xref: /openbmc/linux/drivers/bluetooth/btintel.c (revision 4b7ead03)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <asm/unaligned.h>
13 
14 #include <net/bluetooth/bluetooth.h>
15 #include <net/bluetooth/hci_core.h>
16 
17 #include "btintel.h"
18 
19 #define VERSION "0.1"
20 
21 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
22 #define RSA_HEADER_LEN		644
23 #define CSS_HEADER_OFFSET	8
24 #define ECDSA_OFFSET		644
25 #define ECDSA_HEADER_LEN	320
26 
27 int btintel_check_bdaddr(struct hci_dev *hdev)
28 {
29 	struct hci_rp_read_bd_addr *bda;
30 	struct sk_buff *skb;
31 
32 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
33 			     HCI_INIT_TIMEOUT);
34 	if (IS_ERR(skb)) {
35 		int err = PTR_ERR(skb);
36 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
37 			   err);
38 		return err;
39 	}
40 
41 	if (skb->len != sizeof(*bda)) {
42 		bt_dev_err(hdev, "Intel device address length mismatch");
43 		kfree_skb(skb);
44 		return -EIO;
45 	}
46 
47 	bda = (struct hci_rp_read_bd_addr *)skb->data;
48 
49 	/* For some Intel based controllers, the default Bluetooth device
50 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
51 	 * fully operational, but have the danger of duplicate addresses
52 	 * and that in turn can cause problems with Bluetooth operation.
53 	 */
54 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
55 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
56 			   &bda->bdaddr);
57 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
58 	}
59 
60 	kfree_skb(skb);
61 
62 	return 0;
63 }
64 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
65 
66 int btintel_enter_mfg(struct hci_dev *hdev)
67 {
68 	static const u8 param[] = { 0x01, 0x00 };
69 	struct sk_buff *skb;
70 
71 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
72 	if (IS_ERR(skb)) {
73 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
74 			   PTR_ERR(skb));
75 		return PTR_ERR(skb);
76 	}
77 	kfree_skb(skb);
78 
79 	return 0;
80 }
81 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
82 
83 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
84 {
85 	u8 param[] = { 0x00, 0x00 };
86 	struct sk_buff *skb;
87 
88 	/* The 2nd command parameter specifies the manufacturing exit method:
89 	 * 0x00: Just disable the manufacturing mode (0x00).
90 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
91 	 * 0x02: Disable manufacturing mode and reset with patches activated.
92 	 */
93 	if (reset)
94 		param[1] |= patched ? 0x02 : 0x01;
95 
96 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
97 	if (IS_ERR(skb)) {
98 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
99 			   PTR_ERR(skb));
100 		return PTR_ERR(skb);
101 	}
102 	kfree_skb(skb);
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
107 
108 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
109 {
110 	struct sk_buff *skb;
111 	int err;
112 
113 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
114 	if (IS_ERR(skb)) {
115 		err = PTR_ERR(skb);
116 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
117 			   err);
118 		return err;
119 	}
120 	kfree_skb(skb);
121 
122 	return 0;
123 }
124 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
125 
126 int btintel_set_diag(struct hci_dev *hdev, bool enable)
127 {
128 	struct sk_buff *skb;
129 	u8 param[3];
130 	int err;
131 
132 	if (enable) {
133 		param[0] = 0x03;
134 		param[1] = 0x03;
