xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision e53134fe)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 
56 static void zram_slot_lock(struct zram *zram, u32 index)
57 {
58 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].value);
59 }
60 
61 static void zram_slot_unlock(struct zram *zram, u32 index)
62 {
63 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value);
64 }
65 
66 static inline bool init_done(struct zram *zram)
67 {
68 	return zram->disksize;
69 }
70 
71 static inline bool zram_allocated(struct zram *zram, u32 index)
72 {
73 
74 	return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) ||
75 					zram->table[index].handle;
76 }
77 
78 static inline struct zram *dev_to_zram(struct device *dev)
79 {
80 	return (struct zram *)dev_to_disk(dev)->private_data;
81 }
82 
83 static unsigned long zram_get_handle(struct zram *zram, u32 index)
84 {
85 	return zram->table[index].handle;
86 }
87 
88 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
89 {
90 	zram->table[index].handle = handle;
91 }
92 
93 /* flag operations require table entry bit_spin_lock() being held */
94 static bool zram_test_flag(struct zram *zram, u32 index,
95 			enum zram_pageflags flag)
96 {
97 	return zram->table[index].value & BIT(flag);
98 }
99 
100 static void zram_set_flag(struct zram *zram, u32 index,
101 			enum zram_pageflags flag)
102 {
103 	zram->table[index].value |= BIT(flag);
104 }
105 
106 static void zram_clear_flag(struct zram *zram, u32 index,
107 			enum zram_pageflags flag)
108 {
109 	zram->table[index].value &= ~BIT(flag);
110 }
111 
112 static inline void zram_set_element(struct zram *zram, u32 index,
113 			unsigned long element)
114 {
115 	zram->table[index].element = element;
116 }
117 
118 static unsigned long zram_get_element(struct zram *zram, u32 index)
119 {
120 	return zram->table[index].element;
121 }
122 
123 static size_t zram_get_obj_size(struct zram *zram, u32 index)
124 {
125 	return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
126 }
127 
128 static void zram_set_obj_size(struct zram *zram,
129 					u32 index, size_t size)
130 {
131 	unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
132 
133 	zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
134 }
135 
136 #if PAGE_SIZE != 4096
137 static inline bool is_partial_io(struct bio_vec *bvec)
138 {
139 	return bvec->bv_len != PAGE_SIZE;
140 }
141 #else
142 static inline bool is_partial_io(struct bio_vec *bvec)
143 {
144 	return false;
145 }
146 #endif
147 
148 /*
149  * Check if request is within bounds and aligned on zram logical blocks.
150  */
151 static inline bool valid_io_request(struct zram *zram,
152 		sector_t start, unsigned int size)
153 {
154 	u64 end, bound;
155 
156 	/* unaligned request */
157 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
158 		return false;
159 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
160 		return false;
161 
162 	end = start + (size >> SECTOR_SHIFT);
163 	bound = zram->disksize >> SECTOR_SHIFT;
164 	/* out of range range */
165 	if (unlikely(start >= bound || end > bound || start > end))
166 		return false;
167 
168 	/* I/O request is valid */
169 	return true;
170 }
171 
172 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
173 {
174 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
175 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
176 }
177 
178 static inline void update_used_max(struct zram *zram,
179 					const unsigned long pages)
180 {
181 	unsigned long old_max, cur_max;
182 
183 	old_max = atomic_long_read(&zram->stats.max_used_pages);
184 
185 	do {
186 		cur_max = old_max;
187 		if (pages > cur_max)
188 			old_max = atomic_long_cmpxchg(
189 				&zram->stats.max_used_pages, cur_max, pages);
190 	} while (old_max != cur_max);
191 }
192 
193 static inline void zram_fill_page(void *ptr, unsigned long len,
