1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth support for Intel devices 5 * 6 * Copyright (C) 2015 Intel Corporation 7 */ 8 9 #include <linux/module.h> 10 #include <linux/firmware.h> 11 #include <linux/regmap.h> 12 #include <asm/unaligned.h> 13 14 #include <net/bluetooth/bluetooth.h> 15 #include <net/bluetooth/hci_core.h> 16 17 #include "btintel.h" 18 19 #define VERSION "0.1" 20 21 #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) 22 #define RSA_HEADER_LEN 644 23 #define CSS_HEADER_OFFSET 8 24 #define ECDSA_OFFSET 644 25 #define ECDSA_HEADER_LEN 320 26 27 #define CMD_WRITE_BOOT_PARAMS 0xfc0e 28 struct cmd_write_boot_params { 29 u32 boot_addr; 30 u8 fw_build_num; 31 u8 fw_build_ww; 32 u8 fw_build_yy; 33 } __packed; 34 35 int btintel_check_bdaddr(struct hci_dev *hdev) 36 { 37 struct hci_rp_read_bd_addr *bda; 38 struct sk_buff *skb; 39 40 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL, 41 HCI_INIT_TIMEOUT); 42 if (IS_ERR(skb)) { 43 int err = PTR_ERR(skb); 44 bt_dev_err(hdev, "Reading Intel device address failed (%d)", 45 err); 46 return err; 47 } 48 49 if (skb->len != sizeof(*bda)) { 50 bt_dev_err(hdev, "Intel device address length mismatch"); 51 kfree_skb(skb); 52 return -EIO; 53 } 54 55 bda = (struct hci_rp_read_bd_addr *)skb->data; 56 57 /* For some Intel based controllers, the default Bluetooth device 58 * address 00:03:19:9E:8B:00 can be found. These controllers are 59 * fully operational, but have the danger of duplicate addresses 60 * and that in turn can cause problems with Bluetooth operation. 61 */ 62 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) { 63 bt_dev_err(hdev, "Found Intel default device address (%pMR)", 64 &bda->bdaddr); 65 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 66 } 67 68 kfree_skb(skb); 69 70 return 0; 71 } 72 EXPORT_SYMBOL_GPL(btintel_check_bdaddr); 73 74 int btintel_enter_mfg(struct hci_dev *hdev) 75 { 76 static const u8 param[] = { 0x01, 0x00 }; 77 struct sk_buff *skb; 78 79 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); 80 if (IS_ERR(skb)) { 81 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)", 82 PTR_ERR(skb)); 83 return PTR_ERR(skb); 84 } 85 kfree_skb(skb); 86 87 return 0; 88 } 89 EXPORT_SYMBOL_GPL(btintel_enter_mfg); 90 91 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) 92 { 93 u8 param[] = { 0x00, 0x00 }; 94 struct sk_buff *skb; 95 96 /* The 2nd command parameter specifies the manufacturing exit method: 97 * 0x00: Just disable the manufacturing mode (0x00). 98 * 0x01: Disable manufacturing mode and reset with patches deactivated. 99 * 0x02: Disable manufacturing mode and reset with patches activated. 100 */ 101 if (reset) 102 param[1] |= patched ? 0x02 : 0x01; 103 104 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); 105 if (IS_ERR(skb)) { 106 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)", 107 PTR_ERR(skb)); 108 return PTR_ERR(skb); 109 } 110 kfree_skb(skb); 111 112 return 0; 113 } 114 EXPORT_SYMBOL_GPL(btintel_exit_mfg); 115 116 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) 117 { 118 struct sk_buff *skb; 119 int err; 120 121 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT); 122 if (IS_ERR(skb)) { 123 err = PTR_ERR(skb); 124 bt_dev_err(hdev, "Changing Intel device address failed (%d)", 125 err); 126 return err; 127 } 128 kfree_skb(skb); 129 130 return 0; 131 } 132 EXPORT_SYMBOL_GPL(btintel_set_bdaddr); 133 134 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) 135 { 136 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 137 struct sk_buff *skb; 138 int err; 139 140 if (debug) 141 mask[1] |= 0x62; 142 143 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT); 144 if (IS_ERR(skb)) { 145 err = PTR_ERR(skb); 146 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err); 147 return err; 148 } 149 kfree_skb(skb); 150 151 return 0; 152 } 153 154 int btintel_set_diag(struct hci_dev *hdev, bool enable) 155 { 156 struct sk_buff *skb; 157 u8 param[3]; 158 int err; 159 160 if (enable) { 161 param[0] = 0x03; 162 param[1] = 0x03; 163 param[2] = 0x03; 164 } else { 165 param[0] = 0x00; 166 param[1] = 0x00; 167 param[2] = 0x00; 168 } 169 170 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT); 171 if (IS_ERR(skb)) { 172 err = PTR_ERR(skb); 173 if (err == -ENODATA) 174 goto done; 175 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)", 176 err); 177 return err; 178 } 179 kfree_skb(skb); 180 181 done: 182 btintel_set_event_mask(hdev, enable); 183 return 0; 184 } 185 EXPORT_SYMBOL_GPL(btintel_set_diag); 186 187 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) 188 { 189 int err, ret; 190 191 err = btintel_enter_mfg(hdev); 192 if (err) 193 return err; 194 195 ret = btintel_set_diag(hdev, enable); 196 197 err = btintel_exit_mfg(hdev, false, false); 198 if (err) 199 return err; 200 201 return ret; 202 } 203 204 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) 205 { 206 int ret; 207 208 /* Legacy ROM device needs to be in the manufacturer mode to apply 209 * diagnostic setting 210 * 211 * This flag is set after reading the Intel version. 212 */ 213 if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) 214 ret = btintel_set_diag_mfg(hdev, enable); 215 else 216 ret = btintel_set_diag(hdev, enable); 217 218 return ret; 219 } 220 221 static void btintel_hw_error(struct hci_dev *hdev, u8 code) 222 { 223 struct sk_buff *skb; 224 u8 type = 0x00; 225 226 bt_dev_err(hdev, "Hardware error 0x%2.2x", code); 227 228 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 229 if (IS_ERR(skb)) { 230 bt_dev_err(hdev, "Reset after hardware error failed (%ld)", 231 PTR_ERR(skb)); 232 return; 233 } 234 kfree_skb(skb); 235 236 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT); 237 if (IS_ERR(skb)) { 238 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)", 239 PTR_ERR(skb)); 240 return; 241 } 242 243 if (skb->len != 13) { 244 bt_dev_err(hdev, "Exception info size mismatch"); 245 kfree_skb(skb); 246 return; 247 } 248 249 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1)); 250 251 kfree_skb(skb); 252 } 253 254 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) 255 { 256 const char *variant; 257 258 /* The hardware platform number has a fixed value of 0x37 and 259 * for now only accept this single value. 260 */ 261 if (ver->hw_platform != 0x37) { 262 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", 263 ver->hw_platform); 264 return -EINVAL; 265 } 266 267 /* Check for supported iBT hardware variants of this firmware 268 * loading method. 269 * 270 * This check has been put in place to ensure correct forward 271 * compatibility options when newer hardware variants come along. 272 */ 273 switch (ver->hw_variant) { 274 case 0x07: /* WP - Legacy ROM */ 275 case 0x08: /* StP - Legacy ROM */ 276 case 0x0b: /* SfP */ 277 case 0x0c: /* WsP */ 278 case 0x11: /* JfP */ 279 case 0x12: /* ThP */ 280 case 0x13: /* HrP */ 281 case 0x14: /* CcP */ 282 break; 283 default: 284 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 285 ver->hw_variant); 286 return -EINVAL; 287 } 288 289 switch (ver->fw_variant) { 290 case 0x01: 291 variant = "Legacy ROM 2.5"; 292 break; 293 case 0x06: 294 variant = "Bootloader"; 295 break; 296 case 0x22: 297 variant = "Legacy ROM 2.x"; 298 break; 299 case 0x23: 300 variant = "Firmware"; 301 break; 302 default: 303 bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant); 304 return -EINVAL; 305 } 306 307 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u", 308 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, 309 ver->fw_build_num, ver->fw_build_ww, 310 2000 + ver->fw_build_yy); 311 312 return 0; 313 } 314 EXPORT_SYMBOL_GPL(btintel_version_info); 315 316 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, 317 const void *param) 318 { 319 while (plen > 0) { 320 struct sk_buff *skb; 321 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; 322 323 cmd_param[0] = fragment_type; 324 memcpy(cmd_param + 1, param, fragment_len); 325 326 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1, 327 cmd_param, HCI_INIT_TIMEOUT); 328 if (IS_ERR(skb)) 329 return PTR_ERR(skb); 330 331 kfree_skb(skb); 332 333 plen -= fragment_len; 334 param += fragment_len; 335 } 336 337 return 0; 338 } 339 340 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) 341 { 342 const struct firmware *fw; 343 struct sk_buff *skb; 344 const u8 *fw_ptr; 345 int err; 346 347 err = request_firmware_direct(&fw, ddc_name, &hdev->dev); 348 if (err < 0) { 349 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)", 350 ddc_name, err); 351 return err; 352 } 353 354 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name); 355 356 fw_ptr = fw->data; 357 358 /* DDC file contains one or more DDC structure which has 359 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). 