1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth support for Intel devices 5 * 6 * Copyright (C) 2015 Intel Corporation 7 */ 8 9 #include <linux/module.h> 10 #include <linux/firmware.h> 11 #include <linux/regmap.h> 12 #include <asm/unaligned.h> 13 14 #include <net/bluetooth/bluetooth.h> 15 #include <net/bluetooth/hci_core.h> 16 17 #include "btintel.h" 18 19 #define VERSION "0.1" 20 21 #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) 22 #define RSA_HEADER_LEN 644 23 #define CSS_HEADER_OFFSET 8 24 #define ECDSA_OFFSET 644 25 #define ECDSA_HEADER_LEN 320 26 27 #define CMD_WRITE_BOOT_PARAMS 0xfc0e 28 struct cmd_write_boot_params { 29 u32 boot_addr; 30 u8 fw_build_num; 31 u8 fw_build_ww; 32 u8 fw_build_yy; 33 } __packed; 34 35 int btintel_check_bdaddr(struct hci_dev *hdev) 36 { 37 struct hci_rp_read_bd_addr *bda; 38 struct sk_buff *skb; 39 40 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL, 41 HCI_INIT_TIMEOUT); 42 if (IS_ERR(skb)) { 43 int err = PTR_ERR(skb); 44 bt_dev_err(hdev, "Reading Intel device address failed (%d)", 45 err); 46 return err; 47 } 48 49 if (skb->len != sizeof(*bda)) { 50 bt_dev_err(hdev, "Intel device address length mismatch"); 51 kfree_skb(skb); 52 return -EIO; 53 } 54 55 bda = (struct hci_rp_read_bd_addr *)skb->data; 56 57 /* For some Intel based controllers, the default Bluetooth device 58 * address 00:03:19:9E:8B:00 can be found. These controllers are 59 * fully operational, but have the danger of duplicate addresses 60 * and that in turn can cause problems with Bluetooth operation. 61 */ 62 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) { 63 bt_dev_err(hdev, "Found Intel default device address (%pMR)", 64 &bda->bdaddr); 65 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 66 } 67 68 kfree_skb(skb); 69 70 return 0; 71 } 72 EXPORT_SYMBOL_GPL(btintel_check_bdaddr); 73 74 int btintel_enter_mfg(struct hci_dev *hdev) 75 { 76 static const u8 param[] = { 0x01, 0x00 }; 77 struct sk_buff *skb; 78 79 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); 80 if (IS_ERR(skb)) { 81 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)", 82 PTR_ERR(skb)); 83 return PTR_ERR(skb); 84 } 85 kfree_skb(skb); 86 87 return 0; 88 } 89 EXPORT_SYMBOL_GPL(btintel_enter_mfg); 90 91 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) 92 { 93 u8 param[] = { 0x00, 0x00 }; 94 struct sk_buff *skb; 95 96 /* The 2nd command parameter specifies the manufacturing exit method: 97 * 0x00: Just disable the manufacturing mode (0x00). 98 * 0x01: Disable manufacturing mode and reset with patches deactivated. 99 * 0x02: Disable manufacturing mode and reset with patches activated. 100 */ 101 if (reset) 102 param[1] |= patched ? 0x02 : 0x01; 103 104 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); 105 if (IS_ERR(skb)) { 106 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)", 107 PTR_ERR(skb)); 108 return PTR_ERR(skb); 109 } 110 kfree_skb(skb); 111 112 return 0; 113 } 114 EXPORT_SYMBOL_GPL(btintel_exit_mfg); 115 116 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) 117 { 118 struct sk_buff *skb; 119 int err; 120 121 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT); 122 if (IS_ERR(skb)) { 123 err = PTR_ERR(skb); 124 bt_dev_err(hdev, "Changing Intel device address failed (%d)", 125 err); 126 return err; 127 } 128 kfree_skb(skb); 129 130 return 0; 131 } 132 EXPORT_SYMBOL_GPL(btintel_set_bdaddr); 133 134 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) 135 { 136 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 137 struct sk_buff *skb; 138 int err; 139 140 if (debug) 141 mask[1] |= 0x62; 142 143 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT); 144 if (IS_ERR(skb)) { 145 err = PTR_ERR(skb); 146 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err); 147 return err; 148 } 149 kfree_skb(skb); 150 151 return 0; 152 } 153 154 int btintel_set_diag(struct hci_dev *hdev, bool enable) 155 { 156 struct sk_buff *skb; 157 u8 param[3]; 158 int err; 159 160 if (enable) { 161 param[0] = 0x03; 162 param[1] = 0x03; 163 param[2] = 0x03; 164 } else { 165 param[0] = 0x00; 166 param[1] = 0x00; 167 param[2] = 0x00; 168 } 169 170 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT); 171 if (IS_ERR(skb)) { 172 err = PTR_ERR(skb); 173 if (err == -ENODATA) 174 goto done; 175 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)", 176 err); 177 return err; 178 } 179 kfree_skb(skb); 180 181 done: 182 btintel_set_event_mask(hdev, enable); 183 return 0; 184 } 185 EXPORT_SYMBOL_GPL(btintel_set_diag); 186 187 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) 188 { 189 int err, ret; 190 191 err = btintel_enter_mfg(hdev); 192 if (err) 193 return err; 194 195 ret = btintel_set_diag(hdev, enable); 196 197 err = btintel_exit_mfg(hdev, false, false); 198 if (err) 199 return err; 200 201 return ret; 202 } 203 204 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) 205 { 206 int ret; 207 208 /* Legacy ROM device needs to be in the manufacturer mode to apply 209 * diagnostic setting 210 * 211 * This flag is set after reading the Intel version. 212 */ 213 if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) 214 ret = btintel_set_diag_mfg(hdev, enable); 215 else 216 ret = btintel_set_diag(hdev, enable); 217 218 return ret; 219 } 220 221 static void btintel_hw_error(struct hci_dev *hdev, u8 code) 222 { 223 struct sk_buff *skb; 224 u8 type = 0x00; 225 226 bt_dev_err(hdev, "Hardware error 0x%2.2x", code); 227 228 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 229 if (IS_ERR(skb)) { 230 bt_dev_err(hdev, "Reset after hardware error failed (%ld)", 231 PTR_ERR(skb)); 232 return; 233 } 234 kfree_skb(skb); 235 236 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT); 237 if (IS_ERR(skb)) { 238 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)", 239 PTR_ERR(skb)); 240 return; 241 } 242 243 if (skb->len != 13) { 244 bt_dev_err(hdev, "Exception info size mismatch"); 245 kfree_skb(skb); 246 return; 247 } 248 249 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1)); 250 251 kfree_skb(skb); 252 } 253 254 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) 255 { 256 const char *variant; 257 258 /* The hardware platform number has a fixed value of 0x37 and 259 * for now only accept this single value. 260 */ 261 if (ver->hw_platform != 0x37) { 262 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", 263 ver->hw_platform); 264 return -EINVAL; 265 } 266 267 /* Check for supported iBT hardware variants of this firmware 268 * loading method. 269 * 270 * This check has been put in place to ensure correct forward 271 * compatibility options when newer hardware variants come along. 272 */ 273 switch (ver->hw_variant) { 274 case 0x07: /* WP - Legacy ROM */ 275 case 0x08: /* StP - Legacy ROM */ 276 case 0x0b: /* SfP */ 277 case 0x0c: /* WsP */ 278 case 0x11: /* JfP */ 279 case 0x12: /* ThP */ 280 case 0x13: /* HrP */ 281 case 0x14: /* CcP */ 282 break; 283 default: 284 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 285 ver->hw_variant); 286 return -EINVAL; 287 } 288 289 switch (ver->fw_variant) { 290 case 0x01: 291 variant = "Legacy ROM 2.5"; 292 break; 293 case 0x06: 294 variant = "Bootloader"; 295 break; 296 case 0x22: 297 variant = "Legacy ROM 2.x"; 298 break; 299 case 0x23: 300 variant = "Firmware"; 301 break; 302 default: 303 bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant); 304 return -EINVAL; 305 } 306 307 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u", 308 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, 309 ver->fw_build_num, ver->fw_build_ww, 310 2000 + ver->fw_build_yy); 311 312 return 0; 313 } 314 EXPORT_SYMBOL_GPL(btintel_version_info); 315 316 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, 317 const void *param) 318 { 319 while (plen > 0) { 320 struct sk_buff *skb; 321 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; 322 323 cmd_param[0] = fragment_type; 324 memcpy(cmd_param + 1, param, fragment_len); 325 326 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1, 327 cmd_param, HCI_INIT_TIMEOUT); 328 if (IS_ERR(skb)) 329 return PTR_ERR(skb); 330 331 kfree_skb(skb); 332 333 plen -= fragment_len; 334 param += fragment_len; 335 } 336 337 return 0; 338 } 339 340 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) 341 { 342 const struct firmware *fw; 343 struct sk_buff *skb; 344 const u8 *fw_ptr; 345 int err; 346 347 err = request_firmware_direct(&fw, ddc_name, &hdev->dev); 348 if (err < 0) { 349 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)", 350 ddc_name, err); 351 return err; 352 } 353 354 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name); 355 356 fw_ptr = fw->data; 357 358 /* DDC file contains one or more DDC structure which has 359 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). 