xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision efe4a1ac)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35 
36 #include "zram_drv.h"
37 
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41 
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44 
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47 
48 static void zram_free_page(struct zram *zram, size_t index);
49 
50 static inline bool init_done(struct zram *zram)
51 {
52 	return zram->disksize;
53 }
54 
55 static inline struct zram *dev_to_zram(struct device *dev)
56 {
57 	return (struct zram *)dev_to_disk(dev)->private_data;
58 }
59 
60 static unsigned long zram_get_handle(struct zram *zram, u32 index)
61 {
62 	return zram->table[index].handle;
63 }
64 
65 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66 {
67 	zram->table[index].handle = handle;
68 }
69 
70 /* flag operations require table entry bit_spin_lock() being held */
71 static int zram_test_flag(struct zram *zram, u32 index,
72 			enum zram_pageflags flag)
73 {
74 	return zram->table[index].value & BIT(flag);
75 }
76 
77 static void zram_set_flag(struct zram *zram, u32 index,
78 			enum zram_pageflags flag)
79 {
80 	zram->table[index].value |= BIT(flag);
81 }
82 
83 static void zram_clear_flag(struct zram *zram, u32 index,
84 			enum zram_pageflags flag)
85 {
86 	zram->table[index].value &= ~BIT(flag);
87 }
88 
89 static inline void zram_set_element(struct zram *zram, u32 index,
90 			unsigned long element)
91 {
92 	zram->table[index].element = element;
93 }
94 
95 static unsigned long zram_get_element(struct zram *zram, u32 index)
96 {
97 	return zram->table[index].element;
98 }
99 
100 static size_t zram_get_obj_size(struct zram *zram, u32 index)
101 {
102 	return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
103 }
104 
105 static void zram_set_obj_size(struct zram *zram,
106 					u32 index, size_t size)
107 {
108 	unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
109 
110 	zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
111 }
112 
113 #if PAGE_SIZE != 4096
114 static inline bool is_partial_io(struct bio_vec *bvec)
115 {
116 	return bvec->bv_len != PAGE_SIZE;
117 }
118 #else
119 static inline bool is_partial_io(struct bio_vec *bvec)
120 {
121 	return false;
122 }
123 #endif
124 
125 static void zram_revalidate_disk(struct zram *zram)
126 {
127 	revalidate_disk(zram->disk);
128 	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
129 	zram->disk->queue->backing_dev_info->capabilities |=
130 		BDI_CAP_STABLE_WRITES;
131 }
132 
133 /*
134  * Check if request is within bounds and aligned on zram logical blocks.
135  */
136 static inline bool valid_io_request(struct zram *zram,
137 		sector_t start, unsigned int size)
138 {
139 	u64 end, bound;
140 
141 	/* unaligned request */
142 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
143 		return false;
144 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
145 		return false;
146 
147 	end = start + (size >> SECTOR_SHIFT);
148 	bound = zram->disksize >> SECTOR_SHIFT;
149 	/* out of range range */
150 	if (unlikely(start >= bound || end > bound || start > end))
151 		return false;
152 
153 	/* I/O request is valid */
154 	return true;
155 }
156 
157 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158 {
159 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
160 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161 }
162 
163 static inline void update_used_max(struct zram *zram,
164 					const unsigned long pages)
165 {
166 	unsigned long old_max, cur_max;
167 
168 	old_max = atomic_long_read(&zram->stats.max_used_pages);
169 
170 	do {
171 		cur_max = old_max;
172 		if (pages > cur_max)
173 			old_max = atomic_long_cmpxchg(
174 				&zram->stats.max_used_pages, cur_max, pages);
175 	} while (old_max != cur_max);
176 }
177 
178 static inline void zram_fill_page(char *ptr, unsigned long len,
179 					unsigned long value)
180 {
181 	int i;
182 	unsigned long *page = (unsigned long *)ptr;
183 
184 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
185 
186 	if (likely(value == 0)) {
187 		memset(ptr, 0, len);
188 	} else {
189 		for (i = 0; i < len / sizeof(*page); i++)
190 			page[i] = value;
191 	}
192 }
193 
194 static bool page_same_filled(void *ptr, unsigned long *element)
195 {
196 	unsigned int pos;
197 	unsigned long *page;
198 	unsigned long val;
199 
200 	page = (unsigned long *)ptr;
201 	val = page[0];
202 
203 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
204 		if (val != page[pos])
205 			return false;
206 	}
207 
208 	*element = val;
209 
210 	return true;
211 }
212 
213 static ssize_t initstate_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	u32 val;
217 	struct zram *zram = dev_to_zram(dev);
218 
219 	down_read(&zram->init_lock);
220 	val = init_done(zram);
221 	up_read(&zram->init_lock);
222 
223 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
224 }
225 
226 static ssize_t disksize_show(struct device *dev,
227 		struct device_attribute *attr, char *buf)
228 {
229 	struct zram *zram = dev_to_zram(dev);
230 
231 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
232 }
233 
234 static ssize_t mem_limit_store(struct device *dev,
235 		struct device_attribute *attr, const char *buf, size_t len)
236 {
237 	u64 limit;
238 	char *tmp;
239 	struct zram *zram = dev_to_zram(dev);
240 
241 	limit = memparse(buf, &tmp);
242 	if (buf == tmp) /* no chars parsed, invalid input */
243 		return -EINVAL;
244 
245 	down_write(&zram->init_lock);
246 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
247 	up_write(&zram->init_lock);
248 
249 	return len;
250 }
251 
252 static ssize_t mem_used_max_store(struct device *dev,
253 		struct device_attribute *attr, const char *buf, size_t len)
254 {
255 	int err;
256 	unsigned long val;
257 	struct zram *zram = dev_to_zram(dev);
258 
259 	err = kstrtoul(buf, 10, &val);
260 	if (err || val != 0)
261 		return -EINVAL;
262 
263 	down_read(&zram->init_lock);
264 	if (init_done(zram)) {
265 		atomic_long_set(&zram->stats.max_used_pages,
266 				zs_get_total_pages(zram->mem_pool));
267 	}
268 	up_read(&zram->init_lock);
269 
270 	return len;
271 }
272 
273 /*
274  * We switched to per-cpu streams and this attr is not needed anymore.
