xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision fadbafc1)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static const struct block_device_operations zram_devops;
55 
56 static void zram_free_page(struct zram *zram, size_t index);
57 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
58 				u32 index, int offset, struct bio *bio);
59 
60 
61 static int zram_slot_trylock(struct zram *zram, u32 index)
62 {
63 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
64 }
65 
66 static void zram_slot_lock(struct zram *zram, u32 index)
67 {
68 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
69 }
70 
71 static void zram_slot_unlock(struct zram *zram, u32 index)
72 {
73 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
74 }
75 
76 static inline bool init_done(struct zram *zram)
77 {
78 	return zram->disksize;
79 }
80 
81 static inline struct zram *dev_to_zram(struct device *dev)
82 {
83 	return (struct zram *)dev_to_disk(dev)->private_data;
84 }
85 
86 static unsigned long zram_get_handle(struct zram *zram, u32 index)
87 {
88 	return zram->table[index].handle;
89 }
90 
91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
92 {
93 	zram->table[index].handle = handle;
94 }
95 
96 /* flag operations require table entry bit_spin_lock() being held */
97 static bool zram_test_flag(struct zram *zram, u32 index,
98 			enum zram_pageflags flag)
99 {
100 	return zram->table[index].flags & BIT(flag);
101 }
102 
103 static void zram_set_flag(struct zram *zram, u32 index,
104 			enum zram_pageflags flag)
105 {
106 	zram->table[index].flags |= BIT(flag);
107 }
108 
109 static void zram_clear_flag(struct zram *zram, u32 index,
110 			enum zram_pageflags flag)
111 {
112 	zram->table[index].flags &= ~BIT(flag);
113 }
114 
115 static inline void zram_set_element(struct zram *zram, u32 index,
116 			unsigned long element)
117 {
118 	zram->table[index].element = element;
119 }
120 
121 static unsigned long zram_get_element(struct zram *zram, u32 index)
122 {
123 	return zram->table[index].element;
124 }
125 
126 static size_t zram_get_obj_size(struct zram *zram, u32 index)
127 {
128 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
129 }
130 
131 static void zram_set_obj_size(struct zram *zram,
132 					u32 index, size_t size)
133 {
134 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
135 
136 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
137 }
138 
139 static inline bool zram_allocated(struct zram *zram, u32 index)
140 {
141 	return zram_get_obj_size(zram, index) ||
142 			zram_test_flag(zram, index, ZRAM_SAME) ||
143 			zram_test_flag(zram, index, ZRAM_WB);
144 }
145 
146 #if PAGE_SIZE != 4096
147 static inline bool is_partial_io(struct bio_vec *bvec)
148 {
149 	return bvec->bv_len != PAGE_SIZE;
150 }
151 #else
152 static inline bool is_partial_io(struct bio_vec *bvec)
153 {
154 	return false;
155 }
156 #endif
157 
158 /*
159  * Check if request is within bounds and aligned on zram logical blocks.
160  */
161 static inline bool valid_io_request(struct zram *zram,
162 		sector_t start, unsigned int size)
163 {
164 	u64 end, bound;
165 
166 	/* unaligned request */
167 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
168 		return false;
169 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
170 		return false;
171 
172 	end = start + (size >> SECTOR_SHIFT);
173 	bound = zram->disksize >> SECTOR_SHIFT;
174 	/* out of range range */
175 	if (unlikely(start >= bound || end > bound || start > end))
176 		return false;
177 
178 	/* I/O request is valid */
179 	return true;
180 }
181 
182 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
183 {
184 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
185 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
186 }
187 
188 static inline void update_used_max(struct zram *zram,
189 					const unsigned long pages)
190 {
191 	unsigned long old_max, cur_max;
192 
193 	old_max = atomic_long_read(&zram->stats.max_used_pages);
194 
195 	do {
196 		cur_max = old_max;
197 		if (pages > cur_max)
198 			old_max = atomic_long_cmpxchg(
199 				&zram->stats.max_used_pages, cur_max, pages);
200 	} while (old_max != cur_max);
201 }
202 
203 static inline void zram_fill_page(void *ptr, unsigned long len,
204 					unsigned long value)
205 {
206 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
207 	memset_l(ptr, value, len / sizeof(unsigned long));
208 }
209 
210 static bool page_same_filled(void *ptr, unsigned long *element)
211 {
212 	unsigned long *page;
213 	unsigned long val;
214 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
215 
216 	page = (unsigned long *)ptr;
217 	val = page[0];
218 
219 	if (val != page[last_pos])
220 		return false;
221 
222 	for (pos = 1; pos < last_pos; pos++) {
223 		if (val != page[pos])
224 			return false;
225 	}
226 
227 	*element = val;
228 
229 	return true;
230 }
231 
232 static ssize_t initstate_show(struct device *dev,
233 		struct device_attribute *attr, char *buf)
234 {
235 	u32 val;
236 	struct zram *zram = dev_to_zram(dev);
237 
238 	down_read(&zram->init_lock);
239 	val = init_done(zram);
240 	up_read(&zram->init_lock);
241 
242 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
243 }
244 
245 static ssize_t disksize_show(struct device *dev,
246 		struct device_attribute *attr, char *buf)
247 {
248 	struct zram *zram = dev_to_zram(dev);
249 
250 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
251 }
252 
253 static ssize_t mem_limit_store(struct device *dev,
254 		struct device_attribute *attr, const char *buf, size_t len)
255 {
256 	u64 limit;
257 	char *tmp;
258 	struct zram *zram = dev_to_zram(dev);
259 
260 	limit = memparse(buf, &tmp);
261 	if (buf == tmp) /* no chars parsed, invalid input */
262 		return -EINVAL;
263 
264 	down_write(&zram->init_lock);
265 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
266 	up_write(&zram->init_lock);
267 
268 	return len;
269 }
270 
271 static ssize_t mem_used_max_store(struct device *dev,
272 		struct device_attribute *attr, const char *buf, size_t len)
273 {
274 	int err;
275 	unsigned long val;
276 	struct zram *zram = dev_to_zram(dev);
277 
278 	err = kstrtoul(buf, 10, &val);
279 	if (err || val != 0)
280 		return -EINVAL;
281 
282 	down_read(&zram->init_lock);
283 	if (init_done(zram)) {
284 		atomic_long_set(&zram->stats.max_used_pages,
285 				zs_get_total_pages(zram->mem_pool));
286 	}
287 	up_read(&zram->init_lock);
288 
289 	return len;
290 }
291 
292 /*
293  * Mark all pages which are older than or equal to cutoff as IDLE.
294  * Callers should hold the zram init lock in read mode
295  */
296 static void mark_idle(struct zram *zram, ktime_t cutoff)
297 {
298 	int is_idle = 1;
299 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
300 	int index;
301 
302 	for (index = 0; index < nr_pages; index++) {
303 		/*
304 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
305 		 * See the comment in writeback_store.
306 		 */
307 		zram_slot_lock(zram, index);
308 		if (zram_allocated(zram, index) &&
309 				!zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
310 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
311 			is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
312 #endif
313 			if (is_idle)
314 				zram_set_flag(zram, index, ZRAM_IDLE);
315 		}
316 		zram_slot_unlock(zram, index);
317 	}
318 }
319 
320 static ssize_t idle_store(struct device *dev,
321 		struct device_attribute *attr, const char *buf, size_t len)
322 {
323 	struct zram *zram = dev_to_zram(dev);
324 	ktime_t cutoff_time = 0;
325 	ssize_t rv = -EINVAL;
326 
327 	if (!sysfs_streq(buf, "all")) {
328 		/*
329 		 * If it did not parse as 'all' try to treat it as an integer
330 		 * when we have memory tracking enabled.
331 		 */
332 		u64 age_sec;
333 
334 		if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
335 			cutoff_time = ktime_sub(ktime_get_boottime(),
336 					ns_to_ktime(age_sec * NSEC_PER_SEC));
337 		else
338 			goto out;
339 	}
340 
341 	down_read(&zram->init_lock);
342 	if (!init_done(zram))
343 		goto out_unlock;
344 
345 	/*
346 	 * A cutoff_time of 0 marks everything as idle, this is the
347 	 * "all" behavior.
