1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth support for Intel devices 5 * 6 * Copyright (C) 2015 Intel Corporation 7 */ 8 9 #include <linux/module.h> 10 #include <linux/firmware.h> 11 #include <linux/regmap.h> 12 #include <asm/unaligned.h> 13 14 #include <net/bluetooth/bluetooth.h> 15 #include <net/bluetooth/hci_core.h> 16 17 #include "btintel.h" 18 19 #define VERSION "0.1" 20 21 #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) 22 #define RSA_HEADER_LEN 644 23 #define CSS_HEADER_OFFSET 8 24 #define ECDSA_OFFSET 644 25 #define ECDSA_HEADER_LEN 320 26 27 #define CMD_WRITE_BOOT_PARAMS 0xfc0e 28 struct cmd_write_boot_params { 29 u32 boot_addr; 30 u8 fw_build_num; 31 u8 fw_build_ww; 32 u8 fw_build_yy; 33 } __packed; 34 35 int btintel_check_bdaddr(struct hci_dev *hdev) 36 { 37 struct hci_rp_read_bd_addr *bda; 38 struct sk_buff *skb; 39 40 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL, 41 HCI_INIT_TIMEOUT); 42 if (IS_ERR(skb)) { 43 int err = PTR_ERR(skb); 44 bt_dev_err(hdev, "Reading Intel device address failed (%d)", 45 err); 46 return err; 47 } 48 49 if (skb->len != sizeof(*bda)) { 50 bt_dev_err(hdev, "Intel device address length mismatch"); 51 kfree_skb(skb); 52 return -EIO; 53 } 54 55 bda = (struct hci_rp_read_bd_addr *)skb->data; 56 57 /* For some Intel based controllers, the default Bluetooth device 58 * address 00:03:19:9E:8B:00 can be found. These controllers are 59 * fully operational, but have the danger of duplicate addresses 60 * and that in turn can cause problems with Bluetooth operation. 61 */ 62 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) { 63 bt_dev_err(hdev, "Found Intel default device address (%pMR)", 64 &bda->bdaddr); 65 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 66 } 67 68 kfree_skb(skb); 69 70 return 0; 71 } 72 EXPORT_SYMBOL_GPL(btintel_check_bdaddr); 73 74 int btintel_enter_mfg(struct hci_dev *hdev) 75 { 76 static const u8 param[] = { 0x01, 0x00 }; 77 struct sk_buff *skb; 78 79 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); 80 if (IS_ERR(skb)) { 81 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)", 82 PTR_ERR(skb)); 83 return PTR_ERR(skb); 84 } 85 kfree_skb(skb); 86 87 return 0; 88 } 89 EXPORT_SYMBOL_GPL(btintel_enter_mfg); 90 91 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) 92 { 93 u8 param[] = { 0x00, 0x00 }; 94 struct sk_buff *skb; 95 96 /* The 2nd command parameter specifies the manufacturing exit method: 97 * 0x00: Just disable the manufacturing mode (0x00). 98 * 0x01: Disable manufacturing mode and reset with patches deactivated. 99 * 0x02: Disable manufacturing mode and reset with patches activated. 100 */ 101 if (reset) 102 param[1] |= patched ? 0x02 : 0x01; 103 104 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); 105 if (IS_ERR(skb)) { 106 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)", 107 PTR_ERR(skb)); 108 return PTR_ERR(skb); 109 } 110 kfree_skb(skb); 111 112 return 0; 113 } 114 EXPORT_SYMBOL_GPL(btintel_exit_mfg); 115 116 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) 117 { 118 struct sk_buff *skb; 119 int err; 120 121 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT); 122 if (IS_ERR(skb)) { 123 err = PTR_ERR(skb); 124 bt_dev_err(hdev, "Changing Intel device address failed (%d)", 125 err); 126 return err; 127 } 128 kfree_skb(skb); 129 130 return 0; 131 } 132 EXPORT_SYMBOL_GPL(btintel_set_bdaddr); 133 134 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) 135 { 136 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 137 struct sk_buff *skb; 138 int err; 139 140 if (debug) 141 mask[1] |= 0x62; 142 143 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT); 144 if (IS_ERR(skb)) { 145 err = PTR_ERR(skb); 146 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err); 147 return err; 148 } 149 kfree_skb(skb); 150 151 return 0; 152 } 153 154 int btintel_set_diag(struct hci_dev *hdev, bool enable) 155 { 156 struct sk_buff *skb; 157 u8 param[3]; 158 int err; 159 160 if (enable) { 161 param[0] = 0x03; 162 param[1] = 0x03; 163 param[2] = 0x03; 164 } else { 165 param[0] = 0x00; 166 param[1] = 0x00; 167 param[2] = 0x00; 168 } 169 170 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT); 171 if (IS_ERR(skb)) { 172 err = PTR_ERR(skb); 173 if (err == -ENODATA) 174 goto done; 175 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)", 176 err); 177 return err; 178 } 179 kfree_skb(skb); 180 181 done: 182 btintel_set_event_mask(hdev, enable); 183 return 0; 184 } 185 EXPORT_SYMBOL_GPL(btintel_set_diag); 186 187 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) 188 { 189 int err, ret; 190 191 err = btintel_enter_mfg(hdev); 192 if (err) 193 return err; 194 195 ret = btintel_set_diag(hdev, enable); 196 197 err = btintel_exit_mfg(hdev, false, false); 198 if (err) 199 return err; 200 201 return ret; 202 } 203 204 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) 205 { 206 int ret; 207 208 /* Legacy ROM device needs to be in the manufacturer mode to apply 209 * diagnostic setting 210 * 211 * This flag is set after reading the Intel version. 212 */ 213 if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) 214 ret = btintel_set_diag_mfg(hdev, enable); 215 else 216 ret = btintel_set_diag(hdev, enable); 217 218 return ret; 219 } 220 221 static void btintel_hw_error(struct hci_dev *hdev, u8 code) 222 { 223 struct sk_buff *skb; 224 u8 type = 0x00; 225 226 bt_dev_err(hdev, "Hardware error 0x%2.2x", code); 227 228 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 229 if (IS_ERR(skb)) { 230 bt_dev_err(hdev, "Reset after hardware error failed (%ld)", 231 PTR_ERR(skb)); 232 return; 233 } 234 kfree_skb(skb); 235 236 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT); 237 if (IS_ERR(skb)) { 238 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)", 239 PTR_ERR(skb)); 240 return; 241 } 242 243 if (skb->len != 13) { 244 bt_dev_err(hdev, "Exception info size mismatch"); 245 kfree_skb(skb); 246 return; 247 } 248 249 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1)); 250 251 kfree_skb(skb); 252 } 253 254 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) 255 { 256 const char *variant; 257 258 /* The hardware platform number has a fixed value of 0x37 and 259 * for now only accept this single value. 260 */ 261 if (ver->hw_platform != 0x37) { 262 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", 263 ver->hw_platform); 264 return -EINVAL; 265 } 266 267 /* Check for supported iBT hardware variants of this firmware 268 * loading method. 269 * 270 * This check has been put in place to ensure correct forward 271 * compatibility options when newer hardware variants come along. 272 */ 273 switch (ver->hw_variant) { 274 case 0x07: /* WP - Legacy ROM */ 275 case 0x08: /* StP - Legacy ROM */ 276 case 0x0b: /* SfP */ 277 case 0x0c: /* WsP */ 278 case 0x11: /* JfP */ 279 case 0x12: /* ThP */ 280 case 0x13: /* HrP */ 281 case 0x14: /* CcP */ 282 break; 283 default: 284 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 285 ver->hw_variant); 286 return -EINVAL; 287 } 288 289 switch (ver->fw_variant) { 290 case 0x01: 291 variant = "Legacy ROM 2.5"; 292 break; 293 case 0x06: 294 variant = "Bootloader"; 295 break; 296 case 0x22: 297 variant = "Legacy ROM 2.x"; 298 break; 299 case 0x23: 300 variant = "Firmware"; 301 break; 302 default: 303 bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant); 304 return -EINVAL; 305 } 306 307 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u", 308 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, 309 ver->fw_build_num, ver->fw_build_ww, 310 2000 + ver->fw_build_yy); 311 312 return 0; 313 } 314 EXPORT_SYMBOL_GPL(btintel_version_info); 315 316 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, 317 const void *param) 318 { 319 while (plen > 0) { 320 struct sk_buff *skb; 321 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; 322 323 cmd_param[0] = fragment_type; 324 memcpy(cmd_param + 1, param, fragment_len); 325 326 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1, 327 cmd_param, HCI_INIT_TIMEOUT); 328 if (IS_ERR(skb)) 329 return PTR_ERR(skb); 330 331 kfree_skb(skb); 332 333 plen -= fragment_len; 334 param += fragment_len; 335 } 336 337 return 0; 338 } 339 340 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) 341 { 342 const struct firmware *fw; 343 struct sk_buff *skb; 344 const u8 *fw_ptr; 345 int err; 346 347 err = request_firmware_direct(&fw, ddc_name, &hdev->dev); 348 if (err < 0) { 349 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)", 350 ddc_name, err); 351 return err; 352 } 353 354 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name); 355 356 fw_ptr = fw->data; 357 358 /* DDC file contains one or more DDC structure which has 359 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). 