275  * However, we will keep it around for some time, because:
276  * a) we may revert per-cpu streams in the future
277  * b) it's visible to user space and we need to follow our 2 years
278  *    retirement rule; but we already have a number of 'soon to be
279  *    altered' attrs, so max_comp_streams need to wait for the next
280  *    layoff cycle.
281  */
282 static ssize_t max_comp_streams_show(struct device *dev,
283 		struct device_attribute *attr, char *buf)
284 {
285 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
286 }
287 
288 static ssize_t max_comp_streams_store(struct device *dev,
289 		struct device_attribute *attr, const char *buf, size_t len)
290 {
291 	return len;
292 }
293 
294 static ssize_t comp_algorithm_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	size_t sz;
298 	struct zram *zram = dev_to_zram(dev);
299 
300 	down_read(&zram->init_lock);
301 	sz = zcomp_available_show(zram->compressor, buf);
302 	up_read(&zram->init_lock);
303 
304 	return sz;
305 }
306 
307 static ssize_t comp_algorithm_store(struct device *dev,
308 		struct device_attribute *attr, const char *buf, size_t len)
309 {
310 	struct zram *zram = dev_to_zram(dev);
311 	char compressor[CRYPTO_MAX_ALG_NAME];
312 	size_t sz;
313 
314 	strlcpy(compressor, buf, sizeof(compressor));
315 	/* ignore trailing newline */
316 	sz = strlen(compressor);
317 	if (sz > 0 && compressor[sz - 1] == '\n')
318 		compressor[sz - 1] = 0x00;
319 
320 	if (!zcomp_available_algorithm(compressor))
321 		return -EINVAL;
322 
323 	down_write(&zram->init_lock);
324 	if (init_done(zram)) {
325 		up_write(&zram->init_lock);
326 		pr_info("Can't change algorithm for initialized device\n");
327 		return -EBUSY;
328 	}
329 
330 	strlcpy(zram->compressor, compressor, sizeof(compressor));
331 	up_write(&zram->init_lock);
332 	return len;
333 }
334 
335 static ssize_t compact_store(struct device *dev,
336 		struct device_attribute *attr, const char *buf, size_t len)
337 {
338 	struct zram *zram = dev_to_zram(dev);
339 
340 	down_read(&zram->init_lock);
341 	if (!init_done(zram)) {
342 		up_read(&zram->init_lock);
343 		return -EINVAL;
344 	}
345 
346 	zs_compact(zram->mem_pool);
347 	up_read(&zram->init_lock);
348 
349 	return len;
350 }
351 
352 static ssize_t io_stat_show(struct device *dev,
353 		struct device_attribute *attr, char *buf)
354 {
355 	struct zram *zram = dev_to_zram(dev);
356 	ssize_t ret;
357 
358 	down_read(&zram->init_lock);
359 	ret = scnprintf(buf, PAGE_SIZE,
360 			"%8llu %8llu %8llu %8llu\n",
361 			(u64)atomic64_read(&zram->stats.failed_reads),
362 			(u64)atomic64_read(&zram->stats.failed_writes),
363 			(u64)atomic64_read(&zram->stats.invalid_io),
364 			(u64)atomic64_read(&zram->stats.notify_free));
365 	up_read(&zram->init_lock);
366 
367 	return ret;
368 }
369 
370 static ssize_t mm_stat_show(struct device *dev,
371 		struct device_attribute *attr, char *buf)
372 {
373 	struct zram *zram = dev_to_zram(dev);
374 	struct zs_pool_stats pool_stats;
375 	u64 orig_size, mem_used = 0;
376 	long max_used;
377 	ssize_t ret;
378 
379 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
380 
381 	down_read(&zram->init_lock);
382 	if (init_done(zram)) {
383 		mem_used = zs_get_total_pages(zram->mem_pool);
384 		zs_pool_stats(zram->mem_pool, &pool_stats);
385 	}
386 
387 	orig_size = atomic64_read(&zram->stats.pages_stored);
388 	max_used = atomic_long_read(&zram->stats.max_used_pages);
389 
390 	ret = scnprintf(buf, PAGE_SIZE,
391 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
392 			orig_size << PAGE_SHIFT,