348 	 */
349 	mark_idle(zram, cutoff_time);
350 	rv = len;
351 
352 out_unlock:
353 	up_read(&zram->init_lock);
354 out:
355 	return rv;
356 }
357 
358 #ifdef CONFIG_ZRAM_WRITEBACK
359 static ssize_t writeback_limit_enable_store(struct device *dev,
360 		struct device_attribute *attr, const char *buf, size_t len)
361 {
362 	struct zram *zram = dev_to_zram(dev);
363 	u64 val;
364 	ssize_t ret = -EINVAL;
365 
366 	if (kstrtoull(buf, 10, &val))
367 		return ret;
368 
369 	down_read(&zram->init_lock);
370 	spin_lock(&zram->wb_limit_lock);
371 	zram->wb_limit_enable = val;
372 	spin_unlock(&zram->wb_limit_lock);
373 	up_read(&zram->init_lock);
374 	ret = len;
375 
376 	return ret;
377 }
378 
379 static ssize_t writeback_limit_enable_show(struct device *dev,
380 		struct device_attribute *attr, char *buf)
381 {
382 	bool val;
383 	struct zram *zram = dev_to_zram(dev);
384 
385 	down_read(&zram->init_lock);
386 	spin_lock(&zram->wb_limit_lock);
387 	val = zram->wb_limit_enable;
388 	spin_unlock(&zram->wb_limit_lock);
389 	up_read(&zram->init_lock);
390 
391 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
392 }
393 
394 static ssize_t writeback_limit_store(struct device *dev,
395 		struct device_attribute *attr, const char *buf, size_t len)
396 {
397 	struct zram *zram = dev_to_zram(dev);
398 	u64 val;
399 	ssize_t ret = -EINVAL;
400 
401 	if (kstrtoull(buf, 10, &val))
402 		return ret;
403 
404 	down_read(&zram->init_lock);
405 	spin_lock(&zram->wb_limit_lock);
406 	zram->bd_wb_limit = val;
407 	spin_unlock(&zram->wb_limit_lock);
408 	up_read(&zram->init_lock);
409 	ret = len;
410 
411 	return ret;
412 }
413 
414 static ssize_t writeback_limit_show(struct device *dev,
415 		struct device_attribute *attr, char *buf)
416 {
417 	u64 val;
418 	struct zram *zram = dev_to_zram(dev);
419 
420 	down_read(&zram->init_lock);
421 	spin_lock(&zram->wb_limit_lock);
422 	val = zram->bd_wb_limit;
423 	spin_unlock(&zram->wb_limit_lock);
424 	up_read(&zram->init_lock);
425 
426 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
427 }
428 
429 static void reset_bdev(struct zram *zram)
430 {
431 	struct block_device *bdev;
432 
433 	if (!zram->backing_dev)
434 		return;
435 
436 	bdev = zram->bdev;
437 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
438 	/* hope filp_close flush all of IO */
439 	filp_close(zram->backing_dev, NULL);
440 	zram->backing_dev = NULL;
441 	zram->bdev = NULL;
442 	zram->disk->fops = &zram_devops;
443 	kvfree(zram->bitmap);
444 	zram->bitmap = NULL;
445 }
446 
447 static ssize_t backing_dev_show(struct device *dev,
448 		struct device_attribute *attr, char *buf)
449 {
450 	struct file *file;
451 	struct zram *zram = dev_to_zram(dev);
452 	char *p;
453 	ssize_t ret;
454 
455 	down_read(&zram->init_lock);
456 	file = zram->backing_dev;
457 	if (!file) {
458 		memcpy(buf, "none\n", 5);
459 		up_read(&zram->init_lock);
460 		return 5;
461 	}
462 
463 	p = file_path(file, buf, PAGE_SIZE - 1);
464 	if (IS_ERR(p)) {
465 		ret = PTR_ERR(p);
466 		goto out;
467 	}
468 
469 	ret = strlen(p);
470 	memmove(buf, p, ret);
471 	buf[ret++] = '\n';
472 out:
473 	up_read(&zram->init_lock);
474 	return ret;
475 }
476 
477 static ssize_t backing_dev_store(struct device *dev,
478 		struct device_attribute *attr, const char *buf, size_t len)
479 {
480 	char *file_name;
481 	size_t sz;
482 	struct file *backing_dev = NULL;
483 	struct inode *inode;
484 	struct address_space *mapping;
485 	unsigned int bitmap_sz;
486 	unsigned long nr_pages, *bitmap = NULL;
487 	struct block_device *bdev = NULL;
488 	int err;
489 	struct zram *zram = dev_to_zram(dev);
490 
491 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
492 	if (!file_name)
493 		return -ENOMEM;
494 
495 	down_write(&zram->init_lock);
496 	if (init_done(zram)) {
497 		pr_info("Can't setup backing device for initialized device\n");
498 		err = -EBUSY;
499 		goto out;
500 	}
501 
502 	strscpy(file_name, buf, PATH_MAX);
503 	/* ignore trailing newline */
504 	sz = strlen(file_name);
505 	if (sz > 0 && file_name[sz - 1] == '\n')
506 		file_name[sz - 1] = 0x00;
507 
508 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
509 	if (IS_ERR(backing_dev)) {
510 		err = PTR_ERR(backing_dev);
511 		backing_dev = NULL;
512 		goto out;
513 	}
514 
515 	mapping = backing_dev->f_mapping;
516 	inode = mapping->host;
517 
518 	/* Support only block device in this moment */
519 	if (!S_ISBLK(inode->i_mode)) {
520 		err = -ENOTBLK;
521 		goto out;
522 	}
523 
524 	bdev = blkdev_get_by_dev(inode->i_rdev,
525 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
526 	if (IS_ERR(bdev)) {
527 		err = PTR_ERR(bdev);
528 		bdev = NULL;
529 		goto out;
530 	}
531 
532 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
533 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
534 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
535 	if (!bitmap) {
536 		err = -ENOMEM;
537 		goto out;
538 	}
539 
540 	reset_bdev(zram);
541 
542 	zram->bdev = bdev;
543 	zram->backing_dev = backing_dev;
544 	zram->bitmap = bitmap;
545 	zram->nr_pages = nr_pages;
546 	up_write(&zram->init_lock);
547 
548 	pr_info("setup backing device %s\n", file_name);
549 	kfree(file_name);
550 
551 	return len;
552 out:
553 	kvfree(bitmap);
554 
555 	if (bdev)
556 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
557 
558 	if (backing_dev)
559 		filp_close(backing_dev, NULL);
560 
561 	up_write(&zram->init_lock);
562 
563 	kfree(file_name);
564 
565 	return err;
566 }
567 
568 static unsigned long alloc_block_bdev(struct zram *zram)
569 {
570 	unsigned long blk_idx = 1;
571 retry:
572 	/* skip 0 bit to confuse zram.handle = 0 */
573 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
574 	if (blk_idx == zram->nr_pages)
575 		return 0;
576 
577 	if (test_and_set_bit(blk_idx, zram->bitmap))
578 		goto retry;
579 
580 	atomic64_inc(&zram->stats.bd_count);
581 	return blk_idx;
582 }
583 
584 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
585 {
586 	int was_set;
587 
588 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
589 	WARN_ON_ONCE(!was_set);
590 	atomic64_dec(&zram->stats.bd_count);
591 }
592 
593 static void zram_page_end_io(struct bio *bio)
594 {
595 	struct page *page = bio_first_page_all(bio);
596 
597 	page_endio(page, op_is_write(bio_op(bio)),
598 			blk_status_to_errno(bio->bi_status));
599 	bio_put(bio);
600 }
601 
602 /*
603  * Returns 1 if the submission is successful.