194 					unsigned long value)
195 {
196 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
197 	memset_l(ptr, value, len / sizeof(unsigned long));
198 }
199 
200 static bool page_same_filled(void *ptr, unsigned long *element)
201 {
202 	unsigned int pos;
203 	unsigned long *page;
204 	unsigned long val;
205 
206 	page = (unsigned long *)ptr;
207 	val = page[0];
208 
209 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
210 		if (val != page[pos])
211 			return false;
212 	}
213 
214 	*element = val;
215 
216 	return true;
217 }
218 
219 static ssize_t initstate_show(struct device *dev,
220 		struct device_attribute *attr, char *buf)
221 {
222 	u32 val;
223 	struct zram *zram = dev_to_zram(dev);
224 
225 	down_read(&zram->init_lock);
226 	val = init_done(zram);
227 	up_read(&zram->init_lock);
228 
229 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
230 }
231 
232 static ssize_t disksize_show(struct device *dev,
233 		struct device_attribute *attr, char *buf)
234 {
235 	struct zram *zram = dev_to_zram(dev);
236 
237 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
238 }
239 
240 static ssize_t mem_limit_store(struct device *dev,
241 		struct device_attribute *attr, const char *buf, size_t len)
242 {
243 	u64 limit;
244 	char *tmp;
245 	struct zram *zram = dev_to_zram(dev);
246 
247 	limit = memparse(buf, &tmp);
248 	if (buf == tmp) /* no chars parsed, invalid input */
249 		return -EINVAL;
250 
251 	down_write(&zram->init_lock);
252 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
253 	up_write(&zram->init_lock);
254 
255 	return len;
256 }
257 
258 static ssize_t mem_used_max_store(struct device *dev,
259 		struct device_attribute *attr, const char *buf, size_t len)
260 {
261 	int err;
262 	unsigned long val;
263 	struct zram *zram = dev_to_zram(dev);
264 
265 	err = kstrtoul(buf, 10, &val);
266 	if (err || val != 0)
267 		return -EINVAL;
268 
269 	down_read(&zram->init_lock);
270 	if (init_done(zram)) {
271 		atomic_long_set(&zram->stats.max_used_pages,
272 				zs_get_total_pages(zram->mem_pool));
273 	}
274 	up_read(&zram->init_lock);
275 
276 	return len;
277 }
278 
279 #ifdef CONFIG_ZRAM_WRITEBACK
280 static bool zram_wb_enabled(struct zram *zram)
281 {
282 	return zram->backing_dev;
283 }
284 
285 static void reset_bdev(struct zram *zram)
286 {
287 	struct block_device *bdev;
288 
289 	if (!zram_wb_enabled(zram))
290 		return;
291 
292 	bdev = zram->bdev;
293 	if (zram->old_block_size)
294 		set_blocksize(bdev, zram->old_block_size);
295 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
296 	/* hope filp_close flush all of IO */
297 	filp_close(zram->backing_dev, NULL);
298 	zram->backing_dev = NULL;
299 	zram->old_block_size = 0;
300 	zram->bdev = NULL;
301 	zram->disk->queue->backing_dev_info->capabilities |=
302 				BDI_CAP_SYNCHRONOUS_IO;
303 	kvfree(zram->bitmap);
304 	zram->bitmap = NULL;
305 }
306 
307 static ssize_t backing_dev_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct zram *zram = dev_to_zram(dev);
311 	struct file *file = zram->backing_dev;
312 	char *p;
313 	ssize_t ret;
314 
315 	down_read(&zram->init_lock);
316 	if (!zram_wb_enabled(zram)) {
317 		memcpy(buf, "none\n", 5);
318 		up_read(&zram->init_lock);
319 		return 5;
320 	}
321 
322 	p = file_path(file, buf, PAGE_SIZE - 1);
323 	if (IS_ERR(p)) {
324 		ret = PTR_ERR(p);
325 		goto out;
326 	}
327 
328 	ret = strlen(p);
329 	memmove(buf, p, ret);
330 	buf[ret++] = '\n';
331 out:
332 	up_read(&zram->init_lock);
333 	return ret;
334 }
335 
336 static ssize_t backing_dev_store(struct device *dev,
337 		struct device_attribute *attr, const char *buf, size_t len)
338 {
339 	char *file_name;
340 	size_t sz;
341 	struct file *backing_dev = NULL;
342 	struct inode *inode;
343 	struct address_space *mapping;
344 	unsigned int bitmap_sz, old_block_size = 0;