393 			(u64)atomic64_read(&zram->stats.compr_data_size),
394 			mem_used << PAGE_SHIFT,
395 			zram->limit_pages << PAGE_SHIFT,
396 			max_used << PAGE_SHIFT,
397 			(u64)atomic64_read(&zram->stats.same_pages),
398 			pool_stats.pages_compacted);
399 	up_read(&zram->init_lock);
400 
401 	return ret;
402 }
403 
404 static ssize_t debug_stat_show(struct device *dev,
405 		struct device_attribute *attr, char *buf)
406 {
407 	int version = 1;
408 	struct zram *zram = dev_to_zram(dev);
409 	ssize_t ret;
410 
411 	down_read(&zram->init_lock);
412 	ret = scnprintf(buf, PAGE_SIZE,
413 			"version: %d\n%8llu\n",
414 			version,
415 			(u64)atomic64_read(&zram->stats.writestall));
416 	up_read(&zram->init_lock);
417 
418 	return ret;
419 }
420 
421 static DEVICE_ATTR_RO(io_stat);
422 static DEVICE_ATTR_RO(mm_stat);
423 static DEVICE_ATTR_RO(debug_stat);
424 
425 static void zram_slot_lock(struct zram *zram, u32 index)
426 {
427 	bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
428 }
429 
430 static void zram_slot_unlock(struct zram *zram, u32 index)
431 {
432 	bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
433 }
434 
435 static bool zram_same_page_read(struct zram *zram, u32 index,
436 				struct page *page,
437 				unsigned int offset, unsigned int len)
438 {
439 	zram_slot_lock(zram, index);
440 	if (unlikely(!zram_get_handle(zram, index) ||
441 			zram_test_flag(zram, index, ZRAM_SAME))) {
442 		void *mem;
443 
444 		zram_slot_unlock(zram, index);
445 		mem = kmap_atomic(page);
446 		zram_fill_page(mem + offset, len,
447 					zram_get_element(zram, index));
448 		kunmap_atomic(mem);
449 		return true;
450 	}
451 	zram_slot_unlock(zram, index);
452 
453 	return false;
454 }
455 
456 static bool zram_same_page_write(struct zram *zram, u32 index,
457 					struct page *page)
458 {
459 	unsigned long element;
460 	void *mem = kmap_atomic(page);
461 
462 	if (page_same_filled(mem, &element)) {
463 		kunmap_atomic(mem);
464 		/* Free memory associated with this sector now. */
465 		zram_slot_lock(zram, index);
466 		zram_free_page(zram, index);
467 		zram_set_flag(zram, index, ZRAM_SAME);
468 		zram_set_element(zram, index, element);
469 		zram_slot_unlock(zram, index);
470 
471 		atomic64_inc(&zram->stats.same_pages);
472 		return true;
473 	}
474 	kunmap_atomic(mem);
475 
476 	return false;
477 }
478 
479 static void zram_meta_free(struct zram *zram, u64 disksize)
480 {
481 	size_t num_pages = disksize >> PAGE_SHIFT;
482 	size_t index;
483 
484 	/* Free all pages that are still in this zram device */
485 	for (index = 0; index < num_pages; index++)
486 		zram_free_page(zram, index);
487 
488 	zs_destroy_pool(zram->mem_pool);
489 	vfree(zram->table);
490 }
491 
492 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
493 {
494 	size_t num_pages;
495 
496 	num_pages = disksize >> PAGE_SHIFT;
497 	zram->table = vzalloc(num_pages * sizeof(*zram->table));
498 	if (!zram->table)
499 		return false;
500 
501 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
502 	if (!zram->mem_pool) {
503 		vfree(zram->table);
504 		return false;
505 	}
506 
507 	return true;
508 }
509 
510 /*
511  * To protect concurrent access to the same index entry,
512  * caller should hold this table index entry's bit_spinlock to
513  * indicate this index entry is accessing.
514  */
515 static void zram_free_page(struct zram *zram, size_t index)
516 {
517 	unsigned long handle = zram_get_handle(zram, index);
518 
519 	/*
520 	 * No memory is allocated for same element filled pages.
521 	 * Simply clear same page flag.
