		goto error;
2196 	}
2197 	/* codec and its capabilities are pre-defined to ids
2198 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2199 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2200 	 */
2201 	*ven_len = sizeof(__u8);
2202 	return err;
2203 
2204 error:
2205 	kfree(*ven_data);
2206 	*ven_data = NULL;
2207 	return err;
2208 }
2209 
2210 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2211 {
2212 	/* Intel uses 1 as data path id for all the usecases */
2213 	*data_path_id = 1;
2214 	return 0;
2215 }
2216 
2217 static int btintel_configure_offload(struct hci_dev *hdev)
2218 {
2219 	struct sk_buff *skb;
2220 	int err = 0;
2221 	struct intel_offload_use_cases *use_cases;
2222 
2223 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2224 	if (IS_ERR(skb)) {
2225 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2226 			   PTR_ERR(skb));
2227 		return PTR_ERR(skb);
2228 	}
2229 
2230 	if (skb->len < sizeof(*use_cases)) {
2231 		err = -EIO;
2232 		goto error;
2233 	}
2234 
2235 	use_cases = (void *)skb->data;
2236 
2237 	if (use_cases->status) {
2238 		err = -bt_to_errno(skb->data[0]);
2239 		goto error;
2240 	}
2241 
2242 	if (use_cases->preset[0] & 0x03) {
2243 		hdev->get_data_path_id = btintel_get_data_path_id;
2244 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2245 	}
2246 error:
2247 	kfree_skb(skb);
2248 	return err;
2249 }
2250 
2251 static int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2252 					struct intel_version_tlv *ver)
2253 {
2254 	u32 boot_param;
2255 	char ddcname[64];
2256 	int err;
2257 	struct intel_version_tlv new_ver;
2258 
2259 	bt_dev_dbg(hdev, "");
2260 
2261 	/* Set the default boot parameter to 0x0 and it is updated to
2262 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2263 	 * command while downloading the firmware.
2264 	 */
2265 	boot_param = 0x00000000;
2266 
2267 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2268 
2269 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2270 	if (err)
2271 		return err;
2272 
2273 	/* check if controller is already having an operational firmware */
2274 	if (ver->img_type == 0x03)
2275 		goto finish;
2276 
2277 	err = btintel_boot(hdev, boot_param);
2278 	if (err)
2279 		return err;
2280 
2281 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2282 
2283 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2284 	/* Once the device is running in operational mode, it needs to
2285 	 * apply the device configuration (DDC) parameters.
2286 	 *
2287 	 * The device can work without DDC parameters, so even if it
2288 	 * fails to load the file, no need to fail the setup.
2289 	 */
2290 	btintel_load_ddc_config(hdev, ddcname);
2291 
2292 	/* Read supported use cases and set callbacks to fetch datapath id */
2293 	btintel_configure_offload(hdev);
2294 
2295 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2296 
2297 	/* Read the Intel version information after loading the FW  */
2298 	err = btintel_read_version_tlv(hdev, &new_ver);
2299 	if (err)
2300 		return err;
2301 
2302 	btintel_version_info_tlv(hdev, &new_ver);
2303 
2304 finish:
2305 	/* Set the event mask for Intel specific vendor events. This enables
2306 	 * a few extra events that are useful during general operation. It
2307 	 * does not enable any debugging related events.
2308 	 *
2309 	 * The device will function correctly without these events enabled
2310 	 * and thus no need to fail the setup.
2311 	 */
2312 	btintel_set_event_mask(hdev, false);
2313 
2314 	return 0;
2315 }
2316 
2317 static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2318 {
2319 	switch (hw_variant) {
2320 	/* Legacy bootloader devices that supports MSFT Extension */
2321 	case 0x11:	/* JfP */
2322 	case 0x12:	/* ThP */
2323 	case 0x13:	/* HrP */
2324 	case 0x14:	/* CcP */
2325 	/* All Intel new genration controllers support the Microsoft vendor
2326 	 * extension are using 0xFC1E for VsMsftOpCode.
2327 	 */
2328 	case 0x17:
2329 	case 0x18:
2330 	case 0x19:
2331 		hci_set_msft_opcode(hdev, 0xFC1E);
2332 		break;
2333 	default:
2334 		/* Not supported */
2335 		break;
2336 	}
2337 }
2338 
2339 static int btintel_setup_combined(struct hci_dev *hdev)
2340 {
2341 	const u8 param[1] = { 0xFF };
2342 	struct intel_version ver;
2343 	struct intel_version_tlv ver_tlv;
2344 	struct sk_buff *skb;
2345 	int err;
2346 
2347 	BT_DBG("%s", hdev->name);
2348 
2349 	/* The some controllers have a bug with the first HCI command sent to it
2350 	 * returning number of completed commands as zero. This would stall the
2351 	 * command processing in the Bluetooth core.