360 */ 361 while (fw->size > fw_ptr - fw->data) { 362 u8 cmd_plen = fw_ptr[0] + sizeof(u8); 363 364 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr, 365 HCI_INIT_TIMEOUT); 366 if (IS_ERR(skb)) { 367 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)", 368 PTR_ERR(skb)); 369 release_firmware(fw); 370 return PTR_ERR(skb); 371 } 372 373 fw_ptr += cmd_plen; 374 kfree_skb(skb); 375 } 376 377 release_firmware(fw); 378 379 bt_dev_info(hdev, "Applying Intel DDC parameters completed"); 380 381 return 0; 382 } 383 EXPORT_SYMBOL_GPL(btintel_load_ddc_config); 384 385 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) 386 { 387 int err, ret; 388 389 err = btintel_enter_mfg(hdev); 390 if (err) 391 return err; 392 393 ret = btintel_set_event_mask(hdev, debug); 394 395 err = btintel_exit_mfg(hdev, false, false); 396 if (err) 397 return err; 398 399 return ret; 400 } 401 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); 402 403 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) 404 { 405 struct sk_buff *skb; 406 407 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); 408 if (IS_ERR(skb)) { 409 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 410 PTR_ERR(skb)); 411 return PTR_ERR(skb); 412 } 413 414 if (skb->len != sizeof(*ver)) { 415 bt_dev_err(hdev, "Intel version event size mismatch"); 416 kfree_skb(skb); 417 return -EILSEQ; 418 } 419 420 memcpy(ver, skb->data, sizeof(*ver)); 421 422 kfree_skb(skb); 423 424 return 0; 425 } 426 EXPORT_SYMBOL_GPL(btintel_read_version); 427 428 static int btintel_version_info_tlv(struct hci_dev *hdev, 429 struct intel_version_tlv *version) 430 { 431 const char *variant; 432 433 /* The hardware platform number has a fixed value of 0x37 and 434 * for now only accept this single value. 435 */ 436 if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { 437 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 438 INTEL_HW_PLATFORM(version->cnvi_bt)); 439 return -EINVAL; 440 } 441 442 /* Check for supported iBT hardware variants of this firmware 443 * loading method. 444 * 445 * This check has been put in place to ensure correct forward 446 * compatibility options when newer hardware variants come along. 447 */ 448 switch (INTEL_HW_VARIANT(version->cnvi_bt)) { 449 case 0x17: /* TyP */ 450 case 0x18: /* Slr */ 451 case 0x19: /* Slr-F */ 452 break; 453 default: 454 bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)", 455 INTEL_HW_VARIANT(version->cnvi_bt)); 456 return -EINVAL; 457 } 458 459 switch (version->img_type) { 460 case 0x01: 461 variant = "Bootloader"; 462 /* It is required that every single firmware fragment is acknowledged 463 * with a command complete event. If the boot parameters indicate 464 * that this bootloader does not send them, then abort the setup. 465 */ 466 if (version->limited_cce != 0x00) { 467 bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)", 468 version->limited_cce); 469 return -EINVAL; 470 } 471 472 /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ 473 if (version->sbe_type > 0x01) { 474 bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)", 475 version->sbe_type); 476 return -EINVAL; 477 } 478 479 bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id); 480 bt_dev_info(hdev, "Secure boot is %s", 481 version->secure_boot ? "enabled" : "disabled"); 482 bt_dev_info(hdev, "OTP lock is %s", 483 version->otp_lock ? "enabled" : "disabled"); 484 bt_dev_info(hdev, "API lock is %s", 485 version->api_lock ? "enabled" : "disabled"); 486 bt_dev_info(hdev, "Debug lock is %s", 487 version->debug_lock ? "enabled" : "disabled"); 488 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 489 version->min_fw_build_nn, version->min_fw_build_cw, 490 2000 + version->min_fw_build_yy); 491 break; 492 case 0x03: 493 variant = "Firmware"; 494 break; 495 default: 496 bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type); 497 return -EINVAL; 498 } 499 500 bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant, 501 2000 + (version->timestamp >> 8), version->timestamp & 0xff, 502 version->build_type, version->build_num); 503 504 return 0; 505 } 506 507 static int btintel_parse_version_tlv(struct hci_dev *hdev, 508 struct intel_version_tlv *version, 509 struct sk_buff *skb) 510 { 511 /* Consume Command Complete Status field */ 512 skb_pull(skb, 1); 513 514 /* Event parameters contatin multiple TLVs. Read each of them 515 * and only keep the required data. Also, it use existing legacy 516 * version field like hw_platform, hw_variant, and fw_variant 517 * to keep the existing setup flow 518 */ 519 while (skb->len) { 520 struct intel_tlv *tlv; 521 522 /* Make sure skb has a minimum length of the header */ 523 if (skb->len < sizeof(*tlv)) 524 return -EINVAL; 525 526 tlv = (struct intel_tlv *)skb->data; 527 528 /* Make sure skb has a enough data */ 529 if (skb->len < tlv->len + sizeof(*tlv)) 530 return -EINVAL; 531 532 switch (tlv->type) { 533 case INTEL_TLV_CNVI_TOP: 534 version->cnvi_top = get_unaligned_le32(tlv->val); 535 break; 536 case INTEL_TLV_CNVR_TOP: 537 version->cnvr_top = get_unaligned_le32(tlv->val); 538 break; 539 case INTEL_TLV_CNVI_BT: 540 version->cnvi_bt = get_unaligned_le32(tlv->val); 541 break; 542 case INTEL_TLV_CNVR_BT: 543 version->cnvr_bt = get_unaligned_le32(tlv->val); 544 break; 545 case INTEL_TLV_DEV_REV_ID: 546 version->dev_rev_id = get_unaligned_le16(tlv->val); 547 break; 548 case INTEL_TLV_IMAGE_TYPE: 549 version->img_type = tlv->val[0]; 550 break; 551 case INTEL_TLV_TIME_STAMP: 552 /* If image type is Operational firmware (0x03), then 553 * running FW Calendar Week and Year information can 554 * be extracted from Timestamp information 555 */ 556 version->min_fw_build_cw = tlv->val[0]; 557 version->min_fw_build_yy = tlv->val[1]; 558 version->timestamp = get_unaligned_le16(tlv->val); 559 break; 560 case INTEL_TLV_BUILD_TYPE: 561 version->build_type = tlv->val[0]; 562 break; 563 case INTEL_TLV_BUILD_NUM: 564 /* If image type is Operational firmware (0x03), then 565 * running FW build number can be extracted from the 566 * Build information 567 */ 568 version->min_fw_build_nn = tlv->val[0]; 569 version->build_num = get_unaligned_le32(tlv->val); 570 break; 571 case INTEL_TLV_SECURE_BOOT: 572 version->secure_boot = tlv->val[0]; 573 break; 574 case INTEL_TLV_OTP_LOCK: 575 version->otp_lock = tlv->val[0]; 576 break; 577 case INTEL_TLV_API_LOCK: 578 version->api_lock = tlv->val[0]; 579 break; 580 case INTEL_TLV_DEBUG_LOCK: 581 version->debug_lock = tlv->val[0]; 582 break; 583 case INTEL_TLV_MIN_FW: 584 version->min_fw_build_nn = tlv->val[0]; 585 version->min_fw_build_cw = tlv->val[1]; 586 version->min_fw_build_yy = tlv->val[2]; 587 break; 588 case INTEL_TLV_LIMITED_CCE: 589 version->limited_cce = tlv->val[0]; 590 break; 591 case INTEL_TLV_SBE_TYPE: 592 version->sbe_type = tlv->val[0]; 593 break; 594 case INTEL_TLV_OTP_BDADDR: 595 memcpy(&version->otp_bd_addr, tlv->val, 596 sizeof(bdaddr_t)); 597 break; 598 default: 599 /* Ignore rest of information */ 600 break; 601 } 602 /* consume the current tlv and move to next*/ 603 skb_pull(skb, tlv->len + sizeof(*tlv)); 604 } 605 606 return 0; 607 } 608 609 static int btintel_read_version_tlv(struct hci_dev *hdev, 610 struct intel_version_tlv *version) 611 { 612 struct sk_buff *skb; 613 const u8 param[1] = { 0xFF }; 614 615 if (!version) 616 return -EINVAL; 617 618 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 619 if (IS_ERR(skb)) { 620 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 621 PTR_ERR(skb)); 622 return PTR_ERR(skb); 623 } 624 625 if (skb->data[0]) { 626 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 627 skb->data[0]); 628 kfree_skb(skb); 629 return -EIO; 630 } 631 632 btintel_parse_version_tlv(hdev, version, skb); 633 634 kfree_skb(skb); 635 return 0; 636 } 637 638 /* ------- REGMAP IBT SUPPORT ------- */ 639 640 #define IBT_REG_MODE_8BIT 0x00 641 #define IBT_REG_MODE_16BIT 0x01 642 #define IBT_REG_MODE_32BIT 0x02 643 644 struct regmap_ibt_context { 645 struct hci_dev *hdev; 646 __u16 op_write; 647 __u16 op_read; 648 }; 649 650 struct ibt_cp_reg_access { 651 __le32 addr; 652 __u8 mode; 653 __u8 len; 654 __u8 data[]; 655 } __packed; 656 657 struct ibt_rp_reg_access { 658 __u8 status; 659 __le32 addr; 660 __u8 data[]; 661 } __packed; 662 663 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, 664 void *val, size_t val_size) 665 { 666 struct regmap_ibt_context *ctx = context; 667 struct ibt_cp_reg_access cp; 668 struct ibt_rp_reg_access *rp; 669 struct sk_buff *skb; 670 int err = 0; 671 672 if (reg_size != sizeof(__le32)) 673 return -EINVAL; 674 675 switch (val_size) { 676 case 1: 677 cp.mode = IBT_REG_MODE_8BIT; 678 break; 679 case 2: 680 cp.mode = IBT_REG_MODE_16BIT; 681 break; 682 case 4: 683 cp.mode = IBT_REG_MODE_32BIT; 684 break; 685 default: 686 return -EINVAL; 687 } 688 689 /* regmap provides a little-endian formatted addr */ 690 cp.addr = *(__le32 *)addr; 691 cp.len = val_size; 692 693 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr)); 694 695 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp, 696 HCI_CMD_TIMEOUT); 697 if (IS_ERR(skb)) { 698 err = PTR_ERR(skb); 699 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)", 700 le32_to_cpu(cp.addr), err); 701 return err; 702 } 703 704 if (skb->len != sizeof(*rp) + val_size) { 705 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len", 706 le32_to_cpu(cp.addr)); 707 err = -EINVAL; 708 goto done; 709 } 710 711 rp = (struct ibt_rp_reg_access *)skb->data; 712 713 if (rp->addr != cp.addr) { 714 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr", 715 le32_to_cpu(rp->addr)); 716 err = -EINVAL; 717 goto done; 718 } 719 720 memcpy(val, rp->data, val_size); 721 722 done: 723 kfree_skb(skb); 724 return err; 725 } 726 727 static int regmap_ibt_gather_write(void *context, 728 const void *addr, size_t reg_size, 729 const void *val, size_t val_size) 730 { 731 struct regmap_ibt_context *ctx = context; 732 struct ibt_cp_reg_access *cp; 733 struct sk_buff *skb; 734 int plen = sizeof(*cp) + val_size; 735 u8 mode; 736 int err = 0; 737 738 if (reg_size != sizeof(__le32)) 739 return -EINVAL; 740 741 switch (val_size) { 742 case 1: 743 mode = IBT_REG_MODE_8BIT; 744 break; 745 case 2: 746 mode = IBT_REG_MODE_16BIT; 747 break; 748 case 4: 749 mode = IBT_REG_MODE_32BIT; 750 break; 751 default: 752 return -EINVAL; 753 } 754 755 cp = kmalloc(plen, GFP_KERNEL); 756 if (!cp) 757 return -ENOMEM; 758 759 /* regmap provides a little-endian formatted addr/value */ 760 cp->addr = *(__le32 *)addr; 761 cp->mode = mode; 762 cp->len = val_size; 763 memcpy(&cp->data, val, val_size); 764 765 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr)); 766 767 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT); 768 if (IS_ERR(skb)) { 769 err = PTR_ERR(skb); 770 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)", 771 le32_to_cpu(cp->addr), err); 772 goto done; 773 } 774 kfree_skb(skb); 775 776 done: 777 kfree(cp); 778 return err; 779 } 780 781 static int regmap_ibt_write(void *context, const void *data, size_t count) 782 { 783 /* data contains register+value, since we only support 32bit addr, 784 * minimum data size is 4 bytes. 