xref: /openbmc/linux/drivers/bluetooth/btintel.c (revision 7e8a0f10)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <asm/unaligned.h>
13 
14 #include <net/bluetooth/bluetooth.h>
15 #include <net/bluetooth/hci_core.h>
16 
17 #include "btintel.h"
18 
19 #define VERSION "0.1"
20 
21 #define BDADDR_INTEL (&(bdaddr_t) {{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
22 
23 int btintel_check_bdaddr(struct hci_dev *hdev)
24 {
25 	struct hci_rp_read_bd_addr *bda;
26 	struct sk_buff *skb;
27 
28 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
29 			     HCI_INIT_TIMEOUT);
30 	if (IS_ERR(skb)) {
31 		int err = PTR_ERR(skb);
32 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
33 			   err);
34 		return err;
35 	}
36 
37 	if (skb->len != sizeof(*bda)) {
38 		bt_dev_err(hdev, "Intel device address length mismatch");
39 		kfree_skb(skb);
40 		return -EIO;
41 	}
42 
43 	bda = (struct hci_rp_read_bd_addr *)skb->data;
44 
45 	/* For some Intel based controllers, the default Bluetooth device
46 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
47 	 * fully operational, but have the danger of duplicate addresses
48 	 * and that in turn can cause problems with Bluetooth operation.
49 	 */
50 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
51 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
52 			   &bda->bdaddr);
53 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
54 	}
55 
56 	kfree_skb(skb);
57 
58 	return 0;
59 }
60 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
61 
62 int btintel_enter_mfg(struct hci_dev *hdev)
63 {
64 	static const u8 param[] = { 0x01, 0x00 };
65 	struct sk_buff *skb;
66 
67 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
68 	if (IS_ERR(skb)) {
69 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
70 			   PTR_ERR(skb));
71 		return PTR_ERR(skb);
72 	}
73 	kfree_skb(skb);
74 
75 	return 0;
76 }
77 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
78 
79 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
80 {
81 	u8 param[] = { 0x00, 0x00 };
82 	struct sk_buff *skb;
83 
84 	/* The 2nd command parameter specifies the manufacturing exit method:
85 	 * 0x00: Just disable the manufacturing mode (0x00).
86 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
87 	 * 0x02: Disable manufacturing mode and reset with patches activated.
88 	 */
89 	if (reset)
90 		param[1] |= patched ? 0x02 : 0x01;
91 
92 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
93 	if (IS_ERR(skb)) {
94 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
95 			   PTR_ERR(skb));
96 		return PTR_ERR(skb);
97 	}
98 	kfree_skb(skb);
99 
100 	return 0;
101 }
102 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
103 
104 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
105 {
106 	struct sk_buff *skb;
107 	int err;
108 
109 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
110 	if (IS_ERR(skb)) {
111 		err = PTR_ERR(skb);
112 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
113 			   err);
114 		return err;
115 	}
116 	kfree_skb(skb);
117 
118 	return 0;
119 }
120 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
121 
122 int btintel_set_diag(struct hci_dev *hdev, bool enable)
123 {
124 	struct sk_buff *skb;
125 	u8 param[3];
126 	int err;
127 
128 	if (enable) {
129 		param[0] = 0x03;
130 		param[1] = 0x03;
131 		param[2] = 0x03;
132 	} else {
133 		param[0] = 0x00;
134 		param[1] = 0x00;
135 		param[2] = 0x00;
136 	}
137 
138 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
139 	if (IS_ERR(skb)) {
140 		err = PTR_ERR(skb);
141 		if (err == -ENODATA)
142 			goto done;
143 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
144 			   err);
145 		return err;
146 	}
147 	kfree_skb(skb);
148 
149 done:
150 	btintel_set_event_mask(hdev, enable);
151 	return 0;
152 }
153 EXPORT_SYMBOL_GPL(btintel_set_diag);
154 
155 int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
156 {
157 	int err, ret;
158 
159 	err = btintel_enter_mfg(hdev);
160 	if (err)
161 		return err;
162 
163 	ret = btintel_set_diag(hdev, enable);
164 
165 	err = btintel_exit_mfg(hdev, false, false);
166 	if (err)
167 		return err;
168 
169 	return ret;