345 	unsigned long nr_pages, *bitmap = NULL;
346 	struct block_device *bdev = NULL;
347 	int err;
348 	struct zram *zram = dev_to_zram(dev);
349 
350 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
351 	if (!file_name)
352 		return -ENOMEM;
353 
354 	down_write(&zram->init_lock);
355 	if (init_done(zram)) {
356 		pr_info("Can't setup backing device for initialized device\n");
357 		err = -EBUSY;
358 		goto out;
359 	}
360 
361 	strlcpy(file_name, buf, PATH_MAX);
362 	/* ignore trailing newline */
363 	sz = strlen(file_name);
364 	if (sz > 0 && file_name[sz - 1] == '\n')
365 		file_name[sz - 1] = 0x00;
366 
367 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
368 	if (IS_ERR(backing_dev)) {
369 		err = PTR_ERR(backing_dev);
370 		backing_dev = NULL;
371 		goto out;
372 	}
373 
374 	mapping = backing_dev->f_mapping;
375 	inode = mapping->host;
376 
377 	/* Support only block device in this moment */
378 	if (!S_ISBLK(inode->i_mode)) {
379 		err = -ENOTBLK;
380 		goto out;
381 	}
382 
383 	bdev = bdgrab(I_BDEV(inode));
384 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
385 	if (err < 0)
386 		goto out;
387 
388 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
389 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
390 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
391 	if (!bitmap) {
392 		err = -ENOMEM;
393 		goto out;
394 	}
395 
396 	old_block_size = block_size(bdev);
397 	err = set_blocksize(bdev, PAGE_SIZE);
398 	if (err)
399 		goto out;
400 
401 	reset_bdev(zram);
402 	spin_lock_init(&zram->bitmap_lock);
403 
404 	zram->old_block_size = old_block_size;
405 	zram->bdev = bdev;
406 	zram->backing_dev = backing_dev;
407 	zram->bitmap = bitmap;
408 	zram->nr_pages = nr_pages;
409 	/*
410 	 * With writeback feature, zram does asynchronous IO so it's no longer
411 	 * synchronous device so let's remove synchronous io flag. Othewise,
412 	 * upper layer(e.g., swap) could wait IO completion rather than
413 	 * (submit and return), which will cause system sluggish.
414 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
415 	 * upper layer expects IO was done so it could deallocate the page
416 	 * freely but in fact, IO is going on so finally could cause
417 	 * use-after-free when the IO is really done.
418 	 */
419 	zram->disk->queue->backing_dev_info->capabilities &=
420 			~BDI_CAP_SYNCHRONOUS_IO;
421 	up_write(&zram->init_lock);
422 
423 	pr_info("setup backing device %s\n", file_name);
424 	kfree(file_name);
425 
426 	return len;
427 out:
428 	if (bitmap)
429 		kvfree(bitmap);
430 
431 	if (bdev)
432 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
433 
434 	if (backing_dev)
435 		filp_close(backing_dev, NULL);
436 
437 	up_write(&zram->init_lock);
438 
439 	kfree(file_name);
440 
441 	return err;
442 }
443 
444 static unsigned long get_entry_bdev(struct zram *zram)
445 {
446 	unsigned long entry;
447 
448 	spin_lock(&zram->bitmap_lock);
449 	/* skip 0 bit to confuse zram.handle = 0 */
450 	entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
451 	if (entry == zram->nr_pages) {
452 		spin_unlock(&zram->bitmap_lock);
453 		return 0;
454 	}
455 
456 	set_bit(entry, zram->bitmap);
457 	spin_unlock(&zram->bitmap_lock);
458 
459 	return entry;
460 }
461 
462 static void put_entry_bdev(struct zram *zram, unsigned long entry)
463 {
464 	int was_set;
465 
466 	spin_lock(&zram->bitmap_lock);
467 	was_set = test_and_clear_bit(entry, zram->bitmap);
468 	spin_unlock(&zram->bitmap_lock);
469 	WARN_ON_ONCE(!was_set);
470 }
471 
472 static void zram_page_end_io(struct bio *bio)
473 {
474 	struct page *page = bio_first_page_all(bio);
475 
476 	page_endio(page, op_is_write(bio_op(bio)),
477 			blk_status_to_errno(bio->bi_status));
478 	bio_put(bio);
479 }
480 
481 /*
482  * Returns 1 if the submission is successful.