2352 	 *
2353 	 * As a workaround, send HCI Reset command first which will reset the
2354 	 * number of completed commands and allow normal command processing
2355 	 * from now on.
2356 	 */
2357 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD)) {
2358 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2359 				     HCI_INIT_TIMEOUT);
2360 		if (IS_ERR(skb)) {
2361 			bt_dev_err(hdev,
2362 				   "sending initial HCI reset failed (%ld)",
2363 				   PTR_ERR(skb));
2364 			return PTR_ERR(skb);
2365 		}
2366 		kfree_skb(skb);
2367 	}
2368 
2369 	/* Starting from TyP device, the command parameter and response are
2370 	 * changed even though the OCF for HCI_Intel_Read_Version command
2371 	 * remains same. The legacy devices can handle even if the
2372 	 * command has a parameter and returns a correct version information.
2373 	 * So, it uses new format to support both legacy and new format.
2374 	 */
2375 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2376 	if (IS_ERR(skb)) {
2377 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2378 			   PTR_ERR(skb));
2379 		return PTR_ERR(skb);
2380 	}
2381 
2382 	/* Check the status */
2383 	if (skb->data[0]) {
2384 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2385 			   skb->data[0]);
2386 		err = -EIO;
2387 		goto exit_error;
2388 	}
2389 
2390 	/* Apply the common HCI quirks for Intel device */
2391 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2392 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2393 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2394 
2395 	/* Set up the quality report callback for Intel devices */
2396 	hdev->set_quality_report = btintel_set_quality_report;
2397 
2398 	/* For Legacy device, check the HW platform value and size */
2399 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
2400 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
2401 
2402 		memcpy(&ver, skb->data, sizeof(ver));
2403 
2404 		/* Display version information */
2405 		btintel_version_info(hdev, &ver);
2406 
2407 		/* Check for supported iBT hardware variants of this firmware
2408 		 * loading method.
2409 		 *
2410 		 * This check has been put in place to ensure correct forward
2411 		 * compatibility options when newer hardware variants come
2412 		 * along.
2413 		 */
2414 		switch (ver.hw_variant) {
2415 		case 0x07:	/* WP */
2416 		case 0x08:	/* StP */
2417 			/* Legacy ROM product */
2418 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
2419 
2420 			/* Apply the device specific HCI quirks
2421 			 *
2422 			 * WBS for SdP - SdP and Stp have a same hw_varaint but
2423 			 * different fw_variant
2424 			 */
2425 			if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
2426 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2427 					&hdev->quirks);
2428 
2429 			/* These devices have an issue with LED which doesn't
2430 			 * go off immediately during shutdown. Set the flag
2431 			 * here to send the LED OFF command during shutdown.
2432 			 */
2433 			btintel_set_flag(hdev, INTEL_BROKEN_LED);
2434 
2435 			err = btintel_legacy_rom_setup(hdev, &ver);
2436 			break;
2437 		case 0x0b:      /* SfP */
2438 		case 0x0c:      /* WsP */
2439 		case 0x11:      /* JfP */
2440 		case 0x12:      /* ThP */
2441 		case 0x13:      /* HrP */
2442 		case 0x14:      /* CcP */
2443 			/* Apply the device specific HCI quirks
2444 			 *
2445 			 * All Legacy bootloader devices support WBS
2446 			 */
2447 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2448 				&hdev->quirks);
2449 
2450 			/* Valid LE States quirk for JfP/ThP familiy */
2451 			if (ver.hw_variant == 0x11 || ver.hw_variant == 0x12)
2452 				set_bit(HCI_QUIRK_VALID_LE_STATES,
2453 					&hdev->quirks);
2454 
2455 			/* Setup MSFT Extension support */
2456 			btintel_set_msft_opcode(hdev, ver.hw_variant);
2457 
2458 			err = btintel_bootloader_setup(hdev, &ver);
2459 			break;
2460 		default:
2461 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2462 				   ver.hw_variant);
2463 			err = -EINVAL;
2464 		}
2465 
2466 		goto exit_error;
2467 	}
2468 
2469 	/* For TLV type device, parse the tlv data */
2470 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2471 	if (err) {
2472 		bt_dev_err(hdev, "Failed to parse TLV version information");
2473 		goto exit_error;
2474 	}
2475 
2476 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
2477 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2478 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2479 		err = -EINVAL;
2480 		goto exit_error;
2481 	}
2482 
2483 	/* Check for supported iBT hardware variants of this firmware
2484 	 * loading method.