604  */
605 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
606 			unsigned long entry, struct bio *parent)
607 {
608 	struct bio *bio;
609 
610 	bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ,
611 			GFP_NOIO);
612 	if (!bio)
613 		return -ENOMEM;
614 
615 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
616 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
617 		bio_put(bio);
618 		return -EIO;
619 	}
620 
621 	if (!parent)
622 		bio->bi_end_io = zram_page_end_io;
623 	else
624 		bio_chain(bio, parent);
625 
626 	submit_bio(bio);
627 	return 1;
628 }
629 
630 #define PAGE_WB_SIG "page_index="
631 
632 #define PAGE_WRITEBACK 0
633 #define HUGE_WRITEBACK (1<<0)
634 #define IDLE_WRITEBACK (1<<1)
635 
636 
637 static ssize_t writeback_store(struct device *dev,
638 		struct device_attribute *attr, const char *buf, size_t len)
639 {
640 	struct zram *zram = dev_to_zram(dev);
641 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
642 	unsigned long index = 0;
643 	struct bio bio;
644 	struct bio_vec bio_vec;
645 	struct page *page;
646 	ssize_t ret = len;
647 	int mode, err;
648 	unsigned long blk_idx = 0;
649 
650 	if (sysfs_streq(buf, "idle"))
651 		mode = IDLE_WRITEBACK;
652 	else if (sysfs_streq(buf, "huge"))
653 		mode = HUGE_WRITEBACK;
654 	else if (sysfs_streq(buf, "huge_idle"))
655 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
656 	else {
657 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
658 			return -EINVAL;
659 
660 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
661 				index >= nr_pages)
662 			return -EINVAL;
663 
664 		nr_pages = 1;
665 		mode = PAGE_WRITEBACK;
666 	}
667 
668 	down_read(&zram->init_lock);
669 	if (!init_done(zram)) {
670 		ret = -EINVAL;
671 		goto release_init_lock;
672 	}
673 
674 	if (!zram->backing_dev) {
675 		ret = -ENODEV;
676 		goto release_init_lock;
677 	}
678 
679 	page = alloc_page(GFP_KERNEL);
680 	if (!page) {
681 		ret = -ENOMEM;
682 		goto release_init_lock;
683 	}
684 
685 	for (; nr_pages != 0; index++, nr_pages--) {
686 		struct bio_vec bvec;
687 
688 		bvec.bv_page = page;
689 		bvec.bv_len = PAGE_SIZE;
690 		bvec.bv_offset = 0;
691 
692 		spin_lock(&zram->wb_limit_lock);
693 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
694 			spin_unlock(&zram->wb_limit_lock);
695 			ret = -EIO;
696 			break;
697 		}
698 		spin_unlock(&zram->wb_limit_lock);
699 
700 		if (!blk_idx) {
701 			blk_idx = alloc_block_bdev(zram);
702 			if (!blk_idx) {
703 				ret = -ENOSPC;
704 				break;
705 			}
706 		}
707 
708 		zram_slot_lock(zram, index);
709 		if (!zram_allocated(zram, index))
710 			goto next;
711 
712 		if (zram_test_flag(zram, index, ZRAM_WB) ||
713 				zram_test_flag(zram, index, ZRAM_SAME) ||
714 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
715 			goto next;
716 
717 		if (mode & IDLE_WRITEBACK &&
718 			  !zram_test_flag(zram, index, ZRAM_IDLE))
719 			goto next;
720 		if (mode & HUGE_WRITEBACK &&
721 			  !zram_test_flag(zram, index, ZRAM_HUGE))
722 			goto next;
723 		/*
724 		 * Clearing ZRAM_UNDER_WB is duty of caller.
725 		 * IOW, zram_free_page never clear it.
726 		 */
727 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
728 		/* Need for hugepage writeback racing */
729 		zram_set_flag(zram, index, ZRAM_IDLE);
730 		zram_slot_unlock(zram, index);
731 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
732 			zram_slot_lock(zram, index);
733 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
734 			zram_clear_flag(zram, index, ZRAM_IDLE);
735 			zram_slot_unlock(zram, index);
736 			continue;
737 		}
738 
739 		bio_init(&bio, zram->bdev, &bio_vec, 1,
740 			 REQ_OP_WRITE | REQ_SYNC);
741 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
742 
743 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
744 				bvec.bv_offset);
745 		/*
746 		 * XXX: A single page IO would be inefficient for write
747 		 * but it would be not bad as starter.
748 		 */
749 		err = submit_bio_wait(&bio);
750 		if (err) {
751 			zram_slot_lock(zram, index);
752 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
753 			zram_clear_flag(zram, index, ZRAM_IDLE);
754 			zram_slot_unlock(zram, index);
755 			/*
756 			 * Return last IO error unless every IO were
757 			 * not suceeded.
758 			 */
759 			ret = err;
760 			continue;
761 		}
762 
763 		atomic64_inc(&zram->stats.bd_writes);
764 		/*
765 		 * We released zram_slot_lock so need to check if the slot was
766 		 * changed. If there is freeing for the slot, we can catch it
767 		 * easily by zram_allocated.
768 		 * A subtle case is the slot is freed/reallocated/marked as
769 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
770 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
771 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
772 		 */
773 		zram_slot_lock(zram, index);
774 		if (!zram_allocated(zram, index) ||
775 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
776 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
777 			zram_clear_flag(zram, index, ZRAM_IDLE);
778 			goto next;
779 		}
780 
781 		zram_free_page(zram, index);
782 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
783 		zram_set_flag(zram, index, ZRAM_WB);
784 		zram_set_element(zram, index, blk_idx);
785 		blk_idx = 0;
786 		atomic64_inc(&zram->stats.pages_stored);
787 		spin_lock(&zram->wb_limit_lock);
788 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
789 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
790 		spin_unlock(&zram->wb_limit_lock);
791 next:
792 		zram_slot_unlock(zram, index);
793 	}
794 
795 	if (blk_idx)
796 		free_block_bdev(zram, blk_idx);
797 	__free_page(page);
798 release_init_lock:
799 	up_read(&zram->init_lock);
800 
801 	return ret;
802 }
803 
804 struct zram_work {
805 	struct work_struct work;
806 	struct zram *zram;
807 	unsigned long entry;
808 	struct bio *bio;
809 	struct bio_vec bvec;
810 };
811 
812 #if PAGE_SIZE != 4096
813 static void zram_sync_read(struct work_struct *work)
814 {
815 	struct zram_work *zw = container_of(work, struct zram_work, work);
816 	struct zram *zram = zw->zram;
817 	unsigned long entry = zw->entry;
818 	struct bio *bio = zw->bio;
819 
820 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
821 }
822 
823 /*
824  * Block layer want one ->submit_bio to be active at a time, so if we use
825  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
826  * use a worker thread context.
827  */
828 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
829 				unsigned long entry, struct bio *bio)
830 {
831 	struct zram_work work;
832 
833 	work.bvec = *bvec;
834 	work.zram = zram;
835 	work.entry = entry;
836 	work.bio = bio;
837 
838 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
839 	queue_work(system_unbound_wq, &work.work);
840 	flush_work(&work.work);
841 	destroy_work_on_stack(&work.work);
842 
843 	return 1;
844 }
845 #else
846 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
847 				unsigned long entry, struct bio *bio)
848 {
849 	WARN_ON(1);
850 	return -EIO;
851 }
852 #endif
853 
854 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
855 			unsigned long entry, struct bio *parent, bool sync)
856 {
857 	atomic64_inc(&zram->stats.bd_reads);
858 	if (sync)
859 		return read_from_bdev_sync(zram, bvec, entry, parent);
860 	else
861 		return read_from_bdev_async(zram, bvec, entry, parent);
862 }
863 #else
864 static inline void reset_bdev(struct zram *zram) {};
865 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
866 			unsigned long entry, struct bio *parent, bool sync)
867 {
868 	return -EIO;
869 }
870 
871 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
872 #endif
873 
874 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
875 
876 static struct dentry *zram_debugfs_root;
877 
878 static void zram_debugfs_create(void)
879 {
880 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
881 }
882 
883 static void zram_debugfs_destroy(void)
884 {
885 	debugfs_remove_recursive(zram_debugfs_root);
886 }
887 
888 static void zram_accessed(struct zram *zram, u32 index)
889 {
890 	zram_clear_flag(zram, index, ZRAM_IDLE);
891 	zram->table[index].ac_time = ktime_get_boottime();
892 }
893 
894 static ssize_t read_block_state(struct file *file, char __user *buf,
895 				size_t count, loff_t *ppos)
896 {
897 	char *kbuf;
898 	ssize_t index, written = 0;
899 	struct zram *zram = file->private_data;
900 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
901 	struct timespec64 ts;
902 
903 	kbuf = kvmalloc(count, GFP_KERNEL);
904 	if (!kbuf)
905 		return -ENOMEM;
906 
907 	down_read(&zram->init_lock);
908 	if (!init_done(zram)) {
909 		up_read(&zram->init_lock);
910 		kvfree(kbuf);
911 		return -EINVAL;
912 	}
913 
914 	for (index = *ppos; index < nr_pages; index++) {
915 		int copied;
916 
917 		zram_slot_lock(zram, index);
918 		if (!zram_allocated(zram, index))
919 			goto next;
920 
921 		ts = ktime_to_timespec64(zram->table[index].ac_time);
922 		copied = snprintf(kbuf + written, count,
923 			"%12zd %12lld.%06lu %c%c%c%c\n",
924 			index, (s64)ts.tv_sec,
925 			ts.tv_nsec / NSEC_PER_USEC,
926 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
927 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
928 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
929 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
930 
931 		if (count <= copied) {
932 			zram_slot_unlock(zram, index);
933 			break;
934 		}
935 		written += copied;
936 		count -= copied;
937 next:
938 		zram_slot_unlock(zram, index);
939 		*ppos += 1;
940 	}
941 
942 	up_read(&zram->init_lock);
943 	if (copy_to_user(buf, kbuf, written))
944 		written = -EFAULT;
945 	kvfree(kbuf);
946 
947 	return written;
948 }
949 
950 static const struct file_operations proc_zram_block_state_op = {
951 	.open = simple_open,
952 	.read = read_block_state,
953 	.llseek = default_llseek,
954 };
955 
956 static void zram_debugfs_register(struct zram *zram)
957 {
958 	if (!zram_debugfs_root)
959 		return;
960 
961 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
962 						zram_debugfs_root);
963 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
964 				zram, &proc_zram_block_state_op);
965 }
966 
967 static void zram_debugfs_unregister(struct zram *zram)
968 {
969 	debugfs_remove_recursive(zram->debugfs_dir);
970 }
971 #else
972 static void zram_debugfs_create(void) {};
973 static void zram_debugfs_destroy(void) {};
974 static void zram_accessed(struct zram *zram, u32 index)
975 {
976 	zram_clear_flag(zram, index, ZRAM_IDLE);
977 };
978 static void zram_debugfs_register(struct zram *zram) {};
979 static void zram_debugfs_unregister(struct zram *zram) {};
980 #endif
981 
982 /*
983  * We switched to per-cpu streams and this attr is not needed anymore.