170 }
171 EXPORT_SYMBOL_GPL(btintel_set_diag_mfg);
172 
173 void btintel_hw_error(struct hci_dev *hdev, u8 code)
174 {
175 	struct sk_buff *skb;
176 	u8 type = 0x00;
177 
178 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
179 
180 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
181 	if (IS_ERR(skb)) {
182 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
183 			   PTR_ERR(skb));
184 		return;
185 	}
186 	kfree_skb(skb);
187 
188 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
189 	if (IS_ERR(skb)) {
190 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
191 			   PTR_ERR(skb));
192 		return;
193 	}
194 
195 	if (skb->len != 13) {
196 		bt_dev_err(hdev, "Exception info size mismatch");
197 		kfree_skb(skb);
198 		return;
199 	}
200 
201 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
202 
203 	kfree_skb(skb);
204 }
205 EXPORT_SYMBOL_GPL(btintel_hw_error);
206 
207 void btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
208 {
209 	const char *variant;
210 
211 	switch (ver->fw_variant) {
212 	case 0x06:
213 		variant = "Bootloader";
214 		break;
215 	case 0x23:
216 		variant = "Firmware";
217 		break;
218 	default:
219 		return;
220 	}
221 
222 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
223 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
224 		    ver->fw_build_num, ver->fw_build_ww,
225 		    2000 + ver->fw_build_yy);
226 }
227 EXPORT_SYMBOL_GPL(btintel_version_info);
228 
229 int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
230 			const void *param)
231 {
232 	while (plen > 0) {
233 		struct sk_buff *skb;
234 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
235 
236 		cmd_param[0] = fragment_type;
237 		memcpy(cmd_param + 1, param, fragment_len);
238 
239 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
240 				     cmd_param, HCI_INIT_TIMEOUT);
241 		if (IS_ERR(skb))
242 			return PTR_ERR(skb);
243 
244 		kfree_skb(skb);
245 
246 		plen -= fragment_len;
247 		param += fragment_len;
248 	}
249 
250 	return 0;
251 }
252 EXPORT_SYMBOL_GPL(btintel_secure_send);
253 
254 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
255 {
256 	const struct firmware *fw;
257 	struct sk_buff *skb;
258 	const u8 *fw_ptr;
259 	int err;
260 
261 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
262 	if (err < 0) {
263 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
264 			   ddc_name, err);
265 		return err;
266 	}
267 
268 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
269 
270 	fw_ptr = fw->data;
271 
272 	/* DDC file contains one or more DDC structure which has
273 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
274 	 */
275 	while (fw->size > fw_ptr - fw->data) {
276 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
277 
278 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
279 				     HCI_INIT_TIMEOUT);
280 		if (IS_ERR(skb)) {
281 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
282 				   PTR_ERR(skb));
283 			release_firmware(fw);
284 			return PTR_ERR(skb);
285 		}
286 
287 		fw_ptr += cmd_plen;
288 		kfree_skb(skb);
289 	}
290 
291 	release_firmware(fw);
292 
293 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
294 
295 	return 0;
296 }
297 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
298 
299 int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
300 {
301 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
302 	struct sk_buff *skb;
303 	int err;
304 
305 	if (debug)
306 		mask[1] |= 0x62;
307 
308 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
309 	if (IS_ERR(skb)) {
310 		err = PTR_ERR(skb);
311 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
312 		return err;
313 	}
314 	kfree_skb(skb);
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(btintel_set_event_mask);
319 
320 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
321 {
322 	int err, ret;
323 
324 	err = btintel_enter_mfg(hdev);
325 	if (err)
326 		return err;
327 
328 	ret = btintel_set_event_mask(hdev, debug);
329 
330 	err = btintel_exit_mfg(hdev, false, false);
331 	if (err)
332 		return err;
333 
334 	return ret;
335 }
336 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