785 */ 786 if (WARN_ONCE(count < 4, "Invalid register access")) 787 return -EINVAL; 788 789 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4); 790 } 791 792 static void regmap_ibt_free_context(void *context) 793 { 794 kfree(context); 795 } 796 797 static struct regmap_bus regmap_ibt = { 798 .read = regmap_ibt_read, 799 .write = regmap_ibt_write, 800 .gather_write = regmap_ibt_gather_write, 801 .free_context = regmap_ibt_free_context, 802 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, 803 .val_format_endian_default = REGMAP_ENDIAN_LITTLE, 804 }; 805 806 /* Config is the same for all register regions */ 807 static const struct regmap_config regmap_ibt_cfg = { 808 .name = "btintel_regmap", 809 .reg_bits = 32, 810 .val_bits = 32, 811 }; 812 813 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, 814 u16 opcode_write) 815 { 816 struct regmap_ibt_context *ctx; 817 818 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read, 819 opcode_write); 820 821 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 822 if (!ctx) 823 return ERR_PTR(-ENOMEM); 824 825 ctx->op_read = opcode_read; 826 ctx->op_write = opcode_write; 827 ctx->hdev = hdev; 828 829 return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); 830 } 831 EXPORT_SYMBOL_GPL(btintel_regmap_init); 832 833 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) 834 { 835 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; 836 struct sk_buff *skb; 837 838 params.boot_param = cpu_to_le32(boot_param); 839 840 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms, 841 HCI_INIT_TIMEOUT); 842 if (IS_ERR(skb)) { 843 bt_dev_err(hdev, "Failed to send Intel Reset command"); 844 return PTR_ERR(skb); 845 } 846 847 kfree_skb(skb); 848 849 return 0; 850 } 851 EXPORT_SYMBOL_GPL(btintel_send_intel_reset); 852 853 int btintel_read_boot_params(struct hci_dev *hdev, 854 struct intel_boot_params *params) 855 { 856 struct sk_buff *skb; 857 858 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); 859 if (IS_ERR(skb)) { 860 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", 861 PTR_ERR(skb)); 862 return PTR_ERR(skb); 863 } 864 865 if (skb->len != sizeof(*params)) { 866 bt_dev_err(hdev, "Intel boot parameters size mismatch"); 867 kfree_skb(skb); 868 return -EILSEQ; 869 } 870 871 memcpy(params, skb->data, sizeof(*params)); 872 873 kfree_skb(skb); 874 875 if (params->status) { 876 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)", 877 params->status); 878 return -bt_to_errno(params->status); 879 } 880 881 bt_dev_info(hdev, "Device revision is %u", 882 le16_to_cpu(params->dev_revid)); 883 884 bt_dev_info(hdev, "Secure boot is %s", 885 params->secure_boot ? "enabled" : "disabled"); 886 887 bt_dev_info(hdev, "OTP lock is %s", 888 params->otp_lock ? "enabled" : "disabled"); 889 890 bt_dev_info(hdev, "API lock is %s", 891 params->api_lock ? "enabled" : "disabled"); 892 893 bt_dev_info(hdev, "Debug lock is %s", 894 params->debug_lock ? "enabled" : "disabled"); 895 896 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 897 params->min_fw_build_nn, params->min_fw_build_cw, 898 2000 + params->min_fw_build_yy); 899 900 return 0; 901 } 902 EXPORT_SYMBOL_GPL(btintel_read_boot_params); 903 904 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev, 905 const struct firmware *fw) 906 { 907 int err; 908 909 /* Start the firmware download transaction with the Init fragment 910 * represented by the 128 bytes of CSS header. 911 */ 912 err = btintel_secure_send(hdev, 0x00, 128, fw->data); 913 if (err < 0) { 914 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 915 goto done; 916 } 917 918 /* Send the 256 bytes of public key information from the firmware 919 * as the PKey fragment. 920 */ 921 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); 922 if (err < 0) { 923 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); 924 goto done; 925 } 926 927 /* Send the 256 bytes of signature information from the firmware 928 * as the Sign fragment. 929 */ 930 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); 931 if (err < 0) { 932 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); 933 goto done; 934 } 935 936 done: 937 return err; 938 } 939 940 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev, 941 const struct firmware *fw) 942 { 943 int err; 944 945 /* Start the firmware download transaction with the Init fragment 946 * represented by the 128 bytes of CSS header. 947 */ 948 err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644); 949 if (err < 0) { 950 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 951 return err; 952 } 953 954 /* Send the 96 bytes of public key information from the firmware 955 * as the PKey fragment. 956 */ 957 err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128); 958 if (err < 0) { 959 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); 960 return err; 961 } 962 963 /* Send the 96 bytes of signature information from the firmware 964 * as the Sign fragment 965 */ 966 err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224); 967 if (err < 0) { 968 bt_dev_err(hdev, "Failed to send firmware signature (%d)", 969 err); 970 return err; 971 } 972 return 0; 973 } 974 975 static int btintel_download_firmware_payload(struct hci_dev *hdev, 976 const struct firmware *fw, 977 size_t offset) 978 { 979 int err; 980 const u8 *fw_ptr; 981 u32 frag_len; 982 983 fw_ptr = fw->data + offset; 984 frag_len = 0; 985 err = -EINVAL; 986 987 while (fw_ptr - fw->data < fw->size) { 988 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); 989 990 frag_len += sizeof(*cmd) + cmd->plen; 991 992 /* The parameter length of the secure send command requires 993 * a 4 byte alignment. It happens so that the firmware file 994 * contains proper Intel_NOP commands to align the fragments 995 * as needed. 996 * 997 * Send set of commands with 4 byte alignment from the 998 * firmware data buffer as a single Data fragement. 999 */ 1000 if (!(frag_len % 4)) { 1001 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); 1002 if (err < 0) { 1003 bt_dev_err(hdev, 1004 "Failed to send firmware data (%d)", 1005 err); 1006 goto done; 1007 } 1008 1009 fw_ptr += frag_len; 1010 frag_len = 0; 1011 } 1012 } 1013 1014 done: 1015 return err; 1016 } 1017 1018 static bool btintel_firmware_version(struct hci_dev *hdev, 1019 u8 num, u8 ww, u8 yy, 1020 const struct firmware *fw, 1021 u32 *boot_addr) 1022 { 1023 const u8 *fw_ptr; 1024 1025 fw_ptr = fw->data; 1026 1027 while (fw_ptr - fw->data < fw->size) { 1028 struct hci_command_hdr *cmd = (void *)(fw_ptr); 1029 1030 /* Each SKU has a different reset parameter to use in the 1031 * HCI_Intel_Reset command and it is embedded in the firmware 1032 * data. So, instead of using static value per SKU, check 1033 * the firmware data and save it for later use. 1034 */ 1035 if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { 1036 struct cmd_write_boot_params *params; 1037 1038 params = (void *)(fw_ptr + sizeof(*cmd)); 1039 1040 *boot_addr = le32_to_cpu(params->boot_addr); 1041 1042 bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr); 1043 1044 bt_dev_info(hdev, "Firmware Version: %u-%u.%u", 1045 params->fw_build_num, params->fw_build_ww, 1046 params->fw_build_yy); 1047 1048 return (num == params->fw_build_num && 1049 ww == params->fw_build_ww && 1050 yy == params->fw_build_yy); 1051 } 1052 1053 fw_ptr += sizeof(*cmd) + cmd->plen; 1054 } 1055 1056 return false; 1057 } 1058 1059 int btintel_download_firmware(struct hci_dev *hdev, 1060 struct intel_version *ver, 1061 const struct firmware *fw, 1062 u32 *boot_param) 1063 { 1064 int err; 1065 1066 /* SfP and WsP don't seem to update the firmware version on file 1067 * so version checking is currently not possible. 1068 */ 1069 switch (ver->hw_variant) { 1070 case 0x0b: /* SfP */ 1071 case 0x0c: /* WsP */ 1072 /* Skip version checking */ 1073 break; 1074 default: 1075 1076 /* Skip download if firmware has the same version */ 1077 if (btintel_firmware_version(hdev, ver->fw_build_num, 1078 ver->fw_build_ww, ver->fw_build_yy, 1079 fw, boot_param)) { 1080 bt_dev_info(hdev, "Firmware already loaded"); 1081 /* Return -EALREADY to indicate that the firmware has 1082 * already been loaded. 1083 */ 1084 return -EALREADY; 1085 } 1086 } 1087 1088 /* The firmware variant determines if the device is in bootloader 1089 * mode or is running operational firmware. The value 0x06 identifies 1090 * the bootloader and the value 0x23 identifies the operational 1091 * firmware. 1092 * 1093 * If the firmware version has changed that means it needs to be reset 1094 * to bootloader when operational so the new firmware can be loaded. 