984  * However, we will keep it around for some time, because:
985  * a) we may revert per-cpu streams in the future
986  * b) it's visible to user space and we need to follow our 2 years
987  *    retirement rule; but we already have a number of 'soon to be
988  *    altered' attrs, so max_comp_streams need to wait for the next
989  *    layoff cycle.
990  */
991 static ssize_t max_comp_streams_show(struct device *dev,
992 		struct device_attribute *attr, char *buf)
993 {
994 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
995 }
996 
997 static ssize_t max_comp_streams_store(struct device *dev,
998 		struct device_attribute *attr, const char *buf, size_t len)
999 {
1000 	return len;
1001 }
1002 
1003 static ssize_t comp_algorithm_show(struct device *dev,
1004 		struct device_attribute *attr, char *buf)
1005 {
1006 	size_t sz;
1007 	struct zram *zram = dev_to_zram(dev);
1008 
1009 	down_read(&zram->init_lock);
1010 	sz = zcomp_available_show(zram->compressor, buf);
1011 	up_read(&zram->init_lock);
1012 
1013 	return sz;
1014 }
1015 
1016 static ssize_t comp_algorithm_store(struct device *dev,
1017 		struct device_attribute *attr, const char *buf, size_t len)
1018 {
1019 	struct zram *zram = dev_to_zram(dev);
1020 	char compressor[ARRAY_SIZE(zram->compressor)];
1021 	size_t sz;
1022 
1023 	strscpy(compressor, buf, sizeof(compressor));
1024 	/* ignore trailing newline */
1025 	sz = strlen(compressor);
1026 	if (sz > 0 && compressor[sz - 1] == '\n')
1027 		compressor[sz - 1] = 0x00;
1028 
1029 	if (!zcomp_available_algorithm(compressor))
1030 		return -EINVAL;
1031 
1032 	down_write(&zram->init_lock);
1033 	if (init_done(zram)) {
1034 		up_write(&zram->init_lock);
1035 		pr_info("Can't change algorithm for initialized device\n");
1036 		return -EBUSY;
1037 	}
1038 
1039 	strcpy(zram->compressor, compressor);
1040 	up_write(&zram->init_lock);
1041 	return len;
1042 }
1043 
1044 static ssize_t compact_store(struct device *dev,
1045 		struct device_attribute *attr, const char *buf, size_t len)
1046 {
1047 	struct zram *zram = dev_to_zram(dev);
1048 
1049 	down_read(&zram->init_lock);
1050 	if (!init_done(zram)) {
1051 		up_read(&zram->init_lock);
1052 		return -EINVAL;
1053 	}
1054 
1055 	zs_compact(zram->mem_pool);
1056 	up_read(&zram->init_lock);
1057 
1058 	return len;
1059 }
1060 
1061 static ssize_t io_stat_show(struct device *dev,
1062 		struct device_attribute *attr, char *buf)
1063 {
1064 	struct zram *zram = dev_to_zram(dev);
1065 	ssize_t ret;
1066 
1067 	down_read(&zram->init_lock);
1068 	ret = scnprintf(buf, PAGE_SIZE,
1069 			"%8llu %8llu %8llu %8llu\n",
1070 			(u64)atomic64_read(&zram->stats.failed_reads),
1071 			(u64)atomic64_read(&zram->stats.failed_writes),
1072 			(u64)atomic64_read(&zram->stats.invalid_io),
1073 			(u64)atomic64_read(&zram->stats.notify_free));
1074 	up_read(&zram->init_lock);
1075 
1076 	return ret;
1077 }
1078 
1079 static ssize_t mm_stat_show(struct device *dev,
1080 		struct device_attribute *attr, char *buf)
1081 {
1082 	struct zram *zram = dev_to_zram(dev);
1083 	struct zs_pool_stats pool_stats;
1084 	u64 orig_size, mem_used = 0;
1085 	long max_used;
1086 	ssize_t ret;
1087 
1088 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1089 
1090 	down_read(&zram->init_lock);
1091 	if (init_done(zram)) {
1092 		mem_used = zs_get_total_pages(zram->mem_pool);
1093 		zs_pool_stats(zram->mem_pool, &pool_stats);
1094 	}
1095 
1096 	orig_size = atomic64_read(&zram->stats.pages_stored);
1097 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1098 
1099 	ret = scnprintf(buf, PAGE_SIZE,
1100 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1101 			orig_size << PAGE_SHIFT,
1102 			(u64)atomic64_read(&zram->stats.compr_data_size),
1103 			mem_used << PAGE_SHIFT,
1104 			zram->limit_pages << PAGE_SHIFT,
1105 			max_used << PAGE_SHIFT,
1106 			(u64)atomic64_read(&zram->stats.same_pages),
1107 			atomic_long_read(&pool_stats.pages_compacted),
1108 			(u64)atomic64_read(&zram->stats.huge_pages),
1109 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1110 	up_read(&zram->init_lock);
1111 
1112 	return ret;
1113 }
1114 
1115 #ifdef CONFIG_ZRAM_WRITEBACK
1116 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1117 static ssize_t bd_stat_show(struct device *dev,
1118 		struct device_attribute *attr, char *buf)
1119 {
1120 	struct zram *zram = dev_to_zram(dev);
1121 	ssize_t ret;
1122 
1123 	down_read(&zram->init_lock);
1124 	ret = scnprintf(buf, PAGE_SIZE,
1125 		"%8llu %8llu %8llu\n",
1126 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1127 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1128 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1129 	up_read(&zram->init_lock);
1130 
1131 	return ret;
1132 }
1133 #endif
1134 
1135 static ssize_t debug_stat_show(struct device *dev,
1136 		struct device_attribute *attr, char *buf)
1137 {
1138 	int version = 1;
1139 	struct zram *zram = dev_to_zram(dev);
1140 	ssize_t ret;
1141 
1142 	down_read(&zram->init_lock);
1143 	ret = scnprintf(buf, PAGE_SIZE,
1144 			"version: %d\n%8llu %8llu\n",
1145 			version,
1146 			(u64)atomic64_read(&zram->stats.writestall),
1147 			(u64)atomic64_read(&zram->stats.miss_free));
1148 	up_read(&zram->init_lock);
1149 
1150 	return ret;
1151 }
1152 
1153 static DEVICE_ATTR_RO(io_stat);
1154 static DEVICE_ATTR_RO(mm_stat);
1155 #ifdef CONFIG_ZRAM_WRITEBACK
1156 static DEVICE_ATTR_RO(bd_stat);
1157 #endif
1158 static DEVICE_ATTR_RO(debug_stat);
1159 
1160 static void zram_meta_free(struct zram *zram, u64 disksize)
1161 {
1162 	size_t num_pages = disksize >> PAGE_SHIFT;
1163 	size_t index;
1164 
1165 	/* Free all pages that are still in this zram device */
1166 	for (index = 0; index < num_pages; index++)
1167 		zram_free_page(zram, index);
1168 
1169 	zs_destroy_pool(zram->mem_pool);
1170 	vfree(zram->table);
1171 }
1172 
1173 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1174 {
1175 	size_t num_pages;
1176 
1177 	num_pages = disksize >> PAGE_SHIFT;
1178 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1179 	if (!zram->table)
1180 		return false;
1181 
1182 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1183 	if (!zram->mem_pool) {
1184 		vfree(zram->table);
1185 		return false;
1186 	}
1187 
1188 	if (!huge_class_size)
1189 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1190 	return true;
1191 }
1192 
1193 /*
1194  * To protect concurrent access to the same index entry,
1195  * caller should hold this table index entry's bit_spinlock to
1196  * indicate this index entry is accessing.