522 	 */
523 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
524 		zram_clear_flag(zram, index, ZRAM_SAME);
525 		zram_set_element(zram, index, 0);
526 		atomic64_dec(&zram->stats.same_pages);
527 		return;
528 	}
529 
530 	if (!handle)
531 		return;
532 
533 	zs_free(zram->mem_pool, handle);
534 
535 	atomic64_sub(zram_get_obj_size(zram, index),
536 			&zram->stats.compr_data_size);
537 	atomic64_dec(&zram->stats.pages_stored);
538 
539 	zram_set_handle(zram, index, 0);
540 	zram_set_obj_size(zram, index, 0);
541 }
542 
543 static int zram_decompress_page(struct zram *zram, struct page *page, u32 index)
544 {
545 	int ret;
546 	unsigned long handle;
547 	unsigned int size;
548 	void *src, *dst;
549 
550 	if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
551 		return 0;
552 
553 	zram_slot_lock(zram, index);
554 	handle = zram_get_handle(zram, index);
555 	size = zram_get_obj_size(zram, index);
556 
557 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
558 	if (size == PAGE_SIZE) {
559 		dst = kmap_atomic(page);
560 		memcpy(dst, src, PAGE_SIZE);
561 		kunmap_atomic(dst);
562 		ret = 0;
563 	} else {
564 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
565 
566 		dst = kmap_atomic(page);
567 		ret = zcomp_decompress(zstrm, src, size, dst);
568 		kunmap_atomic(dst);
569 		zcomp_stream_put(zram->comp);
570 	}
571 	zs_unmap_object(zram->mem_pool, handle);
572 	zram_slot_unlock(zram, index);
573 
574 	/* Should NEVER happen. Return bio error if it does. */
575 	if (unlikely(ret))
576 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
577 
578 	return ret;
579 }
580 
581 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
582 				u32 index, int offset)
583 {
584 	int ret;
585 	struct page *page;
586 
587 	page = bvec->bv_page;
588 	if (is_partial_io(bvec)) {
589 		/* Use a temporary buffer to decompress the page */
590 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
591 		if (!page)
592 			return -ENOMEM;
593 	}
594 
595 	ret = zram_decompress_page(zram, page, index);
596 	if (unlikely(ret))
597 		goto out;
598 
599 	if (is_partial_io(bvec)) {
600 		void *dst = kmap_atomic(bvec->bv_page);
601 		void *src = kmap_atomic(page);
602 
603 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
604 		kunmap_atomic(src);
605 		kunmap_atomic(dst);
606 	}
607 out:
608 	if (is_partial_io(bvec))
609 		__free_page(page);
610 
611 	return ret;
612 }
613 
614 static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm,
615 			struct page *page,
616 			unsigned long *out_handle, unsigned int *out_comp_len)
617 {
618 	int ret;
619 	unsigned int comp_len;
620 	void *src;
621 	unsigned long alloced_pages;
622 	unsigned long handle = 0;
623 
624 compress_again:
625 	src = kmap_atomic(page);
626 	ret = zcomp_compress(*zstrm, src, &comp_len);
627 	kunmap_atomic(src);
628 
629 	if (unlikely(ret)) {
630 		pr_err("Compression failed! err=%d\n", ret);
631 		if (handle)
632 			zs_free(zram->mem_pool, handle);
633 		return ret;
634 	}
635 
636 	if (unlikely(comp_len > max_zpage_size))
637 		comp_len = PAGE_SIZE;
638 
639 	/*
640 	 * handle allocation has 2 paths:
641 	 * a) fast path is executed with preemption disabled (for
642 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
643 	 *  since we can't sleep;
644 	 * b) slow path enables preemption and attempts to allocate
645 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
646 	 *  put per-cpu compression stream and, thus, to re-do
647 	 *  the compression once handle is allocated.
648 	 *
649 	 * if we have a 'non-null' handle here then we are coming
650 	 * from the slow path and handle has already been allocated.
651 	 */
652 	if (!handle)
653 		handle = zs_malloc(zram->mem_pool, comp_len,
654 				__GFP_KSWAPD_RECLAIM |
655 				__GFP_NOWARN |
656 				__GFP_HIGHMEM |
657 				__GFP_MOVABLE);
658 	if (!handle) {
659 		zcomp_stream_put(zram->comp);
660 		atomic64_inc(&zram->stats.writestall);
661 		handle = zs_malloc(zram->mem_pool, comp_len,
662 				GFP_NOIO | __GFP_HIGHMEM |
663 				__GFP_MOVABLE);
664 		*zstrm = zcomp_stream_get(zram->comp);
665 		if (handle)
666 			goto compress_again;
667 		return -ENOMEM;
668 	}
669 
670 	alloced_pages = zs_get_total_pages(zram->mem_pool);
671 	update_used_max(zram, alloced_pages);
672 
673 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
674 		zs_free(zram->mem_pool, handle);
675 		return -ENOMEM;
676 	}
677 
678 	*out_handle = handle;
679 	*out_comp_len = comp_len;
680 	return 0;
681 }
682 
683 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index)
684 {
685 	int ret;
686 	unsigned long handle;
687 	unsigned int comp_len;
688 	void *src, *dst;
689 	struct zcomp_strm *zstrm;
690 	struct page *page = bvec->bv_page;
691 
692 	if (zram_same_page_write(zram, index, page))
693 		return 0;
694 
695 	zstrm = zcomp_stream_get(zram->comp);
696 	ret = zram_compress(zram, &zstrm, page, &handle, &comp_len);
697 	if (ret) {
698 		zcomp_stream_put(zram->comp);
699 		return ret;
700 	}
701 
702 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
703 
704 	src = zstrm->buffer;
705 	if (comp_len == PAGE_SIZE)
706 		src = kmap_atomic(page);
707 	memcpy(dst, src, comp_len);
708 	if (comp_len == PAGE_SIZE)
709 		kunmap_atomic(src);
710 
711 	zcomp_stream_put(zram->comp);
712 	zs_unmap_object(zram->mem_pool, handle);
713 
714 	/*
715 	 * Free memory associated with this sector
716 	 * before overwriting unused sectors.
717 	 */
718 	zram_slot_lock(zram, index);
719 	zram_free_page(zram, index);
720 	zram_set_handle(zram, index, handle);
721 	zram_set_obj_size(zram, index, comp_len);
722 	zram_slot_unlock(zram, index);
723 
724 	/* Update stats */
725 	atomic64_add(comp_len, &zram->stats.compr_data_size);
726 	atomic64_inc(&zram->stats.pages_stored);
727 	return 0;
728 }
729 
730 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
731 				u32 index, int offset)
732 {
733 	int ret;
734 	struct page *page = NULL;
735 	void *src;
736 	struct bio_vec vec;
737 
738 	vec = *bvec;
739 	if (is_partial_io(bvec)) {
740 		void *dst;
741 		/*
742 		 * This is a partial IO. We need to read the full page
743 		 * before to write the changes.