483  */
484 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
485 			unsigned long entry, struct bio *parent)
486 {
487 	struct bio *bio;
488 
489 	bio = bio_alloc(GFP_ATOMIC, 1);
490 	if (!bio)
491 		return -ENOMEM;
492 
493 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
494 	bio_set_dev(bio, zram->bdev);
495 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
496 		bio_put(bio);
497 		return -EIO;
498 	}
499 
500 	if (!parent) {
501 		bio->bi_opf = REQ_OP_READ;
502 		bio->bi_end_io = zram_page_end_io;
503 	} else {
504 		bio->bi_opf = parent->bi_opf;
505 		bio_chain(bio, parent);
506 	}
507 
508 	submit_bio(bio);
509 	return 1;
510 }
511 
512 struct zram_work {
513 	struct work_struct work;
514 	struct zram *zram;
515 	unsigned long entry;
516 	struct bio *bio;
517 };
518 
519 #if PAGE_SIZE != 4096
520 static void zram_sync_read(struct work_struct *work)
521 {
522 	struct bio_vec bvec;
523 	struct zram_work *zw = container_of(work, struct zram_work, work);
524 	struct zram *zram = zw->zram;
525 	unsigned long entry = zw->entry;
526 	struct bio *bio = zw->bio;
527 
528 	read_from_bdev_async(zram, &bvec, entry, bio);
529 }
530 
531 /*
532  * Block layer want one ->make_request_fn to be active at a time
533  * so if we use chained IO with parent IO in same context,
534  * it's a deadlock. To avoid, it, it uses worker thread context.
535  */
536 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
537 				unsigned long entry, struct bio *bio)
538 {
539 	struct zram_work work;
540 
541 	work.zram = zram;
542 	work.entry = entry;
543 	work.bio = bio;
544 
545 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
546 	queue_work(system_unbound_wq, &work.work);
547 	flush_work(&work.work);
548 	destroy_work_on_stack(&work.work);
549 
550 	return 1;
551 }
552 #else
553 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
554 				unsigned long entry, struct bio *bio)
555 {
556 	WARN_ON(1);
557 	return -EIO;
558 }
559 #endif
560 
561 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
562 			unsigned long entry, struct bio *parent, bool sync)
563 {
564 	if (sync)
565 		return read_from_bdev_sync(zram, bvec, entry, parent);
566 	else
567 		return read_from_bdev_async(zram, bvec, entry, parent);
568 }
569 
570 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
571 					u32 index, struct bio *parent,
572 					unsigned long *pentry)
573 {
574 	struct bio *bio;
575 	unsigned long entry;
576 
577 	bio = bio_alloc(GFP_ATOMIC, 1);
578 	if (!bio)
579 		return -ENOMEM;
580 
581 	entry = get_entry_bdev(zram);
582 	if (!entry) {
583 		bio_put(bio);
584 		return -ENOSPC;
585 	}
586 
587 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
588 	bio_set_dev(bio, zram->bdev);
589 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
590 					bvec->bv_offset)) {
591 		bio_put(bio);
592 		put_entry_bdev(zram, entry);
593 		return -EIO;
594 	}
595 
596 	if (!parent) {
597 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
598 		bio->bi_end_io = zram_page_end_io;
599 	} else {
600 		bio->bi_opf = parent->bi_opf;
601 		bio_chain(bio, parent);
602 	}
603 
604 	submit_bio(bio);
605 	*pentry = entry;
606 
607 	return 0;
608 }
609 
610 static void zram_wb_clear(struct zram *zram, u32 index)
611 {
612 	unsigned long entry;
613 
614 	zram_clear_flag(zram, index, ZRAM_WB);
615 	entry = zram_get_element(zram, index);
616 	zram_set_element(zram, index, 0);
617 	put_entry_bdev(zram, entry);
618 }
619 
620 #else
621 static bool zram_wb_enabled(struct zram *zram) { return false; }