1197  */
1198 static void zram_free_page(struct zram *zram, size_t index)
1199 {
1200 	unsigned long handle;
1201 
1202 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1203 	zram->table[index].ac_time = 0;
1204 #endif
1205 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1206 		zram_clear_flag(zram, index, ZRAM_IDLE);
1207 
1208 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1209 		zram_clear_flag(zram, index, ZRAM_HUGE);
1210 		atomic64_dec(&zram->stats.huge_pages);
1211 	}
1212 
1213 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1214 		zram_clear_flag(zram, index, ZRAM_WB);
1215 		free_block_bdev(zram, zram_get_element(zram, index));
1216 		goto out;
1217 	}
1218 
1219 	/*
1220 	 * No memory is allocated for same element filled pages.
1221 	 * Simply clear same page flag.
1222 	 */
1223 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1224 		zram_clear_flag(zram, index, ZRAM_SAME);
1225 		atomic64_dec(&zram->stats.same_pages);
1226 		goto out;
1227 	}
1228 
1229 	handle = zram_get_handle(zram, index);
1230 	if (!handle)
1231 		return;
1232 
1233 	zs_free(zram->mem_pool, handle);
1234 
1235 	atomic64_sub(zram_get_obj_size(zram, index),
1236 			&zram->stats.compr_data_size);
1237 out:
1238 	atomic64_dec(&zram->stats.pages_stored);
1239 	zram_set_handle(zram, index, 0);
1240 	zram_set_obj_size(zram, index, 0);
1241 	WARN_ON_ONCE(zram->table[index].flags &
1242 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1243 }
1244 
1245 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1246 				struct bio *bio, bool partial_io)
1247 {
1248 	struct zcomp_strm *zstrm;
1249 	unsigned long handle;
1250 	unsigned int size;
1251 	void *src, *dst;
1252 	int ret;
1253 
1254 	zram_slot_lock(zram, index);
1255 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1256 		struct bio_vec bvec;
1257 
1258 		zram_slot_unlock(zram, index);
1259 		/* A null bio means rw_page was used, we must fallback to bio */
1260 		if (!bio)
1261 			return -EOPNOTSUPP;
1262 
1263 		bvec.bv_page = page;
1264 		bvec.bv_len = PAGE_SIZE;
1265 		bvec.bv_offset = 0;
1266 		return read_from_bdev(zram, &bvec,
1267 				zram_get_element(zram, index),
1268 				bio, partial_io);
1269 	}
1270 
1271 	handle = zram_get_handle(zram, index);
1272 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1273 		unsigned long value;
1274 		void *mem;
1275 
1276 		value = handle ? zram_get_element(zram, index) : 0;
1277 		mem = kmap_atomic(page);
1278 		zram_fill_page(mem, PAGE_SIZE, value);
1279 		kunmap_atomic(mem);
1280 		zram_slot_unlock(zram, index);
1281 		return 0;
1282 	}
1283 
1284 	size = zram_get_obj_size(zram, index);
1285 
1286 	if (size != PAGE_SIZE)
1287 		zstrm = zcomp_stream_get(zram->comp);
1288 
1289 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1290 	if (size == PAGE_SIZE) {
1291 		dst = kmap_atomic(page);
1292 		memcpy(dst, src, PAGE_SIZE);
1293 		kunmap_atomic(dst);
1294 		ret = 0;
1295 	} else {
1296 		dst = kmap_atomic(page);
1297 		ret = zcomp_decompress(zstrm, src, size, dst);
1298 		kunmap_atomic(dst);
1299 		zcomp_stream_put(zram->comp);
1300 	}
1301 	zs_unmap_object(zram->mem_pool, handle);
1302 	zram_slot_unlock(zram, index);
1303 
1304 	/* Should NEVER happen. Return bio error if it does. */
1305 	if (WARN_ON(ret))
1306 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1307 
1308 	return ret;
1309 }
1310 
1311 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1312 				u32 index, int offset, struct bio *bio)
1313 {
1314 	int ret;
1315 	struct page *page;
1316 
1317 	page = bvec->bv_page;
1318 	if (is_partial_io(bvec)) {
1319 		/* Use a temporary buffer to decompress the page */
1320 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1321 		if (!page)
1322 			return -ENOMEM;
1323 	}
1324 
1325 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1326 	if (unlikely(ret))
1327 		goto out;
1328 
1329 	if (is_partial_io(bvec)) {
1330 		void *src = kmap_atomic(page);
1331 
1332 		memcpy_to_bvec(bvec, src + offset);
1333 		kunmap_atomic(src);
1334 	}
1335 out:
1336 	if (is_partial_io(bvec))
1337 		__free_page(page);
1338 
1339 	return ret;
1340 }
1341 
1342 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1343 				u32 index, struct bio *bio)
1344 {
1345 	int ret = 0;
1346 	unsigned long alloced_pages;
1347 	unsigned long handle = -ENOMEM;
1348 	unsigned int comp_len = 0;
1349 	void *src, *dst, *mem;
1350 	struct zcomp_strm *zstrm;
1351 	struct page *page = bvec->bv_page;
1352 	unsigned long element = 0;
1353 	enum zram_pageflags flags = 0;
1354 
1355 	mem = kmap_atomic(page);
1356 	if (page_same_filled(mem, &element)) {
1357 		kunmap_atomic(mem);
1358 		/* Free memory associated with this sector now. */
1359 		flags = ZRAM_SAME;
1360 		atomic64_inc(&zram->stats.same_pages);
1361 		goto out;
1362 	}
1363 	kunmap_atomic(mem);
1364 
1365 compress_again:
1366 	zstrm = zcomp_stream_get(zram->comp);
1367 	src = kmap_atomic(page);
1368 	ret = zcomp_compress(zstrm, src, &comp_len);
1369 	kunmap_atomic(src);
1370 
1371 	if (unlikely(ret)) {
1372 		zcomp_stream_put(zram->comp);
1373 		pr_err("Compression failed! err=%d\n", ret);
1374 		zs_free(zram->mem_pool, handle);
1375 		return ret;
1376 	}
1377 
1378 	if (comp_len >= huge_class_size)
1379 		comp_len = PAGE_SIZE;
1380 	/*
1381 	 * handle allocation has 2 paths:
1382 	 * a) fast path is executed with preemption disabled (for
1383 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1384 	 *  since we can't sleep;
1385 	 * b) slow path enables preemption and attempts to allocate
1386 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1387 	 *  put per-cpu compression stream and, thus, to re-do
1388 	 *  the compression once handle is allocated.
1389 	 *
1390 	 * if we have a 'non-null' handle here then we are coming
1391 	 * from the slow path and handle has already been allocated.
1392 	 */
1393 	if (IS_ERR((void *)handle))
1394 		handle = zs_malloc(zram->mem_pool, comp_len,
1395 				__GFP_KSWAPD_RECLAIM |
1396 				__GFP_NOWARN |
1397 				__GFP_HIGHMEM |
1398 				__GFP_MOVABLE);
1399 	if (IS_ERR((void *)handle)) {
1400 		zcomp_stream_put(zram->comp);
1401 		atomic64_inc(&zram->stats.writestall);
1402 		handle = zs_malloc(zram->mem_pool, comp_len,
1403 				GFP_NOIO | __GFP_HIGHMEM |
1404 				__GFP_MOVABLE);
1405 		if (IS_ERR((void *)handle))
1406 			return PTR_ERR((void *)handle);
1407 
1408 		if (comp_len != PAGE_SIZE)
1409 			goto compress_again;
1410 		/*
1411 		 * If the page is not compressible, you need to acquire the
1412 		 * lock and execute the code below. The zcomp_stream_get()
1413 		 * call is needed to disable the cpu hotplug and grab the
1414 		 * zstrm buffer back. It is necessary that the dereferencing
1415 		 * of the zstrm variable below occurs correctly.