360 */ 361 while (fw->size > fw_ptr - fw->data) { 362 u8 cmd_plen = fw_ptr[0] + sizeof(u8); 363 364 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr, 365 HCI_INIT_TIMEOUT); 366 if (IS_ERR(skb)) { 367 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)", 368 PTR_ERR(skb)); 369 release_firmware(fw); 370 return PTR_ERR(skb); 371 } 372 373 fw_ptr += cmd_plen; 374 kfree_skb(skb); 375 } 376 377 release_firmware(fw); 378 379 bt_dev_info(hdev, "Applying Intel DDC parameters completed"); 380 381 return 0; 382 } 383 EXPORT_SYMBOL_GPL(btintel_load_ddc_config); 384 385 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) 386 { 387 int err, ret; 388 389 err = btintel_enter_mfg(hdev); 390 if (err) 391 return err; 392 393 ret = btintel_set_event_mask(hdev, debug); 394 395 err = btintel_exit_mfg(hdev, false, false); 396 if (err) 397 return err; 398 399 return ret; 400 } 401 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); 402 403 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) 404 { 405 struct sk_buff *skb; 406 407 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); 408 if (IS_ERR(skb)) { 409 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 410 PTR_ERR(skb)); 411 return PTR_ERR(skb); 412 } 413 414 if (skb->len != sizeof(*ver)) { 415 bt_dev_err(hdev, "Intel version event size mismatch"); 416 kfree_skb(skb); 417 return -EILSEQ; 418 } 419 420 memcpy(ver, skb->data, sizeof(*ver)); 421 422 kfree_skb(skb); 423 424 return 0; 425 } 426 EXPORT_SYMBOL_GPL(btintel_read_version); 427 428 static int btintel_version_info_tlv(struct hci_dev *hdev, 429 struct intel_version_tlv *version) 430 { 431 const char *variant; 432 433 /* The hardware platform number has a fixed value of 0x37 and 434 * for now only accept this single value. 435 */ 436 if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { 437 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 438 INTEL_HW_PLATFORM(version->cnvi_bt)); 439 return -EINVAL; 440 } 441 442 /* Check for supported iBT hardware variants of this firmware 443 * loading method. 444 * 445 * This check has been put in place to ensure correct forward 446 * compatibility options when newer hardware variants come along. 447 */ 448 switch (INTEL_HW_VARIANT(version->cnvi_bt)) { 449 case 0x17: /* TyP */ 450 case 0x18: /* Slr */ 451 case 0x19: /* Slr-F */ 452 case 0x1b: /* Mgr */ 453 break; 454 default: 455 bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)", 456 INTEL_HW_VARIANT(version->cnvi_bt)); 457 return -EINVAL; 458 } 459 460 switch (version->img_type) { 461 case 0x01: 462 variant = "Bootloader"; 463 /* It is required that every single firmware fragment is acknowledged 464 * with a command complete event. If the boot parameters indicate 465 * that this bootloader does not send them, then abort the setup. 466 */ 467 if (version->limited_cce != 0x00) { 468 bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)", 469 version->limited_cce); 470 return -EINVAL; 471 } 472 473 /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ 474 if (version->sbe_type > 0x01) { 475 bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)", 476 version->sbe_type); 477 return -EINVAL; 478 } 479 480 bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id); 481 bt_dev_info(hdev, "Secure boot is %s", 482 version->secure_boot ? "enabled" : "disabled"); 483 bt_dev_info(hdev, "OTP lock is %s", 484 version->otp_lock ? "enabled" : "disabled"); 485 bt_dev_info(hdev, "API lock is %s", 486 version->api_lock ? "enabled" : "disabled"); 487 bt_dev_info(hdev, "Debug lock is %s", 488 version->debug_lock ? "enabled" : "disabled"); 489 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 490 version->min_fw_build_nn, version->min_fw_build_cw, 491 2000 + version->min_fw_build_yy); 492 break; 493 case 0x03: 494 variant = "Firmware"; 495 break; 496 default: 497 bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type); 498 return -EINVAL; 499 } 500 501 bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant, 502 2000 + (version->timestamp >> 8), version->timestamp & 0xff, 503 version->build_type, version->build_num); 504 505 return 0; 506 } 507 508 static int btintel_parse_version_tlv(struct hci_dev *hdev, 509 struct intel_version_tlv *version, 510 struct sk_buff *skb) 511 { 512 /* Consume Command Complete Status field */ 513 skb_pull(skb, 1); 514 515 /* Event parameters contatin multiple TLVs. Read each of them 516 * and only keep the required data. Also, it use existing legacy 517 * version field like hw_platform, hw_variant, and fw_variant 518 * to keep the existing setup flow 519 */ 520 while (skb->len) { 521 struct intel_tlv *tlv; 522 523 /* Make sure skb has a minimum length of the header */ 524 if (skb->len < sizeof(*tlv)) 525 return -EINVAL; 526 527 tlv = (struct intel_tlv *)skb->data; 528 529 /* Make sure skb has a enough data */ 530 if (skb->len < tlv->len + sizeof(*tlv)) 531 return -EINVAL; 532 533 switch (tlv->type) { 534 case INTEL_TLV_CNVI_TOP: 535 version->cnvi_top = get_unaligned_le32(tlv->val); 536 break; 537 case INTEL_TLV_CNVR_TOP: 538 version->cnvr_top = get_unaligned_le32(tlv->val); 539 break; 540 case INTEL_TLV_CNVI_BT: 541 version->cnvi_bt = get_unaligned_le32(tlv->val); 542 break; 543 case INTEL_TLV_CNVR_BT: 544 version->cnvr_bt = get_unaligned_le32(tlv->val); 545 break; 546 case INTEL_TLV_DEV_REV_ID: 547 version->dev_rev_id = get_unaligned_le16(tlv->val); 548 break; 549 case INTEL_TLV_IMAGE_TYPE: 550 version->img_type = tlv->val[0]; 551 break; 552 case INTEL_TLV_TIME_STAMP: 553 /* If image type is Operational firmware (0x03), then 554 * running FW Calendar Week and Year information can 555 * be extracted from Timestamp information 556 */ 557 version->min_fw_build_cw = tlv->val[0]; 558 version->min_fw_build_yy = tlv->val[1]; 559 version->timestamp = get_unaligned_le16(tlv->val); 560 break; 561 case INTEL_TLV_BUILD_TYPE: 562 version->build_type = tlv->val[0]; 563 break; 564 case INTEL_TLV_BUILD_NUM: 565 /* If image type is Operational firmware (0x03), then 566 * running FW build number can be extracted from the 567 * Build information 568 */ 569 version->min_fw_build_nn = tlv->val[0]; 570 version->build_num = get_unaligned_le32(tlv->val); 571 break; 572 case INTEL_TLV_SECURE_BOOT: 573 version->secure_boot = tlv->val[0]; 574 break; 575 case INTEL_TLV_OTP_LOCK: 576 version->otp_lock = tlv->val[0]; 577 break; 578 case INTEL_TLV_API_LOCK: 579 version->api_lock = tlv->val[0]; 580 break; 581 case INTEL_TLV_DEBUG_LOCK: 582 version->debug_lock = tlv->val[0]; 583 break; 584 case INTEL_TLV_MIN_FW: 585 version->min_fw_build_nn = tlv->val[0]; 586 version->min_fw_build_cw = tlv->val[1]; 587 version->min_fw_build_yy = tlv->val[2]; 588 break; 589 case INTEL_TLV_LIMITED_CCE: 590 version->limited_cce = tlv->val[0]; 591 break; 592 case INTEL_TLV_SBE_TYPE: 593 version->sbe_type = tlv->val[0]; 594 break; 595 case INTEL_TLV_OTP_BDADDR: 596 memcpy(&version->otp_bd_addr, tlv->val, 597 sizeof(bdaddr_t)); 598 break; 599 default: 600 /* Ignore rest of information */ 601 break; 602 } 603 /* consume the current tlv and move to next*/ 604 skb_pull(skb, tlv->len + sizeof(*tlv)); 605 } 606 607 return 0; 608 } 609 610 static int btintel_read_version_tlv(struct hci_dev *hdev, 611 struct intel_version_tlv *version) 612 { 613 struct sk_buff *skb; 614 const u8 param[1] = { 0xFF }; 615 616 if (!version) 617 return -EINVAL; 618 619 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 620 if (IS_ERR(skb)) { 621 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 622 PTR_ERR(skb)); 623 return PTR_ERR(skb); 624 } 625 626 if (skb->data[0]) { 627 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 628 skb->data[0]); 629 kfree_skb(skb); 630 return -EIO; 631 } 632 633 btintel_parse_version_tlv(hdev, version, skb); 634 635 kfree_skb(skb); 636 return 0; 637 } 638 639 /* ------- REGMAP IBT SUPPORT ------- */ 640 641 #define IBT_REG_MODE_8BIT 0x00 642 #define IBT_REG_MODE_16BIT 0x01 643 #define IBT_REG_MODE_32BIT 0x02 644 645 struct regmap_ibt_context { 646 struct hci_dev *hdev; 647 __u16 op_write; 648 __u16 op_read; 649 }; 650 651 struct ibt_cp_reg_access { 652 __le32 addr; 653 __u8 mode; 654 __u8 len; 655 __u8 data[]; 656 } __packed; 657 658 struct ibt_rp_reg_access { 659 __u8 status; 660 __le32 addr; 661 __u8 data[]; 662 } __packed; 663 664 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, 665 void *val, size_t val_size) 666 { 667 struct regmap_ibt_context *ctx = context; 668 struct ibt_cp_reg_access cp; 669 struct ibt_rp_reg_access *rp; 670 struct sk_buff *skb; 671 int err = 0; 672 673 if (reg_size != sizeof(__le32)) 674 return -EINVAL; 675 676 switch (val_size) { 677 case 1: 678 cp.mode = IBT_REG_MODE_8BIT; 679 break; 680 case 2: 681 cp.mode = IBT_REG_MODE_16BIT; 682 break; 683 case 4: 684 cp.mode = IBT_REG_MODE_32BIT; 685 break; 686 default: 687 return -EINVAL; 688 } 689 690 /* regmap provides a little-endian formatted addr */ 691 cp.addr = *(__le32 *)addr; 692 cp.len = val_size; 693 694 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr)); 695 696 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp, 697 HCI_CMD_TIMEOUT); 698 if (IS_ERR(skb)) { 699 err = PTR_ERR(skb); 700 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)", 701 le32_to_cpu(cp.addr), err); 702 return err; 703 } 704 705 if (skb->len != sizeof(*rp) + val_size) { 706 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len", 707 le32_to_cpu(cp.addr)); 708 err = -EINVAL; 709 goto done; 710 } 711 712 rp = (struct ibt_rp_reg_access *)skb->data; 713 714 if (rp->addr != cp.addr) { 715 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr", 716 le32_to_cpu(rp->addr)); 717 err = -EINVAL; 718 goto done; 719 } 720 721 memcpy(val, rp->data, val_size); 722 723 done: 724 kfree_skb(skb); 725 return err; 726 } 727 728 static int regmap_ibt_gather_write(void *context, 729 const void *addr, size_t reg_size, 730 const void *val, size_t val_size) 731 { 732 struct regmap_ibt_context *ctx = context; 733 struct ibt_cp_reg_access *cp; 734 struct sk_buff *skb; 735 int plen = sizeof(*cp) + val_size; 736 u8 mode; 737 int err = 0; 738 739 if (reg_size != sizeof(__le32)) 740 return -EINVAL; 741 742 switch (val_size) { 743 case 1: 744 mode = IBT_REG_MODE_8BIT; 745 break; 746 case 2: 747 mode = IBT_REG_MODE_16BIT; 748 break; 749 case 4: 750 mode = IBT_REG_MODE_32BIT; 751 break; 752 default: 753 return -EINVAL; 754 } 755 756 cp = kmalloc(plen, GFP_KERNEL); 757 if (!cp) 758 return -ENOMEM; 759 760 /* regmap provides a little-endian formatted addr/value */ 761 cp->addr = *(__le32 *)addr; 762 cp->mode = mode; 763 cp->len = val_size; 764 memcpy(&cp->data, val, val_size); 765 766 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr)); 767 768 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT); 769 if (IS_ERR(skb)) { 770 err = PTR_ERR(skb); 771 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)", 772 le32_to_cpu(cp->addr), err); 773 goto done; 774 } 775 kfree_skb(skb); 776 777 done: 778 kfree(cp); 779 return err; 780 } 781 782 static int regmap_ibt_write(void *context, const void *data, size_t count) 783 { 784 /* data contains register+value, since we only support 32bit addr, 785 * minimum data size is 4 bytes. 