135 		param[2] = 0x03;
136 	} else {
137 		param[0] = 0x00;
138 		param[1] = 0x00;
139 		param[2] = 0x00;
140 	}
141 
142 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
143 	if (IS_ERR(skb)) {
144 		err = PTR_ERR(skb);
145 		if (err == -ENODATA)
146 			goto done;
147 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
148 			   err);
149 		return err;
150 	}
151 	kfree_skb(skb);
152 
153 done:
154 	btintel_set_event_mask(hdev, enable);
155 	return 0;
156 }
157 EXPORT_SYMBOL_GPL(btintel_set_diag);
158 
159 int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
160 {
161 	int err, ret;
162 
163 	err = btintel_enter_mfg(hdev);
164 	if (err)
165 		return err;
166 
167 	ret = btintel_set_diag(hdev, enable);
168 
169 	err = btintel_exit_mfg(hdev, false, false);
170 	if (err)
171 		return err;
172 
173 	return ret;
174 }
175 EXPORT_SYMBOL_GPL(btintel_set_diag_mfg);
176 
177 void btintel_hw_error(struct hci_dev *hdev, u8 code)
178 {
179 	struct sk_buff *skb;
180 	u8 type = 0x00;
181 
182 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
183 
184 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
185 	if (IS_ERR(skb)) {
186 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
187 			   PTR_ERR(skb));
188 		return;
189 	}
190 	kfree_skb(skb);
191 
192 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
193 	if (IS_ERR(skb)) {
194 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
195 			   PTR_ERR(skb));
196 		return;
197 	}
198 
199 	if (skb->len != 13) {
200 		bt_dev_err(hdev, "Exception info size mismatch");
201 		kfree_skb(skb);
202 		return;
203 	}
204 
205 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
206 
207 	kfree_skb(skb);
208 }
209 EXPORT_SYMBOL_GPL(btintel_hw_error);
210 
211 void btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
212 {
213 	const char *variant;
214 
215 	switch (ver->fw_variant) {
216 	case 0x06:
217 		variant = "Bootloader";
218 		break;
219 	case 0x23:
220 		variant = "Firmware";
221 		break;
222 	default:
223 		return;
224 	}
225 
226 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
227 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
228 		    ver->fw_build_num, ver->fw_build_ww,
229 		    2000 + ver->fw_build_yy);
230 }
231 EXPORT_SYMBOL_GPL(btintel_version_info);
232 
233 int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
234 			const void *param)
235 {
236 	while (plen > 0) {
237 		struct sk_buff *skb;
238 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
239 
240 		cmd_param[0] = fragment_type;
241 		memcpy(cmd_param + 1, param, fragment_len);
242 
243 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
244 				     cmd_param, HCI_INIT_TIMEOUT);
245 		if (IS_ERR(skb))
246 			return PTR_ERR(skb);
247 
248 		kfree_skb(skb);
249 
250 		plen -= fragment_len;
251 		param += fragment_len;
252 	}
253 
254 	return 0;
255 }
256 EXPORT_SYMBOL_GPL(btintel_secure_send);
257 
258 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
259 {
260 	const struct firmware *fw;
261 	struct sk_buff *skb;
262 	const u8 *fw_ptr;
263 	int err;
264 
265 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
266 	if (err < 0) {
267 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
268 			   ddc_name, err);
269 		return err;
270 	}
271 
272 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
273 
274 	fw_ptr = fw->data;
275 
276 	/* DDC file contains one or more DDC structure which has