1416 		 */
1417 		zstrm = zcomp_stream_get(zram->comp);
1418 	}
1419 
1420 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1421 	update_used_max(zram, alloced_pages);
1422 
1423 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1424 		zcomp_stream_put(zram->comp);
1425 		zs_free(zram->mem_pool, handle);
1426 		return -ENOMEM;
1427 	}
1428 
1429 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1430 
1431 	src = zstrm->buffer;
1432 	if (comp_len == PAGE_SIZE)
1433 		src = kmap_atomic(page);
1434 	memcpy(dst, src, comp_len);
1435 	if (comp_len == PAGE_SIZE)
1436 		kunmap_atomic(src);
1437 
1438 	zcomp_stream_put(zram->comp);
1439 	zs_unmap_object(zram->mem_pool, handle);
1440 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1441 out:
1442 	/*
1443 	 * Free memory associated with this sector
1444 	 * before overwriting unused sectors.
1445 	 */
1446 	zram_slot_lock(zram, index);
1447 	zram_free_page(zram, index);
1448 
1449 	if (comp_len == PAGE_SIZE) {
1450 		zram_set_flag(zram, index, ZRAM_HUGE);
1451 		atomic64_inc(&zram->stats.huge_pages);
1452 		atomic64_inc(&zram->stats.huge_pages_since);
1453 	}
1454 
1455 	if (flags) {
1456 		zram_set_flag(zram, index, flags);
1457 		zram_set_element(zram, index, element);
1458 	}  else {
1459 		zram_set_handle(zram, index, handle);
1460 		zram_set_obj_size(zram, index, comp_len);
1461 	}
1462 	zram_slot_unlock(zram, index);
1463 
1464 	/* Update stats */
1465 	atomic64_inc(&zram->stats.pages_stored);
1466 	return ret;
1467 }
1468 
1469 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1470 				u32 index, int offset, struct bio *bio)
1471 {
1472 	int ret;
1473 	struct page *page = NULL;
1474 	struct bio_vec vec;
1475 
1476 	vec = *bvec;
1477 	if (is_partial_io(bvec)) {
1478 		void *dst;
1479 		/*
1480 		 * This is a partial IO. We need to read the full page
1481 		 * before to write the changes.
1482 		 */
1483 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1484 		if (!page)
1485 			return -ENOMEM;
1486 
1487 		ret = __zram_bvec_read(zram, page, index, bio, true);
1488 		if (ret)
1489 			goto out;
1490 
1491 		dst = kmap_atomic(page);
1492 		memcpy_from_bvec(dst + offset, bvec);
1493 		kunmap_atomic(dst);
1494 
1495 		vec.bv_page = page;
1496 		vec.bv_len = PAGE_SIZE;
1497 		vec.bv_offset = 0;
1498 	}
1499 
1500 	ret = __zram_bvec_write(zram, &vec, index, bio);
1501 out:
1502 	if (is_partial_io(bvec))
1503 		__free_page(page);
1504 	return ret;
1505 }
1506 
1507 /*
1508  * zram_bio_discard - handler on discard request
1509  * @index: physical block index in PAGE_SIZE units
1510  * @offset: byte offset within physical block
1511  */
1512 static void zram_bio_discard(struct zram *zram, u32 index,
1513 			     int offset, struct bio *bio)
1514 {
1515 	size_t n = bio->bi_iter.bi_size;
1516 
1517 	/*
1518 	 * zram manages data in physical block size units. Because logical block
1519 	 * size isn't identical with physical block size on some arch, we
1520 	 * could get a discard request pointing to a specific offset within a
1521 	 * certain physical block.  Although we can handle this request by
1522 	 * reading that physiclal block and decompressing and partially zeroing
1523 	 * and re-compressing and then re-storing it, this isn't reasonable
1524 	 * because our intent with a discard request is to save memory.  So
1525 	 * skipping this logical block is appropriate here.
1526 	 */
1527 	if (offset) {
1528 		if (n <= (PAGE_SIZE - offset))
1529 			return;
1530 
1531 		n -= (PAGE_SIZE - offset);
1532 		index++;
1533 	}
1534 
1535 	while (n >= PAGE_SIZE) {
1536 		zram_slot_lock(zram, index);
1537 		zram_free_page(zram, index);
1538 		zram_slot_unlock(zram, index);
1539 		atomic64_inc(&zram->stats.notify_free);
1540 		index++;
1541 		n -= PAGE_SIZE;
1542 	}
1543 }
1544 
1545 /*
1546  * Returns errno if it has some problem. Otherwise return 0 or 1.
1547  * Returns 0 if IO request was done synchronously
1548  * Returns 1 if IO request was successfully submitted.
1549  */
1550 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1551 			int offset, enum req_op op, struct bio *bio)
1552 {
1553 	int ret;
1554 
1555 	if (!op_is_write(op)) {
1556 		atomic64_inc(&zram->stats.num_reads);
1557 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1558 		flush_dcache_page(bvec->bv_page);
1559 	} else {
1560 		atomic64_inc(&zram->stats.num_writes);
1561 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1562 	}
1563 
1564 	zram_slot_lock(zram, index);
1565 	zram_accessed(zram, index);
1566 	zram_slot_unlock(zram, index);
1567 
1568 	if (unlikely(ret < 0)) {
1569 		if (!op_is_write(op))
1570 			atomic64_inc(&zram->stats.failed_reads);
1571 		else
1572 			atomic64_inc(&zram->stats.failed_writes);
1573 	}
1574 
1575 	return ret;
1576 }
1577 
1578 static void __zram_make_request(struct zram *zram, struct bio *bio)
1579 {
1580 	int offset;
1581 	u32 index;
1582 	struct bio_vec bvec;
1583 	struct bvec_iter iter;
1584 	unsigned long start_time;
1585 
1586 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1587 	offset = (bio->bi_iter.bi_sector &
1588 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1589 
1590 	switch (bio_op(bio)) {
1591 	case REQ_OP_DISCARD:
1592 	case REQ_OP_WRITE_ZEROES:
1593 		zram_bio_discard(zram, index, offset, bio);
1594 		bio_endio(bio);
1595 		return;
1596 	default:
1597 		break;
1598 	}
1599 
1600 	start_time = bio_start_io_acct(bio);
1601 	bio_for_each_segment(bvec, bio, iter) {
1602 		struct bio_vec bv = bvec;
1603 		unsigned int unwritten = bvec.bv_len;
1604 
1605 		do {
1606 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1607 							unwritten);
1608 			if (zram_bvec_rw(zram, &bv, index, offset,
1609 					 bio_op(bio), bio) < 0) {
1610 				bio->bi_status = BLK_STS_IOERR;
1611 				break;
1612 			}
1613 
1614 			bv.bv_offset += bv.bv_len;
1615 			unwritten -= bv.bv_len;
1616 
1617 			update_position(&index, &offset, &bv);
1618 		} while (unwritten);
1619 	}
1620 	bio_end_io_acct(bio, start_time);
1621 	bio_endio(bio);
1622 }
1623 
1624 /*
1625  * Handler function for all zram I/O requests.