2485 	 *
2486 	 * This check has been put in place to ensure correct forward
2487 	 * compatibility options when newer hardware variants come
2488 	 * along.
2489 	 */
2490 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
2491 	case 0x11:      /* JfP */
2492 	case 0x12:      /* ThP */
2493 	case 0x13:      /* HrP */
2494 	case 0x14:      /* CcP */
2495 		/* Some legacy bootloader devices from JfP supports both old
2496 		 * and TLV based HCI_Intel_Read_Version command. But we don't
2497 		 * want to use the TLV based setup routines for those legacy
2498 		 * bootloader device.
2499 		 *
2500 		 * Also, it is not easy to convert TLV based version from the
2501 		 * legacy version format.
2502 		 *
2503 		 * So, as a workaround for those devices, use the legacy
2504 		 * HCI_Intel_Read_Version to get the version information and
2505 		 * run the legacy bootloader setup.
2506 		 */
2507 		err = btintel_read_version(hdev, &ver);
2508 		if (err)
2509 			return err;
2510 		err = btintel_bootloader_setup(hdev, &ver);
2511 		break;
2512 	case 0x17:
2513 	case 0x18:
2514 	case 0x19:
2515 		/* Display version information of TLV type */
2516 		btintel_version_info_tlv(hdev, &ver_tlv);
2517 
2518 		/* Apply the device specific HCI quirks for TLV based devices
2519 		 *
2520 		 * All TLV based devices support WBS
2521 		 */
2522 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2523 
2524 		/* Valid LE States quirk for GfP */
2525 		if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18)
2526 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2527 
2528 		/* Setup MSFT Extension support */
2529 		btintel_set_msft_opcode(hdev,
2530 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2531 
2532 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
2533 		break;
2534 	default:
2535 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2536 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2537 		return -EINVAL;
2538 	}
2539 
2540 exit_error:
2541 	kfree_skb(skb);
2542 
2543 	return err;
2544 }
2545 
2546 static int btintel_shutdown_combined(struct hci_dev *hdev)
2547 {
2548 	struct sk_buff *skb;
2549 	int ret;
2550 
2551 	/* Send HCI Reset to the controller to stop any BT activity which
2552 	 * were triggered. This will help to save power and maintain the
2553 	 * sync b/w Host and controller
2554 	 */
2555 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2556 	if (IS_ERR(skb)) {
2557 		bt_dev_err(hdev, "HCI reset during shutdown failed");
2558 		return PTR_ERR(skb);
2559 	}
2560 	kfree_skb(skb);
2561 
2562 
2563 	/* Some platforms have an issue with BT LED when the interface is
2564 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
2565 	 * goes off. This command turns off the BT LED immediately.
2566 	 */
2567 	if (btintel_test_flag(hdev, INTEL_BROKEN_LED)) {
2568 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
2569 		if (IS_ERR(skb)) {
2570 			ret = PTR_ERR(skb);
2571 			bt_dev_err(hdev, "turning off Intel device LED failed");
2572 			return ret;
2573 		}
2574 		kfree_skb(skb);
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 int btintel_configure_setup(struct hci_dev *hdev)
2581 {
2582 	hdev->manufacturer = 2;
2583 	hdev->setup = btintel_setup_combined;
2584 	hdev->shutdown = btintel_shutdown_combined;
2585 	hdev->hw_error = btintel_hw_error;
2586 	hdev->set_diag = btintel_set_diag_combined;
2587 	hdev->set_bdaddr = btintel_set_bdaddr;
2588 
2589 	return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(btintel_configure_setup);
2592 
2593 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
2594 {
2595 	const struct intel_bootup *evt = ptr;
2596 
2597 	if (len != sizeof(*evt))
2598 		return;
2599 
2600 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
2601 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
2602 }
2603 EXPORT_SYMBOL_GPL(btintel_bootup);
2604 
2605 void btintel_secure_send_result(struct hci_dev *hdev,
2606 				const void *ptr, unsigned int len)
2607 {
2608 	const struct intel_secure_send_result *evt = ptr;
2609 
2610 	if (len != sizeof(*evt))
2611 		return;
2612 
2613 	if (evt->result)
2614 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
2615 
2616 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
2617 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
2618 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
2619 }
2620 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
2621 
2622 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2623 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
2624 MODULE_VERSION(VERSION);
2625 MODULE_LICENSE("GPL");
2626 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
2627 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
2628 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
2629 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
2630