786 */ 787 if (WARN_ONCE(count < 4, "Invalid register access")) 788 return -EINVAL; 789 790 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4); 791 } 792 793 static void regmap_ibt_free_context(void *context) 794 { 795 kfree(context); 796 } 797 798 static const struct regmap_bus regmap_ibt = { 799 .read = regmap_ibt_read, 800 .write = regmap_ibt_write, 801 .gather_write = regmap_ibt_gather_write, 802 .free_context = regmap_ibt_free_context, 803 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, 804 .val_format_endian_default = REGMAP_ENDIAN_LITTLE, 805 }; 806 807 /* Config is the same for all register regions */ 808 static const struct regmap_config regmap_ibt_cfg = { 809 .name = "btintel_regmap", 810 .reg_bits = 32, 811 .val_bits = 32, 812 }; 813 814 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, 815 u16 opcode_write) 816 { 817 struct regmap_ibt_context *ctx; 818 819 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read, 820 opcode_write); 821 822 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 823 if (!ctx) 824 return ERR_PTR(-ENOMEM); 825 826 ctx->op_read = opcode_read; 827 ctx->op_write = opcode_write; 828 ctx->hdev = hdev; 829 830 return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); 831 } 832 EXPORT_SYMBOL_GPL(btintel_regmap_init); 833 834 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) 835 { 836 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; 837 struct sk_buff *skb; 838 839 params.boot_param = cpu_to_le32(boot_param); 840 841 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms, 842 HCI_INIT_TIMEOUT); 843 if (IS_ERR(skb)) { 844 bt_dev_err(hdev, "Failed to send Intel Reset command"); 845 return PTR_ERR(skb); 846 } 847 848 kfree_skb(skb); 849 850 return 0; 851 } 852 EXPORT_SYMBOL_GPL(btintel_send_intel_reset); 853 854 int btintel_read_boot_params(struct hci_dev *hdev, 855 struct intel_boot_params *params) 856 { 857 struct sk_buff *skb; 858 859 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); 860 if (IS_ERR(skb)) { 861 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", 862 PTR_ERR(skb)); 863 return PTR_ERR(skb); 864 } 865 866 if (skb->len != sizeof(*params)) { 867 bt_dev_err(hdev, "Intel boot parameters size mismatch"); 868 kfree_skb(skb); 869 return -EILSEQ; 870 } 871 872 memcpy(params, skb->data, sizeof(*params)); 873 874 kfree_skb(skb); 875 876 if (params->status) { 877 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)", 878 params->status); 879 return -bt_to_errno(params->status); 880 } 881 882 bt_dev_info(hdev, "Device revision is %u", 883 le16_to_cpu(params->dev_revid)); 884 885 bt_dev_info(hdev, "Secure boot is %s", 886 params->secure_boot ? "enabled" : "disabled"); 887 888 bt_dev_info(hdev, "OTP lock is %s", 889 params->otp_lock ? "enabled" : "disabled"); 890 891 bt_dev_info(hdev, "API lock is %s", 892 params->api_lock ? "enabled" : "disabled"); 893 894 bt_dev_info(hdev, "Debug lock is %s", 895 params->debug_lock ? "enabled" : "disabled"); 896 897 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 898 params->min_fw_build_nn, params->min_fw_build_cw, 899 2000 + params->min_fw_build_yy); 900 901 return 0; 902 } 903 EXPORT_SYMBOL_GPL(btintel_read_boot_params); 904 905 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev, 906 const struct firmware *fw) 907 { 908 int err; 909 910 /* Start the firmware download transaction with the Init fragment 911 * represented by the 128 bytes of CSS header. 912 */ 913 err = btintel_secure_send(hdev, 0x00, 128, fw->data); 914 if (err < 0) { 915 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 916 goto done; 917 } 918 919 /* Send the 256 bytes of public key information from the firmware 920 * as the PKey fragment. 921 */ 922 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); 923 if (err < 0) { 924 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); 925 goto done; 926 } 927 928 /* Send the 256 bytes of signature information from the firmware 929 * as the Sign fragment. 930 */ 931 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); 932 if (err < 0) { 933 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); 934 goto done; 935 } 936 937 done: 938 return err; 939 } 940 941 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev, 942 const struct firmware *fw) 943 { 944 int err; 945 946 /* Start the firmware download transaction with the Init fragment 947 * represented by the 128 bytes of CSS header. 948 */ 949 err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644); 950 if (err < 0) { 951 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 952 return err; 953 } 954 955 /* Send the 96 bytes of public key information from the firmware 956 * as the PKey fragment. 957 */ 958 err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128); 959 if (err < 0) { 960 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); 961 return err; 962 } 963 964 /* Send the 96 bytes of signature information from the firmware 965 * as the Sign fragment 966 */ 967 err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224); 968 if (err < 0) { 969 bt_dev_err(hdev, "Failed to send firmware signature (%d)", 970 err); 971 return err; 972 } 973 return 0; 974 } 975 976 static int btintel_download_firmware_payload(struct hci_dev *hdev, 977 const struct firmware *fw, 978 size_t offset) 979 { 980 int err; 981 const u8 *fw_ptr; 982 u32 frag_len; 983 984 fw_ptr = fw->data + offset; 985 frag_len = 0; 986 err = -EINVAL; 987 988 while (fw_ptr - fw->data < fw->size) { 989 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); 990 991 frag_len += sizeof(*cmd) + cmd->plen; 992 993 /* The parameter length of the secure send command requires 994 * a 4 byte alignment. It happens so that the firmware file 995 * contains proper Intel_NOP commands to align the fragments 996 * as needed. 997 * 998 * Send set of commands with 4 byte alignment from the 999 * firmware data buffer as a single Data fragement. 1000 */ 1001 if (!(frag_len % 4)) { 1002 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); 1003 if (err < 0) { 1004 bt_dev_err(hdev, 1005 "Failed to send firmware data (%d)", 1006 err); 1007 goto done; 1008 } 1009 1010 fw_ptr += frag_len; 1011 frag_len = 0; 1012 } 1013 } 1014 1015 done: 1016 return err; 1017 } 1018 1019 static bool btintel_firmware_version(struct hci_dev *hdev, 1020 u8 num, u8 ww, u8 yy, 1021 const struct firmware *fw, 1022 u32 *boot_addr) 1023 { 1024 const u8 *fw_ptr; 1025 1026 fw_ptr = fw->data; 1027 1028 while (fw_ptr - fw->data < fw->size) { 1029 struct hci_command_hdr *cmd = (void *)(fw_ptr); 1030 1031 /* Each SKU has a different reset parameter to use in the 1032 * HCI_Intel_Reset command and it is embedded in the firmware 1033 * data. So, instead of using static value per SKU, check 1034 * the firmware data and save it for later use. 1035 */ 1036 if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { 1037 struct cmd_write_boot_params *params; 1038 1039 params = (void *)(fw_ptr + sizeof(*cmd)); 1040 1041 *boot_addr = le32_to_cpu(params->boot_addr); 1042 1043 bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr); 1044 1045 bt_dev_info(hdev, "Firmware Version: %u-%u.%u", 1046 params->fw_build_num, params->fw_build_ww, 1047 params->fw_build_yy); 1048 1049 return (num == params->fw_build_num && 1050 ww == params->fw_build_ww && 1051 yy == params->fw_build_yy); 1052 } 1053 1054 fw_ptr += sizeof(*cmd) + cmd->plen; 1055 } 1056 1057 return false; 1058 } 1059 1060 int btintel_download_firmware(struct hci_dev *hdev, 1061 struct intel_version *ver, 1062 const struct firmware *fw, 1063 u32 *boot_param) 1064 { 1065 int err; 1066 1067 /* SfP and WsP don't seem to update the firmware version on file 1068 * so version checking is currently not possible. 1069 */ 1070 switch (ver->hw_variant) { 1071 case 0x0b: /* SfP */ 1072 case 0x0c: /* WsP */ 1073 /* Skip version checking */ 1074 break; 1075 default: 1076 1077 /* Skip download if firmware has the same version */ 1078 if (btintel_firmware_version(hdev, ver->fw_build_num, 1079 ver->fw_build_ww, ver->fw_build_yy, 1080 fw, boot_param)) { 1081 bt_dev_info(hdev, "Firmware already loaded"); 1082 /* Return -EALREADY to indicate that the firmware has 1083 * already been loaded. 1084 */ 1085 return -EALREADY; 1086 } 1087 } 1088 1089 /* The firmware variant determines if the device is in bootloader 1090 * mode or is running operational firmware. The value 0x06 identifies 1091 * the bootloader and the value 0x23 identifies the operational 1092 * firmware. 1093 * 1094 * If the firmware version has changed that means it needs to be reset 1095 * to bootloader when operational so the new firmware can be loaded. 