744 		 */
745 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
746 		if (!page)
747 			return -ENOMEM;
748 
749 		ret = zram_decompress_page(zram, page, index);
750 		if (ret)
751 			goto out;
752 
753 		src = kmap_atomic(bvec->bv_page);
754 		dst = kmap_atomic(page);
755 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
756 		kunmap_atomic(dst);
757 		kunmap_atomic(src);
758 
759 		vec.bv_page = page;
760 		vec.bv_len = PAGE_SIZE;
761 		vec.bv_offset = 0;
762 	}
763 
764 	ret = __zram_bvec_write(zram, &vec, index);
765 out:
766 	if (is_partial_io(bvec))
767 		__free_page(page);
768 	return ret;
769 }
770 
771 /*
772  * zram_bio_discard - handler on discard request
773  * @index: physical block index in PAGE_SIZE units
774  * @offset: byte offset within physical block
775  */
776 static void zram_bio_discard(struct zram *zram, u32 index,
777 			     int offset, struct bio *bio)
778 {
779 	size_t n = bio->bi_iter.bi_size;
780 
781 	/*
782 	 * zram manages data in physical block size units. Because logical block
783 	 * size isn't identical with physical block size on some arch, we
784 	 * could get a discard request pointing to a specific offset within a
785 	 * certain physical block.  Although we can handle this request by
786 	 * reading that physiclal block and decompressing and partially zeroing
787 	 * and re-compressing and then re-storing it, this isn't reasonable
788 	 * because our intent with a discard request is to save memory.  So
789 	 * skipping this logical block is appropriate here.
790 	 */
791 	if (offset) {
792 		if (n <= (PAGE_SIZE - offset))
793 			return;
794 
795 		n -= (PAGE_SIZE - offset);
796 		index++;
797 	}
798 
799 	while (n >= PAGE_SIZE) {
800 		zram_slot_lock(zram, index);
801 		zram_free_page(zram, index);
802 		zram_slot_unlock(zram, index);
803 		atomic64_inc(&zram->stats.notify_free);
804 		index++;
805 		n -= PAGE_SIZE;
806 	}
807 }
808 
809 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
810 			int offset, bool is_write)
811 {
812 	unsigned long start_time = jiffies;
813 	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
814 	int ret;
815 
816 	generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
817 			&zram->disk->part0);
818 
819 	if (!is_write) {
820 		atomic64_inc(&zram->stats.num_reads);
821 		ret = zram_bvec_read(zram, bvec, index, offset);
822 		flush_dcache_page(bvec->bv_page);
823 	} else {
824 		atomic64_inc(&zram->stats.num_writes);
825 		ret = zram_bvec_write(zram, bvec, index, offset);
826 	}
827 
828 	generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
829 
830 	if (unlikely(ret)) {
831 		if (!is_write)
832 			atomic64_inc(&zram->stats.failed_reads);
833 		else
834 			atomic64_inc(&zram->stats.failed_writes);
835 	}
836 
837 	return ret;
838 }
839 
840 static void __zram_make_request(struct zram *zram, struct bio *bio)
841 {
842 	int offset;
843 	u32 index;
844 	struct bio_vec bvec;
845 	struct bvec_iter iter;
846 
847 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
848 	offset = (bio->bi_iter.bi_sector &
849 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
850 
851 	switch (bio_op(bio)) {
852 	case REQ_OP_DISCARD:
853 	case REQ_OP_WRITE_ZEROES:
854 		zram_bio_discard(zram, index, offset, bio);
855 		bio_endio(bio);
856 		return;
857 	default:
858 		break;
859 	}
860 
861 	bio_for_each_segment(bvec, bio, iter) {
862 		struct bio_vec bv = bvec;
863 		unsigned int unwritten = bvec.bv_len;
864 
865 		do {
866 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
867 							unwritten);
868 			if (zram_bvec_rw(zram, &bv, index, offset,
869 					op_is_write(bio_op(bio))) < 0)
870 				goto out;
871 
872 			bv.bv_offset += bv.bv_len;
873 			unwritten -= bv.bv_len;
874 
875 			update_position(&index, &offset, &bv);
876 		} while (unwritten);
877 	}
878 
879 	bio_endio(bio);
880 	return;
881 
882 out:
883 	bio_io_error(bio);
884 }
885 
886 /*
887  * Handler function for all zram I/O requests.