1095 */ 1096 if (ver->fw_variant == 0x23) 1097 return -EINVAL; 1098 1099 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1100 if (err) 1101 return err; 1102 1103 return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); 1104 } 1105 EXPORT_SYMBOL_GPL(btintel_download_firmware); 1106 1107 static int btintel_download_fw_tlv(struct hci_dev *hdev, 1108 struct intel_version_tlv *ver, 1109 const struct firmware *fw, u32 *boot_param, 1110 u8 hw_variant, u8 sbe_type) 1111 { 1112 int err; 1113 u32 css_header_ver; 1114 1115 /* Skip download if firmware has the same version */ 1116 if (btintel_firmware_version(hdev, ver->min_fw_build_nn, 1117 ver->min_fw_build_cw, 1118 ver->min_fw_build_yy, 1119 fw, boot_param)) { 1120 bt_dev_info(hdev, "Firmware already loaded"); 1121 /* Return -EALREADY to indicate that firmware has 1122 * already been loaded. 1123 */ 1124 return -EALREADY; 1125 } 1126 1127 /* The firmware variant determines if the device is in bootloader 1128 * mode or is running operational firmware. The value 0x01 identifies 1129 * the bootloader and the value 0x03 identifies the operational 1130 * firmware. 1131 * 1132 * If the firmware version has changed that means it needs to be reset 1133 * to bootloader when operational so the new firmware can be loaded. 1134 */ 1135 if (ver->img_type == 0x03) 1136 return -EINVAL; 1137 1138 /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support 1139 * only RSA secure boot engine. Hence, the corresponding sfi file will 1140 * have RSA header of 644 bytes followed by Command Buffer. 1141 * 1142 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA 1143 * secure boot engine. As a result, the corresponding sfi file will 1144 * have RSA header of 644, ECDSA header of 320 bytes followed by 1145 * Command Buffer. 1146 * 1147 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header 1148 * version: RSA(0x00010000) , ECDSA (0x00020000) 1149 */ 1150 css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET); 1151 if (css_header_ver != 0x00010000) { 1152 bt_dev_err(hdev, "Invalid CSS Header version"); 1153 return -EINVAL; 1154 } 1155 1156 if (hw_variant <= 0x14) { 1157 if (sbe_type != 0x00) { 1158 bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)", 1159 hw_variant); 1160 return -EINVAL; 1161 } 1162 1163 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1164 if (err) 1165 return err; 1166 1167 err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); 1168 if (err) 1169 return err; 1170 } else if (hw_variant >= 0x17) { 1171 /* Check if CSS header for ECDSA follows the RSA header */ 1172 if (fw->data[ECDSA_OFFSET] != 0x06) 1173 return -EINVAL; 1174 1175 /* Check if the CSS Header version is ECDSA(0x00020000) */ 1176 css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); 1177 if (css_header_ver != 0x00020000) { 1178 bt_dev_err(hdev, "Invalid CSS Header version"); 1179 return -EINVAL; 1180 } 1181 1182 if (sbe_type == 0x00) { 1183 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1184 if (err) 1185 return err; 1186 1187 err = btintel_download_firmware_payload(hdev, fw, 1188 RSA_HEADER_LEN + ECDSA_HEADER_LEN); 1189 if (err) 1190 return err; 1191 } else if (sbe_type == 0x01) { 1192 err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); 1193 if (err) 1194 return err; 1195 1196 err = btintel_download_firmware_payload(hdev, fw, 1197 RSA_HEADER_LEN + ECDSA_HEADER_LEN); 1198 if (err) 1199 return err; 1200 } 1201 } 1202 return 0; 1203 } 1204 1205 static void btintel_reset_to_bootloader(struct hci_dev *hdev) 1206 { 1207 struct intel_reset params; 1208 struct sk_buff *skb; 1209 1210 /* Send Intel Reset command. This will result in 1211 * re-enumeration of BT controller. 1212 * 1213 * Intel Reset parameter description: 1214 * reset_type : 0x00 (Soft reset), 1215 * 0x01 (Hard reset) 1216 * patch_enable : 0x00 (Do not enable), 1217 * 0x01 (Enable) 1218 * ddc_reload : 0x00 (Do not reload), 1219 * 0x01 (Reload) 1220 * boot_option: 0x00 (Current image), 1221 * 0x01 (Specified boot address) 1222 * boot_param: Boot address 1223 * 1224 */ 1225 params.reset_type = 0x01; 1226 params.patch_enable = 0x01; 1227 params.ddc_reload = 0x01; 1228 params.boot_option = 0x00; 1229 params.boot_param = cpu_to_le32(0x00000000); 1230 1231 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), 1232 ¶ms, HCI_INIT_TIMEOUT); 1233 if (IS_ERR(skb)) { 1234 bt_dev_err(hdev, "FW download error recovery failed (%ld)", 1235 PTR_ERR(skb)); 1236 return; 1237 } 1238 bt_dev_info(hdev, "Intel reset sent to retry FW download"); 1239 kfree_skb(skb); 1240 1241 /* Current Intel BT controllers(ThP/JfP) hold the USB reset 1242 * lines for 2ms when it receives Intel Reset in bootloader mode. 1243 * Whereas, the upcoming Intel BT controllers will hold USB reset 1244 * for 150ms. To keep the delay generic, 150ms is chosen here. 1245 */ 1246 msleep(150); 1247 } 1248 1249 static int btintel_read_debug_features(struct hci_dev *hdev, 1250 struct intel_debug_features *features) 1251 { 1252 struct sk_buff *skb; 1253 u8 page_no = 1; 1254 1255 /* Intel controller supports two pages, each page is of 128-bit 1256 * feature bit mask. And each bit defines specific feature support 1257 */ 1258 skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no, 1259 HCI_INIT_TIMEOUT); 1260 if (IS_ERR(skb)) { 1261 bt_dev_err(hdev, "Reading supported features failed (%ld)", 1262 PTR_ERR(skb)); 1263 return PTR_ERR(skb); 1264 } 1265 1266 if (skb->len != (sizeof(features->page1) + 3)) { 1267 bt_dev_err(hdev, "Supported features event size mismatch"); 1268 kfree_skb(skb); 1269 return -EILSEQ; 1270 } 1271 1272 memcpy(features->page1, skb->data + 3, sizeof(features->page1)); 1273 1274 /* Read the supported features page2 if required in future. 1275 */ 1276 kfree_skb(skb); 1277 return 0; 1278 } 1279 1280 static int btintel_set_debug_features(struct hci_dev *hdev, 1281 const struct intel_debug_features *features) 1282 { 1283 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00, 1284 0x00, 0x00, 0x00 }; 1285 u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 }; 1286 u8 trace_enable = 0x02; 1287 struct sk_buff *skb; 1288 1289 if (!features) { 1290 bt_dev_warn(hdev, "Debug features not read"); 1291 return -EINVAL; 1292 } 1293 1294 if (!(features->page1[0] & 0x3f)) { 1295 bt_dev_info(hdev, "Telemetry exception format not supported"); 1296 return 0; 1297 } 1298 1299 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); 1300 if (IS_ERR(skb)) { 1301 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", 1302 PTR_ERR(skb)); 1303 return PTR_ERR(skb); 1304 } 1305 kfree_skb(skb); 1306 1307 skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT); 1308 if (IS_ERR(skb)) { 1309 bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)", 1310 PTR_ERR(skb)); 1311 return PTR_ERR(skb); 1312 } 1313 kfree_skb(skb); 1314 1315 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT); 1316 if (IS_ERR(skb)) { 1317 bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)", 1318 PTR_ERR(skb)); 1319 return PTR_ERR(skb); 1320 } 1321 kfree_skb(skb); 1322 1323 bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x", 1324 trace_enable, mask[3]); 1325 1326 return 0; 1327 } 1328 1329 static int btintel_reset_debug_features(struct hci_dev *hdev, 1330 const struct intel_debug_features *features) 1331 { 1332 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 1333 0x00, 0x00, 0x00 }; 1334 u8 trace_enable = 0x00; 1335 struct sk_buff *skb; 1336 1337 if (!features) { 1338 bt_dev_warn(hdev, "Debug features not read"); 1339 return -EINVAL; 1340 } 1341 1342 if (!(features->page1[0] & 0x3f)) { 1343 bt_dev_info(hdev, "Telemetry exception format not supported"); 1344 return 0; 1345 } 1346 1347 /* Should stop the trace before writing ddc event mask. */ 1348 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT); 1349 if (IS_ERR(skb)) { 1350 bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)", 1351 PTR_ERR(skb)); 1352 return PTR_ERR(skb); 1353 } 1354 kfree_skb(skb); 1355 1356 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); 1357 if (IS_ERR(skb)) { 1358 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", 1359 PTR_ERR(skb)); 1360 return PTR_ERR(skb); 1361 } 1362 kfree_skb(skb); 1363 1364 bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x", 1365 trace_enable, mask[3]); 1366 1367 return 0; 1368 } 1369 1370 int btintel_set_quality_report(struct hci_dev *hdev, bool enable) 1371 { 1372 struct intel_debug_features features; 1373 int err; 1374 1375 bt_dev_dbg(hdev, "enable %d", enable); 1376 1377 /* Read the Intel supported features and if new exception formats 1378 * supported, need to load the additional DDC config to enable. 1379 */ 1380 err = btintel_read_debug_features(hdev, &features); 1381 if (err) 1382 return err; 1383 1384 /* Set or reset the debug features. */ 1385 if (enable) 1386 err = btintel_set_debug_features(hdev, &features); 1387 else 1388 err = btintel_reset_debug_features(hdev, &features); 1389 1390 return err; 1391 } 1392 EXPORT_SYMBOL_GPL(btintel_set_quality_report); 1393 1394 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, 1395 struct intel_version *ver) 1396 { 1397 const struct firmware *fw; 1398 char fwname[64]; 1399 int ret; 1400 1401 snprintf(fwname, sizeof(fwname), 1402 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", 1403 ver->hw_platform, ver->hw_variant, ver->hw_revision, 1404 ver->fw_variant, ver->fw_revision, ver->fw_build_num, 1405 ver->fw_build_ww, ver->fw_build_yy); 1406 1407 ret = request_firmware(&fw, fwname, &hdev->dev); 1408 if (ret < 0) { 1409 if (ret == -EINVAL) { 1410 bt_dev_err(hdev, "Intel firmware file request failed (%d)", 1411 ret); 1412 return NULL; 1413 } 1414 1415 bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)", 1416 fwname, ret); 1417 1418 /* If the correct firmware patch file is not found, use the 1419 * default firmware patch file instead 1420 */ 1421 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq", 1422 ver->hw_platform, ver->hw_variant); 1423 if (request_firmware(&fw, fwname, &hdev->dev) < 0) { 1424 bt_dev_err(hdev, "failed to open default fw file: %s", 1425 fwname); 1426 return NULL; 1427 } 1428 } 1429 1430 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); 1431 1432 return fw; 1433 } 1434 1435 static int btintel_legacy_rom_patching(struct hci_dev *hdev, 1436 const struct firmware *fw, 1437 const u8 **fw_ptr, int *disable_patch) 1438 { 1439 struct sk_buff *skb; 1440 struct hci_command_hdr *cmd; 1441 const u8 *cmd_param; 1442 struct hci_event_hdr *evt = NULL; 1443 const u8 *evt_param = NULL; 1444 int remain = fw->size - (*fw_ptr - fw->data); 1445 1446 /* The first byte indicates the types of the patch command or event. 