1096 */ 1097 if (ver->fw_variant == 0x23) 1098 return -EINVAL; 1099 1100 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1101 if (err) 1102 return err; 1103 1104 return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); 1105 } 1106 EXPORT_SYMBOL_GPL(btintel_download_firmware); 1107 1108 static int btintel_download_fw_tlv(struct hci_dev *hdev, 1109 struct intel_version_tlv *ver, 1110 const struct firmware *fw, u32 *boot_param, 1111 u8 hw_variant, u8 sbe_type) 1112 { 1113 int err; 1114 u32 css_header_ver; 1115 1116 /* Skip download if firmware has the same version */ 1117 if (btintel_firmware_version(hdev, ver->min_fw_build_nn, 1118 ver->min_fw_build_cw, 1119 ver->min_fw_build_yy, 1120 fw, boot_param)) { 1121 bt_dev_info(hdev, "Firmware already loaded"); 1122 /* Return -EALREADY to indicate that firmware has 1123 * already been loaded. 1124 */ 1125 return -EALREADY; 1126 } 1127 1128 /* The firmware variant determines if the device is in bootloader 1129 * mode or is running operational firmware. The value 0x01 identifies 1130 * the bootloader and the value 0x03 identifies the operational 1131 * firmware. 1132 * 1133 * If the firmware version has changed that means it needs to be reset 1134 * to bootloader when operational so the new firmware can be loaded. 1135 */ 1136 if (ver->img_type == 0x03) 1137 return -EINVAL; 1138 1139 /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support 1140 * only RSA secure boot engine. Hence, the corresponding sfi file will 1141 * have RSA header of 644 bytes followed by Command Buffer. 1142 * 1143 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA 1144 * secure boot engine. As a result, the corresponding sfi file will 1145 * have RSA header of 644, ECDSA header of 320 bytes followed by 1146 * Command Buffer. 1147 * 1148 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header 1149 * version: RSA(0x00010000) , ECDSA (0x00020000) 1150 */ 1151 css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET); 1152 if (css_header_ver != 0x00010000) { 1153 bt_dev_err(hdev, "Invalid CSS Header version"); 1154 return -EINVAL; 1155 } 1156 1157 if (hw_variant <= 0x14) { 1158 if (sbe_type != 0x00) { 1159 bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)", 1160 hw_variant); 1161 return -EINVAL; 1162 } 1163 1164 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1165 if (err) 1166 return err; 1167 1168 err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); 1169 if (err) 1170 return err; 1171 } else if (hw_variant >= 0x17) { 1172 /* Check if CSS header for ECDSA follows the RSA header */ 1173 if (fw->data[ECDSA_OFFSET] != 0x06) 1174 return -EINVAL; 1175 1176 /* Check if the CSS Header version is ECDSA(0x00020000) */ 1177 css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); 1178 if (css_header_ver != 0x00020000) { 1179 bt_dev_err(hdev, "Invalid CSS Header version"); 1180 return -EINVAL; 1181 } 1182 1183 if (sbe_type == 0x00) { 1184 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1185 if (err) 1186 return err; 1187 1188 err = btintel_download_firmware_payload(hdev, fw, 1189 RSA_HEADER_LEN + ECDSA_HEADER_LEN); 1190 if (err) 1191 return err; 1192 } else if (sbe_type == 0x01) { 1193 err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); 1194 if (err) 1195 return err; 1196 1197 err = btintel_download_firmware_payload(hdev, fw, 1198 RSA_HEADER_LEN + ECDSA_HEADER_LEN); 1199 if (err) 1200 return err; 1201 } 1202 } 1203 return 0; 1204 } 1205 1206 static void btintel_reset_to_bootloader(struct hci_dev *hdev) 1207 { 1208 struct intel_reset params; 1209 struct sk_buff *skb; 1210 1211 /* Send Intel Reset command. This will result in 1212 * re-enumeration of BT controller. 1213 * 1214 * Intel Reset parameter description: 1215 * reset_type : 0x00 (Soft reset), 1216 * 0x01 (Hard reset) 1217 * patch_enable : 0x00 (Do not enable), 1218 * 0x01 (Enable) 1219 * ddc_reload : 0x00 (Do not reload), 1220 * 0x01 (Reload) 1221 * boot_option: 0x00 (Current image), 1222 * 0x01 (Specified boot address) 1223 * boot_param: Boot address 1224 * 1225 */ 1226 params.reset_type = 0x01; 1227 params.patch_enable = 0x01; 1228 params.ddc_reload = 0x01; 1229 params.boot_option = 0x00; 1230 params.boot_param = cpu_to_le32(0x00000000); 1231 1232 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), 1233 ¶ms, HCI_INIT_TIMEOUT); 1234 if (IS_ERR(skb)) { 1235 bt_dev_err(hdev, "FW download error recovery failed (%ld)", 1236 PTR_ERR(skb)); 1237 return; 1238 } 1239 bt_dev_info(hdev, "Intel reset sent to retry FW download"); 1240 kfree_skb(skb); 1241 1242 /* Current Intel BT controllers(ThP/JfP) hold the USB reset 1243 * lines for 2ms when it receives Intel Reset in bootloader mode. 1244 * Whereas, the upcoming Intel BT controllers will hold USB reset 1245 * for 150ms. To keep the delay generic, 150ms is chosen here. 1246 */ 1247 msleep(150); 1248 } 1249 1250 static int btintel_read_debug_features(struct hci_dev *hdev, 1251 struct intel_debug_features *features) 1252 { 1253 struct sk_buff *skb; 1254 u8 page_no = 1; 1255 1256 /* Intel controller supports two pages, each page is of 128-bit 1257 * feature bit mask. And each bit defines specific feature support 1258 */ 1259 skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no, 1260 HCI_INIT_TIMEOUT); 1261 if (IS_ERR(skb)) { 1262 bt_dev_err(hdev, "Reading supported features failed (%ld)", 1263 PTR_ERR(skb)); 1264 return PTR_ERR(skb); 1265 } 1266 1267 if (skb->len != (sizeof(features->page1) + 3)) { 1268 bt_dev_err(hdev, "Supported features event size mismatch"); 1269 kfree_skb(skb); 1270 return -EILSEQ; 1271 } 1272 1273 memcpy(features->page1, skb->data + 3, sizeof(features->page1)); 1274 1275 /* Read the supported features page2 if required in future. 1276 */ 1277 kfree_skb(skb); 1278 return 0; 1279 } 1280 1281 static int btintel_set_debug_features(struct hci_dev *hdev, 1282 const struct intel_debug_features *features) 1283 { 1284 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00, 1285 0x00, 0x00, 0x00 }; 1286 u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 }; 1287 u8 trace_enable = 0x02; 1288 struct sk_buff *skb; 1289 1290 if (!features) { 1291 bt_dev_warn(hdev, "Debug features not read"); 1292 return -EINVAL; 1293 } 1294 1295 if (!(features->page1[0] & 0x3f)) { 1296 bt_dev_info(hdev, "Telemetry exception format not supported"); 1297 return 0; 1298 } 1299 1300 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); 1301 if (IS_ERR(skb)) { 1302 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", 1303 PTR_ERR(skb)); 1304 return PTR_ERR(skb); 1305 } 1306 kfree_skb(skb); 1307 1308 skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT); 1309 if (IS_ERR(skb)) { 1310 bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)", 1311 PTR_ERR(skb)); 1312 return PTR_ERR(skb); 1313 } 1314 kfree_skb(skb); 1315 1316 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT); 1317 if (IS_ERR(skb)) { 1318 bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)", 1319 PTR_ERR(skb)); 1320 return PTR_ERR(skb); 1321 } 1322 kfree_skb(skb); 1323 1324 bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x", 1325 trace_enable, mask[3]); 1326 1327 return 0; 1328 } 1329 1330 static int btintel_reset_debug_features(struct hci_dev *hdev, 1331 const struct intel_debug_features *features) 1332 { 1333 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 1334 0x00, 0x00, 0x00 }; 1335 u8 trace_enable = 0x00; 1336 struct sk_buff *skb; 1337 1338 if (!features) { 1339 bt_dev_warn(hdev, "Debug features not read"); 1340 return -EINVAL; 1341 } 1342 1343 if (!(features->page1[0] & 0x3f)) { 1344 bt_dev_info(hdev, "Telemetry exception format not supported"); 1345 return 0; 1346 } 1347 1348 /* Should stop the trace before writing ddc event mask. */ 1349 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT); 1350 if (IS_ERR(skb)) { 1351 bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)", 1352 PTR_ERR(skb)); 1353 return PTR_ERR(skb); 1354 } 1355 kfree_skb(skb); 1356 1357 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); 1358 if (IS_ERR(skb)) { 1359 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", 1360 PTR_ERR(skb)); 1361 return PTR_ERR(skb); 1362 } 1363 kfree_skb(skb); 1364 1365 bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x", 1366 trace_enable, mask[3]); 1367 1368 return 0; 1369 } 1370 1371 int btintel_set_quality_report(struct hci_dev *hdev, bool enable) 1372 { 1373 struct intel_debug_features features; 1374 int err; 1375 1376 bt_dev_dbg(hdev, "enable %d", enable); 1377 1378 /* Read the Intel supported features and if new exception formats 1379 * supported, need to load the additional DDC config to enable. 1380 */ 1381 err = btintel_read_debug_features(hdev, &features); 1382 if (err) 1383 return err; 1384 1385 /* Set or reset the debug features. */ 1386 if (enable) 1387 err = btintel_set_debug_features(hdev, &features); 1388 else 1389 err = btintel_reset_debug_features(hdev, &features); 1390 1391 return err; 1392 } 1393 EXPORT_SYMBOL_GPL(btintel_set_quality_report); 1394 1395 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, 1396 struct intel_version *ver) 1397 { 1398 const struct firmware *fw; 1399 char fwname[64]; 1400 int ret; 1401 1402 snprintf(fwname, sizeof(fwname), 1403 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", 1404 ver->hw_platform, ver->hw_variant, ver->hw_revision, 1405 ver->fw_variant, ver->fw_revision, ver->fw_build_num, 1406 ver->fw_build_ww, ver->fw_build_yy); 1407 1408 ret = request_firmware(&fw, fwname, &hdev->dev); 1409 if (ret < 0) { 1410 if (ret == -EINVAL) { 1411 bt_dev_err(hdev, "Intel firmware file request failed (%d)", 1412 ret); 1413 return NULL; 1414 } 1415 1416 bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)", 1417 fwname, ret); 1418 1419 /* If the correct firmware patch file is not found, use the 1420 * default firmware patch file instead 1421 */ 1422 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq", 1423 ver->hw_platform, ver->hw_variant); 1424 if (request_firmware(&fw, fwname, &hdev->dev) < 0) { 1425 bt_dev_err(hdev, "failed to open default fw file: %s", 1426 fwname); 1427 return NULL; 1428 } 1429 } 1430 1431 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); 1432 1433 return fw; 1434 } 1435 1436 static int btintel_legacy_rom_patching(struct hci_dev *hdev, 1437 const struct firmware *fw, 1438 const u8 **fw_ptr, int *disable_patch) 1439 { 1440 struct sk_buff *skb; 1441 struct hci_command_hdr *cmd; 1442 const u8 *cmd_param; 1443 struct hci_event_hdr *evt = NULL; 1444 const u8 *evt_param = NULL; 1445 int remain = fw->size - (*fw_ptr - fw->data); 1446 1447 /* The first byte indicates the types of the patch command or event. 