360 */ 361 while (fw->size > fw_ptr - fw->data) { 362 u8 cmd_plen = fw_ptr[0] + sizeof(u8); 363 364 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr, 365 HCI_INIT_TIMEOUT); 366 if (IS_ERR(skb)) { 367 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)", 368 PTR_ERR(skb)); 369 release_firmware(fw); 370 return PTR_ERR(skb); 371 } 372 373 fw_ptr += cmd_plen; 374 kfree_skb(skb); 375 } 376 377 release_firmware(fw); 378 379 bt_dev_info(hdev, "Applying Intel DDC parameters completed"); 380 381 return 0; 382 } 383 EXPORT_SYMBOL_GPL(btintel_load_ddc_config); 384 385 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) 386 { 387 int err, ret; 388 389 err = btintel_enter_mfg(hdev); 390 if (err) 391 return err; 392 393 ret = btintel_set_event_mask(hdev, debug); 394 395 err = btintel_exit_mfg(hdev, false, false); 396 if (err) 397 return err; 398 399 return ret; 400 } 401 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); 402 403 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) 404 { 405 struct sk_buff *skb; 406 407 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); 408 if (IS_ERR(skb)) { 409 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 410 PTR_ERR(skb)); 411 return PTR_ERR(skb); 412 } 413 414 if (skb->len != sizeof(*ver)) { 415 bt_dev_err(hdev, "Intel version event size mismatch"); 416 kfree_skb(skb); 417 return -EILSEQ; 418 } 419 420 memcpy(ver, skb->data, sizeof(*ver)); 421 422 kfree_skb(skb); 423 424 return 0; 425 } 426 EXPORT_SYMBOL_GPL(btintel_read_version); 427 428 static int btintel_version_info_tlv(struct hci_dev *hdev, 429 struct intel_version_tlv *version) 430 { 431 const char *variant; 432 433 /* The hardware platform number has a fixed value of 0x37 and 434 * for now only accept this single value. 435 */ 436 if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { 437 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 438 INTEL_HW_PLATFORM(version->cnvi_bt)); 439 return -EINVAL; 440 } 441 442 /* Check for supported iBT hardware variants of this firmware 443 * loading method. 444 * 445 * This check has been put in place to ensure correct forward 446 * compatibility options when newer hardware variants come along. 447 */ 448 switch (INTEL_HW_VARIANT(version->cnvi_bt)) { 449 case 0x17: /* TyP */ 450 case 0x18: /* Slr */ 451 case 0x19: /* Slr-F */ 452 break; 453 default: 454 bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)", 455 INTEL_HW_VARIANT(version->cnvi_bt)); 456 return -EINVAL; 457 } 458 459 switch (version->img_type) { 460 case 0x01: 461 variant = "Bootloader"; 462 /* It is required that every single firmware fragment is acknowledged 463 * with a command complete event. If the boot parameters indicate 464 * that this bootloader does not send them, then abort the setup. 465 */ 466 if (version->limited_cce != 0x00) { 467 bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)", 468 version->limited_cce); 469 return -EINVAL; 470 } 471 472 /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ 473 if (version->sbe_type > 0x01) { 474 bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)", 475 version->sbe_type); 476 return -EINVAL; 477 } 478 479 bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id); 480 bt_dev_info(hdev, "Secure boot is %s", 481 version->secure_boot ? "enabled" : "disabled"); 482 bt_dev_info(hdev, "OTP lock is %s", 483 version->otp_lock ? "enabled" : "disabled"); 484 bt_dev_info(hdev, "API lock is %s", 485 version->api_lock ? "enabled" : "disabled"); 486 bt_dev_info(hdev, "Debug lock is %s", 487 version->debug_lock ? "enabled" : "disabled"); 488 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 489 version->min_fw_build_nn, version->min_fw_build_cw, 490 2000 + version->min_fw_build_yy); 491 break; 492 case 0x03: 493 variant = "Firmware"; 494 break; 495 default: 496 bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type); 497 return -EINVAL; 498 } 499 500 bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant, 501 2000 + (version->timestamp >> 8), version->timestamp & 0xff, 502 version->build_type, version->build_num); 503 504 return 0; 505 } 506 507 static int btintel_parse_version_tlv(struct hci_dev *hdev, 508 struct intel_version_tlv *version, 509 struct sk_buff *skb) 510 { 511 /* Consume Command Complete Status field */ 512 skb_pull(skb, 1); 513 514 /* Event parameters contatin multiple TLVs. Read each of them 515 * and only keep the required data. Also, it use existing legacy 516 * version field like hw_platform, hw_variant, and fw_variant 517 * to keep the existing setup flow 518 */ 519 while (skb->len) { 520 struct intel_tlv *tlv; 521 522 /* Make sure skb has a minimum length of the header */ 523 if (skb->len < sizeof(*tlv)) 524 return -EINVAL; 525 526 tlv = (struct intel_tlv *)skb->data; 527 528 /* Make sure skb has a enough data */ 529 if (skb->len < tlv->len + sizeof(*tlv)) 530 return -EINVAL; 531 532 switch (tlv->type) { 533 case INTEL_TLV_CNVI_TOP: 534 version->cnvi_top = get_unaligned_le32(tlv->val); 535 break; 536 case INTEL_TLV_CNVR_TOP: 537 version->cnvr_top = get_unaligned_le32(tlv->val); 538 break; 539 case INTEL_TLV_CNVI_BT: 540 version->cnvi_bt = get_unaligned_le32(tlv->val); 541 break; 542 case INTEL_TLV_CNVR_BT: 543 version->cnvr_bt = get_unaligned_le32(tlv->val); 544 break; 545 case INTEL_TLV_DEV_REV_ID: 546 version->dev_rev_id = get_unaligned_le16(tlv->val); 547 break; 548 case INTEL_TLV_IMAGE_TYPE: 549 version->img_type = tlv->val[0]; 550 break; 551 case INTEL_TLV_TIME_STAMP: 552 /* If image type is Operational firmware (0x03), then 553 * running FW Calendar Week and Year information can 554 * be extracted from Timestamp information 555 */ 556 version->min_fw_build_cw = tlv->val[0]; 557 version->min_fw_build_yy = tlv->val[1]; 558 version->timestamp = get_unaligned_le16(tlv->val); 559 break; 560 case INTEL_TLV_BUILD_TYPE: 561 version->build_type = tlv->val[0]; 562 break; 563 case INTEL_TLV_BUILD_NUM: 564 /* If image type is Operational firmware (0x03), then 565 * running FW build number can be extracted from the 566 * Build information 567 */ 568 version->min_fw_build_nn = tlv->val[0]; 569 version->build_num = get_unaligned_le32(tlv->val); 570 break; 571 case INTEL_TLV_SECURE_BOOT: 572 version->secure_boot = tlv->val[0]; 573 break; 574 case INTEL_TLV_OTP_LOCK: 575 version->otp_lock = tlv->val[0]; 576 break; 577 case INTEL_TLV_API_LOCK: 578 version->api_lock = tlv->val[0]; 579 break; 580 case INTEL_TLV_DEBUG_LOCK: 581 version->debug_lock = tlv->val[0]; 582 break; 583 case INTEL_TLV_MIN_FW: 584 version->min_fw_build_nn = tlv->val[0]; 585 version->min_fw_build_cw = tlv->val[1]; 586 version->min_fw_build_yy = tlv->val[2]; 587 break; 588 case INTEL_TLV_LIMITED_CCE: 589 version->limited_cce = tlv->val[0]; 590 break; 591 case INTEL_TLV_SBE_TYPE: 592 version->sbe_type = tlv->val[0]; 593 break; 594 case INTEL_TLV_OTP_BDADDR: 595 memcpy(&version->otp_bd_addr, tlv->val, 596 sizeof(bdaddr_t)); 597 break; 598 default: 599 /* Ignore rest of information */ 600 break; 601 } 602 /* consume the current tlv and move to next*/ 603 skb_pull(skb, tlv->len + sizeof(*tlv)); 604 } 605 606 return 0; 607 } 608 609 static int btintel_read_version_tlv(struct hci_dev *hdev, 610 struct intel_version_tlv *version) 611 { 612 struct sk_buff *skb; 613 const u8 param[1] = { 0xFF }; 614 615 if (!version) 616 return -EINVAL; 617 618 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 619 if (IS_ERR(skb)) { 620 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 621 PTR_ERR(skb)); 622 return PTR_ERR(skb); 623 } 624 625 if (skb->data[0]) { 626 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 627 skb->data[0]); 628 kfree_skb(skb); 629 return -EIO; 630 } 631 632 btintel_parse_version_tlv(hdev, version, skb); 633 634 kfree_skb(skb); 635 return 0; 636 } 637 638 /* ------- REGMAP IBT SUPPORT ------- */ 639 640 #define IBT_REG_MODE_8BIT 0x00 641 #define IBT_REG_MODE_16BIT 0x01 642 #define IBT_REG_MODE_32BIT 0x02 643 644 struct regmap_ibt_context { 645 struct hci_dev *hdev; 646 __u16 op_write; 647 __u16 op_read; 648 }; 649 650 struct ibt_cp_reg_access { 651 __le32 addr; 652 __u8 mode; 653 __u8 len; 654 __u8 data[]; 655 } __packed; 656 657 struct ibt_rp_reg_access { 658 __u8 status; 659 __le32 addr; 660 __u8 data[]; 661 } __packed; 662 663 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, 664 void *val, size_t val_size) 665 { 666 struct regmap_ibt_context *ctx = context; 667 struct ibt_cp_reg_access cp; 668 struct ibt_rp_reg_access *rp; 669 struct sk_buff *skb; 670 int err = 0; 671 672 if (reg_size != sizeof(__le32)) 673 return -EINVAL; 674 675 switch (val_size) { 676 case 1: 677 cp.mode = IBT_REG_MODE_8BIT; 678 break; 679 case 2: 680 cp.mode = IBT_REG_MODE_16BIT; 681 break; 682 case 4: 683 cp.mode = IBT_REG_MODE_32BIT; 684 break; 685 default: 686 return -EINVAL; 687 } 688 689 /* regmap provides a little-endian formatted addr */ 690 cp.addr = *(__le32 *)addr; 691 cp.len = val_size; 692 693 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr)); 694 695 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp, 696 HCI_CMD_TIMEOUT); 697 