337 
338 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
339 {
340 	struct sk_buff *skb;
341 
342 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
343 	if (IS_ERR(skb)) {
344 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
345 			   PTR_ERR(skb));
346 		return PTR_ERR(skb);
347 	}
348 
349 	if (skb->len != sizeof(*ver)) {
350 		bt_dev_err(hdev, "Intel version event size mismatch");
351 		kfree_skb(skb);
352 		return -EILSEQ;
353 	}
354 
355 	memcpy(ver, skb->data, sizeof(*ver));
356 
357 	kfree_skb(skb);
358 
359 	return 0;
360 }
361 EXPORT_SYMBOL_GPL(btintel_read_version);
362 
363 /* ------- REGMAP IBT SUPPORT ------- */
364 
365 #define IBT_REG_MODE_8BIT  0x00
366 #define IBT_REG_MODE_16BIT 0x01
367 #define IBT_REG_MODE_32BIT 0x02
368 
369 struct regmap_ibt_context {
370 	struct hci_dev *hdev;
371 	__u16 op_write;
372 	__u16 op_read;
373 };
374 
375 struct ibt_cp_reg_access {
376 	__le32  addr;
377 	__u8    mode;
378 	__u8    len;
379 	__u8    data[0];
380 } __packed;
381 
382 struct ibt_rp_reg_access {
383 	__u8    status;
384 	__le32  addr;
385 	__u8    data[0];
386 } __packed;
387 
388 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
389 			   void *val, size_t val_size)
390 {
391 	struct regmap_ibt_context *ctx = context;
392 	struct ibt_cp_reg_access cp;
393 	struct ibt_rp_reg_access *rp;
394 	struct sk_buff *skb;
395 	int err = 0;
396 
397 	if (reg_size != sizeof(__le32))
398 		return -EINVAL;
399 
400 	switch (val_size) {
401 	case 1:
402 		cp.mode = IBT_REG_MODE_8BIT;
403 		break;
404 	case 2:
405 		cp.mode = IBT_REG_MODE_16BIT;
406 		break;
407 	case 4:
408 		cp.mode = IBT_REG_MODE_32BIT;
409 		break;
410 	default:
411 		return -EINVAL;
412 	}
413 
414 	/* regmap provides a little-endian formatted addr */
415 	cp.addr = *(__le32 *)addr;
416 	cp.len = val_size;
417 
418 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
419 
420 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
421 			   HCI_CMD_TIMEOUT);
422 	if (IS_ERR(skb)) {
423 		err = PTR_ERR(skb);
424 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
425 			   le32_to_cpu(cp.addr), err);
426 		return err;
427 	}
428 
429 	if (skb->len != sizeof(*rp) + val_size) {
430 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
431 			   le32_to_cpu(cp.addr));
432 		err = -EINVAL;
433 		goto done;
434 	}
435 
436 	rp = (struct ibt_rp_reg_access *)skb->data;
437 
438 	if (rp->addr != cp.addr) {
439 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
440 			   le32_to_cpu(rp->addr));
441 		err = -EINVAL;
442 		goto done;
443 	}
444 
445 	memcpy(val, rp->data, val_size);
446 
447 done:
448 	kfree_skb(skb);
449 	return err;
450 }
451 
452 static int regmap_ibt_gather_write(void *context,
453 				   const void *addr, size_t reg_size,
454 				   const void *val, size_t val_size)
455 {
456 	struct regmap_ibt_context *ctx = context;
457 	struct ibt_cp_reg_access *cp;
458 	struct sk_buff *skb;
459 	int plen = sizeof(*cp) + val_size;
460 	u8 mode;
461 	int err = 0;
462 
463 	if (reg_size != sizeof(__le32))
464 		return -EINVAL;
465 
466 	switch (val_size) {
467 	case 1:
468 		mode = IBT_REG_MODE_8BIT;
469 		break;
470 	case 2:
471 		mode = IBT_REG_MODE_16BIT;
472 		break;
473 	case 4:
474 		mode = IBT_REG_MODE_32BIT;
475 		break;
476 	default:
477 		return -EINVAL;
478 	}
479 
480 	cp = kmalloc(plen, GFP_KERNEL);
481 	if (!cp)
482 		return -ENOMEM;
483 
484 	/* regmap provides a little-endian formatted addr/value */
485 	cp->addr = *(__le32 *)addr;
486 	cp->mode = mode;
487 	cp->len = val_size;
488 	memcpy(&cp->data, val, val_size);
489 
490 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
491 
492 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
493 	if (IS_ERR(skb)) {
494 		err = PTR_ERR(skb);
495 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
496 			   le32_to_cpu(cp->addr), err);
497 		goto done;
498 	}
499 	kfree_skb(skb);
500 
501 done:
502 	kfree(cp);
503 	return err;
504 }
505 
506 static int regmap_ibt_write(void *context, const void *data, size_t count)
507 {
508 	/* data contains register+value, since we only support 32bit addr,
509 	 * minimum data size is 4 bytes.