1448 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes 1449 * in the current firmware buffer doesn't start with 0x01 or 1450 * the size of remain buffer is smaller than HCI command header, 1451 * the firmware file is corrupted and it should stop the patching 1452 * process. 1453 */ 1454 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { 1455 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read"); 1456 return -EINVAL; 1457 } 1458 (*fw_ptr)++; 1459 remain--; 1460 1461 cmd = (struct hci_command_hdr *)(*fw_ptr); 1462 *fw_ptr += sizeof(*cmd); 1463 remain -= sizeof(*cmd); 1464 1465 /* Ensure that the remain firmware data is long enough than the length 1466 * of command parameter. If not, the firmware file is corrupted. 1467 */ 1468 if (remain < cmd->plen) { 1469 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len"); 1470 return -EFAULT; 1471 } 1472 1473 /* If there is a command that loads a patch in the firmware 1474 * file, then enable the patch upon success, otherwise just 1475 * disable the manufacturer mode, for example patch activation 1476 * is not required when the default firmware patch file is used 1477 * because there are no patch data to load. 1478 */ 1479 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) 1480 *disable_patch = 0; 1481 1482 cmd_param = *fw_ptr; 1483 *fw_ptr += cmd->plen; 1484 remain -= cmd->plen; 1485 1486 /* This reads the expected events when the above command is sent to the 1487 * device. Some vendor commands expects more than one events, for 1488 * example command status event followed by vendor specific event. 1489 * For this case, it only keeps the last expected event. so the command 1490 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of 1491 * last expected event. 1492 */ 1493 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { 1494 (*fw_ptr)++; 1495 remain--; 1496 1497 evt = (struct hci_event_hdr *)(*fw_ptr); 1498 *fw_ptr += sizeof(*evt); 1499 remain -= sizeof(*evt); 1500 1501 if (remain < evt->plen) { 1502 bt_dev_err(hdev, "Intel fw corrupted: invalid evt len"); 1503 return -EFAULT; 1504 } 1505 1506 evt_param = *fw_ptr; 1507 *fw_ptr += evt->plen; 1508 remain -= evt->plen; 1509 } 1510 1511 /* Every HCI commands in the firmware file has its correspond event. 1512 * If event is not found or remain is smaller than zero, the firmware 1513 * file is corrupted. 1514 */ 1515 if (!evt || !evt_param || remain < 0) { 1516 bt_dev_err(hdev, "Intel fw corrupted: invalid evt read"); 1517 return -EFAULT; 1518 } 1519 1520 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen, 1521 cmd_param, evt->evt, HCI_INIT_TIMEOUT); 1522 if (IS_ERR(skb)) { 1523 bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)", 1524 cmd->opcode, PTR_ERR(skb)); 1525 return PTR_ERR(skb); 1526 } 1527 1528 /* It ensures that the returned event matches the event data read from 1529 * the firmware file. At fist, it checks the length and then 1530 * the contents of the event. 1531 */ 1532 if (skb->len != evt->plen) { 1533 bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)", 1534 le16_to_cpu(cmd->opcode)); 1535 kfree_skb(skb); 1536 return -EFAULT; 1537 } 1538 1539 if (memcmp(skb->data, evt_param, evt->plen)) { 1540 bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)", 1541 le16_to_cpu(cmd->opcode)); 1542 kfree_skb(skb); 1543 return -EFAULT; 1544 } 1545 kfree_skb(skb); 1546 1547 return 0; 1548 } 1549 1550 static int btintel_legacy_rom_setup(struct hci_dev *hdev, 1551 struct intel_version *ver) 1552 { 1553 const struct firmware *fw; 1554 const u8 *fw_ptr; 1555 int disable_patch, err; 1556 struct intel_version new_ver; 1557 1558 BT_DBG("%s", hdev->name); 1559 1560 /* fw_patch_num indicates the version of patch the device currently 1561 * have. If there is no patch data in the device, it is always 0x00. 1562 * So, if it is other than 0x00, no need to patch the device again. 1563 */ 1564 if (ver->fw_patch_num) { 1565 bt_dev_info(hdev, 1566 "Intel device is already patched. patch num: %02x", 1567 ver->fw_patch_num); 1568 goto complete; 1569 } 1570 1571 /* Opens the firmware patch file based on the firmware version read 1572 * from the controller. If it fails to open the matching firmware 1573 * patch file, it tries to open the default firmware patch file. 1574 * If no patch file is found, allow the device to operate without 1575 * a patch. 1576 */ 1577 fw = btintel_legacy_rom_get_fw(hdev, ver); 1578 if (!fw) 1579 goto complete; 1580 fw_ptr = fw->data; 1581 1582 /* Enable the manufacturer mode of the controller. 1583 * Only while this mode is enabled, the driver can download the 1584 * firmware patch data and configuration parameters. 1585 */ 1586 err = btintel_enter_mfg(hdev); 1587 if (err) { 1588 release_firmware(fw); 1589 return err; 1590 } 1591 1592 disable_patch = 1; 1593 1594 /* The firmware data file consists of list of Intel specific HCI 1595 * commands and its expected events. The first byte indicates the 1596 * type of the message, either HCI command or HCI event. 1597 * 1598 * It reads the command and its expected event from the firmware file, 1599 * and send to the controller. Once __hci_cmd_sync_ev() returns, 1600 * the returned event is compared with the event read from the firmware 1601 * file and it will continue until all the messages are downloaded to 1602 * the controller. 1603 * 1604 * Once the firmware patching is completed successfully, 1605 * the manufacturer mode is disabled with reset and activating the 1606 * downloaded patch. 1607 * 1608 * If the firmware patching fails, the manufacturer mode is 1609 * disabled with reset and deactivating the patch. 1610 * 1611 * If the default patch file is used, no reset is done when disabling 1612 * the manufacturer. 1613 */ 1614 while (fw->size > fw_ptr - fw->data) { 1615 int ret; 1616 1617 ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr, 1618 &disable_patch); 1619 if (ret < 0) 1620 goto exit_mfg_deactivate; 1621 } 1622 1623 release_firmware(fw); 1624 1625 if (disable_patch) 1626 goto exit_mfg_disable; 1627 1628 /* Patching completed successfully and disable the manufacturer mode 1629 * with reset and activate the downloaded firmware patches. 1630 */ 1631 err = btintel_exit_mfg(hdev, true, true); 1632 if (err) 1633 return err; 1634 1635 /* Need build number for downloaded fw patches in 1636 * every power-on boot 1637 */ 1638 err = btintel_read_version(hdev, &new_ver); 1639 if (err) 1640 return err; 1641 1642 bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated", 1643 new_ver.fw_patch_num); 1644 1645 goto complete; 1646 1647 exit_mfg_disable: 1648 /* Disable the manufacturer mode without reset */ 1649 err = btintel_exit_mfg(hdev, false, false); 1650 if (err) 1651 return err; 1652 1653 bt_dev_info(hdev, "Intel firmware patch completed"); 1654 1655 goto complete; 1656 1657 exit_mfg_deactivate: 1658 release_firmware(fw); 1659 1660 /* Patching failed. Disable the manufacturer mode with reset and 1661 * deactivate the downloaded firmware patches. 1662 */ 1663 err = btintel_exit_mfg(hdev, true, false); 1664 if (err) 1665 return err; 1666 1667 bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); 1668 1669 complete: 1670 /* Set the event mask for Intel specific vendor events. This enables 1671 * a few extra events that are useful during general operation. 1672 */ 1673 btintel_set_event_mask_mfg(hdev, false); 1674 1675 btintel_check_bdaddr(hdev); 1676 1677 return 0; 1678 } 1679 1680 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) 1681 { 1682 ktime_t delta, rettime; 1683 unsigned long long duration; 1684 int err; 1685 1686 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1687 1688 bt_dev_info(hdev, "Waiting for firmware download to complete"); 1689 1690 err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, 1691 TASK_INTERRUPTIBLE, 1692 msecs_to_jiffies(msec)); 1693 if (err == -EINTR) { 1694 bt_dev_err(hdev, "Firmware loading interrupted"); 1695 return err; 1696 } 1697 1698 if (err) { 1699 bt_dev_err(hdev, "Firmware loading timeout"); 1700 return -ETIMEDOUT; 1701 } 1702 1703 if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { 1704 bt_dev_err(hdev, "Firmware loading failed"); 1705 return -ENOEXEC; 1706 } 1707 1708 rettime = ktime_get(); 1709 delta = ktime_sub(rettime, calltime); 1710 duration = (unsigned long long)ktime_to_ns(delta) >> 10; 1711 1712 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 1713 1714 return 0; 1715 } 1716 1717 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) 1718 { 1719 ktime_t delta, rettime; 1720 unsigned long long duration; 1721 int err; 1722 1723 bt_dev_info(hdev, "Waiting for device to boot"); 1724 1725 err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, 1726 TASK_INTERRUPTIBLE, 1727 msecs_to_jiffies(msec)); 1728 if (err == -EINTR) { 1729 bt_dev_err(hdev, "Device boot interrupted"); 1730 return -EINTR; 1731 } 1732 1733 if (err) { 1734 bt_dev_err(hdev, "Device boot timeout"); 1735 return -ETIMEDOUT; 1736 } 1737 1738 rettime = ktime_get(); 1739 delta = ktime_sub(rettime, calltime); 1740 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 1741 1742 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 1743 1744 return 0; 1745 } 1746 1747 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) 1748 { 1749 ktime_t calltime; 1750 int err; 1751 1752 calltime = ktime_get(); 1753 1754 btintel_set_flag(hdev, INTEL_BOOTING); 1755 1756 err = btintel_send_intel_reset(hdev, boot_addr); 1757 if (err) { 1758 bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err); 1759 btintel_reset_to_bootloader(hdev); 1760 return err; 1761 } 1762 1763 /* The bootloader will not indicate when the device is ready. This 1764 * is done by the operational firmware sending bootup notification. 