622 static inline void reset_bdev(struct zram *zram) {};
623 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
624 					u32 index, struct bio *parent,
625 					unsigned long *pentry)
626 
627 {
628 	return -EIO;
629 }
630 
631 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
632 			unsigned long entry, struct bio *parent, bool sync)
633 {
634 	return -EIO;
635 }
636 static void zram_wb_clear(struct zram *zram, u32 index) {}
637 #endif
638 
639 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
640 
641 static struct dentry *zram_debugfs_root;
642 
643 static void zram_debugfs_create(void)
644 {
645 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
646 }
647 
648 static void zram_debugfs_destroy(void)
649 {
650 	debugfs_remove_recursive(zram_debugfs_root);
651 }
652 
653 static void zram_accessed(struct zram *zram, u32 index)
654 {
655 	zram->table[index].ac_time = ktime_get_boottime();
656 }
657 
658 static void zram_reset_access(struct zram *zram, u32 index)
659 {
660 	zram->table[index].ac_time = 0;
661 }
662 
663 static ssize_t read_block_state(struct file *file, char __user *buf,
664 				size_t count, loff_t *ppos)
665 {
666 	char *kbuf;
667 	ssize_t index, written = 0;
668 	struct zram *zram = file->private_data;
669 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
670 	struct timespec64 ts;
671 
672 	kbuf = kvmalloc(count, GFP_KERNEL);
673 	if (!kbuf)
674 		return -ENOMEM;
675 
676 	down_read(&zram->init_lock);
677 	if (!init_done(zram)) {
678 		up_read(&zram->init_lock);
679 		kvfree(kbuf);
680 		return -EINVAL;
681 	}
682 
683 	for (index = *ppos; index < nr_pages; index++) {
684 		int copied;
685 
686 		zram_slot_lock(zram, index);
687 		if (!zram_allocated(zram, index))
688 			goto next;
689 
690 		ts = ktime_to_timespec64(zram->table[index].ac_time);
691 		copied = snprintf(kbuf + written, count,
692 			"%12zd %12lld.%06lu %c%c%c\n",
693 			index, (s64)ts.tv_sec,
694 			ts.tv_nsec / NSEC_PER_USEC,
695 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
696 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
697 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.');
698 
699 		if (count < copied) {
700 			zram_slot_unlock(zram, index);
701 			break;
702 		}
703 		written += copied;
704 		count -= copied;
705 next:
706 		zram_slot_unlock(zram, index);
707 		*ppos += 1;
708 	}
709 
710 	up_read(&zram->init_lock);
711 	if (copy_to_user(buf, kbuf, written))
712 		written = -EFAULT;
713 	kvfree(kbuf);
714 
715 	return written;
716 }
717 
718 static const struct file_operations proc_zram_block_state_op = {
719 	.open = simple_open,
720 	.read = read_block_state,
721 	.llseek = default_llseek,
722 };
723 
724 static void zram_debugfs_register(struct zram *zram)
725 {
726 	if (!zram_debugfs_root)
727 		return;
728 
729 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
730 						zram_debugfs_root);
731 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
732 				zram, &proc_zram_block_state_op);
733 }
734 
735 static void zram_debugfs_unregister(struct zram *zram)
736 {
737 	debugfs_remove_recursive(zram->debugfs_dir);
738 }
739 #else
740 static void zram_debugfs_create(void) {};
741 static void zram_debugfs_destroy(void) {};
742 static void zram_accessed(struct zram *zram, u32 index) {};
743 static void zram_reset_access(struct zram *zram, u32 index) {};
744 static void zram_debugfs_register(struct zram *zram) {};
745 static void zram_debugfs_unregister(struct zram *zram) {};
746 #endif
747 
748 /*
749  * We switched to per-cpu streams and this attr is not needed anymore.