277 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
278 	 */
279 	while (fw->size > fw_ptr - fw->data) {
280 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
281 
282 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
283 				     HCI_INIT_TIMEOUT);
284 		if (IS_ERR(skb)) {
285 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
286 				   PTR_ERR(skb));
287 			release_firmware(fw);
288 			return PTR_ERR(skb);
289 		}
290 
291 		fw_ptr += cmd_plen;
292 		kfree_skb(skb);
293 	}
294 
295 	release_firmware(fw);
296 
297 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
298 
299 	return 0;
300 }
301 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
302 
303 int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
304 {
305 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
306 	struct sk_buff *skb;
307 	int err;
308 
309 	if (debug)
310 		mask[1] |= 0x62;
311 
312 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
313 	if (IS_ERR(skb)) {
314 		err = PTR_ERR(skb);
315 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
316 		return err;
317 	}
318 	kfree_skb(skb);
319 
320 	return 0;
321 }
322 EXPORT_SYMBOL_GPL(btintel_set_event_mask);
323 
324 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
325 {
326 	int err, ret;
327 
328 	err = btintel_enter_mfg(hdev);
329 	if (err)
330 		return err;
331 
332 	ret = btintel_set_event_mask(hdev, debug);
333 
334 	err = btintel_exit_mfg(hdev, false, false);
335 	if (err)
336 		return err;
337 
338 	return ret;
339 }
340 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
341 
342 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
343 {
344 	struct sk_buff *skb;
345 
346 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
347 	if (IS_ERR(skb)) {
348 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
349 			   PTR_ERR(skb));
350 		return PTR_ERR(skb);
351 	}
352 
353 	if (skb->len != sizeof(*ver)) {
354 		bt_dev_err(hdev, "Intel version event size mismatch");
355 		kfree_skb(skb);
356 		return -EILSEQ;
357 	}
358 
359 	memcpy(ver, skb->data, sizeof(*ver));
360 
361 	kfree_skb(skb);
362 
363 	return 0;
364 }
365 EXPORT_SYMBOL_GPL(btintel_read_version);
366 
367 void btintel_version_info_tlv(struct hci_dev *hdev, struct intel_version_tlv *version)
368 {
369 	const char *variant;
370 
371 	switch (version->img_type) {
372 	case 0x01:
373 		variant = "Bootloader";
374 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
375 		bt_dev_info(hdev, "Secure boot is %s",
376 			    version->secure_boot ? "enabled" : "disabled");
377 		bt_dev_info(hdev, "OTP lock is %s",
378 			    version->otp_lock ? "enabled" : "disabled");
379 		bt_dev_info(hdev, "API lock is %s",
380 			    version->api_lock ? "enabled" : "disabled");
381 		bt_dev_info(hdev, "Debug lock is %s",
382 			    version->debug_lock ? "enabled" : "disabled");
383 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
384 			    version->min_fw_build_nn, version->min_fw_build_cw,
385 			    2000 + version->min_fw_build_yy);
386 		break;
387 	case 0x03:
388 		variant = "Firmware";
389 		break;
390 	default:
391 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
392 		goto done;
393 	}
394 
395 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
396 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
397 		    version->build_type, version->build_num);
398 
399 done:
400 	return;
401 }