if (IS_ERR(skb)) { 698 err = PTR_ERR(skb); 699 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)", 700 le32_to_cpu(cp.addr), err); 701 return err; 702 } 703 704 if (skb->len != sizeof(*rp) + val_size) { 705 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len", 706 le32_to_cpu(cp.addr)); 707 err = -EINVAL; 708 goto done; 709 } 710 711 rp = (struct ibt_rp_reg_access *)skb->data; 712 713 if (rp->addr != cp.addr) { 714 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr", 715 le32_to_cpu(rp->addr)); 716 err = -EINVAL; 717 goto done; 718 } 719 720 memcpy(val, rp->data, val_size); 721 722 done: 723 kfree_skb(skb); 724 return err; 725 } 726 727 static int regmap_ibt_gather_write(void *context, 728 const void *addr, size_t reg_size, 729 const void *val, size_t val_size) 730 { 731 struct regmap_ibt_context *ctx = context; 732 struct ibt_cp_reg_access *cp; 733 struct sk_buff *skb; 734 int plen = sizeof(*cp) + val_size; 735 u8 mode; 736 int err = 0; 737 738 if (reg_size != sizeof(__le32)) 739 return -EINVAL; 740 741 switch (val_size) { 742 case 1: 743 mode = IBT_REG_MODE_8BIT; 744 break; 745 case 2: 746 mode = IBT_REG_MODE_16BIT; 747 break; 748 case 4: 749 mode = IBT_REG_MODE_32BIT; 750 break; 751 default: 752 return -EINVAL; 753 } 754 755 cp = kmalloc(plen, GFP_KERNEL); 756 if (!cp) 757 return -ENOMEM; 758 759 /* regmap provides a little-endian formatted addr/value */ 760 cp->addr = *(__le32 *)addr; 761 cp->mode = mode; 762 cp->len = val_size; 763 memcpy(&cp->data, val, val_size); 764 765 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr)); 766 767 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT); 768 if (IS_ERR(skb)) { 769 err = PTR_ERR(skb); 770 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)", 771 le32_to_cpu(cp->addr), err); 772 goto done; 773 } 774 kfree_skb(skb); 775 776 done: 777 kfree(cp); 778 return err; 779 } 780 781 static int regmap_ibt_write(void *context, const void *data, size_t count) 782 { 783 /* data contains register+value, since we only support 32bit addr, 784 * minimum data size is 4 bytes. 785 */ 786 if (WARN_ONCE(count < 4, "Invalid register access")) 787 return -EINVAL; 788 789 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4); 790 } 791 792 static void regmap_ibt_free_context(void *context) 793 { 794 kfree(context); 795 } 796 797 static struct regmap_bus regmap_ibt = { 798 .read = regmap_ibt_read, 799 .write = regmap_ibt_write, 800 .gather_write = regmap_ibt_gather_write, 801 .free_context = regmap_ibt_free_context, 802 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, 803 .val_format_endian_default = REGMAP_ENDIAN_LITTLE, 804 }; 805 806 /* Config is the same for all register regions */ 807 static const struct regmap_config regmap_ibt_cfg = { 808 .name = "btintel_regmap", 809 .reg_bits = 32, 810 .val_bits = 32, 811 }; 812 813 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, 814 u16 opcode_write) 815 { 816 struct regmap_ibt_context *ctx; 817 818 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read, 819 opcode_write); 820 821 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 822 if (!ctx) 823 return ERR_PTR(-ENOMEM); 824 825 ctx->op_read = opcode_read; 826 ctx->op_write = opcode_write; 827 ctx->hdev = hdev; 828 829 return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); 830 } 831 EXPORT_SYMBOL_GPL(btintel_regmap_init); 832 833 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) 834 { 835 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; 836 struct sk_buff *skb; 837 838 params.boot_param = cpu_to_le32(boot_param); 839 840 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms, 841 HCI_INIT_TIMEOUT); 842 if (IS_ERR(skb)) { 843 bt_dev_err(hdev, "Failed to send Intel Reset command"); 844 return PTR_ERR(skb); 845 } 846 847 kfree_skb(skb); 848 849 return 0; 850 } 851 EXPORT_SYMBOL_GPL(btintel_send_intel_reset); 852 853 int btintel_read_boot_params(struct hci_dev *hdev, 854 struct intel_boot_params *params) 855 { 856 struct sk_buff *skb; 857 858 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); 859 if (IS_ERR(skb)) { 860 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", 861 PTR_ERR(skb)); 862 return PTR_ERR(skb); 863 } 864 865 if (skb->len != sizeof(*params)) { 866 bt_dev_err(hdev, "Intel boot parameters size mismatch"); 867 kfree_skb(skb); 868 return -EILSEQ; 869 } 870 871 memcpy(params, skb->data, sizeof(*params)); 872 873 kfree_skb(skb); 874 875 if (params->status) { 876 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)", 877 params->status); 878 return -bt_to_errno(params->status); 879 } 880 881 bt_dev_info(hdev, "Device revision is %u", 882 le16_to_cpu(params->dev_revid)); 883 884 bt_dev_info(hdev, "Secure boot is %s", 885 params->secure_boot ? "enabled" : "disabled"); 886 887 bt_dev_info(hdev, "OTP lock is %s", 888 params->otp_lock ? "enabled" : "disabled"); 889 890 bt_dev_info(hdev, "API lock is %s", 891 params->api_lock ? "enabled" : "disabled"); 892 893 bt_dev_info(hdev, "Debug lock is %s", 894 params->debug_lock ? "enabled" : "disabled"); 895 896 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 897 params->min_fw_build_nn, params->min_fw_build_cw, 898 2000 + params->min_fw_build_yy); 899 900 return 0; 901 } 902 EXPORT_SYMBOL_GPL(btintel_read_boot_params); 903 904 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev, 905 const struct firmware *fw) 906 { 907 int err; 908 909 /* Start the firmware download transaction with the Init fragment 910 * represented by the 128 bytes of CSS header. 911 */ 912 err = btintel_secure_send(hdev, 0x00, 128, fw->data); 913 if (err < 0) { 914 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 915 goto done; 916 } 917 918 /* Send the 256 bytes of public key information from the firmware 919 * as the PKey fragment. 920 */ 921 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); 922 if (err < 0) { 923 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); 924 goto done; 925 } 926 927 /* Send the 256 bytes of signature information from the firmware 928 * as the Sign fragment. 929 */ 930 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); 931 if (err < 0) { 932 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); 933 goto done; 934 } 935 936 done: 937 return err; 938 } 939 940 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev, 941 const struct firmware *fw) 942 { 943 int err; 944 945 /* Start the firmware download transaction with the Init fragment 946 * represented by the 128 bytes of CSS header. 947 */ 948 err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644); 949 if (err < 0) { 950 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 951 return err; 952 } 953 954 /* Send the 96 bytes of public key information from the firmware 955 * as the PKey fragment. 956 */ 957 err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128); 958 if (err < 0) { 959 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); 960 return err; 961 } 962 963 /* Send the 96 bytes of signature information from the firmware 964 * as the Sign fragment 965 */ 966 err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224); 967 if (err < 0) { 968 bt_dev_err(hdev, "Failed to send firmware signature (%d)", 969 err); 970 return err; 971 } 972 return 0; 973 } 974 975 static int btintel_download_firmware_payload(struct hci_dev *hdev, 976 const struct firmware *fw, 977 size_t offset) 978 { 979 int err; 980 const u8 *fw_ptr; 981 u32 frag_len; 982 983 fw_ptr = fw->data + offset; 984 frag_len = 0; 985 err = -EINVAL; 986 987 while (fw_ptr - fw->data < fw->size) { 988 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); 989 990 frag_len += sizeof(*cmd) + cmd->plen; 991 992 /* The parameter length of the secure send command requires 993 * a 4 byte alignment. It happens so that the firmware file 994 * contains proper Intel_NOP commands to align the fragments 995 * as needed. 996 * 997 * Send set of commands with 4 byte alignment from the 998 * firmware data buffer as a single Data fragement. 999 */ 1000 if (!(frag_len % 4)) { 1001 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); 1002 if (err < 0) { 1003 bt_dev_err(hdev, 1004 "Failed to send firmware data (%d)", 1005 err); 1006 goto done; 1007 } 1008 1009 fw_ptr += frag_len; 1010 frag_len = 0; 1011 } 1012 } 1013 1014 done: 1015 return err; 1016 } 1017 1018 static bool btintel_firmware_version(struct hci_dev *hdev, 1019 u8 num, u8 ww, u8 yy, 1020 const struct firmware *fw, 1021 u32 *boot_addr) 1022 { 1023 const u8 *fw_ptr; 1024 1025 fw_ptr = fw->data; 1026 1027 while (fw_ptr - fw->data < fw->size) { 1028 struct hci_command_hdr *cmd = (void *)(fw_ptr); 1029 1030 /* Each SKU has a different reset parameter to use in the 1031 * HCI_Intel_Reset command and it is embedded in the firmware 1032 * data. So, instead of using static value per SKU, check 1033 * the firmware data and save it for later use. 1034 */ 1035 if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { 1036 struct cmd_write_boot_params *params; 1037 1038 params = (void *)(fw_ptr + sizeof(*cmd)); 1039 1040 bt_dev_info(hdev, "Boot Address: 0x%x", 1041 le32_to_cpu(params->boot_addr)); 1042 1043 bt_dev_info(hdev, "Firmware Version: %u-%u.