1447 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes 1448 * in the current firmware buffer doesn't start with 0x01 or 1449 * the size of remain buffer is smaller than HCI command header, 1450 * the firmware file is corrupted and it should stop the patching 1451 * process. 1452 */ 1453 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { 1454 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read"); 1455 return -EINVAL; 1456 } 1457 (*fw_ptr)++; 1458 remain--; 1459 1460 cmd = (struct hci_command_hdr *)(*fw_ptr); 1461 *fw_ptr += sizeof(*cmd); 1462 remain -= sizeof(*cmd); 1463 1464 /* Ensure that the remain firmware data is long enough than the length 1465 * of command parameter. If not, the firmware file is corrupted. 1466 */ 1467 if (remain < cmd->plen) { 1468 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len"); 1469 return -EFAULT; 1470 } 1471 1472 /* If there is a command that loads a patch in the firmware 1473 * file, then enable the patch upon success, otherwise just 1474 * disable the manufacturer mode, for example patch activation 1475 * is not required when the default firmware patch file is used 1476 * because there are no patch data to load. 1477 */ 1478 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) 1479 *disable_patch = 0; 1480 1481 cmd_param = *fw_ptr; 1482 *fw_ptr += cmd->plen; 1483 remain -= cmd->plen; 1484 1485 /* This reads the expected events when the above command is sent to the 1486 * device. Some vendor commands expects more than one events, for 1487 * example command status event followed by vendor specific event. 1488 * For this case, it only keeps the last expected event. so the command 1489 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of 1490 * last expected event. 1491 */ 1492 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { 1493 (*fw_ptr)++; 1494 remain--; 1495 1496 evt = (struct hci_event_hdr *)(*fw_ptr); 1497 *fw_ptr += sizeof(*evt); 1498 remain -= sizeof(*evt); 1499 1500 if (remain < evt->plen) { 1501 bt_dev_err(hdev, "Intel fw corrupted: invalid evt len"); 1502 return -EFAULT; 1503 } 1504 1505 evt_param = *fw_ptr; 1506 *fw_ptr += evt->plen; 1507 remain -= evt->plen; 1508 } 1509 1510 /* Every HCI commands in the firmware file has its correspond event. 1511 * If event is not found or remain is smaller than zero, the firmware 1512 * file is corrupted. 1513 */ 1514 if (!evt || !evt_param || remain < 0) { 1515 bt_dev_err(hdev, "Intel fw corrupted: invalid evt read"); 1516 return -EFAULT; 1517 } 1518 1519 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen, 1520 cmd_param, evt->evt, HCI_INIT_TIMEOUT); 1521 if (IS_ERR(skb)) { 1522 bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)", 1523 cmd->opcode, PTR_ERR(skb)); 1524 return PTR_ERR(skb); 1525 } 1526 1527 /* It ensures that the returned event matches the event data read from 1528 * the firmware file. At fist, it checks the length and then 1529 * the contents of the event. 1530 */ 1531 if (skb->len != evt->plen) { 1532 bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)", 1533 le16_to_cpu(cmd->opcode)); 1534 kfree_skb(skb); 1535 return -EFAULT; 1536 } 1537 1538 if (memcmp(skb->data, evt_param, evt->plen)) { 1539 bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)", 1540 le16_to_cpu(cmd->opcode)); 1541 kfree_skb(skb); 1542 return -EFAULT; 1543 } 1544 kfree_skb(skb); 1545 1546 return 0; 1547 } 1548 1549 static int btintel_legacy_rom_setup(struct hci_dev *hdev, 1550 struct intel_version *ver) 1551 { 1552 const struct firmware *fw; 1553 const u8 *fw_ptr; 1554 int disable_patch, err; 1555 struct intel_version new_ver; 1556 1557 BT_DBG("%s", hdev->name); 1558 1559 /* fw_patch_num indicates the version of patch the device currently 1560 * have. If there is no patch data in the device, it is always 0x00. 1561 * So, if it is other than 0x00, no need to patch the device again. 1562 */ 1563 if (ver->fw_patch_num) { 1564 bt_dev_info(hdev, 1565 "Intel device is already patched. patch num: %02x", 1566 ver->fw_patch_num); 1567 goto complete; 1568 } 1569 1570 /* Opens the firmware patch file based on the firmware version read 1571 * from the controller. If it fails to open the matching firmware 1572 * patch file, it tries to open the default firmware patch file. 1573 * If no patch file is found, allow the device to operate without 1574 * a patch. 1575 */ 1576 fw = btintel_legacy_rom_get_fw(hdev, ver); 1577 if (!fw) 1578 goto complete; 1579 fw_ptr = fw->data; 1580 1581 /* Enable the manufacturer mode of the controller. 1582 * Only while this mode is enabled, the driver can download the 1583 * firmware patch data and configuration parameters. 1584 */ 1585 err = btintel_enter_mfg(hdev); 1586 if (err) { 1587 release_firmware(fw); 1588 return err; 1589 } 1590 1591 disable_patch = 1; 1592 1593 /* The firmware data file consists of list of Intel specific HCI 1594 * commands and its expected events. The first byte indicates the 1595 * type of the message, either HCI command or HCI event. 1596 * 1597 * It reads the command and its expected event from the firmware file, 1598 * and send to the controller. Once __hci_cmd_sync_ev() returns, 1599 * the returned event is compared with the event read from the firmware 1600 * file and it will continue until all the messages are downloaded to 1601 * the controller. 1602 * 1603 * Once the firmware patching is completed successfully, 1604 * the manufacturer mode is disabled with reset and activating the 1605 * downloaded patch. 1606 * 1607 * If the firmware patching fails, the manufacturer mode is 1608 * disabled with reset and deactivating the patch. 1609 * 1610 * If the default patch file is used, no reset is done when disabling 1611 * the manufacturer. 1612 */ 1613 while (fw->size > fw_ptr - fw->data) { 1614 int ret; 1615 1616 ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr, 1617 &disable_patch); 1618 if (ret < 0) 1619 goto exit_mfg_deactivate; 1620 } 1621 1622 release_firmware(fw); 1623 1624 if (disable_patch) 1625 goto exit_mfg_disable; 1626 1627 /* Patching completed successfully and disable the manufacturer mode 1628 * with reset and activate the downloaded firmware patches. 1629 */ 1630 err = btintel_exit_mfg(hdev, true, true); 1631 if (err) 1632 return err; 1633 1634 /* Need build number for downloaded fw patches in 1635 * every power-on boot 1636 */ 1637 err = btintel_read_version(hdev, &new_ver); 1638 if (err) 1639 return err; 1640 1641 bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated", 1642 new_ver.fw_patch_num); 1643 1644 goto complete; 1645 1646 exit_mfg_disable: 1647 /* Disable the manufacturer mode without reset */ 1648 err = btintel_exit_mfg(hdev, false, false); 1649 if (err) 1650 return err; 1651 1652 bt_dev_info(hdev, "Intel firmware patch completed"); 1653 1654 goto complete; 1655 1656 exit_mfg_deactivate: 1657 release_firmware(fw); 1658 1659 /* Patching failed. Disable the manufacturer mode with reset and 1660 * deactivate the downloaded firmware patches. 1661 */ 1662 err = btintel_exit_mfg(hdev, true, false); 1663 if (err) 1664 return err; 1665 1666 bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); 1667 1668 complete: 1669 /* Set the event mask for Intel specific vendor events. This enables 1670 * a few extra events that are useful during general operation. 1671 */ 1672 btintel_set_event_mask_mfg(hdev, false); 1673 1674 btintel_check_bdaddr(hdev); 1675 1676 return 0; 1677 } 1678 1679 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) 1680 { 1681 ktime_t delta, rettime; 1682 unsigned long long duration; 1683 int err; 1684 1685 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1686 1687 bt_dev_info(hdev, "Waiting for firmware download to complete"); 1688 1689 err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, 1690 TASK_INTERRUPTIBLE, 1691 msecs_to_jiffies(msec)); 1692 if (err == -EINTR) { 1693 bt_dev_err(hdev, "Firmware loading interrupted"); 1694 return err; 1695 } 1696 1697 if (err) { 1698 bt_dev_err(hdev, "Firmware loading timeout"); 1699 return -ETIMEDOUT; 1700 } 1701 1702 if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { 1703 bt_dev_err(hdev, "Firmware loading failed"); 1704 return -ENOEXEC; 1705 } 1706 1707 rettime = ktime_get(); 1708 delta = ktime_sub(rettime, calltime); 1709 duration = (unsigned long long)ktime_to_ns(delta) >> 10; 1710 1711 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 1712 1713 return 0; 1714 } 1715 1716 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) 1717 { 1718 ktime_t delta, rettime; 1719 unsigned long long duration; 1720 int err; 1721 1722 bt_dev_info(hdev, "Waiting for device to boot"); 1723 1724 err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, 1725 TASK_INTERRUPTIBLE, 1726 msecs_to_jiffies(msec)); 1727 if (err == -EINTR) { 1728 bt_dev_err(hdev, "Device boot interrupted"); 1729 return -EINTR; 1730 } 1731 1732 if (err) { 1733 bt_dev_err(hdev, "Device boot timeout"); 1734 return -ETIMEDOUT; 1735 } 1736 1737 rettime = ktime_get(); 1738 delta = ktime_sub(rettime, calltime); 1739 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 1740 1741 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 1742 1743 return 0; 1744 } 1745 1746 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) 1747 { 1748 ktime_t calltime; 1749 int err; 1750 1751 calltime = ktime_get(); 1752 1753 btintel_set_flag(hdev, INTEL_BOOTING); 1754 1755 err = btintel_send_intel_reset(hdev, boot_addr); 1756 if (err) { 1757 bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err); 1758 btintel_reset_to_bootloader(hdev); 1759 return err; 1760 } 1761 1762 /* The bootloader will not indicate when the device is ready. This 1763 * is done by the operational firmware sending bootup notification. 