402 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
403 
404 int btintel_read_version_tlv(struct hci_dev *hdev, struct intel_version_tlv *version)
405 {
406 	struct sk_buff *skb;
407 	const u8 param[1] = { 0xFF };
408 
409 	if (!version)
410 		return -EINVAL;
411 
412 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
413 	if (IS_ERR(skb)) {
414 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
415 			   PTR_ERR(skb));
416 		return PTR_ERR(skb);
417 	}
418 
419 	if (skb->data[0]) {
420 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
421 			   skb->data[0]);
422 		kfree_skb(skb);
423 		return -EIO;
424 	}
425 
426 	/* Consume Command Complete Status field */
427 	skb_pull(skb, 1);
428 
429 	/* Event parameters contatin multiple TLVs. Read each of them
430 	 * and only keep the required data. Also, it use existing legacy
431 	 * version field like hw_platform, hw_variant, and fw_variant
432 	 * to keep the existing setup flow
433 	 */
434 	while (skb->len) {
435 		struct intel_tlv *tlv;
436 
437 		tlv = (struct intel_tlv *)skb->data;
438 		switch (tlv->type) {
439 		case INTEL_TLV_CNVI_TOP:
440 			version->cnvi_top =
441 				__le32_to_cpu(get_unaligned_le32(tlv->val));
442 			break;
443 		case INTEL_TLV_CNVR_TOP:
444 			version->cnvr_top =
445 				__le32_to_cpu(get_unaligned_le32(tlv->val));
446 			break;
447 		case INTEL_TLV_CNVI_BT:
448 			version->cnvi_bt =
449 				__le32_to_cpu(get_unaligned_le32(tlv->val));
450 			break;
451 		case INTEL_TLV_CNVR_BT:
452 			version->cnvr_bt =
453 				__le32_to_cpu(get_unaligned_le32(tlv->val));
454 			break;
455 		case INTEL_TLV_DEV_REV_ID:
456 			version->dev_rev_id =
457 				__le16_to_cpu(get_unaligned_le16(tlv->val));
458 			break;
459 		case INTEL_TLV_IMAGE_TYPE:
460 			version->img_type = tlv->val[0];
461 			break;
462 		case INTEL_TLV_TIME_STAMP:
463 			version->timestamp =
464 				__le16_to_cpu(get_unaligned_le16(tlv->val));
465 			break;
466 		case INTEL_TLV_BUILD_TYPE:
467 			version->build_type = tlv->val[0];
468 			break;
469 		case INTEL_TLV_BUILD_NUM:
470 			version->build_num =
471 				__le32_to_cpu(get_unaligned_le32(tlv->val));
472 			break;
473 		case INTEL_TLV_SECURE_BOOT:
474 			version->secure_boot = tlv->val[0];
475 			break;
476 		case INTEL_TLV_OTP_LOCK:
477 			version->otp_lock = tlv->val[0];
478 			break;
479 		case INTEL_TLV_API_LOCK:
480 			version->api_lock = tlv->val[0];
481 			break;
482 		case INTEL_TLV_DEBUG_LOCK:
483 			version->debug_lock = tlv->val[0];
484 			break;
485 		case INTEL_TLV_MIN_FW:
486 			version->min_fw_build_nn = tlv->val[0];
487 			version->min_fw_build_cw = tlv->val[1];
488 			version->min_fw_build_yy = tlv->val[2];
489 			break;
490 		case INTEL_TLV_LIMITED_CCE:
491 			version->limited_cce = tlv->val[0];
492 			break;
493 		case INTEL_TLV_SBE_TYPE:
494 			version->sbe_type = tlv->val[0];
495 			break;
496 		case INTEL_TLV_OTP_BDADDR:
497 			memcpy(&version->otp_bd_addr, tlv->val, tlv->len);
498 			break;
499 		default:
500 			/* Ignore rest of information */
501 			break;
502 		}
503 		/* consume the current tlv and move to next*/
504 		skb_pull(skb, tlv->len + sizeof(*tlv));
505 	}
506 
507 	kfree_skb(skb);
508 	return 0;
509 }
510 EXPORT_SYMBOL_GPL(btintel_read_version_tlv);
511 
512 /* ------- REGMAP IBT SUPPORT ------- */
513 
514 #define IBT_REG_MODE_8BIT  0x00
515 #define IBT_REG_MODE_16BIT 0x01
516 #define IBT_REG_MODE_32BIT 0x02