%u", 1044 params->fw_build_num, params->fw_build_ww, 1045 params->fw_build_yy); 1046 1047 return (num == params->fw_build_num && 1048 ww == params->fw_build_ww && 1049 yy == params->fw_build_yy); 1050 } 1051 1052 fw_ptr += sizeof(*cmd) + cmd->plen; 1053 } 1054 1055 return false; 1056 } 1057 1058 int btintel_download_firmware(struct hci_dev *hdev, 1059 struct intel_version *ver, 1060 const struct firmware *fw, 1061 u32 *boot_param) 1062 { 1063 int err; 1064 1065 /* SfP and WsP don't seem to update the firmware version on file 1066 * so version checking is currently not possible. 1067 */ 1068 switch (ver->hw_variant) { 1069 case 0x0b: /* SfP */ 1070 case 0x0c: /* WsP */ 1071 /* Skip version checking */ 1072 break; 1073 default: 1074 /* Skip reading firmware file version in bootloader mode */ 1075 if (ver->fw_variant == 0x06) 1076 break; 1077 1078 /* Skip download if firmware has the same version */ 1079 if (btintel_firmware_version(hdev, ver->fw_build_num, 1080 ver->fw_build_ww, ver->fw_build_yy, 1081 fw, boot_param)) { 1082 bt_dev_info(hdev, "Firmware already loaded"); 1083 /* Return -EALREADY to indicate that the firmware has 1084 * already been loaded. 1085 */ 1086 return -EALREADY; 1087 } 1088 } 1089 1090 /* The firmware variant determines if the device is in bootloader 1091 * mode or is running operational firmware. The value 0x06 identifies 1092 * the bootloader and the value 0x23 identifies the operational 1093 * firmware. 1094 * 1095 * If the firmware version has changed that means it needs to be reset 1096 * to bootloader when operational so the new firmware can be loaded. 1097 */ 1098 if (ver->fw_variant == 0x23) 1099 return -EINVAL; 1100 1101 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1102 if (err) 1103 return err; 1104 1105 return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); 1106 } 1107 EXPORT_SYMBOL_GPL(btintel_download_firmware); 1108 1109 static int btintel_download_fw_tlv(struct hci_dev *hdev, 1110 struct intel_version_tlv *ver, 1111 const struct firmware *fw, u32 *boot_param, 1112 u8 hw_variant, u8 sbe_type) 1113 { 1114 int err; 1115 u32 css_header_ver; 1116 1117 /* Skip reading firmware file version in bootloader mode */ 1118 if (ver->img_type != 0x01) { 1119 /* Skip download if firmware has the same version */ 1120 if (btintel_firmware_version(hdev, ver->min_fw_build_nn, 1121 ver->min_fw_build_cw, 1122 ver->min_fw_build_yy, 1123 fw, boot_param)) { 1124 bt_dev_info(hdev, "Firmware already loaded"); 1125 /* Return -EALREADY to indicate that firmware has 1126 * already been loaded. 1127 */ 1128 return -EALREADY; 1129 } 1130 } 1131 1132 /* The firmware variant determines if the device is in bootloader 1133 * mode or is running operational firmware. The value 0x01 identifies 1134 * the bootloader and the value 0x03 identifies the operational 1135 * firmware. 1136 * 1137 * If the firmware version has changed that means it needs to be reset 1138 * to bootloader when operational so the new firmware can be loaded. 1139 */ 1140 if (ver->img_type == 0x03) 1141 return -EINVAL; 1142 1143 /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support 1144 * only RSA secure boot engine. Hence, the corresponding sfi file will 1145 * have RSA header of 644 bytes followed by Command Buffer. 1146 * 1147 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA 1148 * secure boot engine. As a result, the corresponding sfi file will 1149 * have RSA header of 644, ECDSA header of 320 bytes followed by 1150 * Command Buffer. 1151 * 1152 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header 1153 * version: RSA(0x00010000) , ECDSA (0x00020000) 1154 */ 1155 css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET); 1156 if (css_header_ver != 0x00010000) { 1157 bt_dev_err(hdev, "Invalid CSS Header version"); 1158 return -EINVAL; 1159 } 1160 1161 if (hw_variant <= 0x14) { 1162 if (sbe_type != 0x00) { 1163 bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)", 1164 hw_variant); 1165 return -EINVAL; 1166 } 1167 1168 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1169 if (err) 1170 return err; 1171 1172 err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); 1173 if (err) 1174 return err; 1175 } else if (hw_variant >= 0x17) { 1176 /* Check if CSS header for ECDSA follows the RSA header */ 1177 if (fw->data[ECDSA_OFFSET] != 0x06) 1178 return -EINVAL; 1179 1180 /* Check if the CSS Header version is ECDSA(0x00020000) */ 1181 css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); 1182 if (css_header_ver != 0x00020000) { 1183 bt_dev_err(hdev, "Invalid CSS Header version"); 1184 return -EINVAL; 1185 } 1186 1187 if (sbe_type == 0x00) { 1188 err = btintel_sfi_rsa_header_secure_send(hdev, fw); 1189 if (err) 1190 return err; 1191 1192 err = btintel_download_firmware_payload(hdev, fw, 1193 RSA_HEADER_LEN + ECDSA_HEADER_LEN); 1194 if (err) 1195 return err; 1196 } else if (sbe_type == 0x01) { 1197 err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); 1198 if (err) 1199 return err; 1200 1201 err = btintel_download_firmware_payload(hdev, fw, 1202 RSA_HEADER_LEN + ECDSA_HEADER_LEN); 1203 if (err) 1204 return err; 1205 } 1206 } 1207 return 0; 1208 } 1209 1210 static void btintel_reset_to_bootloader(struct hci_dev *hdev) 1211 { 1212 struct intel_reset params; 1213 struct sk_buff *skb; 1214 1215 /* Send Intel Reset command. This will result in 1216 * re-enumeration of BT controller. 1217 * 1218 * Intel Reset parameter description: 1219 * reset_type : 0x00 (Soft reset), 1220 * 0x01 (Hard reset) 1221 * patch_enable : 0x00 (Do not enable), 1222 * 0x01 (Enable) 1223 * ddc_reload : 0x00 (Do not reload), 1224 * 0x01 (Reload) 1225 * boot_option: 0x00 (Current image), 1226 * 0x01 (Specified boot address) 1227 * boot_param: Boot address 1228 * 1229 */ 1230 params.reset_type = 0x01; 1231 params.patch_enable = 0x01; 1232 params.ddc_reload = 0x01; 1233 params.boot_option = 0x00; 1234 params.boot_param = cpu_to_le32(0x00000000); 1235 1236 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), 1237 ¶ms, HCI_INIT_TIMEOUT); 1238 if (IS_ERR(skb)) { 1239 bt_dev_err(hdev, "FW download error recovery failed (%ld)", 1240 PTR_ERR(skb)); 1241 return; 1242 } 1243 bt_dev_info(hdev, "Intel reset sent to retry FW download"); 1244 kfree_skb(skb); 1245 1246 /* Current Intel BT controllers(ThP/JfP) hold the USB reset 1247 * lines for 2ms when it receives Intel Reset in bootloader mode. 1248 * Whereas, the upcoming Intel BT controllers will hold USB reset 1249 * for 150ms. To keep the delay generic, 150ms is chosen here. 1250 */ 1251 msleep(150); 1252 } 1253 1254 static int btintel_read_debug_features(struct hci_dev *hdev, 1255 struct intel_debug_features *features) 1256 { 1257 struct sk_buff *skb; 1258 u8 page_no = 1; 1259 1260 /* Intel controller supports two pages, each page is of 128-bit 1261 * feature bit mask. And each bit defines specific feature support 1262 */ 1263 skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no, 1264 HCI_INIT_TIMEOUT); 1265 if (IS_ERR(skb)) { 1266 bt_dev_err(hdev, "Reading supported features failed (%ld)", 1267 PTR_ERR(skb)); 1268 return PTR_ERR(skb); 1269 } 1270 1271 if (skb->len != (sizeof(features->page1) + 3)) { 1272 bt_dev_err(hdev, "Supported features event size mismatch"); 1273 kfree_skb(skb); 1274 return -EILSEQ; 1275 } 1276 1277 memcpy(features->page1, skb->data + 3, sizeof(features->page1)); 1278 1279 /* Read the supported features page2 if required in future. 1280 */ 1281 kfree_skb(skb); 1282 return 0; 1283 } 1284 1285 static int btintel_set_debug_features(struct hci_dev *hdev, 1286 const struct intel_debug_features *features) 1287 { 1288 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x07, 0x00, 0x00, 0x00, 0x00, 1289 0x00, 0x00, 0x00 }; 1290 struct sk_buff *skb; 1291 1292 if (!features) 1293 return -EINVAL; 1294 1295 if (!