1764 * 1765 * Booting into operational firmware should not take longer than 1766 * 1 second. However if that happens, then just fail the setup 1767 * since something went wrong. 1768 */ 1769 err = btintel_boot_wait(hdev, calltime, 1000); 1770 if (err == -ETIMEDOUT) 1771 btintel_reset_to_bootloader(hdev); 1772 1773 return err; 1774 } 1775 1776 static int btintel_get_fw_name(struct intel_version *ver, 1777 struct intel_boot_params *params, 1778 char *fw_name, size_t len, 1779 const char *suffix) 1780 { 1781 switch (ver->hw_variant) { 1782 case 0x0b: /* SfP */ 1783 case 0x0c: /* WsP */ 1784 snprintf(fw_name, len, "intel/ibt-%u-%u.%s", 1785 le16_to_cpu(ver->hw_variant), 1786 le16_to_cpu(params->dev_revid), 1787 suffix); 1788 break; 1789 case 0x11: /* JfP */ 1790 case 0x12: /* ThP */ 1791 case 0x13: /* HrP */ 1792 case 0x14: /* CcP */ 1793 snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s", 1794 le16_to_cpu(ver->hw_variant), 1795 le16_to_cpu(ver->hw_revision), 1796 le16_to_cpu(ver->fw_revision), 1797 suffix); 1798 break; 1799 default: 1800 return -EINVAL; 1801 } 1802 1803 return 0; 1804 } 1805 1806 static int btintel_download_fw(struct hci_dev *hdev, 1807 struct intel_version *ver, 1808 struct intel_boot_params *params, 1809 u32 *boot_param) 1810 { 1811 const struct firmware *fw; 1812 char fwname[64]; 1813 int err; 1814 ktime_t calltime; 1815 1816 if (!ver || !params) 1817 return -EINVAL; 1818 1819 /* The firmware variant determines if the device is in bootloader 1820 * mode or is running operational firmware. The value 0x06 identifies 1821 * the bootloader and the value 0x23 identifies the operational 1822 * firmware. 1823 * 1824 * When the operational firmware is already present, then only 1825 * the check for valid Bluetooth device address is needed. This 1826 * determines if the device will be added as configured or 1827 * unconfigured controller. 1828 * 1829 * It is not possible to use the Secure Boot Parameters in this 1830 * case since that command is only available in bootloader mode. 1831 */ 1832 if (ver->fw_variant == 0x23) { 1833 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 1834 btintel_check_bdaddr(hdev); 1835 1836 /* SfP and WsP don't seem to update the firmware version on file 1837 * so version checking is currently possible. 1838 */ 1839 switch (ver->hw_variant) { 1840 case 0x0b: /* SfP */ 1841 case 0x0c: /* WsP */ 1842 return 0; 1843 } 1844 1845 /* Proceed to download to check if the version matches */ 1846 goto download; 1847 } 1848 1849 /* Read the secure boot parameters to identify the operating 1850 * details of the bootloader. 1851 */ 1852 err = btintel_read_boot_params(hdev, params); 1853 if (err) 1854 return err; 1855 1856 /* It is required that every single firmware fragment is acknowledged 1857 * with a command complete event. If the boot parameters indicate 1858 * that this bootloader does not send them, then abort the setup. 1859 */ 1860 if (params->limited_cce != 0x00) { 1861 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", 1862 params->limited_cce); 1863 return -EINVAL; 1864 } 1865 1866 /* If the OTP has no valid Bluetooth device address, then there will 1867 * also be no valid address for the operational firmware. 1868 */ 1869 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { 1870 bt_dev_info(hdev, "No device address configured"); 1871 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 1872 } 1873 1874 download: 1875 /* With this Intel bootloader only the hardware variant and device 1876 * revision information are used to select the right firmware for SfP 1877 * and WsP. 1878 * 1879 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. 1880 * 1881 * Currently the supported hardware variants are: 1882 * 11 (0x0b) for iBT3.0 (LnP/SfP) 1883 * 12 (0x0c) for iBT3.5 (WsP) 1884 * 1885 * For ThP/JfP and for future SKU's, the FW name varies based on HW 1886 * variant, HW revision and FW revision, as these are dependent on CNVi 1887 * and RF Combination. 1888 * 1889 * 17 (0x11) for iBT3.5 (JfP) 1890 * 18 (0x12) for iBT3.5 (ThP) 1891 * 1892 * The firmware file name for these will be 1893 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. 1894 * 1895 */ 1896 err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi"); 1897 if (err < 0) { 1898 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1899 /* Firmware has already been loaded */ 1900 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1901 return 0; 1902 } 1903 1904 bt_dev_err(hdev, "Unsupported Intel firmware naming"); 1905 return -EINVAL; 1906 } 1907 1908 err = firmware_request_nowarn(&fw, fwname, &hdev->dev); 1909 if (err < 0) { 1910 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1911 /* Firmware has already been loaded */ 1912 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1913 return 0; 1914 } 1915 1916 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", 1917 fwname, err); 1918 return err; 1919 } 1920 1921 bt_dev_info(hdev, "Found device firmware: %s", fwname); 1922 1923 if (fw->size < 644) { 1924 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 1925 fw->size); 1926 err = -EBADF; 1927 goto done; 1928 } 1929 1930 calltime = ktime_get(); 1931 1932 btintel_set_flag(hdev, INTEL_DOWNLOADING); 1933 1934 /* Start firmware downloading and get boot parameter */ 1935 err = btintel_download_firmware(hdev, ver, fw, boot_param); 1936 if (err < 0) { 1937 if (err == -EALREADY) { 1938 /* Firmware has already been loaded */ 1939 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1940 err = 0; 1941 goto done; 1942 } 1943 1944 /* When FW download fails, send Intel Reset to retry 1945 * FW download. 1946 */ 1947 btintel_reset_to_bootloader(hdev); 1948 goto done; 1949 } 1950 1951 /* Before switching the device into operational mode and with that 1952 * booting the loaded firmware, wait for the bootloader notification 1953 * that all fragments have been successfully received. 1954 * 1955 * When the event processing receives the notification, then the 1956 * INTEL_DOWNLOADING flag will be cleared. 1957 * 1958 * The firmware loading should not take longer than 5 seconds 1959 * and thus just timeout if that happens and fail the setup 1960 * of this device. 1961 */ 1962 err = btintel_download_wait(hdev, calltime, 5000); 1963 if (err == -ETIMEDOUT) 1964 btintel_reset_to_bootloader(hdev); 1965 1966 done: 1967 release_firmware(fw); 1968 return err; 1969 } 1970 1971 static int btintel_bootloader_setup(struct hci_dev *hdev, 1972 struct intel_version *ver) 1973 { 1974 struct intel_version new_ver; 1975 struct intel_boot_params params; 1976 u32 boot_param; 1977 char ddcname[64]; 1978 int err; 1979 1980 BT_DBG("%s", hdev->name); 1981 1982 /* Set the default boot parameter to 0x0 and it is updated to 1983 * SKU specific boot parameter after reading Intel_Write_Boot_Params 1984 * command while downloading the firmware. 1985 */ 1986 boot_param = 0x00000000; 1987 1988 btintel_set_flag(hdev, INTEL_BOOTLOADER); 1989 1990 err = btintel_download_fw(hdev, ver, ¶ms, &boot_param); 1991 if (err) 1992 return err; 1993 1994 /* controller is already having an operational firmware */ 1995 if (ver->fw_variant == 0x23) 1996 goto finish; 1997 1998 err = btintel_boot(hdev, boot_param); 1999 if (err) 2000 return err; 2001 2002 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2003 2004 err = btintel_get_fw_name(ver, ¶ms, ddcname, 2005 sizeof(ddcname), "ddc"); 2006 2007 if (err < 0) { 2008 bt_dev_err(hdev, "Unsupported Intel firmware naming"); 2009 } else { 2010 /* Once the device is running in operational mode, it needs to 2011 * apply the device configuration (DDC) parameters. 2012 * 2013 * The device can work without DDC parameters, so even if it 2014 * fails to load the file, no need to fail the setup. 2015 */ 2016 btintel_load_ddc_config(hdev, ddcname); 2017 } 2018 2019 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); 2020 2021 /* Read the Intel version information after loading the FW */ 2022 err = btintel_read_version(hdev, &new_ver); 2023 if (err) 2024 return err; 2025 2026 btintel_version_info(hdev, &new_ver); 2027 2028 finish: 2029 /* Set the event mask for Intel specific vendor events. This enables 2030 * a few extra events that are useful during general operation. It 2031 * does not enable any debugging related events. 2032 * 2033 * The device will function correctly without these events enabled 2034 * and thus no need to fail the setup. 