1626  */
1627 static void zram_submit_bio(struct bio *bio)
1628 {
1629 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1630 
1631 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1632 					bio->bi_iter.bi_size)) {
1633 		atomic64_inc(&zram->stats.invalid_io);
1634 		bio_io_error(bio);
1635 		return;
1636 	}
1637 
1638 	__zram_make_request(zram, bio);
1639 }
1640 
1641 static void zram_slot_free_notify(struct block_device *bdev,
1642 				unsigned long index)
1643 {
1644 	struct zram *zram;
1645 
1646 	zram = bdev->bd_disk->private_data;
1647 
1648 	atomic64_inc(&zram->stats.notify_free);
1649 	if (!zram_slot_trylock(zram, index)) {
1650 		atomic64_inc(&zram->stats.miss_free);
1651 		return;
1652 	}
1653 
1654 	zram_free_page(zram, index);
1655 	zram_slot_unlock(zram, index);
1656 }
1657 
1658 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1659 		       struct page *page, enum req_op op)
1660 {
1661 	int offset, ret;
1662 	u32 index;
1663 	struct zram *zram;
1664 	struct bio_vec bv;
1665 	unsigned long start_time;
1666 
1667 	if (PageTransHuge(page))
1668 		return -ENOTSUPP;
1669 	zram = bdev->bd_disk->private_data;
1670 
1671 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1672 		atomic64_inc(&zram->stats.invalid_io);
1673 		ret = -EINVAL;
1674 		goto out;
1675 	}
1676 
1677 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1678 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1679 
1680 	bv.bv_page = page;
1681 	bv.bv_len = PAGE_SIZE;
1682 	bv.bv_offset = 0;
1683 
1684 	start_time = bdev_start_io_acct(bdev->bd_disk->part0,
1685 			SECTORS_PER_PAGE, op, jiffies);
1686 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1687 	bdev_end_io_acct(bdev->bd_disk->part0, op, start_time);
1688 out:
1689 	/*
1690 	 * If I/O fails, just return error(ie, non-zero) without
1691 	 * calling page_endio.
1692 	 * It causes resubmit the I/O with bio request by upper functions
1693 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1694 	 * bio->bi_end_io does things to handle the error
1695 	 * (e.g., SetPageError, set_page_dirty and extra works).
1696 	 */
1697 	if (unlikely(ret < 0))
1698 		return ret;
1699 
1700 	switch (ret) {
1701 	case 0:
1702 		page_endio(page, op_is_write(op), 0);
1703 		break;
1704 	case 1:
1705 		ret = 0;
1706 		break;
1707 	default:
1708 		WARN_ON(1);
1709 	}
1710 	return ret;
1711 }
1712 
1713 static void zram_reset_device(struct zram *zram)
1714 {
1715 	down_write(&zram->init_lock);
1716 
1717 	zram->limit_pages = 0;
1718 
1719 	if (!init_done(zram)) {
1720 		up_write(&zram->init_lock);
1721 		return;
1722 	}
1723 
1724 	set_capacity_and_notify(zram->disk, 0);
1725 	part_stat_set_all(zram->disk->part0, 0);
1726 
1727 	/* I/O operation under all of CPU are done so let's free */
1728 	zram_meta_free(zram, zram->disksize);
1729 	zram->disksize = 0;
1730 	memset(&zram->stats, 0, sizeof(zram->stats));
1731 	zcomp_destroy(zram->comp);
1732 	zram->comp = NULL;
1733 	reset_bdev(zram);
1734 
1735 	up_write(&zram->init_lock);
1736 }
1737 
1738 static ssize_t disksize_store(struct device *dev,
1739 		struct device_attribute *attr, const char *buf, size_t len)
1740 {
1741 	u64 disksize;
1742 	struct zcomp *comp;
1743 	struct zram *zram = dev_to_zram(dev);
1744 	int err;
1745 
1746 	disksize = memparse(buf, NULL);
1747 	if (!disksize)
1748 		return -EINVAL;
1749 
1750 	down_write(&zram->init_lock);
1751 	if (init_done(zram)) {
1752 		pr_info("Cannot change disksize for initialized device\n");
1753 		err = -EBUSY;
1754 		goto out_unlock;
1755 	}
1756 
1757 	disksize = PAGE_ALIGN(disksize);
1758 	if (!zram_meta_alloc(zram, disksize)) {
1759 		err = -ENOMEM;
1760 		goto out_unlock;
1761 	}
1762 
1763 	comp = zcomp_create(zram->compressor);
1764 	if (IS_ERR(comp)) {
1765 		pr_err("Cannot initialise %s compressing backend\n",
1766 				zram->compressor);
1767 		err = PTR_ERR(comp);
1768 		goto out_free_meta;
1769 	}
1770 
1771 	zram->comp = comp;
1772 	zram->disksize = disksize;
1773 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1774 	up_write(&zram->init_lock);
1775 
1776 	return len;
1777 
1778 out_free_meta:
1779 	zram_meta_free(zram, disksize);
1780 out_unlock:
1781 	up_write(&zram->init_lock);
1782 	return err;
1783 }
1784 
1785 static ssize_t reset_store(struct device *dev,
1786 		struct device_attribute *attr, const char *buf, size_t len)
1787 {
1788 	int ret;
1789 	unsigned short do_reset;
1790 	struct zram *zram;
1791 	struct gendisk *disk;
1792 
1793 	ret = kstrtou16(buf, 10, &do_reset);
1794 	if (ret)
1795 		return ret;
1796 
1797 	if (!do_reset)
1798 		return -EINVAL;
1799 
1800 	zram = dev_to_zram(dev);
1801 	disk = zram->disk;
1802 
1803 	mutex_lock(&disk->open_mutex);
1804 	/* Do not reset an active device or claimed device */
1805 	if (disk_openers(disk) || zram->claim) {
1806 		mutex_unlock(&disk->open_mutex);
1807 		return -EBUSY;
1808 	}
1809 
1810 	/* From now on, anyone can't open /dev/zram[0-9] */
1811 	zram->claim = true;
1812 	mutex_unlock(&disk->open_mutex);
1813 
1814 	/* Make sure all the pending I/O are finished */
1815 	sync_blockdev(disk->part0);
1816 	zram_reset_device(zram);
1817 
1818 	mutex_lock(&disk->open_mutex);
1819 	zram->claim = false;
1820 	mutex_unlock(&disk->open_mutex);
1821 
1822 	return len;
1823 }
1824 
1825 static int zram_open(struct block_device *bdev, fmode_t mode)
1826 {
1827 	int ret = 0;
1828 	struct zram *zram;
1829 
1830 	WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex));
1831 
1832 	zram = bdev->bd_disk->private_data;
1833 	/* zram was claimed to reset so open request fails */
1834 	if (zram->claim)
1835 		ret = -EBUSY;
1836 
1837 	return ret;
1838 }
1839 
1840 static const struct block_device_operations zram_devops = {
1841 	.open = zram_open,
1842 	.submit_bio = zram_submit_bio,
1843 	.swap_slot_free_notify = zram_slot_free_notify,
1844 	.rw_page = zram_rw_page,
1845 	.owner = THIS_MODULE
1846 };
1847 
1848 static DEVICE_ATTR_WO(compact);
1849 static DEVICE_ATTR_RW(disksize);
1850 static DEVICE_ATTR_RO(initstate);
1851 static DEVICE_ATTR_WO(reset);
1852 static DEVICE_ATTR_WO(mem_limit);
1853 static DEVICE_ATTR_WO(mem_used_max);
1854 static DEVICE_ATTR_WO(idle);
1855 static DEVICE_ATTR_RW(max_comp_streams);
1856 static DEVICE_ATTR_RW(comp_algorithm);
1857 #ifdef CONFIG_ZRAM_WRITEBACK
1858 static DEVICE_ATTR_RW(backing_dev);
1859 static DEVICE_ATTR_WO(writeback);
1860 static DEVICE_ATTR_RW(writeback_limit);
1861 static DEVICE_ATTR_RW(writeback_limit_enable);
1862 #endif
1863 
1864 static struct attribute *zram_disk_attrs[] = {
1865 	&dev_attr_disksize.attr,
1866 	&dev_attr_initstate.attr,
1867 	&dev_attr_reset.attr,
1868 	&dev_attr_compact.attr,
1869 	&dev_attr_mem_limit.attr,
1870 	&dev_attr_mem_used_max.attr,
1871 	&dev_attr_idle.attr,
1872 	&dev_attr_max_comp_streams.attr,
1873 	&dev_attr_comp_algorithm.attr,
1874 #ifdef CONFIG_ZRAM_WRITEBACK
1875 	&dev_attr_backing_dev.attr,
1876 	&dev_attr_writeback.attr,
1877 	&dev_attr_writeback_limit.attr,
1878 	&dev_attr_writeback_limit_enable.attr,
1879 #endif
1880 	&dev_attr_io_stat.attr,
1881 	&dev_attr_mm_stat.attr,
1882 #ifdef CONFIG_ZRAM_WRITEBACK
1883 	&dev_attr_bd_stat.attr,
1884 #endif
1885 	&dev_attr_debug_stat.attr,
1886 	NULL,
1887 };
1888 
1889 ATTRIBUTE_GROUPS(zram_disk);
1890 
1891 /*
1892  * Allocate and initialize new zram device. the function returns
1893  * '>= 0' device_id upon success, and negative value otherwise.