888  */
889 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
890 {
891 	struct zram *zram = queue->queuedata;
892 
893 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
894 					bio->bi_iter.bi_size)) {
895 		atomic64_inc(&zram->stats.invalid_io);
896 		goto error;
897 	}
898 
899 	__zram_make_request(zram, bio);
900 	return BLK_QC_T_NONE;
901 
902 error:
903 	bio_io_error(bio);
904 	return BLK_QC_T_NONE;
905 }
906 
907 static void zram_slot_free_notify(struct block_device *bdev,
908 				unsigned long index)
909 {
910 	struct zram *zram;
911 
912 	zram = bdev->bd_disk->private_data;
913 
914 	zram_slot_lock(zram, index);
915 	zram_free_page(zram, index);
916 	zram_slot_unlock(zram, index);
917 	atomic64_inc(&zram->stats.notify_free);
918 }
919 
920 static int zram_rw_page(struct block_device *bdev, sector_t sector,
921 		       struct page *page, bool is_write)
922 {
923 	int offset, err = -EIO;
924 	u32 index;
925 	struct zram *zram;
926 	struct bio_vec bv;
927 
928 	zram = bdev->bd_disk->private_data;
929 
930 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
931 		atomic64_inc(&zram->stats.invalid_io);
932 		err = -EINVAL;
933 		goto out;
934 	}
935 
936 	index = sector >> SECTORS_PER_PAGE_SHIFT;
937 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
938 
939 	bv.bv_page = page;
940 	bv.bv_len = PAGE_SIZE;
941 	bv.bv_offset = 0;
942 
943 	err = zram_bvec_rw(zram, &bv, index, offset, is_write);
944 out:
945 	/*
946 	 * If I/O fails, just return error(ie, non-zero) without
947 	 * calling page_endio.
948 	 * It causes resubmit the I/O with bio request by upper functions
949 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
950 	 * bio->bi_end_io does things to handle the error
951 	 * (e.g., SetPageError, set_page_dirty and extra works).
952 	 */
953 	if (err == 0)
954 		page_endio(page, is_write, 0);
955 	return err;
956 }
957 
958 static void zram_reset_device(struct zram *zram)
959 {
960 	struct zcomp *comp;
961 	u64 disksize;
962 
963 	down_write(&zram->init_lock);
964 
965 	zram->limit_pages = 0;
966 
967 	if (!init_done(zram)) {
968 		up_write(&zram->init_lock);
969 		return;
970 	}
971 
972 	comp = zram->comp;
973 	disksize = zram->disksize;
974 	zram->disksize = 0;
975 
976 	set_capacity(zram->disk, 0);
977 	part_stat_set_all(&zram->disk->part0, 0);
978 
979 	up_write(&zram->init_lock);
980 	/* I/O operation under all of CPU are done so let's free */
981 	zram_meta_free(zram, disksize);
982 	memset(&zram->stats, 0, sizeof(zram->stats));
983 	zcomp_destroy(comp);
984 }
985 
986 static ssize_t disksize_store(struct device *dev,
987 		struct device_attribute *attr, const char *buf, size_t len)
988 {
989 	u64 disksize;
990 	struct zcomp *comp;
991 	struct zram *zram = dev_to_zram(dev);
992 	int err;
993 
994 	disksize = memparse(buf, NULL);
995 	if (!disksize)
996 		return -EINVAL;
997 
998 	down_write(&zram->init_lock);
999 	if (init_done(zram)) {
1000 		pr_info("Cannot change disksize for initialized device\n");
1001 		err = -EBUSY;
1002 		goto out_unlock;
1003 	}
1004 
1005 	disksize = PAGE_ALIGN(disksize);
1006 	if (!zram_meta_alloc(zram, disksize)) {
1007 		err = -ENOMEM;
1008 		goto out_unlock;
1009 	}
1010 
1011 	comp = zcomp_create(zram->compressor);
1012 	if (IS_ERR(comp)) {
1013 		pr_err("Cannot initialise %s compressing backend\n",
1014 				zram->compressor);
1015 		err = PTR_ERR(comp);
1016 		goto out_free_meta;
1017 	}
1018 
1019 	zram->comp = comp;
1020 	zram->disksize = disksize;
1021 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1022 	zram_revalidate_disk(zram);
1023 	up_write(&zram->init_lock);
1024 
1025 	return len;
1026 
1027 out_free_meta:
1028 	zram_meta_free(zram, disksize);
1029 out_unlock:
1030 	up_write(&zram->init_lock);
1031 	return err;
1032 }
1033 
1034 static ssize_t reset_store(struct device *dev,
1035 		struct device_attribute *attr, const char *buf, size_t len)
1036 {
1037 	int ret;
1038 	unsigned short do_reset;
1039 	struct zram *zram;
1040 	struct block_device *bdev;
1041 
1042 	ret = kstrtou16(buf, 10, &do_reset);
1043 	if (ret)
1044 		return ret;
1045 
1046 	if (!do_reset)
1047 		return -EINVAL;
1048 
1049 	zram = dev_to_zram(dev);
1050 	bdev = bdget_disk(zram->disk, 0);
1051 	if (!bdev)
1052 		return -ENOMEM;
1053 
1054 	mutex_lock(&bdev->bd_mutex);
1055 	/* Do not reset an active device or claimed device */
1056 	if (bdev->bd_openers || zram->claim) {
1057 		mutex_unlock(&bdev->bd_mutex);
1058 		bdput(bdev);
1059 		return -EBUSY;
1060 	}
1061 
1062 	/* From now on, anyone can't open /dev/zram[0-9] */
1063 	zram->claim = true;
1064 	mutex_unlock(&bdev->bd_mutex);
1065 
1066 	/* Make sure all the pending I/O are finished */
1067 	fsync_bdev(bdev);
1068 	zram_reset_device(zram);
1069 	zram_revalidate_disk(zram);
1070 	bdput(bdev);
1071 
1072 	mutex_lock(&bdev->bd_mutex);
1073 	zram->claim = false;
1074 	mutex_unlock(&bdev->bd_mutex);
1075 
1076 	return len;
1077 }
1078 
1079 static int zram_open(struct block_device *bdev, fmode_t mode)
1080 {
1081 	int ret = 0;
1082 	struct zram *zram;
1083 
1084 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1085 
1086 	zram = bdev->bd_disk->private_data;
1087 	/* zram was claimed to reset so open request fails */
1088 	if (zram->claim)
1089 		ret = -EBUSY;