2035 */ 2036 btintel_set_event_mask(hdev, false); 2037 2038 return 0; 2039 } 2040 2041 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, 2042 char *fw_name, size_t len, 2043 const char *suffix) 2044 { 2045 /* The firmware file name for new generation controllers will be 2046 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step> 2047 */ 2048 snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s", 2049 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), 2050 INTEL_CNVX_TOP_STEP(ver->cnvi_top)), 2051 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), 2052 INTEL_CNVX_TOP_STEP(ver->cnvr_top)), 2053 suffix); 2054 } 2055 2056 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, 2057 struct intel_version_tlv *ver, 2058 u32 *boot_param) 2059 { 2060 const struct firmware *fw; 2061 char fwname[64]; 2062 int err; 2063 ktime_t calltime; 2064 2065 if (!ver || !boot_param) 2066 return -EINVAL; 2067 2068 /* The firmware variant determines if the device is in bootloader 2069 * mode or is running operational firmware. The value 0x03 identifies 2070 * the bootloader and the value 0x23 identifies the operational 2071 * firmware. 2072 * 2073 * When the operational firmware is already present, then only 2074 * the check for valid Bluetooth device address is needed. This 2075 * determines if the device will be added as configured or 2076 * unconfigured controller. 2077 * 2078 * It is not possible to use the Secure Boot Parameters in this 2079 * case since that command is only available in bootloader mode. 2080 */ 2081 if (ver->img_type == 0x03) { 2082 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2083 btintel_check_bdaddr(hdev); 2084 } else { 2085 /* 2086 * Check for valid bd address in boot loader mode. Device 2087 * will be marked as unconfigured if empty bd address is 2088 * found. 2089 */ 2090 if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) { 2091 bt_dev_info(hdev, "No device address configured"); 2092 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 2093 } 2094 } 2095 2096 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi"); 2097 err = firmware_request_nowarn(&fw, fwname, &hdev->dev); 2098 if (err < 0) { 2099 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 2100 /* Firmware has already been loaded */ 2101 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 2102 return 0; 2103 } 2104 2105 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", 2106 fwname, err); 2107 2108 return err; 2109 } 2110 2111 bt_dev_info(hdev, "Found device firmware: %s", fwname); 2112 2113 if (fw->size < 644) { 2114 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 2115 fw->size); 2116 err = -EBADF; 2117 goto done; 2118 } 2119 2120 calltime = ktime_get(); 2121 2122 btintel_set_flag(hdev, INTEL_DOWNLOADING); 2123 2124 /* Start firmware downloading and get boot parameter */ 2125 err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, 2126 INTEL_HW_VARIANT(ver->cnvi_bt), 2127 ver->sbe_type); 2128 if (err < 0) { 2129 if (err == -EALREADY) { 2130 /* Firmware has already been loaded */ 2131 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 2132 err = 0; 2133 goto done; 2134 } 2135 2136 /* When FW download fails, send Intel Reset to retry 2137 * FW download. 2138 */ 2139 btintel_reset_to_bootloader(hdev); 2140 goto done; 2141 } 2142 2143 /* Before switching the device into operational mode and with that 2144 * booting the loaded firmware, wait for the bootloader notification 2145 * that all fragments have been successfully received. 2146 * 2147 * When the event processing receives the notification, then the 2148 * BTUSB_DOWNLOADING flag will be cleared. 2149 * 2150 * The firmware loading should not take longer than 5 seconds 2151 * and thus just timeout if that happens and fail the setup 2152 * of this device. 2153 */ 2154 err = btintel_download_wait(hdev, calltime, 5000); 2155 if (err == -ETIMEDOUT) 2156 btintel_reset_to_bootloader(hdev); 2157 2158 done: 2159 release_firmware(fw); 2160 return err; 2161 } 2162 2163 static int btintel_get_codec_config_data(struct hci_dev *hdev, 2164 __u8 link, struct bt_codec *codec, 2165 __u8 *ven_len, __u8 **ven_data) 2166 { 2167 int err = 0; 2168 2169 if (!ven_data || !ven_len) 2170 return -EINVAL; 2171 2172 *ven_len = 0; 2173 *ven_data = NULL; 2174 2175 if (link != ESCO_LINK) { 2176 bt_dev_err(hdev, "Invalid link type(%u)", link); 2177 return -EINVAL; 2178 } 2179 2180 *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL); 2181 if (!*ven_data) { 2182 err = -ENOMEM; 2183 goto error; 2184 } 2185 2186 /* supports only CVSD and mSBC offload codecs */ 2187 switch (codec->id) { 2188 case 0x02: 2189 **ven_data = 0x00; 2190 break; 2191 case 0x05: 2192 **ven_data = 0x01; 2193 break; 2194 default: 2195 err = -EINVAL; 2196 bt_dev_err(hdev, "Invalid codec id(%u)", codec->id); 2197 goto error; 2198 } 2199 /* codec and its capabilities are pre-defined to ids 2200 * preset id = 0x00 represents CVSD codec with sampling rate 8K 2201 * preset id = 0x01 represents mSBC codec with sampling rate 16K 2202 */ 2203 *ven_len = sizeof(__u8); 2204 return err; 2205 2206 error: 2207 kfree(*ven_data); 2208 *ven_data = NULL; 2209 return err; 2210 } 2211 2212 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) 2213 { 2214 /* Intel uses 1 as data path id for all the usecases */ 2215 *data_path_id = 1; 2216 return 0; 2217 } 2218 2219 static int btintel_configure_offload(struct hci_dev *hdev) 2220 { 2221 struct sk_buff *skb; 2222 int err = 0; 2223 struct intel_offload_use_cases *use_cases; 2224 2225 skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT); 2226 if (IS_ERR(skb)) { 2227 bt_dev_err(hdev, "Reading offload use cases failed (%ld)", 2228 PTR_ERR(skb)); 2229 return PTR_ERR(skb); 2230 } 2231 2232 if (skb->len < sizeof(*use_cases)) { 2233 err = -EIO; 2234 goto error; 2235 } 2236 2237 use_cases = (void *)skb->data; 2238 2239 if (use_cases->status) { 2240 err = -bt_to_errno(skb->data[0]); 2241 goto error; 2242 } 2243 2244 if (use_cases->preset[0] & 0x03) { 2245 hdev->get_data_path_id = btintel_get_data_path_id; 2246 hdev->get_codec_config_data = btintel_get_codec_config_data; 2247 } 2248 error: 2249 kfree_skb(skb); 2250 return err; 2251 } 2252 2253 static int btintel_bootloader_setup_tlv(struct hci_dev *hdev, 2254 struct intel_version_tlv *ver) 2255 { 2256 u32 boot_param; 2257 char ddcname[64]; 2258 int err; 2259 struct intel_version_tlv new_ver; 2260 2261 bt_dev_dbg(hdev, ""); 2262 2263 /* Set the default boot parameter to 0x0 and it is updated to 2264 * SKU specific boot parameter after reading Intel_Write_Boot_Params 2265 * command while downloading the firmware. 2266 */ 2267 boot_param = 0x00000000; 2268 2269 btintel_set_flag(hdev, INTEL_BOOTLOADER); 2270 2271 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param); 2272 if (err) 2273 return err; 2274 2275 /* check if controller is already having an operational firmware */ 2276 if (ver->img_type == 0x03) 2277 goto finish; 2278 2279 err = btintel_boot(hdev, boot_param); 2280 if (err) 2281 return err; 2282 2283 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2284 2285 btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc"); 2286 /* Once the device is running in operational mode, it needs to 2287 * apply the device configuration (DDC) parameters. 2288 * 2289 * The device can work without DDC parameters, so even if it 2290 * fails to load the file, no need to fail the setup. 2291 */ 2292 btintel_load_ddc_config(hdev, ddcname); 2293 2294 /* Read supported use cases and set callbacks to fetch datapath id */ 2295 btintel_configure_offload(hdev); 2296 2297 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); 2298 2299 /* Read the Intel version information after loading the FW */ 2300 err = btintel_read_version_tlv(hdev, &new_ver); 2301 if (err) 2302 return err; 2303 2304 btintel_version_info_tlv(hdev, &new_ver); 2305 2306 finish: 2307 /* Set the event mask for Intel specific vendor events. This enables 2308 * a few extra events that are useful during general operation. It 2309 * does not enable any debugging related events. 2310 * 2311 * The device will function correctly without these events enabled 2312 * and thus no need to fail the setup. 2313 */ 2314 btintel_set_event_mask(hdev, false); 2315 2316 return 0; 2317 } 2318 2319 static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) 2320 { 2321 switch (hw_variant) { 2322 /* Legacy bootloader devices that supports MSFT Extension */ 2323 case 0x11: /* JfP */ 2324 case 0x12: /* ThP */ 2325 case 0x13: /* HrP */ 2326 case 0x14: /* CcP */ 2327 /* All Intel new genration controllers support the Microsoft vendor 2328 * extension are using 0xFC1E for VsMsftOpCode. 2329 */ 2330 case 0x17: 2331 case 0x18: 2332 case 0x19: 2333 hci_set_msft_opcode(hdev, 0xFC1E); 2334 break; 2335 default: 2336 /* Not supported */ 2337 break; 2338 } 2339 } 2340 2341 static int btintel_setup_combined(struct hci_dev *hdev) 2342 { 2343 const u8 param[1] = { 0xFF }; 2344 struct intel_version ver; 2345 struct intel_version_tlv ver_tlv; 2346 struct sk_buff *skb; 2347 int err; 2348 2349 BT_DBG("%s", hdev->name); 2350 2351 /* The some controllers have a bug with the first HCI command sent to it 2352 * returning number of completed commands as zero. This would stall the 2353 * command processing in the Bluetooth core. 2354 * 2355 * As a workaround, send HCI Reset command first which will reset the 2356 * number of completed commands and allow normal command processing 2357 * from now on. 2358 * 2359 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe 2360 * in the SW_RFKILL ON state as a workaround of fixing LED issue during 2361 * the shutdown() procedure, and once the device is in SW_RFKILL ON 2362 * state, the only way to exit out of it is sending the HCI_Reset 2363 * command. 