1765 * 1766 * Booting into operational firmware should not take longer than 1767 * 1 second. However if that happens, then just fail the setup 1768 * since something went wrong. 1769 */ 1770 err = btintel_boot_wait(hdev, calltime, 1000); 1771 if (err == -ETIMEDOUT) 1772 btintel_reset_to_bootloader(hdev); 1773 1774 return err; 1775 } 1776 1777 static int btintel_get_fw_name(struct intel_version *ver, 1778 struct intel_boot_params *params, 1779 char *fw_name, size_t len, 1780 const char *suffix) 1781 { 1782 switch (ver->hw_variant) { 1783 case 0x0b: /* SfP */ 1784 case 0x0c: /* WsP */ 1785 snprintf(fw_name, len, "intel/ibt-%u-%u.%s", 1786 le16_to_cpu(ver->hw_variant), 1787 le16_to_cpu(params->dev_revid), 1788 suffix); 1789 break; 1790 case 0x11: /* JfP */ 1791 case 0x12: /* ThP */ 1792 case 0x13: /* HrP */ 1793 case 0x14: /* CcP */ 1794 snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s", 1795 le16_to_cpu(ver->hw_variant), 1796 le16_to_cpu(ver->hw_revision), 1797 le16_to_cpu(ver->fw_revision), 1798 suffix); 1799 break; 1800 default: 1801 return -EINVAL; 1802 } 1803 1804 return 0; 1805 } 1806 1807 static int btintel_download_fw(struct hci_dev *hdev, 1808 struct intel_version *ver, 1809 struct intel_boot_params *params, 1810 u32 *boot_param) 1811 { 1812 const struct firmware *fw; 1813 char fwname[64]; 1814 int err; 1815 ktime_t calltime; 1816 1817 if (!ver || !params) 1818 return -EINVAL; 1819 1820 /* The firmware variant determines if the device is in bootloader 1821 * mode or is running operational firmware. The value 0x06 identifies 1822 * the bootloader and the value 0x23 identifies the operational 1823 * firmware. 1824 * 1825 * When the operational firmware is already present, then only 1826 * the check for valid Bluetooth device address is needed. This 1827 * determines if the device will be added as configured or 1828 * unconfigured controller. 1829 * 1830 * It is not possible to use the Secure Boot Parameters in this 1831 * case since that command is only available in bootloader mode. 1832 */ 1833 if (ver->fw_variant == 0x23) { 1834 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 1835 btintel_check_bdaddr(hdev); 1836 1837 /* SfP and WsP don't seem to update the firmware version on file 1838 * so version checking is currently possible. 1839 */ 1840 switch (ver->hw_variant) { 1841 case 0x0b: /* SfP */ 1842 case 0x0c: /* WsP */ 1843 return 0; 1844 } 1845 1846 /* Proceed to download to check if the version matches */ 1847 goto download; 1848 } 1849 1850 /* Read the secure boot parameters to identify the operating 1851 * details of the bootloader. 1852 */ 1853 err = btintel_read_boot_params(hdev, params); 1854 if (err) 1855 return err; 1856 1857 /* It is required that every single firmware fragment is acknowledged 1858 * with a command complete event. If the boot parameters indicate 1859 * that this bootloader does not send them, then abort the setup. 1860 */ 1861 if (params->limited_cce != 0x00) { 1862 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", 1863 params->limited_cce); 1864 return -EINVAL; 1865 } 1866 1867 /* If the OTP has no valid Bluetooth device address, then there will 1868 * also be no valid address for the operational firmware. 1869 */ 1870 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { 1871 bt_dev_info(hdev, "No device address configured"); 1872 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 1873 } 1874 1875 download: 1876 /* With this Intel bootloader only the hardware variant and device 1877 * revision information are used to select the right firmware for SfP 1878 * and WsP. 1879 * 1880 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. 1881 * 1882 * Currently the supported hardware variants are: 1883 * 11 (0x0b) for iBT3.0 (LnP/SfP) 1884 * 12 (0x0c) for iBT3.5 (WsP) 1885 * 1886 * For ThP/JfP and for future SKU's, the FW name varies based on HW 1887 * variant, HW revision and FW revision, as these are dependent on CNVi 1888 * and RF Combination. 1889 * 1890 * 17 (0x11) for iBT3.5 (JfP) 1891 * 18 (0x12) for iBT3.5 (ThP) 1892 * 1893 * The firmware file name for these will be 1894 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. 1895 * 1896 */ 1897 err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi"); 1898 if (err < 0) { 1899 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1900 /* Firmware has already been loaded */ 1901 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1902 return 0; 1903 } 1904 1905 bt_dev_err(hdev, "Unsupported Intel firmware naming"); 1906 return -EINVAL; 1907 } 1908 1909 err = firmware_request_nowarn(&fw, fwname, &hdev->dev); 1910 if (err < 0) { 1911 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1912 /* Firmware has already been loaded */ 1913 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1914 return 0; 1915 } 1916 1917 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", 1918 fwname, err); 1919 return err; 1920 } 1921 1922 bt_dev_info(hdev, "Found device firmware: %s", fwname); 1923 1924 if (fw->size < 644) { 1925 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 1926 fw->size); 1927 err = -EBADF; 1928 goto done; 1929 } 1930 1931 calltime = ktime_get(); 1932 1933 btintel_set_flag(hdev, INTEL_DOWNLOADING); 1934 1935 /* Start firmware downloading and get boot parameter */ 1936 err = btintel_download_firmware(hdev, ver, fw, boot_param); 1937 if (err < 0) { 1938 if (err == -EALREADY) { 1939 /* Firmware has already been loaded */ 1940 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1941 err = 0; 1942 goto done; 1943 } 1944 1945 /* When FW download fails, send Intel Reset to retry 1946 * FW download. 1947 */ 1948 btintel_reset_to_bootloader(hdev); 1949 goto done; 1950 } 1951 1952 /* Before switching the device into operational mode and with that 1953 * booting the loaded firmware, wait for the bootloader notification 1954 * that all fragments have been successfully received. 1955 * 1956 * When the event processing receives the notification, then the 1957 * INTEL_DOWNLOADING flag will be cleared. 1958 * 1959 * The firmware loading should not take longer than 5 seconds 1960 * and thus just timeout if that happens and fail the setup 1961 * of this device. 1962 */ 1963 err = btintel_download_wait(hdev, calltime, 5000); 1964 if (err == -ETIMEDOUT) 1965 btintel_reset_to_bootloader(hdev); 1966 1967 done: 1968 release_firmware(fw); 1969 return err; 1970 } 1971 1972 static int btintel_bootloader_setup(struct hci_dev *hdev, 1973 struct intel_version *ver) 1974 { 1975 struct intel_version new_ver; 1976 struct intel_boot_params params; 1977 u32 boot_param; 1978 char ddcname[64]; 1979 int err; 1980 1981 BT_DBG("%s", hdev->name); 1982 1983 /* Set the default boot parameter to 0x0 and it is updated to 1984 * SKU specific boot parameter after reading Intel_Write_Boot_Params 1985 * command while downloading the firmware. 1986 */ 1987 boot_param = 0x00000000; 1988 1989 btintel_set_flag(hdev, INTEL_BOOTLOADER); 1990 1991 err = btintel_download_fw(hdev, ver, ¶ms, &boot_param); 1992 if (err) 1993 return err; 1994 1995 /* controller is already having an operational firmware */ 1996 if (ver->fw_variant == 0x23) 1997 goto finish; 1998 1999 err = btintel_boot(hdev, boot_param); 2000 if (err) 2001 return err; 2002 2003 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2004 2005 err = btintel_get_fw_name(ver, ¶ms, ddcname, 2006 sizeof(ddcname), "ddc"); 2007 2008 if (err < 0) { 2009 bt_dev_err(hdev, "Unsupported Intel firmware naming"); 2010 } else { 2011 /* Once the device is running in operational mode, it needs to 2012 * apply the device configuration (DDC) parameters. 2013 * 2014 * The device can work without DDC parameters, so even if it 2015 * fails to load the file, no need to fail the setup. 2016 */ 2017 btintel_load_ddc_config(hdev, ddcname); 2018 } 2019 2020 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); 2021 2022 /* Read the Intel version information after loading the FW */ 2023 err = btintel_read_version(hdev, &new_ver); 2024 if (err) 2025 return err; 2026 2027 btintel_version_info(hdev, &new_ver); 2028 2029 finish: 2030 /* Set the event mask for Intel specific vendor events. This enables 2031 * a few extra events that are useful during general operation. It 2032 * does not enable any debugging related events. 2033 * 2034 * The device will function correctly without these events enabled 2035 * and thus no need to fail the setup. 