1090 
1091 	return ret;
1092 }
1093 
1094 static const struct block_device_operations zram_devops = {
1095 	.open = zram_open,
1096 	.swap_slot_free_notify = zram_slot_free_notify,
1097 	.rw_page = zram_rw_page,
1098 	.owner = THIS_MODULE
1099 };
1100 
1101 static DEVICE_ATTR_WO(compact);
1102 static DEVICE_ATTR_RW(disksize);
1103 static DEVICE_ATTR_RO(initstate);
1104 static DEVICE_ATTR_WO(reset);
1105 static DEVICE_ATTR_WO(mem_limit);
1106 static DEVICE_ATTR_WO(mem_used_max);
1107 static DEVICE_ATTR_RW(max_comp_streams);
1108 static DEVICE_ATTR_RW(comp_algorithm);
1109 
1110 static struct attribute *zram_disk_attrs[] = {
1111 	&dev_attr_disksize.attr,
1112 	&dev_attr_initstate.attr,
1113 	&dev_attr_reset.attr,
1114 	&dev_attr_compact.attr,
1115 	&dev_attr_mem_limit.attr,
1116 	&dev_attr_mem_used_max.attr,
1117 	&dev_attr_max_comp_streams.attr,
1118 	&dev_attr_comp_algorithm.attr,
1119 	&dev_attr_io_stat.attr,
1120 	&dev_attr_mm_stat.attr,
1121 	&dev_attr_debug_stat.attr,
1122 	NULL,
1123 };
1124 
1125 static struct attribute_group zram_disk_attr_group = {
1126 	.attrs = zram_disk_attrs,
1127 };
1128 
1129 /*
1130  * Allocate and initialize new zram device. the function returns
1131  * '>= 0' device_id upon success, and negative value otherwise.
1132  */
1133 static int zram_add(void)
1134 {
1135 	struct zram *zram;
1136 	struct request_queue *queue;
1137 	int ret, device_id;
1138 
1139 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1140 	if (!zram)
1141 		return -ENOMEM;
1142 
1143 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1144 	if (ret < 0)
1145 		goto out_free_dev;
1146 	device_id = ret;
1147 
1148 	init_rwsem(&zram->init_lock);
1149 
1150 	queue = blk_alloc_queue(GFP_KERNEL);
1151 	if (!queue) {
1152 		pr_err("Error allocating disk queue for device %d\n",
1153 			device_id);
1154 		ret = -ENOMEM;
1155 		goto out_free_idr;
1156 	}
1157 
1158 	blk_queue_make_request(queue, zram_make_request);
1159 
1160 	/* gendisk structure */
1161 	zram->disk = alloc_disk(1);
1162 	if (!zram->disk) {
1163 		pr_err("Error allocating disk structure for device %d\n",
1164 			device_id);
1165 		ret = -ENOMEM;
1166 		goto out_free_queue;
1167 	}
1168 
1169 	zram->disk->major = zram_major;
1170 	zram->disk->first_minor = device_id;
1171 	zram->disk->fops = &zram_devops;
1172 	zram->disk->queue = queue;
1173 	zram->disk->queue->queuedata = zram;
1174 	zram->disk->private_data = zram;
1175 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1176 
1177 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1178 	set_capacity(zram->disk, 0);
1179 	/* zram devices sort of resembles non-rotational disks */
1180 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1181 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1182 	/*
1183 	 * To ensure that we always get PAGE_SIZE aligned
1184 	 * and n*PAGE_SIZED sized I/O requests.
1185 	 */
1186 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1187 	blk_queue_logical_block_size(zram->disk->queue,
1188 					ZRAM_LOGICAL_BLOCK_SIZE);
1189 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1190 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1191 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1192 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1193 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1194 
1195 	/*
1196 	 * zram_bio_discard() will clear all logical blocks if logical block
1197 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1198 	 * different, we will skip discarding some parts of logical blocks in
1199 	 * the part of the request range which isn't aligned to physical block
1200 	 * size.  So we can't ensure that all discarded logical blocks are
1201 	 * zeroed.
1202 	 */
1203 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1204 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1205 
1206 	add_disk(zram->disk);
1207 
1208 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1209 				&zram_disk_attr_group);
1210 	if (ret < 0) {
1211 		pr_err("Error creating sysfs group for device %d\n",
1212 				device_id);
1213 		goto out_free_disk;
1214 	}
1215 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1216 
1217 	pr_info("Added device: %s\n", zram->disk->disk_name);
1218 	return device_id;
1219 
1220 out_free_disk:
1221 	del_gendisk(zram->disk);
1222 	put_disk(zram->disk);
1223 out_free_queue:
1224 	blk_cleanup_queue(queue);
1225 out_free_idr:
1226 	idr_remove(&zram_index_idr, device_id);
1227 out_free_dev:
1228 	kfree(zram);
1229 	return ret;
1230 }
1231 
1232 static int zram_remove(struct zram *zram)
1233 {
1234 	struct block_device *bdev;
1235 
1236 	bdev = bdget_disk(zram->disk, 0);
1237 	if (!bdev)
1238 		return -ENOMEM;
1239 
1240 	mutex_lock(&bdev->bd_mutex);
1241 	if (bdev->bd_openers || zram->claim) {
1242 		mutex_unlock(&bdev->bd_mutex);
1243 		bdput(bdev);
1244 		return -EBUSY;
1245 	}
1246 
1247 	zram->claim = true;
1248 	mutex_unlock(&bdev->bd_mutex);
1249 
1250 	/*
1251 	 * Remove sysfs first, so no one will perform a disksize
1252 	 * store while we destroy the devices. This also helps during
1253 	 * hot_remove -- zram_reset_device() is the last holder of
1254 	 * ->init_lock, no later/concurrent disksize_store() or any
1255 	 * other sysfs handlers are possible.