(features->page1[0] & 0x3f)) { 1296 bt_dev_info(hdev, "Telemetry exception format not supported"); 1297 return 0; 1298 } 1299 1300 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); 1301 if (IS_ERR(skb)) { 1302 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", 1303 PTR_ERR(skb)); 1304 return PTR_ERR(skb); 1305 } 1306 1307 kfree_skb(skb); 1308 return 0; 1309 } 1310 1311 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, 1312 struct intel_version *ver) 1313 { 1314 const struct firmware *fw; 1315 char fwname[64]; 1316 int ret; 1317 1318 snprintf(fwname, sizeof(fwname), 1319 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", 1320 ver->hw_platform, ver->hw_variant, ver->hw_revision, 1321 ver->fw_variant, ver->fw_revision, ver->fw_build_num, 1322 ver->fw_build_ww, ver->fw_build_yy); 1323 1324 ret = request_firmware(&fw, fwname, &hdev->dev); 1325 if (ret < 0) { 1326 if (ret == -EINVAL) { 1327 bt_dev_err(hdev, "Intel firmware file request failed (%d)", 1328 ret); 1329 return NULL; 1330 } 1331 1332 bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)", 1333 fwname, ret); 1334 1335 /* If the correct firmware patch file is not found, use the 1336 * default firmware patch file instead 1337 */ 1338 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq", 1339 ver->hw_platform, ver->hw_variant); 1340 if (request_firmware(&fw, fwname, &hdev->dev) < 0) { 1341 bt_dev_err(hdev, "failed to open default fw file: %s", 1342 fwname); 1343 return NULL; 1344 } 1345 } 1346 1347 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); 1348 1349 return fw; 1350 } 1351 1352 static int btintel_legacy_rom_patching(struct hci_dev *hdev, 1353 const struct firmware *fw, 1354 const u8 **fw_ptr, int *disable_patch) 1355 { 1356 struct sk_buff *skb; 1357 struct hci_command_hdr *cmd; 1358 const u8 *cmd_param; 1359 struct hci_event_hdr *evt = NULL; 1360 const u8 *evt_param = NULL; 1361 int remain = fw->size - (*fw_ptr - fw->data); 1362 1363 /* The first byte indicates the types of the patch command or event. 1364 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes 1365 * in the current firmware buffer doesn't start with 0x01 or 1366 * the size of remain buffer is smaller than HCI command header, 1367 * the firmware file is corrupted and it should stop the patching 1368 * process. 1369 */ 1370 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { 1371 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read"); 1372 return -EINVAL; 1373 } 1374 (*fw_ptr)++; 1375 remain--; 1376 1377 cmd = (struct hci_command_hdr *)(*fw_ptr); 1378 *fw_ptr += sizeof(*cmd); 1379 remain -= sizeof(*cmd); 1380 1381 /* Ensure that the remain firmware data is long enough than the length 1382 * of command parameter. If not, the firmware file is corrupted. 1383 */ 1384 if (remain < cmd->plen) { 1385 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len"); 1386 return -EFAULT; 1387 } 1388 1389 /* If there is a command that loads a patch in the firmware 1390 * file, then enable the patch upon success, otherwise just 1391 * disable the manufacturer mode, for example patch activation 1392 * is not required when the default firmware patch file is used 1393 * because there are no patch data to load. 1394 */ 1395 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) 1396 *disable_patch = 0; 1397 1398 cmd_param = *fw_ptr; 1399 *fw_ptr += cmd->plen; 1400 remain -= cmd->plen; 1401 1402 /* This reads the expected events when the above command is sent to the 1403 * device. Some vendor commands expects more than one events, for 1404 * example command status event followed by vendor specific event. 1405 * For this case, it only keeps the last expected event. so the command 1406 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of 1407 * last expected event. 1408 */ 1409 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { 1410 (*fw_ptr)++; 1411 remain--; 1412 1413 evt = (struct hci_event_hdr *)(*fw_ptr); 1414 *fw_ptr += sizeof(*evt); 1415 remain -= sizeof(*evt); 1416 1417 if (remain < evt->plen) { 1418 bt_dev_err(hdev, "Intel fw corrupted: invalid evt len"); 1419 return -EFAULT; 1420 } 1421 1422 evt_param = *fw_ptr; 1423 *fw_ptr += evt->plen; 1424 remain -= evt->plen; 1425 } 1426 1427 /* Every HCI commands in the firmware file has its correspond event. 1428 * If event is not found or remain is smaller than zero, the firmware 1429 * file is corrupted. 1430 */ 1431 if (!evt || !evt_param || remain < 0) { 1432 bt_dev_err(hdev, "Intel fw corrupted: invalid evt read"); 1433 return -EFAULT; 1434 } 1435 1436 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen, 1437 cmd_param, evt->evt, HCI_INIT_TIMEOUT); 1438 if (IS_ERR(skb)) { 1439 bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)", 1440 cmd->opcode, PTR_ERR(skb)); 1441 return PTR_ERR(skb); 1442 } 1443 1444 /* It ensures that the returned event matches the event data read from 1445 * the firmware file. At fist, it checks the length and then 1446 * the contents of the event. 1447 */ 1448 if (skb->len != evt->plen) { 1449 bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)", 1450 le16_to_cpu(cmd->opcode)); 1451 kfree_skb(skb); 1452 return -EFAULT; 1453 } 1454 1455 if (memcmp(skb->data, evt_param, evt->plen)) { 1456 bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)", 1457 le16_to_cpu(cmd->opcode)); 1458 kfree_skb(skb); 1459 return -EFAULT; 1460 } 1461 kfree_skb(skb); 1462 1463 return 0; 1464 } 1465 1466 static int btintel_legacy_rom_setup(struct hci_dev *hdev, 1467 struct intel_version *ver) 1468 { 1469 const struct firmware *fw; 1470 const u8 *fw_ptr; 1471 int disable_patch, err; 1472 struct intel_version new_ver; 1473 1474 BT_DBG("%s", hdev->name); 1475 1476 /* fw_patch_num indicates the version of patch the device currently 1477 * have. If there is no patch data in the device, it is always 0x00. 1478 * So, if it is other than 0x00, no need to patch the device again. 1479 */ 1480 if (ver->fw_patch_num) { 1481 bt_dev_info(hdev, 1482 "Intel device is already patched. patch num: %02x", 1483 ver->fw_patch_num); 1484 goto complete; 1485 } 1486 1487 /* Opens the firmware patch file based on the firmware version read 1488 * from the controller. If it fails to open the matching firmware 1489 * patch file, it tries to open the default firmware patch file. 1490 * If no patch file is found, allow the device to operate without 1491 * a patch. 1492 */ 1493 fw = btintel_legacy_rom_get_fw(hdev, ver); 1494 if (!fw) 1495 goto complete; 1496 fw_ptr = fw->data; 1497 1498 /* Enable the manufacturer mode of the controller. 1499 * Only while this mode is enabled, the driver can download the 1500 * firmware patch data and configuration parameters. 1501 */ 1502 err = btintel_enter_mfg(hdev); 1503 if (err) { 1504 release_firmware(fw); 1505 return err; 1506 } 1507 1508 disable_patch = 1; 1509 1510 /* The firmware data file consists of list of Intel specific HCI 1511 * commands and its expected events. The first byte indicates the 1512 * type of the message, either HCI command or HCI event. 1513 * 1514 * It reads the command and its expected event from the firmware file, 1515 * and send to the controller. Once __hci_cmd_sync_ev() returns, 1516 * the returned event is compared with the event read from the firmware 1517 * file and it will continue until all the messages are downloaded to 1518 * the controller. 1519 * 1520 * Once the firmware patching is completed successfully, 1521 * the manufacturer mode is disabled with reset and activating the 1522 * downloaded patch. 1523 * 1524 * If the firmware patching fails, the manufacturer mode is 1525 * disabled with reset and deactivating the patch. 1526 * 1527 * If the default patch file is used, no reset is done when disabling 1528 * the manufacturer. 1529 */ 1530 while (fw->size > fw_ptr - fw->data) { 1531 int ret; 1532 1533 ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr, 1534 &disable_patch); 1535 if (ret < 0) 1536 goto exit_mfg_deactivate; 1537 } 1538 1539 release_firmware(fw); 1540 1541 if (disable_patch) 1542 goto exit_mfg_disable; 1543 1544 /* Patching completed successfully and disable the manufacturer mode 1545 * with reset and activate the downloaded firmware patches. 1546 */ 1547 err = btintel_exit_mfg(hdev, true, true); 1548 if (err) 1549 return err; 1550 1551 /* Need build number for downloaded fw patches in 1552 * every power-on boot 1553 */ 1554 err = btintel_read_version(hdev, &new_ver); 1555 if (err) 1556 return err; 1557 1558 bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated", 1559 new_ver.fw_patch_num); 1560 1561 goto complete; 1562 1563 exit_mfg_disable: 1564 /* Disable the manufacturer mode without reset */ 1565 err = btintel_exit_mfg(hdev, false, false); 1566 if (err) 1567 return err; 1568 1569 bt_dev_info(hdev, "Intel firmware patch completed"); 1570 1571 goto complete; 1572 1573 exit_mfg_deactivate: 1574 release_firmware(fw); 1575 1576 /* Patching failed. Disable the manufacturer mode with reset and 1577 * deactivate the downloaded firmware patches. 1578 */ 1579 err = btintel_exit_mfg(hdev, true, false); 1580 if (err) 1581 return err; 1582 1583 bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); 1584 1585 complete: 1586 /* Set the event mask for Intel specific vendor events. This enables 1587 * a few extra events that are useful during general operation. 