517 
518 struct regmap_ibt_context {
519 	struct hci_dev *hdev;
520 	__u16 op_write;
521 	__u16 op_read;
522 };
523 
524 struct ibt_cp_reg_access {
525 	__le32  addr;
526 	__u8    mode;
527 	__u8    len;
528 	__u8    data[];
529 } __packed;
530 
531 struct ibt_rp_reg_access {
532 	__u8    status;
533 	__le32  addr;
534 	__u8    data[];
535 } __packed;
536 
537 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
538 			   void *val, size_t val_size)
539 {
540 	struct regmap_ibt_context *ctx = context;
541 	struct ibt_cp_reg_access cp;
542 	struct ibt_rp_reg_access *rp;
543 	struct sk_buff *skb;
544 	int err = 0;
545 
546 	if (reg_size != sizeof(__le32))
547 		return -EINVAL;
548 
549 	switch (val_size) {
550 	case 1:
551 		cp.mode = IBT_REG_MODE_8BIT;
552 		break;
553 	case 2:
554 		cp.mode = IBT_REG_MODE_16BIT;
555 		break;
556 	case 4:
557 		cp.mode = IBT_REG_MODE_32BIT;
558 		break;
559 	default:
560 		return -EINVAL;
561 	}
562 
563 	/* regmap provides a little-endian formatted addr */
564 	cp.addr = *(__le32 *)addr;
565 	cp.len = val_size;
566 
567 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
568 
569 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
570 			   HCI_CMD_TIMEOUT);
571 	if (IS_ERR(skb)) {
572 		err = PTR_ERR(skb);
573 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
574 			   le32_to_cpu(cp.addr), err);
575 		return err;
576 	}
577 
578 	if (skb->len != sizeof(*rp) + val_size) {
579 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
580 			   le32_to_cpu(cp.addr));
581 		err = -EINVAL;
582 		goto done;
583 	}
584 
585 	rp = (struct ibt_rp_reg_access *)skb->data;
586 
587 	if (rp->addr != cp.addr) {
588 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
589 			   le32_to_cpu(rp->addr));
590 		err = -EINVAL;
591 		goto done;
592 	}
593 
594 	memcpy(val, rp->data, val_size);
595 
596 done:
597 	kfree_skb(skb);
598 	return err;
599 }
600 
601 static int regmap_ibt_gather_write(void *context,
602 				   const void *addr, size_t reg_size,
603 				   const void *val, size_t val_size)
604 {
605 	struct regmap_ibt_context *ctx = context;
606 	struct ibt_cp_reg_access *cp;
607 	struct sk_buff *skb;
608 	int plen = sizeof(*cp) + val_size;
609 	u8 mode;
610 	int err = 0;
611 
612 	if (reg_size != sizeof(__le32))
613 		return -EINVAL;
614 
615 	switch (val_size) {
616 	case 1:
617 		mode = IBT_REG_MODE_8BIT;
618 		break;
619 	case 2:
620 		mode = IBT_REG_MODE_16BIT;
621 		break;
622 	case 4:
623 		mode = IBT_REG_MODE_32BIT;
624 		break;
625 	default:
626 		return -EINVAL;
627 	}
628 
629 	cp = kmalloc(plen, GFP_KERNEL);
630 	if (!cp)
631 		return -ENOMEM;
632 
633 	/* regmap provides a little-endian formatted addr/value */
634 	cp->addr = *(__le32 *)addr;
635 	cp->mode = mode;
636 	cp->len = val_size;
637 	memcpy(&cp->data, val, val_size);
638 
639 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
640 
641 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
642 	if (IS_ERR(skb)) {
643 		err = PTR_ERR(skb);
644 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
645 			   le32_to_cpu(cp->addr), err);
646 		goto done;
647 	}
648 	kfree_skb(skb);
649 
650 done:
651 	kfree(cp);
652 	return err;
653 }
654 
655 static int regmap_ibt_write(void *context, const void *data, size_t count)
656 {
657 	/* data contains register+value, since we only support 32bit addr,
658 	 * minimum data size is 4 bytes.