2036 */ 2037 btintel_set_event_mask(hdev, false); 2038 2039 return 0; 2040 } 2041 2042 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, 2043 char *fw_name, size_t len, 2044 const char *suffix) 2045 { 2046 /* The firmware file name for new generation controllers will be 2047 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step> 2048 */ 2049 snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s", 2050 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), 2051 INTEL_CNVX_TOP_STEP(ver->cnvi_top)), 2052 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), 2053 INTEL_CNVX_TOP_STEP(ver->cnvr_top)), 2054 suffix); 2055 } 2056 2057 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, 2058 struct intel_version_tlv *ver, 2059 u32 *boot_param) 2060 { 2061 const struct firmware *fw; 2062 char fwname[64]; 2063 int err; 2064 ktime_t calltime; 2065 2066 if (!ver || !boot_param) 2067 return -EINVAL; 2068 2069 /* The firmware variant determines if the device is in bootloader 2070 * mode or is running operational firmware. The value 0x03 identifies 2071 * the bootloader and the value 0x23 identifies the operational 2072 * firmware. 2073 * 2074 * When the operational firmware is already present, then only 2075 * the check for valid Bluetooth device address is needed. This 2076 * determines if the device will be added as configured or 2077 * unconfigured controller. 2078 * 2079 * It is not possible to use the Secure Boot Parameters in this 2080 * case since that command is only available in bootloader mode. 2081 */ 2082 if (ver->img_type == 0x03) { 2083 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2084 btintel_check_bdaddr(hdev); 2085 } else { 2086 /* 2087 * Check for valid bd address in boot loader mode. Device 2088 * will be marked as unconfigured if empty bd address is 2089 * found. 2090 */ 2091 if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) { 2092 bt_dev_info(hdev, "No device address configured"); 2093 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 2094 } 2095 } 2096 2097 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi"); 2098 err = firmware_request_nowarn(&fw, fwname, &hdev->dev); 2099 if (err < 0) { 2100 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 2101 /* Firmware has already been loaded */ 2102 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 2103 return 0; 2104 } 2105 2106 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", 2107 fwname, err); 2108 2109 return err; 2110 } 2111 2112 bt_dev_info(hdev, "Found device firmware: %s", fwname); 2113 2114 if (fw->size < 644) { 2115 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 2116 fw->size); 2117 err = -EBADF; 2118 goto done; 2119 } 2120 2121 calltime = ktime_get(); 2122 2123 btintel_set_flag(hdev, INTEL_DOWNLOADING); 2124 2125 /* Start firmware downloading and get boot parameter */ 2126 err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, 2127 INTEL_HW_VARIANT(ver->cnvi_bt), 2128 ver->sbe_type); 2129 if (err < 0) { 2130 if (err == -EALREADY) { 2131 /* Firmware has already been loaded */ 2132 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 2133 err = 0; 2134 goto done; 2135 } 2136 2137 /* When FW download fails, send Intel Reset to retry 2138 * FW download. 2139 */ 2140 btintel_reset_to_bootloader(hdev); 2141 goto done; 2142 } 2143 2144 /* Before switching the device into operational mode and with that 2145 * booting the loaded firmware, wait for the bootloader notification 2146 * that all fragments have been successfully received. 2147 * 2148 * When the event processing receives the notification, then the 2149 * BTUSB_DOWNLOADING flag will be cleared. 2150 * 2151 * The firmware loading should not take longer than 5 seconds 2152 * and thus just timeout if that happens and fail the setup 2153 * of this device. 2154 */ 2155 err = btintel_download_wait(hdev, calltime, 5000); 2156 if (err == -ETIMEDOUT) 2157 btintel_reset_to_bootloader(hdev); 2158 2159 done: 2160 release_firmware(fw); 2161 return err; 2162 } 2163 2164 static int btintel_get_codec_config_data(struct hci_dev *hdev, 2165 __u8 link, struct bt_codec *codec, 2166 __u8 *ven_len, __u8 **ven_data) 2167 { 2168 int err = 0; 2169 2170 if (!ven_data || !ven_len) 2171 return -EINVAL; 2172 2173 *ven_len = 0; 2174 *ven_data = NULL; 2175 2176 if (link != ESCO_LINK) { 2177 bt_dev_err(hdev, "Invalid link type(%u)", link); 2178 return -EINVAL; 2179 } 2180 2181 *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL); 2182 if (!*ven_data) { 2183 err = -ENOMEM; 2184 goto error; 2185 } 2186 2187 /* supports only CVSD and mSBC offload codecs */ 2188 switch (codec->id) { 2189 case 0x02: 2190 **ven_data = 0x00; 2191 break; 2192 case 0x05: 2193 **ven_data = 0x01; 2194 break; 2195 default: 2196 err = -EINVAL; 2197 bt_dev_err(hdev, "Invalid codec id(%u)", codec->id); 2198 goto error; 2199 } 2200 /* codec and its capabilities are pre-defined to ids 2201 * preset id = 0x00 represents CVSD codec with sampling rate 8K 2202 * preset id = 0x01 represents mSBC codec with sampling rate 16K 2203 */ 2204 *ven_len = sizeof(__u8); 2205 return err; 2206 2207 error: 2208 kfree(*ven_data); 2209 *ven_data = NULL; 2210 return err; 2211 } 2212 2213 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) 2214 { 2215 /* Intel uses 1 as data path id for all the usecases */ 2216 *data_path_id = 1; 2217 return 0; 2218 } 2219 2220 static int btintel_configure_offload(struct hci_dev *hdev) 2221 { 2222 struct sk_buff *skb; 2223 int err = 0; 2224 struct intel_offload_use_cases *use_cases; 2225 2226 skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT); 2227 if (IS_ERR(skb)) { 2228 bt_dev_err(hdev, "Reading offload use cases failed (%ld)", 2229 PTR_ERR(skb)); 2230 return PTR_ERR(skb); 2231 } 2232 2233 if (skb->len < sizeof(*use_cases)) { 2234 err = -EIO; 2235 goto error; 2236 } 2237 2238 use_cases = (void *)skb->data; 2239 2240 if (use_cases->status) { 2241 err = -bt_to_errno(skb->data[0]); 2242 goto error; 2243 } 2244 2245 if (use_cases->preset[0] & 0x03) { 2246 hdev->get_data_path_id = btintel_get_data_path_id; 2247 hdev->get_codec_config_data = btintel_get_codec_config_data; 2248 } 2249 error: 2250 kfree_skb(skb); 2251 return err; 2252 } 2253 2254 static int btintel_bootloader_setup_tlv(struct hci_dev *hdev, 2255 struct intel_version_tlv *ver) 2256 { 2257 u32 boot_param; 2258 char ddcname[64]; 2259 int err; 2260 struct intel_version_tlv new_ver; 2261 2262 bt_dev_dbg(hdev, ""); 2263 2264 /* Set the default boot parameter to 0x0 and it is updated to 2265 * SKU specific boot parameter after reading Intel_Write_Boot_Params 2266 * command while downloading the firmware. 2267 */ 2268 boot_param = 0x00000000; 2269 2270 btintel_set_flag(hdev, INTEL_BOOTLOADER); 2271 2272 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param); 2273 if (err) 2274 return err; 2275 2276 /* check if controller is already having an operational firmware */ 2277 if (ver->img_type == 0x03) 2278 goto finish; 2279 2280 err = btintel_boot(hdev, boot_param); 2281 if (err) 2282 return err; 2283 2284 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2285 2286 btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc"); 2287 /* Once the device is running in operational mode, it needs to 2288 * apply the device configuration (DDC) parameters. 2289 * 2290 * The device can work without DDC parameters, so even if it 2291 * fails to load the file, no need to fail the setup. 2292 */ 2293 btintel_load_ddc_config(hdev, ddcname); 2294 2295 /* Read supported use cases and set callbacks to fetch datapath id */ 2296 btintel_configure_offload(hdev); 2297 2298 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); 2299 2300 /* Read the Intel version information after loading the FW */ 2301 err = btintel_read_version_tlv(hdev, &new_ver); 2302 if (err) 2303 return err; 2304 2305 btintel_version_info_tlv(hdev, &new_ver); 2306 2307 finish: 2308 /* Set the event mask for Intel specific vendor events. This enables 2309 * a few extra events that are useful during general operation. It 2310 * does not enable any debugging related events. 2311 * 2312 * The device will function correctly without these events enabled 2313 * and thus no need to fail the setup. 2314 */ 2315 btintel_set_event_mask(hdev, false); 2316 2317 return 0; 2318 } 2319 2320 static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) 2321 { 2322 switch (hw_variant) { 2323 /* Legacy bootloader devices that supports MSFT Extension */ 2324 case 0x11: /* JfP */ 2325 case 0x12: /* ThP */ 2326 case 0x13: /* HrP */ 2327 case 0x14: /* CcP */ 2328 /* All Intel new genration controllers support the Microsoft vendor 2329 * extension are using 0xFC1E for VsMsftOpCode. 2330 */ 2331 case 0x17: 2332 case 0x18: 2333 case 0x19: 2334 case 0x1b: 2335 hci_set_msft_opcode(hdev, 0xFC1E); 2336 break; 2337 default: 2338 /* Not supported */ 2339 break; 2340 } 2341 } 2342 2343 static int btintel_setup_combined(struct hci_dev *hdev) 2344 { 2345 const u8 param[1] = { 0xFF }; 2346 struct intel_version ver; 2347 struct intel_version_tlv ver_tlv; 2348 struct sk_buff *skb; 2349 int err; 2350 2351 BT_DBG("%s", hdev->name); 2352 2353 /* The some controllers have a bug with the first HCI command sent to it 2354 * returning number of completed commands as zero. This would stall the 2355 * command processing in the Bluetooth core. 2356 * 2357 * As a workaround, send HCI Reset command first which will reset the 2358 * number of completed commands and allow normal command processing 2359 * from now on. 2360 * 2361 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe 2362 * in the SW_RFKILL ON state as a workaround of fixing LED issue during 2363 * the shutdown() procedure, and once the device is in SW_RFKILL ON 2364 * state, the only way to exit out of it is sending the HCI_Reset 2365 * command. 