1256 	 */
1257 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1258 			&zram_disk_attr_group);
1259 
1260 	/* Make sure all the pending I/O are finished */
1261 	fsync_bdev(bdev);
1262 	zram_reset_device(zram);
1263 	bdput(bdev);
1264 
1265 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1266 
1267 	blk_cleanup_queue(zram->disk->queue);
1268 	del_gendisk(zram->disk);
1269 	put_disk(zram->disk);
1270 	kfree(zram);
1271 	return 0;
1272 }
1273 
1274 /* zram-control sysfs attributes */
1275 static ssize_t hot_add_show(struct class *class,
1276 			struct class_attribute *attr,
1277 			char *buf)
1278 {
1279 	int ret;
1280 
1281 	mutex_lock(&zram_index_mutex);
1282 	ret = zram_add();
1283 	mutex_unlock(&zram_index_mutex);
1284 
1285 	if (ret < 0)
1286 		return ret;
1287 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1288 }
1289 
1290 static ssize_t hot_remove_store(struct class *class,
1291 			struct class_attribute *attr,
1292 			const char *buf,
1293 			size_t count)
1294 {
1295 	struct zram *zram;
1296 	int ret, dev_id;
1297 
1298 	/* dev_id is gendisk->first_minor, which is `int' */
1299 	ret = kstrtoint(buf, 10, &dev_id);
1300 	if (ret)
1301 		return ret;
1302 	if (dev_id < 0)
1303 		return -EINVAL;
1304 
1305 	mutex_lock(&zram_index_mutex);
1306 
1307 	zram = idr_find(&zram_index_idr, dev_id);
1308 	if (zram) {
1309 		ret = zram_remove(zram);
1310 		if (!ret)
1311 			idr_remove(&zram_index_idr, dev_id);
1312 	} else {
1313 		ret = -ENODEV;
1314 	}
1315 
1316 	mutex_unlock(&zram_index_mutex);
1317 	return ret ? ret : count;
1318 }
1319 
1320 /*
1321  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1322  * sense that reading from this file does alter the state of your system -- it
1323  * creates a new un-initialized zram device and returns back this device's
1324  * device_id (or an error code if it fails to create a new device).
1325  */
1326 static struct class_attribute zram_control_class_attrs[] = {
1327 	__ATTR(hot_add, 0400, hot_add_show, NULL),
1328 	__ATTR_WO(hot_remove),
1329 	__ATTR_NULL,
1330 };
1331 
1332 static struct class zram_control_class = {
1333 	.name		= "zram-control",
1334 	.owner		= THIS_MODULE,
1335 	.class_attrs	= zram_control_class_attrs,
1336 };
1337 
1338 static int zram_remove_cb(int id, void *ptr, void *data)
1339 {
1340 	zram_remove(ptr);
1341 	return 0;
1342 }
1343 
1344 static void destroy_devices(void)
1345 {
1346 	class_unregister(&zram_control_class);
1347 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1348 	idr_destroy(&zram_index_idr);
1349 	unregister_blkdev(zram_major, "zram");
1350 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1351 }
1352 
1353 static int __init zram_init(void)
1354 {
1355 	int ret;
1356 
1357 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1358 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1359 	if (ret < 0)
1360 		return ret;
1361 
1362 	ret = class_register(&zram_control_class);
1363 	if (ret) {
1364 		pr_err("Unable to register zram-control class\n");
1365 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1366 		return ret;
1367 	}
1368 
1369 	zram_major = register_blkdev(0, "zram");
1370 	if (zram_major <= 0) {
1371 		pr_err("Unable to get major number\n");
1372 		class_unregister(&zram_control_class);
1373 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1374 		return -EBUSY;
1375 	}
1376 
1377 	while (num_devices != 0) {
1378 		mutex_lock(&zram_index_mutex);
1379 		ret = zram_add();
1380 		mutex_unlock(&zram_index_mutex);
1381 		if (ret < 0)
1382 			goto out_error;
1383 		num_devices--;
1384 	}
1385 
1386 	return 0;
1387 
1388 out_error:
1389 	destroy_devices();
1390 	return ret;
1391 }
1392 
1393 static void __exit zram_exit(void)
1394 {
1395 	destroy_devices();
1396 }
1397 
1398 module_init(zram_init);
1399 module_exit(zram_exit);
1400 
1401 module_param(num_devices, uint, 0);
1402 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1403 
1404 MODULE_LICENSE("Dual BSD/GPL");
1405 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1406 MODULE_DESCRIPTION("Compressed RAM Block Device");
1407