1894  */
1895 static int zram_add(void)
1896 {
1897 	struct zram *zram;
1898 	int ret, device_id;
1899 
1900 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1901 	if (!zram)
1902 		return -ENOMEM;
1903 
1904 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1905 	if (ret < 0)
1906 		goto out_free_dev;
1907 	device_id = ret;
1908 
1909 	init_rwsem(&zram->init_lock);
1910 #ifdef CONFIG_ZRAM_WRITEBACK
1911 	spin_lock_init(&zram->wb_limit_lock);
1912 #endif
1913 
1914 	/* gendisk structure */
1915 	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
1916 	if (!zram->disk) {
1917 		pr_err("Error allocating disk structure for device %d\n",
1918 			device_id);
1919 		ret = -ENOMEM;
1920 		goto out_free_idr;
1921 	}
1922 
1923 	zram->disk->major = zram_major;
1924 	zram->disk->first_minor = device_id;
1925 	zram->disk->minors = 1;
1926 	zram->disk->flags |= GENHD_FL_NO_PART;
1927 	zram->disk->fops = &zram_devops;
1928 	zram->disk->private_data = zram;
1929 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1930 
1931 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1932 	set_capacity(zram->disk, 0);
1933 	/* zram devices sort of resembles non-rotational disks */
1934 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1935 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1936 
1937 	/*
1938 	 * To ensure that we always get PAGE_SIZE aligned
1939 	 * and n*PAGE_SIZED sized I/O requests.
1940 	 */
1941 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1942 	blk_queue_logical_block_size(zram->disk->queue,
1943 					ZRAM_LOGICAL_BLOCK_SIZE);
1944 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1945 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1946 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1947 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1948 
1949 	/*
1950 	 * zram_bio_discard() will clear all logical blocks if logical block
1951 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1952 	 * different, we will skip discarding some parts of logical blocks in
1953 	 * the part of the request range which isn't aligned to physical block
1954 	 * size.  So we can't ensure that all discarded logical blocks are
1955 	 * zeroed.
1956 	 */
1957 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1958 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1959 
1960 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1961 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
1962 	if (ret)
1963 		goto out_cleanup_disk;
1964 
1965 	strscpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1966 
1967 	zram_debugfs_register(zram);
1968 	pr_info("Added device: %s\n", zram->disk->disk_name);
1969 	return device_id;
1970 
1971 out_cleanup_disk:
1972 	put_disk(zram->disk);
1973 out_free_idr:
1974 	idr_remove(&zram_index_idr, device_id);
1975 out_free_dev:
1976 	kfree(zram);
1977 	return ret;
1978 }
1979 
1980 static int zram_remove(struct zram *zram)
1981 {
1982 	bool claimed;
1983 
1984 	mutex_lock(&zram->disk->open_mutex);
1985 	if (disk_openers(zram->disk)) {
1986 		mutex_unlock(&zram->disk->open_mutex);
1987 		return -EBUSY;
1988 	}
1989 
1990 	claimed = zram->claim;
1991 	if (!claimed)
1992 		zram->claim = true;
1993 	mutex_unlock(&zram->disk->open_mutex);
1994 
1995 	zram_debugfs_unregister(zram);
1996 
1997 	if (claimed) {
1998 		/*
1999 		 * If we were claimed by reset_store(), del_gendisk() will
2000 		 * wait until reset_store() is done, so nothing need to do.
2001 		 */
2002 		;
2003 	} else {
2004 		/* Make sure all the pending I/O are finished */
2005 		sync_blockdev(zram->disk->part0);
2006 		zram_reset_device(zram);
2007 	}
2008 
2009 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2010 
2011 	del_gendisk(zram->disk);
2012 
2013 	/* del_gendisk drains pending reset_store */
2014 	WARN_ON_ONCE(claimed && zram->claim);
2015 
2016 	/*
2017 	 * disksize_store() may be called in between zram_reset_device()
2018 	 * and del_gendisk(), so run the last reset to avoid leaking
2019 	 * anything allocated with disksize_store()
2020 	 */
2021 	zram_reset_device(zram);
2022 
2023 	put_disk(zram->disk);
2024 	kfree(zram);
2025 	return 0;
2026 }
2027 
2028 /* zram-control sysfs attributes */
2029 
2030 /*
2031  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2032  * sense that reading from this file does alter the state of your system -- it
2033  * creates a new un-initialized zram device and returns back this device's
2034  * device_id (or an error code if it fails to create a new device).
2035  */
2036 static ssize_t hot_add_show(struct class *class,
2037 			struct class_attribute *attr,
2038 			char *buf)
2039 {
2040 	int ret;
2041 
2042 	mutex_lock(&zram_index_mutex);
2043 	ret = zram_add();
2044 	mutex_unlock(&zram_index_mutex);
2045 
2046 	if (ret < 0)
2047 		return ret;
2048 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2049 }
2050 static struct class_attribute class_attr_hot_add =
2051 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2052 
2053 static ssize_t hot_remove_store(struct class *class,
2054 			struct class_attribute *attr,
2055 			const char *buf,
2056 			size_t count)
2057 {
2058 	struct zram *zram;
2059 	int ret, dev_id;
2060 
2061 	/* dev_id is gendisk->first_minor, which is `int' */
2062 	ret = kstrtoint(buf, 10, &dev_id);
2063 	if (ret)
2064 		return ret;
2065 	if (dev_id < 0)
2066 		return -EINVAL;
2067 
2068 	mutex_lock(&zram_index_mutex);
2069 
2070 	zram = idr_find(&zram_index_idr, dev_id);
2071 	if (zram) {
2072 		ret = zram_remove(zram);
2073 		if (!ret)
2074 			idr_remove(&zram_index_idr, dev_id);
2075 	} else {
2076 		ret = -ENODEV;
2077 	}
2078 
2079 	mutex_unlock(&zram_index_mutex);
2080 	return ret ? ret : count;
2081 }
2082 static CLASS_ATTR_WO(hot_remove);
2083 
2084 static struct attribute *zram_control_class_attrs[] = {
2085 	&class_attr_hot_add.attr,
2086 	&class_attr_hot_remove.attr,
2087 	NULL,
2088 };
2089 ATTRIBUTE_GROUPS(zram_control_class);
2090 
2091 static struct class zram_control_class = {
2092 	.name		= "zram-control",
2093 	.owner		= THIS_MODULE,
2094 	.class_groups	= zram_control_class_groups,
2095 };
2096 
2097 static int zram_remove_cb(int id, void *ptr, void *data)
2098 {
2099 	WARN_ON_ONCE(zram_remove(ptr));
2100 	return 0;
2101 }
2102 
2103 static void destroy_devices(void)
2104 {
2105 	class_unregister(&zram_control_class);
2106 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2107 	zram_debugfs_destroy();
2108 	idr_destroy(&zram_index_idr);
2109 	unregister_blkdev(zram_major, "zram");
2110 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2111 }
2112 
2113 static int __init zram_init(void)
2114 {
2115 	int ret;
2116 
2117 	BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG);
2118 
2119 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2120 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2121 	if (ret < 0)
2122 		return ret;
2123 
2124 	ret = class_register(&zram_control_class);
2125 	if (ret) {
2126 		pr_err("Unable to register zram-control class\n");
2127 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2128 		return ret;
2129 	}
2130 
2131 	zram_debugfs_create();
2132 	zram_major = register_blkdev(0, "zram");
2133 	if (zram_major <= 0) {
2134 		pr_err("Unable to get major number\n");
2135 		class_unregister(&zram_control_class);
2136 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2137 		return -EBUSY;
2138 	}
2139 
2140 	while (num_devices != 0) {
2141 		mutex_lock(&zram_index_mutex);
2142 		ret = zram_add();
2143 		mutex_unlock(&zram_index_mutex);
2144 		if (ret < 0)
2145 			goto out_error;
2146 		num_devices--;
2147 	}
2148 
2149 	return 0;
2150 
2151 out_error:
2152 	destroy_devices();
2153 	return ret;
2154 }
2155 
2156 static void __exit zram_exit(void)
2157 {
2158 	destroy_devices();
2159 }
2160 
2161 module_init(zram_init);
2162 module_exit(zram_exit);
2163 
2164 module_param(num_devices, uint, 0);
2165 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2166 
2167 MODULE_LICENSE("Dual BSD/GPL");
2168 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2169 MODULE_DESCRIPTION("Compressed RAM Block Device");
2170