2364 */ 2365 if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) || 2366 btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { 2367 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 2368 HCI_INIT_TIMEOUT); 2369 if (IS_ERR(skb)) { 2370 bt_dev_err(hdev, 2371 "sending initial HCI reset failed (%ld)", 2372 PTR_ERR(skb)); 2373 return PTR_ERR(skb); 2374 } 2375 kfree_skb(skb); 2376 } 2377 2378 /* Starting from TyP device, the command parameter and response are 2379 * changed even though the OCF for HCI_Intel_Read_Version command 2380 * remains same. The legacy devices can handle even if the 2381 * command has a parameter and returns a correct version information. 2382 * So, it uses new format to support both legacy and new format. 2383 */ 2384 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 2385 if (IS_ERR(skb)) { 2386 bt_dev_err(hdev, "Reading Intel version command failed (%ld)", 2387 PTR_ERR(skb)); 2388 return PTR_ERR(skb); 2389 } 2390 2391 /* Check the status */ 2392 if (skb->data[0]) { 2393 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 2394 skb->data[0]); 2395 err = -EIO; 2396 goto exit_error; 2397 } 2398 2399 /* Apply the common HCI quirks for Intel device */ 2400 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 2401 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 2402 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 2403 2404 /* Set up the quality report callback for Intel devices */ 2405 hdev->set_quality_report = btintel_set_quality_report; 2406 2407 /* For Legacy device, check the HW platform value and size */ 2408 if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { 2409 bt_dev_dbg(hdev, "Read the legacy Intel version information"); 2410 2411 memcpy(&ver, skb->data, sizeof(ver)); 2412 2413 /* Display version information */ 2414 btintel_version_info(hdev, &ver); 2415 2416 /* Check for supported iBT hardware variants of this firmware 2417 * loading method. 2418 * 2419 * This check has been put in place to ensure correct forward 2420 * compatibility options when newer hardware variants come 2421 * along. 2422 */ 2423 switch (ver.hw_variant) { 2424 case 0x07: /* WP */ 2425 case 0x08: /* StP */ 2426 /* Legacy ROM product */ 2427 btintel_set_flag(hdev, INTEL_ROM_LEGACY); 2428 2429 /* Apply the device specific HCI quirks 2430 * 2431 * WBS for SdP - SdP and Stp have a same hw_varaint but 2432 * different fw_variant 2433 */ 2434 if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22) 2435 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2436 &hdev->quirks); 2437 2438 err = btintel_legacy_rom_setup(hdev, &ver); 2439 break; 2440 case 0x0b: /* SfP */ 2441 case 0x0c: /* WsP */ 2442 case 0x11: /* JfP */ 2443 case 0x12: /* ThP */ 2444 case 0x13: /* HrP */ 2445 case 0x14: /* CcP */ 2446 /* Apply the device specific HCI quirks 2447 * 2448 * All Legacy bootloader devices support WBS 2449 */ 2450 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2451 &hdev->quirks); 2452 2453 /* Valid LE States quirk for JfP/ThP familiy */ 2454 if (ver.hw_variant == 0x11 || ver.hw_variant == 0x12) 2455 set_bit(HCI_QUIRK_VALID_LE_STATES, 2456 &hdev->quirks); 2457 2458 /* Setup MSFT Extension support */ 2459 btintel_set_msft_opcode(hdev, ver.hw_variant); 2460 2461 err = btintel_bootloader_setup(hdev, &ver); 2462 break; 2463 default: 2464 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2465 ver.hw_variant); 2466 err = -EINVAL; 2467 } 2468 2469 goto exit_error; 2470 } 2471 2472 /* memset ver_tlv to start with clean state as few fields are exclusive 2473 * to bootloader mode and are not populated in operational mode 2474 */ 2475 memset(&ver_tlv, 0, sizeof(ver_tlv)); 2476 /* For TLV type device, parse the tlv data */ 2477 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); 2478 if (err) { 2479 bt_dev_err(hdev, "Failed to parse TLV version information"); 2480 goto exit_error; 2481 } 2482 2483 if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { 2484 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 2485 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); 2486 err = -EINVAL; 2487 goto exit_error; 2488 } 2489 2490 /* Check for supported iBT hardware variants of this firmware 2491 * loading method. 2492 * 2493 * This check has been put in place to ensure correct forward 2494 * compatibility options when newer hardware variants come 2495 * along. 2496 */ 2497 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { 2498 case 0x11: /* JfP */ 2499 case 0x12: /* ThP */ 2500 case 0x13: /* HrP */ 2501 case 0x14: /* CcP */ 2502 /* Some legacy bootloader devices starting from JfP, 2503 * the operational firmware supports both old and TLV based 2504 * HCI_Intel_Read_Version command based on the command 2505 * parameter. 2506 * 2507 * For upgrading firmware case, the TLV based version cannot 2508 * be used because the firmware filename for legacy bootloader 2509 * is based on the old format. 2510 * 2511 * Also, it is not easy to convert TLV based version from the 2512 * legacy version format. 2513 * 2514 * So, as a workaround for those devices, use the legacy 2515 * HCI_Intel_Read_Version to get the version information and 2516 * run the legacy bootloader setup. 2517 */ 2518 err = btintel_read_version(hdev, &ver); 2519 if (err) 2520 return err; 2521 2522 /* Apply the device specific HCI quirks 2523 * 2524 * All Legacy bootloader devices support WBS 2525 */ 2526 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 2527 2528 /* Valid LE States quirk for JfP/ThP familiy */ 2529 if (ver.hw_variant == 0x11 || ver.hw_variant == 0x12) 2530 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2531 2532 /* Setup MSFT Extension support */ 2533 btintel_set_msft_opcode(hdev, ver.hw_variant); 2534 2535 err = btintel_bootloader_setup(hdev, &ver); 2536 break; 2537 case 0x17: 2538 case 0x18: 2539 case 0x19: 2540 /* Display version information of TLV type */ 2541 btintel_version_info_tlv(hdev, &ver_tlv); 2542 2543 /* Apply the device specific HCI quirks for TLV based devices 2544 * 2545 * All TLV based devices support WBS 2546 */ 2547 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 2548 2549 /* Valid LE States quirk for GfP */ 2550 if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18) 2551 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2552 2553 /* Setup MSFT Extension support */ 2554 btintel_set_msft_opcode(hdev, 2555 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2556 2557 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); 2558 break; 2559 default: 2560 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2561 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2562 return -EINVAL; 2563 } 2564 2565 exit_error: 2566 kfree_skb(skb); 2567 2568 return err; 2569 } 2570 2571 static int btintel_shutdown_combined(struct hci_dev *hdev) 2572 { 2573 struct sk_buff *skb; 2574 int ret; 2575 2576 /* Send HCI Reset to the controller to stop any BT activity which 2577 * were triggered. This will help to save power and maintain the 2578 * sync b/w Host and controller 2579 */ 2580 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 2581 if (IS_ERR(skb)) { 2582 bt_dev_err(hdev, "HCI reset during shutdown failed"); 2583 return PTR_ERR(skb); 2584 } 2585 kfree_skb(skb); 2586 2587 2588 /* Some platforms have an issue with BT LED when the interface is 2589 * down or BT radio is turned off, which takes 5 seconds to BT LED 2590 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the 2591 * device in the RFKILL ON state which turns off the BT LED immediately. 2592 */ 2593 if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { 2594 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT); 2595 if (IS_ERR(skb)) { 2596 ret = PTR_ERR(skb); 2597 bt_dev_err(hdev, "turning off Intel device LED failed"); 2598 return ret; 2599 } 2600 kfree_skb(skb); 2601 } 2602 2603 return 0; 2604 } 2605 2606 int btintel_configure_setup(struct hci_dev *hdev) 2607 { 2608 hdev->manufacturer = 2; 2609 hdev->setup = btintel_setup_combined; 2610 hdev->shutdown = btintel_shutdown_combined; 2611 hdev->hw_error = btintel_hw_error; 2612 hdev->set_diag = btintel_set_diag_combined; 2613 hdev->set_bdaddr = btintel_set_bdaddr; 2614 2615 return 0; 2616 } 2617 EXPORT_SYMBOL_GPL(btintel_configure_setup); 2618 2619 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) 2620 { 2621 const struct intel_bootup *evt = ptr; 2622 2623 if (len != sizeof(*evt)) 2624 return; 2625 2626 if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) 2627 btintel_wake_up_flag(hdev, INTEL_BOOTING); 2628 } 2629 EXPORT_SYMBOL_GPL(btintel_bootup); 2630 2631 void btintel_secure_send_result(struct hci_dev *hdev, 2632 const void *ptr, unsigned int len) 2633 { 2634 const struct intel_secure_send_result *evt = ptr; 2635 2636 if (len != sizeof(*evt)) 2637 return; 2638 2639 if (evt->result) 2640 btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); 2641 2642 if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && 2643 btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) 2644 btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); 2645 } 2646 EXPORT_SYMBOL_GPL(btintel_secure_send_result); 2647 2648 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 2649 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION); 2650 MODULE_VERSION(VERSION); 2651 MODULE_LICENSE("GPL"); 2652 MODULE_FIRMWARE("intel/ibt-11-5.sfi"); 2653 MODULE_FIRMWARE("intel/ibt-11-5.ddc"); 2654 MODULE_FIRMWARE("intel/ibt-12-16.sfi"); 2655 MODULE_FIRMWARE("intel/ibt-12-16.ddc"); 2656