659 	 */
660 	if (WARN_ONCE(count < 4, "Invalid register access"))
661 		return -EINVAL;
662 
663 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
664 }
665 
666 static void regmap_ibt_free_context(void *context)
667 {
668 	kfree(context);
669 }
670 
671 static struct regmap_bus regmap_ibt = {
672 	.read = regmap_ibt_read,
673 	.write = regmap_ibt_write,
674 	.gather_write = regmap_ibt_gather_write,
675 	.free_context = regmap_ibt_free_context,
676 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
677 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
678 };
679 
680 /* Config is the same for all register regions */
681 static const struct regmap_config regmap_ibt_cfg = {
682 	.name      = "btintel_regmap",
683 	.reg_bits  = 32,
684 	.val_bits  = 32,
685 };
686 
687 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
688 				   u16 opcode_write)
689 {
690 	struct regmap_ibt_context *ctx;
691 
692 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
693 		    opcode_write);
694 
695 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
696 	if (!ctx)
697 		return ERR_PTR(-ENOMEM);
698 
699 	ctx->op_read = opcode_read;
700 	ctx->op_write = opcode_write;
701 	ctx->hdev = hdev;
702 
703 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
704 }
705 EXPORT_SYMBOL_GPL(btintel_regmap_init);
706 
707 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
708 {
709 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
710 	struct sk_buff *skb;
711 
712 	params.boot_param = cpu_to_le32(boot_param);
713 
714 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
715 			     HCI_INIT_TIMEOUT);
716 	if (IS_ERR(skb)) {
717 		bt_dev_err(hdev, "Failed to send Intel Reset command");
718 		return PTR_ERR(skb);
719 	}
720 
721 	kfree_skb(skb);
722 
723 	return 0;
724 }
725 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
726 
727 int btintel_read_boot_params(struct hci_dev *hdev,
728 			     struct intel_boot_params *params)
729 {
730 	struct sk_buff *skb;
731 
732 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
733 	if (IS_ERR(skb)) {
734 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
735 			   PTR_ERR(skb));
736 		return PTR_ERR(skb);
737 	}
738 
739 	if (skb->len != sizeof(*params)) {
740 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
741 		kfree_skb(skb);
742 		return -EILSEQ;
743 	}
744 
745 	memcpy(params, skb->data, sizeof(*params));
746 
747 	kfree_skb(skb);
748 
749 	if (params->status) {
750 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
751 			   params->status);
752 		return -bt_to_errno(params->status);
753 	}
754 
755 	bt_dev_info(hdev, "Device revision is %u",
756 		    le16_to_cpu(params->dev_revid));
757 
758 	bt_dev_info(hdev, "Secure boot is %s",
759 		    params->secure_boot ? "enabled" : "disabled");
760 
761 	bt_dev_info(hdev, "OTP lock is %s",
762 		    params->otp_lock ? "enabled" : "disabled");
763 
764 	bt_dev_info(hdev, "API lock is %s",
765 		    params->api_lock ? "enabled" : "disabled");
766 
767 	bt_dev_info(hdev, "Debug lock is %s",
768 		    params->debug_lock ? "enabled" : "disabled");
769 
770 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
771 		    params->min_fw_build_nn, params->min_fw_build_cw,
772 		    2000 + params->min_fw_build_yy);
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
777 
778 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
779 					      const struct firmware *fw)
780 {
781 	int err;
782 
783 	/* Start the firmware download transaction with the Init fragment
784 	 * represented by the 128 bytes of CSS header.
785 	 */
786 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
787 	if (err < 0) {
788 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
789 		goto done;
790 	}
791 
792 	/* Send the 256 bytes of public key information from the firmware
793 	 * as the PKey fragment.
794 	 */
795 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
796 	if (err < 0) {
797 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
798 		goto done;
799 	}
800 
801 	/* Send the 256 bytes of signature information from the firmware
802 	 * as the Sign fragment.
803 	 */
804 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
805 	if (err < 0) {
806 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
807 		goto done;
808 	}
809 
810 done:
811 	return err;
812 }
813 
814 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
815 						const struct firmware *fw)
816 {
817 	int err;
818 
819 	/* Start the firmware download transaction with the Init fragment
820 	 * represented by the 128 bytes of CSS header.
821 	 */
822 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
823 	if (err < 0) {
824 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
825 		return err;
826 	}
827 
828 	/* Send the 96 bytes of public key information from the firmware
829 	 * as the PKey fragment.
830 	 */
831 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
832 	if (err < 0) {
833 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
834 		return err;
835 	}
836 
837 	/* Send the 96 bytes of signature information from the firmware
838 	 * as the Sign fragment
839 	 */
840 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
841 	if (err < 0) {
842 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
843 			   err);
844 		return err;
845 	}
846 	return 0;
847 }
848 
849 static int btintel_download_firmware_payload(struct hci_dev *hdev,
850 					     const struct firmware *fw,
851 					     u32 *boot_param, size_t offset)
852 {
853 	int err;
854 	const u8 *fw_ptr;
855 	u32 frag_len;
856 
857 	fw_ptr = fw->data + offset;
858 	frag_len = 0;
859 	err = -EINVAL;
860 
861 	while (fw_ptr - fw->data < fw->size) {
862 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
863 
864 		/* Each SKU has a different reset parameter to use in the
865 		 * HCI_Intel_Reset command and it is embedded in the firmware
866 		 * data. So, instead of using static value per SKU, check
867 		 * the firmware data and save it for later use.