510 	 */
511 	if (WARN_ONCE(count < 4, "Invalid register access"))
512 		return -EINVAL;
513 
514 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
515 }
516 
517 static void regmap_ibt_free_context(void *context)
518 {
519 	kfree(context);
520 }
521 
522 static struct regmap_bus regmap_ibt = {
523 	.read = regmap_ibt_read,
524 	.write = regmap_ibt_write,
525 	.gather_write = regmap_ibt_gather_write,
526 	.free_context = regmap_ibt_free_context,
527 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
528 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
529 };
530 
531 /* Config is the same for all register regions */
532 static const struct regmap_config regmap_ibt_cfg = {
533 	.name      = "btintel_regmap",
534 	.reg_bits  = 32,
535 	.val_bits  = 32,
536 };
537 
538 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
539 				   u16 opcode_write)
540 {
541 	struct regmap_ibt_context *ctx;
542 
543 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
544 		    opcode_write);
545 
546 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
547 	if (!ctx)
548 		return ERR_PTR(-ENOMEM);
549 
550 	ctx->op_read = opcode_read;
551 	ctx->op_write = opcode_write;
552 	ctx->hdev = hdev;
553 
554 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
555 }
556 EXPORT_SYMBOL_GPL(btintel_regmap_init);
557 
558 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
559 {
560 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
561 	struct sk_buff *skb;
562 
563 	params.boot_param = cpu_to_le32(boot_param);
564 
565 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
566 			     HCI_INIT_TIMEOUT);
567 	if (IS_ERR(skb)) {
568 		bt_dev_err(hdev, "Failed to send Intel Reset command");
569 		return PTR_ERR(skb);
570 	}
571 
572 	kfree_skb(skb);
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
577 
578 int btintel_read_boot_params(struct hci_dev *hdev,
579 			     struct intel_boot_params *params)
580 {
581 	struct sk_buff *skb;
582 
583 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
584 	if (IS_ERR(skb)) {
585 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
586 			   PTR_ERR(skb));
587 		return PTR_ERR(skb);
588 	}
589 
590 	if (skb->len != sizeof(*params)) {
591 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
592 		kfree_skb(skb);
593 		return -EILSEQ;
594 	}
595 
596 	memcpy(params, skb->data, sizeof(*params));
597 
598 	kfree_skb(skb);
599 
600 	if (params->status) {
601 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
602 			   params->status);
603 		return -bt_to_errno(params->status);
604 	}
605 
606 	bt_dev_info(hdev, "Device revision is %u",
607 		    le16_to_cpu(params->dev_revid));
608 
609 	bt_dev_info(hdev, "Secure boot is %s",
610 		    params->secure_boot ? "enabled" : "disabled");
611 
612 	bt_dev_info(hdev, "OTP lock is %s",
613 		    params->otp_lock ? "enabled" : "disabled");
614 
615 	bt_dev_info(hdev, "API lock is %s",
616 		    params->api_lock ? "enabled" : "disabled");
617 
618 	bt_dev_info(hdev, "Debug lock is %s",
619 		    params->debug_lock ? "enabled" : "disabled");
620 
621 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
622 		    params->min_fw_build_nn, params->min_fw_build_cw,
623 		    2000 + params->min_fw_build_yy);
624 
625 	return 0;
626 }
627 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
628 
629 int btintel_download_firmware(struct hci_dev *hdev, const struct firmware *fw,
630 			      u32 *boot_param)
631 {
632 	int err;
633 	const u8 *fw_ptr;
634 	u32 frag_len;
635 
636 	/* Start the firmware download transaction with the Init fragment
637 	 * represented by the 128 bytes of CSS header.
638 	 */
639 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
640 	if (err < 0) {
641 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
642 		goto done;
643 	}
644 
645 	/* Send the 256 bytes of public key information from the firmware
646 	 * as the PKey fragment.
647 	 */
648 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
649 	if (err < 0) {
650 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
651 		goto done;
652 	}
653 
654 	/* Send the 256 bytes of signature information from the firmware
655 	 * as the Sign fragment.
656 	 */
657 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
658 	if (err < 0) {
659 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
660 		goto done;
661 	}
662 
663 	fw_ptr = fw->data + 644;
664 	frag_len = 0;
665 
666 	while (fw_ptr - fw->data < fw->size) {
667 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
668 
669 		/* Each SKU has a different reset parameter to use in the
670 		 * HCI_Intel_Reset command and it is embedded in the firmware
671 		 * data. So, instead of using static value per SKU, check
672 		 * the firmware data and save it for later use.
673 		 */
674 		if (le16_to_cpu(cmd->opcode) == 0xfc0e) {
675 			/* The boot parameter is the first 32-bit value
676 			 * and rest of 3 octets are reserved.
677 			 */
678 			*boot_param = get_unaligned_le32(fw_ptr + sizeof(*cmd));
679 
680 			bt_dev_dbg(hdev, "boot_param=0x%x", *boot_param);
681 		}
682 
683 		frag_len += sizeof(*cmd) + cmd->plen;
684 
685 		/* The parameter length of the secure send command requires
686 		 * a 4 byte alignment. It happens so that the firmware file
687 		 * contains proper Intel_NOP commands to align the fragments
688 		 * as needed.
689 		 *
690 		 * Send set of commands with 4 byte alignment from the
691 		 * firmware data buffer as a single Data fragement.
692 		 */
693 		if (!(frag_len % 4)) {
694 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
695 			if (err < 0) {
696 				bt_dev_err(hdev,
697 					   "Failed to send firmware data (%d)",
698 					   err);
699 				goto done;
700 			}
701 
702 			fw_ptr += frag_len;
703 			frag_len = 0;
704 		}
705 	}
706 
707 done:
708 	return err;
709 }
710 EXPORT_SYMBOL_GPL(btintel_download_firmware);
711 
712 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
713 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
714 MODULE_VERSION(VERSION);
715 MODULE_LICENSE("GPL");
716 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
717 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
718 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
719 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
720