1588 */ 1589 btintel_set_event_mask_mfg(hdev, false); 1590 1591 btintel_check_bdaddr(hdev); 1592 1593 return 0; 1594 } 1595 1596 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) 1597 { 1598 ktime_t delta, rettime; 1599 unsigned long long duration; 1600 int err; 1601 1602 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1603 1604 bt_dev_info(hdev, "Waiting for firmware download to complete"); 1605 1606 err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, 1607 TASK_INTERRUPTIBLE, 1608 msecs_to_jiffies(msec)); 1609 if (err == -EINTR) { 1610 bt_dev_err(hdev, "Firmware loading interrupted"); 1611 return err; 1612 } 1613 1614 if (err) { 1615 bt_dev_err(hdev, "Firmware loading timeout"); 1616 return -ETIMEDOUT; 1617 } 1618 1619 if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { 1620 bt_dev_err(hdev, "Firmware loading failed"); 1621 return -ENOEXEC; 1622 } 1623 1624 rettime = ktime_get(); 1625 delta = ktime_sub(rettime, calltime); 1626 duration = (unsigned long long)ktime_to_ns(delta) >> 10; 1627 1628 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 1629 1630 return 0; 1631 } 1632 1633 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) 1634 { 1635 ktime_t delta, rettime; 1636 unsigned long long duration; 1637 int err; 1638 1639 bt_dev_info(hdev, "Waiting for device to boot"); 1640 1641 err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, 1642 TASK_INTERRUPTIBLE, 1643 msecs_to_jiffies(msec)); 1644 if (err == -EINTR) { 1645 bt_dev_err(hdev, "Device boot interrupted"); 1646 return -EINTR; 1647 } 1648 1649 if (err) { 1650 bt_dev_err(hdev, "Device boot timeout"); 1651 return -ETIMEDOUT; 1652 } 1653 1654 rettime = ktime_get(); 1655 delta = ktime_sub(rettime, calltime); 1656 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 1657 1658 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 1659 1660 return 0; 1661 } 1662 1663 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) 1664 { 1665 ktime_t calltime; 1666 int err; 1667 1668 calltime = ktime_get(); 1669 1670 btintel_set_flag(hdev, INTEL_BOOTING); 1671 1672 err = btintel_send_intel_reset(hdev, boot_addr); 1673 if (err) { 1674 bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err); 1675 btintel_reset_to_bootloader(hdev); 1676 return err; 1677 } 1678 1679 /* The bootloader will not indicate when the device is ready. This 1680 * is done by the operational firmware sending bootup notification. 1681 * 1682 * Booting into operational firmware should not take longer than 1683 * 1 second. However if that happens, then just fail the setup 1684 * since something went wrong. 1685 */ 1686 err = btintel_boot_wait(hdev, calltime, 1000); 1687 if (err == -ETIMEDOUT) 1688 btintel_reset_to_bootloader(hdev); 1689 1690 return err; 1691 } 1692 1693 static int btintel_get_fw_name(struct intel_version *ver, 1694 struct intel_boot_params *params, 1695 char *fw_name, size_t len, 1696 const char *suffix) 1697 { 1698 switch (ver->hw_variant) { 1699 case 0x0b: /* SfP */ 1700 case 0x0c: /* WsP */ 1701 snprintf(fw_name, len, "intel/ibt-%u-%u.%s", 1702 le16_to_cpu(ver->hw_variant), 1703 le16_to_cpu(params->dev_revid), 1704 suffix); 1705 break; 1706 case 0x11: /* JfP */ 1707 case 0x12: /* ThP */ 1708 case 0x13: /* HrP */ 1709 case 0x14: /* CcP */ 1710 snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s", 1711 le16_to_cpu(ver->hw_variant), 1712 le16_to_cpu(ver->hw_revision), 1713 le16_to_cpu(ver->fw_revision), 1714 suffix); 1715 break; 1716 default: 1717 return -EINVAL; 1718 } 1719 1720 return 0; 1721 } 1722 1723 static int btintel_download_fw(struct hci_dev *hdev, 1724 struct intel_version *ver, 1725 struct intel_boot_params *params, 1726 u32 *boot_param) 1727 { 1728 const struct firmware *fw; 1729 char fwname[64]; 1730 int err; 1731 ktime_t calltime; 1732 1733 if (!ver || !params) 1734 return -EINVAL; 1735 1736 /* The firmware variant determines if the device is in bootloader 1737 * mode or is running operational firmware. The value 0x06 identifies 1738 * the bootloader and the value 0x23 identifies the operational 1739 * firmware. 1740 * 1741 * When the operational firmware is already present, then only 1742 * the check for valid Bluetooth device address is needed. This 1743 * determines if the device will be added as configured or 1744 * unconfigured controller. 1745 * 1746 * It is not possible to use the Secure Boot Parameters in this 1747 * case since that command is only available in bootloader mode. 1748 */ 1749 if (ver->fw_variant == 0x23) { 1750 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 1751 btintel_check_bdaddr(hdev); 1752 1753 /* SfP and WsP don't seem to update the firmware version on file 1754 * so version checking is currently possible. 1755 */ 1756 switch (ver->hw_variant) { 1757 case 0x0b: /* SfP */ 1758 case 0x0c: /* WsP */ 1759 return 0; 1760 } 1761 1762 /* Proceed to download to check if the version matches */ 1763 goto download; 1764 } 1765 1766 /* Read the secure boot parameters to identify the operating 1767 * details of the bootloader. 1768 */ 1769 err = btintel_read_boot_params(hdev, params); 1770 if (err) 1771 return err; 1772 1773 /* It is required that every single firmware fragment is acknowledged 1774 * with a command complete event. If the boot parameters indicate 1775 * that this bootloader does not send them, then abort the setup. 1776 */ 1777 if (params->limited_cce != 0x00) { 1778 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", 1779 params->limited_cce); 1780 return -EINVAL; 1781 } 1782 1783 /* If the OTP has no valid Bluetooth device address, then there will 1784 * also be no valid address for the operational firmware. 1785 */ 1786 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { 1787 bt_dev_info(hdev, "No device address configured"); 1788 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 1789 } 1790 1791 download: 1792 /* With this Intel bootloader only the hardware variant and device 1793 * revision information are used to select the right firmware for SfP 1794 * and WsP. 1795 * 1796 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. 1797 * 1798 * Currently the supported hardware variants are: 1799 * 11 (0x0b) for iBT3.0 (LnP/SfP) 1800 * 12 (0x0c) for iBT3.5 (WsP) 1801 * 1802 * For ThP/JfP and for future SKU's, the FW name varies based on HW 1803 * variant, HW revision and FW revision, as these are dependent on CNVi 1804 * and RF Combination. 1805 * 1806 * 17 (0x11) for iBT3.5 (JfP) 1807 * 18 (0x12) for iBT3.5 (ThP) 1808 * 1809 * The firmware file name for these will be 1810 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. 1811 * 1812 */ 1813 err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi"); 1814 if (err < 0) { 1815 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1816 /* Firmware has already been loaded */ 1817 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1818 return 0; 1819 } 1820 1821 bt_dev_err(hdev, "Unsupported Intel firmware naming"); 1822 return -EINVAL; 1823 } 1824 1825 err = firmware_request_nowarn(&fw, fwname, &hdev->dev); 1826 if (err < 0) { 1827 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1828 /* Firmware has already been loaded */ 1829 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1830 return 0; 1831 } 1832 1833 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", 1834 fwname, err); 1835 return err; 1836 } 1837 1838 bt_dev_info(hdev, "Found device firmware: %s", fwname); 1839 1840 if (fw->size < 644) { 1841 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 1842 fw->size); 1843 err = -EBADF; 1844 goto done; 1845 } 1846 1847 calltime = ktime_get(); 1848 1849 btintel_set_flag(hdev, INTEL_DOWNLOADING); 1850 1851 /* Start firmware downloading and get boot parameter */ 1852 err = btintel_download_firmware(hdev, ver, fw, boot_param); 1853 if (err < 0) { 1854 if (err == -EALREADY) { 1855 /* Firmware has already been loaded */ 1856 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 1857 err = 0; 1858 goto done; 1859 } 1860 1861 /* When FW download fails, send Intel Reset to retry 1862 * FW download. 1863 */ 1864 btintel_reset_to_bootloader(hdev); 1865 goto done; 1866 } 1867 1868 /* Before switching the device into operational mode and with that 1869 * booting the loaded firmware, wait for the bootloader notification 1870 * that all fragments have been successfully received. 1871 * 1872 * When the event processing receives the notification, then the 1873 * INTEL_DOWNLOADING flag will be cleared. 1874 * 1875 * The firmware loading should not take longer than 5 seconds 1876 * and thus just timeout if that happens and fail the setup 1877 * of this device. 1878 */ 1879 err = btintel_download_wait(hdev, calltime, 5000); 1880 if (err == -ETIMEDOUT) 1881 btintel_reset_to_bootloader(hdev); 1882 1883 done: 1884 release_firmware(fw); 1885 return err; 1886 } 1887 1888 static int btintel_bootloader_setup(struct hci_dev *hdev, 1889 struct intel_version *ver) 1890 { 1891 struct intel_version new_ver; 1892 struct intel_boot_params params; 1893 u32 boot_param; 1894 char ddcname[64]; 1895 int err; 1896 struct intel_debug_features features; 1897 1898 BT_DBG("%s", hdev->name); 1899 1900 /* Set the default boot parameter to 0x0 and it is updated to 1901 * SKU specific boot parameter after reading Intel_Write_Boot_Params 1902 * command while downloading the firmware. 