868 		 */
869 		if (le16_to_cpu(cmd->opcode) == 0xfc0e) {
870 			/* The boot parameter is the first 32-bit value
871 			 * and rest of 3 octets are reserved.
872 			 */
873 			*boot_param = get_unaligned_le32(fw_ptr + sizeof(*cmd));
874 
875 			bt_dev_dbg(hdev, "boot_param=0x%x", *boot_param);
876 		}
877 
878 		frag_len += sizeof(*cmd) + cmd->plen;
879 
880 		/* The parameter length of the secure send command requires
881 		 * a 4 byte alignment. It happens so that the firmware file
882 		 * contains proper Intel_NOP commands to align the fragments
883 		 * as needed.
884 		 *
885 		 * Send set of commands with 4 byte alignment from the
886 		 * firmware data buffer as a single Data fragement.
887 		 */
888 		if (!(frag_len % 4)) {
889 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
890 			if (err < 0) {
891 				bt_dev_err(hdev,
892 					   "Failed to send firmware data (%d)",
893 					   err);
894 				goto done;
895 			}
896 
897 			fw_ptr += frag_len;
898 			frag_len = 0;
899 		}
900 	}
901 
902 done:
903 	return err;
904 }
905 
906 int btintel_download_firmware(struct hci_dev *hdev,
907 			      const struct firmware *fw,
908 			      u32 *boot_param)
909 {
910 	int err;
911 
912 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
913 	if (err)
914 		return err;
915 
916 	return btintel_download_firmware_payload(hdev, fw, boot_param,
917 						 RSA_HEADER_LEN);
918 }
919 EXPORT_SYMBOL_GPL(btintel_download_firmware);
920 
921 int btintel_download_firmware_newgen(struct hci_dev *hdev,
922 				     const struct firmware *fw, u32 *boot_param,
923 				     u8 hw_variant, u8 sbe_type)
924 {
925 	int err;
926 	u32 css_header_ver;
927 
928 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
929 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
930 	 * have RSA header of 644 bytes followed by Command Buffer.
931 	 *
932 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
933 	 * secure boot engine. As a result, the corresponding sfi file will
934 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
935 	 * Command Buffer.
936 	 *
937 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
938 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
939 	 */
940 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
941 	if (css_header_ver != 0x00010000) {
942 		bt_dev_err(hdev, "Invalid CSS Header version");
943 		return -EINVAL;
944 	}
945 
946 	if (hw_variant <= 0x14) {
947 		if (sbe_type != 0x00) {
948 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
949 				   hw_variant);
950 			return -EINVAL;
951 		}
952 
953 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
954 		if (err)
955 			return err;
956 
957 		err = btintel_download_firmware_payload(hdev, fw, boot_param, RSA_HEADER_LEN);
958 		if (err)
959 			return err;
960 	} else if (hw_variant >= 0x17) {
961 		/* Check if CSS header for ECDSA follows the RSA header */
962 		if (fw->data[ECDSA_OFFSET] != 0x06)
963 			return -EINVAL;
964 
965 		/* Check if the CSS Header version is ECDSA(0x00020000) */
966 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
967 		if (css_header_ver != 0x00020000) {
968 			bt_dev_err(hdev, "Invalid CSS Header version");
969 			return -EINVAL;
970 		}
971 
972 		if (sbe_type == 0x00) {
973 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
974 			if (err)
975 				return err;
976 
977 			err = btintel_download_firmware_payload(hdev, fw,
978 								boot_param,
979 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
980 			if (err)
981 				return err;
982 		} else if (sbe_type == 0x01) {
983 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
984 			if (err)
985 				return err;
986 
987 			err = btintel_download_firmware_payload(hdev, fw,
988 								boot_param,
989 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
990 			if (err)
991 				return err;
992 		}
993 	}
994 	return 0;
995 }
996 EXPORT_SYMBOL_GPL(btintel_download_firmware_newgen);
997 
998 void btintel_reset_to_bootloader(struct hci_dev *hdev)
999 {
1000 	struct intel_reset params;
1001 	struct sk_buff *skb;
1002 
1003 	/* Send Intel Reset command. This will result in
1004 	 * re-enumeration of BT controller.