2366 */ 2367 if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) || 2368 btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { 2369 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 2370 HCI_INIT_TIMEOUT); 2371 if (IS_ERR(skb)) { 2372 bt_dev_err(hdev, 2373 "sending initial HCI reset failed (%ld)", 2374 PTR_ERR(skb)); 2375 return PTR_ERR(skb); 2376 } 2377 kfree_skb(skb); 2378 } 2379 2380 /* Starting from TyP device, the command parameter and response are 2381 * changed even though the OCF for HCI_Intel_Read_Version command 2382 * remains same. The legacy devices can handle even if the 2383 * command has a parameter and returns a correct version information. 2384 * So, it uses new format to support both legacy and new format. 2385 */ 2386 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 2387 if (IS_ERR(skb)) { 2388 bt_dev_err(hdev, "Reading Intel version command failed (%ld)", 2389 PTR_ERR(skb)); 2390 return PTR_ERR(skb); 2391 } 2392 2393 /* Check the status */ 2394 if (skb->data[0]) { 2395 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 2396 skb->data[0]); 2397 err = -EIO; 2398 goto exit_error; 2399 } 2400 2401 /* Apply the common HCI quirks for Intel device */ 2402 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 2403 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 2404 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 2405 2406 /* Set up the quality report callback for Intel devices */ 2407 hdev->set_quality_report = btintel_set_quality_report; 2408 2409 /* For Legacy device, check the HW platform value and size */ 2410 if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { 2411 bt_dev_dbg(hdev, "Read the legacy Intel version information"); 2412 2413 memcpy(&ver, skb->data, sizeof(ver)); 2414 2415 /* Display version information */ 2416 btintel_version_info(hdev, &ver); 2417 2418 /* Check for supported iBT hardware variants of this firmware 2419 * loading method. 2420 * 2421 * This check has been put in place to ensure correct forward 2422 * compatibility options when newer hardware variants come 2423 * along. 2424 */ 2425 switch (ver.hw_variant) { 2426 case 0x07: /* WP */ 2427 case 0x08: /* StP */ 2428 /* Legacy ROM product */ 2429 btintel_set_flag(hdev, INTEL_ROM_LEGACY); 2430 2431 /* Apply the device specific HCI quirks 2432 * 2433 * WBS for SdP - For the Legacy ROM products, only SdP 2434 * supports the WBS. But the version information is not 2435 * enough to use here because the StP2 and SdP have same 2436 * hw_variant and fw_variant. So, this flag is set by 2437 * the transport driver (btusb) based on the HW info 2438 * (idProduct) 2439 */ 2440 if (!btintel_test_flag(hdev, 2441 INTEL_ROM_LEGACY_NO_WBS_SUPPORT)) 2442 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2443 &hdev->quirks); 2444 if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22) 2445 set_bit(HCI_QUIRK_VALID_LE_STATES, 2446 &hdev->quirks); 2447 2448 err = btintel_legacy_rom_setup(hdev, &ver); 2449 break; 2450 case 0x0b: /* SfP */ 2451 case 0x11: /* JfP */ 2452 case 0x12: /* ThP */ 2453 case 0x13: /* HrP */ 2454 case 0x14: /* CcP */ 2455 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2456 fallthrough; 2457 case 0x0c: /* WsP */ 2458 /* Apply the device specific HCI quirks 2459 * 2460 * All Legacy bootloader devices support WBS 2461 */ 2462 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2463 &hdev->quirks); 2464 2465 /* Setup MSFT Extension support */ 2466 btintel_set_msft_opcode(hdev, ver.hw_variant); 2467 2468 err = btintel_bootloader_setup(hdev, &ver); 2469 break; 2470 default: 2471 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2472 ver.hw_variant); 2473 err = -EINVAL; 2474 } 2475 2476 goto exit_error; 2477 } 2478 2479 /* memset ver_tlv to start with clean state as few fields are exclusive 2480 * to bootloader mode and are not populated in operational mode 2481 */ 2482 memset(&ver_tlv, 0, sizeof(ver_tlv)); 2483 /* For TLV type device, parse the tlv data */ 2484 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); 2485 if (err) { 2486 bt_dev_err(hdev, "Failed to parse TLV version information"); 2487 goto exit_error; 2488 } 2489 2490 if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { 2491 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 2492 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); 2493 err = -EINVAL; 2494 goto exit_error; 2495 } 2496 2497 /* Check for supported iBT hardware variants of this firmware 2498 * loading method. 2499 * 2500 * This check has been put in place to ensure correct forward 2501 * compatibility options when newer hardware variants come 2502 * along. 2503 */ 2504 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { 2505 case 0x11: /* JfP */ 2506 case 0x12: /* ThP */ 2507 case 0x13: /* HrP */ 2508 case 0x14: /* CcP */ 2509 /* Some legacy bootloader devices starting from JfP, 2510 * the operational firmware supports both old and TLV based 2511 * HCI_Intel_Read_Version command based on the command 2512 * parameter. 2513 * 2514 * For upgrading firmware case, the TLV based version cannot 2515 * be used because the firmware filename for legacy bootloader 2516 * is based on the old format. 2517 * 2518 * Also, it is not easy to convert TLV based version from the 2519 * legacy version format. 2520 * 2521 * So, as a workaround for those devices, use the legacy 2522 * HCI_Intel_Read_Version to get the version information and 2523 * run the legacy bootloader setup. 2524 */ 2525 err = btintel_read_version(hdev, &ver); 2526 if (err) 2527 return err; 2528 2529 /* Apply the device specific HCI quirks 2530 * 2531 * All Legacy bootloader devices support WBS 2532 */ 2533 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 2534 2535 /* Set Valid LE States quirk */ 2536 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2537 2538 /* Setup MSFT Extension support */ 2539 btintel_set_msft_opcode(hdev, ver.hw_variant); 2540 2541 err = btintel_bootloader_setup(hdev, &ver); 2542 break; 2543 case 0x17: 2544 case 0x18: 2545 case 0x19: 2546 case 0x1b: 2547 /* Display version information of TLV type */ 2548 btintel_version_info_tlv(hdev, &ver_tlv); 2549 2550 /* Apply the device specific HCI quirks for TLV based devices 2551 * 2552 * All TLV based devices support WBS 2553 */ 2554 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 2555 2556 /* Valid LE States quirk for GfP */ 2557 if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18) 2558 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2559 2560 /* Setup MSFT Extension support */ 2561 btintel_set_msft_opcode(hdev, 2562 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2563 2564 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); 2565 break; 2566 default: 2567 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2568 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2569 return -EINVAL; 2570 } 2571 2572 exit_error: 2573 kfree_skb(skb); 2574 2575 return err; 2576 } 2577 2578 static int btintel_shutdown_combined(struct hci_dev *hdev) 2579 { 2580 struct sk_buff *skb; 2581 int ret; 2582 2583 /* Send HCI Reset to the controller to stop any BT activity which 2584 * were triggered. This will help to save power and maintain the 2585 * sync b/w Host and controller 2586 */ 2587 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 2588 if (IS_ERR(skb)) { 2589 bt_dev_err(hdev, "HCI reset during shutdown failed"); 2590 return PTR_ERR(skb); 2591 } 2592 kfree_skb(skb); 2593 2594 2595 /* Some platforms have an issue with BT LED when the interface is 2596 * down or BT radio is turned off, which takes 5 seconds to BT LED 2597 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the 2598 * device in the RFKILL ON state which turns off the BT LED immediately. 2599 */ 2600 if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { 2601 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT); 2602 if (IS_ERR(skb)) { 2603 ret = PTR_ERR(skb); 2604 bt_dev_err(hdev, "turning off Intel device LED failed"); 2605 return ret; 2606 } 2607 kfree_skb(skb); 2608 } 2609 2610 return 0; 2611 } 2612 2613 int btintel_configure_setup(struct hci_dev *hdev) 2614 { 2615 hdev->manufacturer = 2; 2616 hdev->setup = btintel_setup_combined; 2617 hdev->shutdown = btintel_shutdown_combined; 2618 hdev->hw_error = btintel_hw_error; 2619 hdev->set_diag = btintel_set_diag_combined; 2620 hdev->set_bdaddr = btintel_set_bdaddr; 2621 2622 return 0; 2623 } 2624 EXPORT_SYMBOL_GPL(btintel_configure_setup); 2625 2626 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) 2627 { 2628 const struct intel_bootup *evt = ptr; 2629 2630 if (len != sizeof(*evt)) 2631 return; 2632 2633 if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) 2634 btintel_wake_up_flag(hdev, INTEL_BOOTING); 2635 } 2636 EXPORT_SYMBOL_GPL(btintel_bootup); 2637 2638 void btintel_secure_send_result(struct hci_dev *hdev, 2639 const void *ptr, unsigned int len) 2640 { 2641 const struct intel_secure_send_result *evt = ptr; 2642 2643 if (len != sizeof(*evt)) 2644 return; 2645 2646 if (evt->result) 2647 btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); 2648 2649 if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && 2650 btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) 2651 btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); 2652 } 2653 EXPORT_SYMBOL_GPL(btintel_secure_send_result); 2654 2655 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 2656 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION); 2657 MODULE_VERSION(VERSION); 2658 MODULE_LICENSE("GPL"); 2659 MODULE_FIRMWARE("intel/ibt-11-5.sfi"); 2660 MODULE_FIRMWARE("intel/ibt-11-5.ddc"); 2661 MODULE_FIRMWARE("intel/ibt-12-16.sfi"); 2662 MODULE_FIRMWARE("intel/ibt-12-16.ddc"); 2663