1903 */ 1904 boot_param = 0x00000000; 1905 1906 btintel_set_flag(hdev, INTEL_BOOTLOADER); 1907 1908 err = btintel_download_fw(hdev, ver, ¶ms, &boot_param); 1909 if (err) 1910 return err; 1911 1912 /* controller is already having an operational firmware */ 1913 if (ver->fw_variant == 0x23) 1914 goto finish; 1915 1916 err = btintel_boot(hdev, boot_param); 1917 if (err) 1918 return err; 1919 1920 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 1921 1922 err = btintel_get_fw_name(ver, ¶ms, ddcname, 1923 sizeof(ddcname), "ddc"); 1924 1925 if (err < 0) { 1926 bt_dev_err(hdev, "Unsupported Intel firmware naming"); 1927 } else { 1928 /* Once the device is running in operational mode, it needs to 1929 * apply the device configuration (DDC) parameters. 1930 * 1931 * The device can work without DDC parameters, so even if it 1932 * fails to load the file, no need to fail the setup. 1933 */ 1934 btintel_load_ddc_config(hdev, ddcname); 1935 } 1936 1937 /* Read the Intel supported features and if new exception formats 1938 * supported, need to load the additional DDC config to enable. 1939 */ 1940 err = btintel_read_debug_features(hdev, &features); 1941 if (!err) { 1942 /* Set DDC mask for available debug features */ 1943 btintel_set_debug_features(hdev, &features); 1944 } 1945 1946 /* Read the Intel version information after loading the FW */ 1947 err = btintel_read_version(hdev, &new_ver); 1948 if (err) 1949 return err; 1950 1951 btintel_version_info(hdev, &new_ver); 1952 1953 finish: 1954 /* Set the event mask for Intel specific vendor events. This enables 1955 * a few extra events that are useful during general operation. It 1956 * does not enable any debugging related events. 1957 * 1958 * The device will function correctly without these events enabled 1959 * and thus no need to fail the setup. 1960 */ 1961 btintel_set_event_mask(hdev, false); 1962 1963 return 0; 1964 } 1965 1966 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, 1967 char *fw_name, size_t len, 1968 const char *suffix) 1969 { 1970 /* The firmware file name for new generation controllers will be 1971 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step> 1972 */ 1973 snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s", 1974 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), 1975 INTEL_CNVX_TOP_STEP(ver->cnvi_top)), 1976 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), 1977 INTEL_CNVX_TOP_STEP(ver->cnvr_top)), 1978 suffix); 1979 } 1980 1981 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, 1982 struct intel_version_tlv *ver, 1983 u32 *boot_param) 1984 { 1985 const struct firmware *fw; 1986 char fwname[64]; 1987 int err; 1988 ktime_t calltime; 1989 1990 if (!ver || !boot_param) 1991 return -EINVAL; 1992 1993 /* The firmware variant determines if the device is in bootloader 1994 * mode or is running operational firmware. The value 0x03 identifies 1995 * the bootloader and the value 0x23 identifies the operational 1996 * firmware. 1997 * 1998 * When the operational firmware is already present, then only 1999 * the check for valid Bluetooth device address is needed. This 2000 * determines if the device will be added as configured or 2001 * unconfigured controller. 2002 * 2003 * It is not possible to use the Secure Boot Parameters in this 2004 * case since that command is only available in bootloader mode. 2005 */ 2006 if (ver->img_type == 0x03) { 2007 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2008 btintel_check_bdaddr(hdev); 2009 } 2010 2011 /* If the OTP has no valid Bluetooth device address, then there will 2012 * also be no valid address for the operational firmware. 2013 */ 2014 if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) { 2015 bt_dev_info(hdev, "No device address configured"); 2016 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 2017 } 2018 2019 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi"); 2020 err = firmware_request_nowarn(&fw, fwname, &hdev->dev); 2021 if (err < 0) { 2022 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 2023 /* Firmware has already been loaded */ 2024 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 2025 return 0; 2026 } 2027 2028 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", 2029 fwname, err); 2030 2031 return err; 2032 } 2033 2034 bt_dev_info(hdev, "Found device firmware: %s", fwname); 2035 2036 if (fw->size < 644) { 2037 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 2038 fw->size); 2039 err = -EBADF; 2040 goto done; 2041 } 2042 2043 calltime = ktime_get(); 2044 2045 btintel_set_flag(hdev, INTEL_DOWNLOADING); 2046 2047 /* Start firmware downloading and get boot parameter */ 2048 err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, 2049 INTEL_HW_VARIANT(ver->cnvi_bt), 2050 ver->sbe_type); 2051 if (err < 0) { 2052 if (err == -EALREADY) { 2053 /* Firmware has already been loaded */ 2054 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); 2055 err = 0; 2056 goto done; 2057 } 2058 2059 /* When FW download fails, send Intel Reset to retry 2060 * FW download. 2061 */ 2062 btintel_reset_to_bootloader(hdev); 2063 goto done; 2064 } 2065 2066 /* Before switching the device into operational mode and with that 2067 * booting the loaded firmware, wait for the bootloader notification 2068 * that all fragments have been successfully received. 2069 * 2070 * When the event processing receives the notification, then the 2071 * BTUSB_DOWNLOADING flag will be cleared. 2072 * 2073 * The firmware loading should not take longer than 5 seconds 2074 * and thus just timeout if that happens and fail the setup 2075 * of this device. 2076 */ 2077 err = btintel_download_wait(hdev, calltime, 5000); 2078 if (err == -ETIMEDOUT) 2079 btintel_reset_to_bootloader(hdev); 2080 2081 done: 2082 release_firmware(fw); 2083 return err; 2084 } 2085 2086 static int btintel_bootloader_setup_tlv(struct hci_dev *hdev, 2087 struct intel_version_tlv *ver) 2088 { 2089 u32 boot_param; 2090 char ddcname[64]; 2091 int err; 2092 struct intel_debug_features features; 2093 struct intel_version_tlv new_ver; 2094 2095 bt_dev_dbg(hdev, ""); 2096 2097 /* Set the default boot parameter to 0x0 and it is updated to 2098 * SKU specific boot parameter after reading Intel_Write_Boot_Params 2099 * command while downloading the firmware. 2100 */ 2101 boot_param = 0x00000000; 2102 2103 btintel_set_flag(hdev, INTEL_BOOTLOADER); 2104 2105 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param); 2106 if (err) 2107 return err; 2108 2109 /* check if controller is already having an operational firmware */ 2110 if (ver->img_type == 0x03) 2111 goto finish; 2112 2113 err = btintel_boot(hdev, boot_param); 2114 if (err) 2115 return err; 2116 2117 btintel_clear_flag(hdev, INTEL_BOOTLOADER); 2118 2119 btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc"); 2120 /* Once the device is running in operational mode, it needs to 2121 * apply the device configuration (DDC) parameters. 2122 * 2123 * The device can work without DDC parameters, so even if it 2124 * fails to load the file, no need to fail the setup. 2125 */ 2126 btintel_load_ddc_config(hdev, ddcname); 2127 2128 /* Read the Intel supported features and if new exception formats 2129 * supported, need to load the additional DDC config to enable. 2130 */ 2131 err = btintel_read_debug_features(hdev, &features); 2132 if (!err) { 2133 /* Set DDC mask for available debug features */ 2134 btintel_set_debug_features(hdev, &features); 2135 } 2136 2137 /* Read the Intel version information after loading the FW */ 2138 err = btintel_read_version_tlv(hdev, &new_ver); 2139 if (err) 2140 return err; 2141 2142 btintel_version_info_tlv(hdev, &new_ver); 2143 2144 finish: 2145 /* Set the event mask for Intel specific vendor events. This enables 2146 * a few extra events that are useful during general operation. It 2147 * does not enable any debugging related events. 2148 * 2149 * The device will function correctly without these events enabled 2150 * and thus no need to fail the setup. 2151 */ 2152 btintel_set_event_mask(hdev, false); 2153 2154 return 0; 2155 } 2156 2157 static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) 2158 { 2159 switch (hw_variant) { 2160 /* Legacy bootloader devices that supports MSFT Extension */ 2161 case 0x11: /* JfP */ 2162 case 0x12: /* ThP */ 2163 case 0x13: /* HrP */ 2164 case 0x14: /* CcP */ 2165 /* All Intel new genration controllers support the Microsoft vendor 2166 * extension are using 0xFC1E for VsMsftOpCode. 