1005 	 *
1006 	 * Intel Reset parameter description:
1007 	 * reset_type :   0x00 (Soft reset),
1008 	 *		  0x01 (Hard reset)
1009 	 * patch_enable : 0x00 (Do not enable),
1010 	 *		  0x01 (Enable)
1011 	 * ddc_reload :   0x00 (Do not reload),
1012 	 *		  0x01 (Reload)
1013 	 * boot_option:   0x00 (Current image),
1014 	 *                0x01 (Specified boot address)
1015 	 * boot_param:    Boot address
1016 	 *
1017 	 */
1018 	params.reset_type = 0x01;
1019 	params.patch_enable = 0x01;
1020 	params.ddc_reload = 0x01;
1021 	params.boot_option = 0x00;
1022 	params.boot_param = cpu_to_le32(0x00000000);
1023 
1024 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1025 			     &params, HCI_INIT_TIMEOUT);
1026 	if (IS_ERR(skb)) {
1027 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1028 			   PTR_ERR(skb));
1029 		return;
1030 	}
1031 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1032 	kfree_skb(skb);
1033 
1034 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1035 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1036 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1037 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1038 	 */
1039 	msleep(150);
1040 }
1041 EXPORT_SYMBOL_GPL(btintel_reset_to_bootloader);
1042 
1043 int btintel_read_debug_features(struct hci_dev *hdev,
1044 				struct intel_debug_features *features)
1045 {
1046 	struct sk_buff *skb;
1047 	u8 page_no = 1;
1048 
1049 	/* Intel controller supports two pages, each page is of 128-bit
1050 	 * feature bit mask. And each bit defines specific feature support
1051 	 */
1052 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1053 			     HCI_INIT_TIMEOUT);
1054 	if (IS_ERR(skb)) {
1055 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1056 			   PTR_ERR(skb));
1057 		return PTR_ERR(skb);
1058 	}
1059 
1060 	if (skb->len != (sizeof(features->page1) + 3)) {
1061 		bt_dev_err(hdev, "Supported features event size mismatch");
1062 		kfree_skb(skb);
1063 		return -EILSEQ;
1064 	}
1065 
1066 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1067 
1068 	/* Read the supported features page2 if required in future.
1069 	 */
1070 	kfree_skb(skb);
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(btintel_read_debug_features);
1074 
1075 int btintel_set_debug_features(struct hci_dev *hdev,
1076 			       const struct intel_debug_features *features)
1077 {
1078 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x07, 0x00, 0x00, 0x00, 0x00,
1079 			0x00, 0x00, 0x00 };
1080 	struct sk_buff *skb;
1081 
1082 	if (!features)
1083 		return -EINVAL;
1084 
1085 	if (!(features->page1[0] & 0x3f)) {
1086 		bt_dev_info(hdev, "Telemetry exception format not supported");
1087 		return 0;
1088 	}
1089 
1090 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1091 	if (IS_ERR(skb)) {
1092 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1093 			   PTR_ERR(skb));
1094 		return PTR_ERR(skb);
1095 	}
1096 
1097 	kfree_skb(skb);
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(btintel_set_debug_features);
1101 
1102 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
1103 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
1104 MODULE_VERSION(VERSION);
1105 MODULE_LICENSE("GPL");
1106 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
1107 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
1108 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
1109 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
1110