2167 */ 2168 case 0x17: 2169 case 0x18: 2170 case 0x19: 2171 hci_set_msft_opcode(hdev, 0xFC1E); 2172 break; 2173 default: 2174 /* Not supported */ 2175 break; 2176 } 2177 } 2178 2179 static int btintel_setup_combined(struct hci_dev *hdev) 2180 { 2181 const u8 param[1] = { 0xFF }; 2182 struct intel_version ver; 2183 struct intel_version_tlv ver_tlv; 2184 struct sk_buff *skb; 2185 int err; 2186 2187 BT_DBG("%s", hdev->name); 2188 2189 /* The some controllers have a bug with the first HCI command sent to it 2190 * returning number of completed commands as zero. This would stall the 2191 * command processing in the Bluetooth core. 2192 * 2193 * As a workaround, send HCI Reset command first which will reset the 2194 * number of completed commands and allow normal command processing 2195 * from now on. 2196 */ 2197 if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD)) { 2198 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 2199 HCI_INIT_TIMEOUT); 2200 if (IS_ERR(skb)) { 2201 bt_dev_err(hdev, 2202 "sending initial HCI reset failed (%ld)", 2203 PTR_ERR(skb)); 2204 return PTR_ERR(skb); 2205 } 2206 kfree_skb(skb); 2207 } 2208 2209 /* Starting from TyP device, the command parameter and response are 2210 * changed even though the OCF for HCI_Intel_Read_Version command 2211 * remains same. The legacy devices can handle even if the 2212 * command has a parameter and returns a correct version information. 2213 * So, it uses new format to support both legacy and new format. 2214 */ 2215 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 2216 if (IS_ERR(skb)) { 2217 bt_dev_err(hdev, "Reading Intel version command failed (%ld)", 2218 PTR_ERR(skb)); 2219 return PTR_ERR(skb); 2220 } 2221 2222 /* Check the status */ 2223 if (skb->data[0]) { 2224 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 2225 skb->data[0]); 2226 err = -EIO; 2227 goto exit_error; 2228 } 2229 2230 /* Apply the common HCI quirks for Intel device */ 2231 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 2232 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 2233 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 2234 2235 /* For Legacy device, check the HW platform value and size */ 2236 if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { 2237 bt_dev_dbg(hdev, "Read the legacy Intel version information"); 2238 2239 memcpy(&ver, skb->data, sizeof(ver)); 2240 2241 /* Display version information */ 2242 btintel_version_info(hdev, &ver); 2243 2244 /* Check for supported iBT hardware variants of this firmware 2245 * loading method. 2246 * 2247 * This check has been put in place to ensure correct forward 2248 * compatibility options when newer hardware variants come 2249 * along. 2250 */ 2251 switch (ver.hw_variant) { 2252 case 0x07: /* WP */ 2253 case 0x08: /* StP */ 2254 /* Legacy ROM product */ 2255 btintel_set_flag(hdev, INTEL_ROM_LEGACY); 2256 2257 /* Apply the device specific HCI quirks 2258 * 2259 * WBS for SdP - SdP and Stp have a same hw_varaint but 2260 * different fw_variant 2261 */ 2262 if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22) 2263 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2264 &hdev->quirks); 2265 2266 /* These devices have an issue with LED which doesn't 2267 * go off immediately during shutdown. Set the flag 2268 * here to send the LED OFF command during shutdown. 2269 */ 2270 btintel_set_flag(hdev, INTEL_BROKEN_LED); 2271 2272 err = btintel_legacy_rom_setup(hdev, &ver); 2273 break; 2274 case 0x0b: /* SfP */ 2275 case 0x0c: /* WsP */ 2276 case 0x11: /* JfP */ 2277 case 0x12: /* ThP */ 2278 case 0x13: /* HrP */ 2279 case 0x14: /* CcP */ 2280 /* Apply the device specific HCI quirks 2281 * 2282 * All Legacy bootloader devices support WBS 2283 */ 2284 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2285 &hdev->quirks); 2286 2287 /* Valid LE States quirk for JfP/ThP familiy */ 2288 if (ver.hw_variant == 0x11 || ver.hw_variant == 0x12) 2289 set_bit(HCI_QUIRK_VALID_LE_STATES, 2290 &hdev->quirks); 2291 2292 /* Setup MSFT Extension support */ 2293 btintel_set_msft_opcode(hdev, ver.hw_variant); 2294 2295 err = btintel_bootloader_setup(hdev, &ver); 2296 break; 2297 default: 2298 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2299 ver.hw_variant); 2300 err = -EINVAL; 2301 } 2302 2303 goto exit_error; 2304 } 2305 2306 /* For TLV type device, parse the tlv data */ 2307 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); 2308 if (err) { 2309 bt_dev_err(hdev, "Failed to parse TLV version information"); 2310 goto exit_error; 2311 } 2312 2313 if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { 2314 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 2315 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); 2316 err = -EINVAL; 2317 goto exit_error; 2318 } 2319 2320 /* Check for supported iBT hardware variants of this firmware 2321 * loading method. 2322 * 2323 * This check has been put in place to ensure correct forward 2324 * compatibility options when newer hardware variants come 2325 * along. 2326 */ 2327 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { 2328 case 0x11: /* JfP */ 2329 case 0x12: /* ThP */ 2330 case 0x13: /* HrP */ 2331 case 0x14: /* CcP */ 2332 /* Some legacy bootloader devices from JfP supports both old 2333 * and TLV based HCI_Intel_Read_Version command. But we don't 2334 * want to use the TLV based setup routines for those legacy 2335 * bootloader device. 2336 * 2337 * Also, it is not easy to convert TLV based version from the 2338 * legacy version format. 2339 * 2340 * So, as a workaround for those devices, use the legacy 2341 * HCI_Intel_Read_Version to get the version information and 2342 * run the legacy bootloader setup. 2343 */ 2344 err = btintel_read_version(hdev, &ver); 2345 if (err) 2346 return err; 2347 err = btintel_bootloader_setup(hdev, &ver); 2348 break; 2349 case 0x17: 2350 case 0x18: 2351 case 0x19: 2352 /* Display version information of TLV type */ 2353 btintel_version_info_tlv(hdev, &ver_tlv); 2354 2355 /* Apply the device specific HCI quirks for TLV based devices 2356 * 2357 * All TLV based devices support WBS 2358 */ 2359 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 2360 2361 /* Valid LE States quirk for GfP */ 2362 if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18) 2363 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2364 2365 /* Setup MSFT Extension support */ 2366 btintel_set_msft_opcode(hdev, 2367 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2368 2369 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); 2370 break; 2371 default: 2372 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2373 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2374 return -EINVAL; 2375 } 2376 2377 exit_error: 2378 kfree_skb(skb); 2379 2380 return err; 2381 } 2382 2383 static int btintel_shutdown_combined(struct hci_dev *hdev) 2384 { 2385 struct sk_buff *skb; 2386 int ret; 2387 2388 /* Send HCI Reset to the controller to stop any BT activity which 2389 * were triggered. This will help to save power and maintain the 2390 * sync b/w Host and controller 2391 */ 2392 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); 2393 if (IS_ERR(skb)) { 2394 bt_dev_err(hdev, "HCI reset during shutdown failed"); 2395 return PTR_ERR(skb); 2396 } 2397 kfree_skb(skb); 2398 2399 2400 /* Some platforms have an issue with BT LED when the interface is 2401 * down or BT radio is turned off, which takes 5 seconds to BT LED 2402 * goes off. This command turns off the BT LED immediately. 2403 */ 2404 if (btintel_test_flag(hdev, INTEL_BROKEN_LED)) { 2405 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT); 2406 if (IS_ERR(skb)) { 2407 ret = PTR_ERR(skb); 2408 bt_dev_err(hdev, "turning off Intel device LED failed"); 2409 return ret; 2410 } 2411 kfree_skb(skb); 2412 } 2413 2414 return 0; 2415 } 2416 2417 int btintel_configure_setup(struct hci_dev *hdev) 2418 { 2419 hdev->manufacturer = 2; 2420 hdev->setup = btintel_setup_combined; 2421 hdev->shutdown = btintel_shutdown_combined; 2422 hdev->hw_error = btintel_hw_error; 2423 hdev->set_diag = btintel_set_diag_combined; 2424 hdev->set_bdaddr = btintel_set_bdaddr; 2425 2426 return 0; 2427 } 2428 EXPORT_SYMBOL_GPL(btintel_configure_setup); 2429 2430 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) 2431 { 2432 const struct intel_bootup *evt = ptr; 2433 2434 if (len != sizeof(*evt)) 2435 return; 2436 2437 if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) 2438 btintel_wake_up_flag(hdev, INTEL_BOOTING); 2439 } 2440 EXPORT_SYMBOL_GPL(btintel_bootup); 2441 2442 void btintel_secure_send_result(struct hci_dev *hdev, 2443 const void *ptr, unsigned int len) 2444 { 2445 const struct intel_secure_send_result *evt = ptr; 2446 2447 if (len != sizeof(*evt)) 2448 return; 2449 2450 if (evt->result) 2451 btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); 2452 2453 if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && 2454 btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) 2455 btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); 2456 } 2457 EXPORT_SYMBOL_GPL(btintel_secure_send_result); 2458 2459 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 2460 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION); 2461 MODULE_VERSION(VERSION); 2462 MODULE_LICENSE("GPL"); 2463 MODULE_FIRMWARE("intel/ibt-11-5.sfi"); 2464 MODULE_FIRMWARE("intel/ibt-11-5.ddc"); 2465 MODULE_FIRMWARE("intel/ibt-12-16.sfi"); 2466 MODULE_FIRMWARE("intel/ibt-12-16.ddc"); 2467