750  * However, we will keep it around for some time, because:
751  * a) we may revert per-cpu streams in the future
752  * b) it's visible to user space and we need to follow our 2 years
753  *    retirement rule; but we already have a number of 'soon to be
754  *    altered' attrs, so max_comp_streams need to wait for the next
755  *    layoff cycle.
756  */
757 static ssize_t max_comp_streams_show(struct device *dev,
758 		struct device_attribute *attr, char *buf)
759 {
760 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
761 }
762 
763 static ssize_t max_comp_streams_store(struct device *dev,
764 		struct device_attribute *attr, const char *buf, size_t len)
765 {
766 	return len;
767 }
768 
769 static ssize_t comp_algorithm_show(struct device *dev,
770 		struct device_attribute *attr, char *buf)
771 {
772 	size_t sz;
773 	struct zram *zram = dev_to_zram(dev);
774 
775 	down_read(&zram->init_lock);
776 	sz = zcomp_available_show(zram->compressor, buf);
777 	up_read(&zram->init_lock);
778 
779 	return sz;
780 }
781 
782 static ssize_t comp_algorithm_store(struct device *dev,
783 		struct device_attribute *attr, const char *buf, size_t len)
784 {
785 	struct zram *zram = dev_to_zram(dev);
786 	char compressor[ARRAY_SIZE(zram->compressor)];
787 	size_t sz;
788 
789 	strlcpy(compressor, buf, sizeof(compressor));
790 	/* ignore trailing newline */
791 	sz = strlen(compressor);
792 	if (sz > 0 && compressor[sz - 1] == '\n')
793 		compressor[sz - 1] = 0x00;
794 
795 	if (!zcomp_available_algorithm(compressor))
796 		return -EINVAL;
797 
798 	down_write(&zram->init_lock);
799 	if (init_done(zram)) {
800 		up_write(&zram->init_lock);
801 		pr_info("Can't change algorithm for initialized device\n");
802 		return -EBUSY;
803 	}
804 
805 	strcpy(zram->compressor, compressor);
806 	up_write(&zram->init_lock);
807 	return len;
808 }
809 
810 static ssize_t compact_store(struct device *dev,
811 		struct device_attribute *attr, const char *buf, size_t len)
812 {
813 	struct zram *zram = dev_to_zram(dev);
814 
815 	down_read(&zram->init_lock);
816 	if (!init_done(zram)) {
817 		up_read(&zram->init_lock);
818 		return -EINVAL;
819 	}
820 
821 	zs_compact(zram->mem_pool);
822 	up_read(&zram->init_lock);
823 
824 	return len;
825 }
826 
827 static ssize_t io_stat_show(struct device *dev,
828 		struct device_attribute *attr, char *buf)
829 {
830 	struct zram *zram = dev_to_zram(dev);
831 	ssize_t ret;
832 
833 	down_read(&zram->init_lock);
834 	ret = scnprintf(buf, PAGE_SIZE,
835 			"%8llu %8llu %8llu %8llu\n",
836 			(u64)atomic64_read(&zram->stats.failed_reads),
837 			(u64)atomic64_read(&zram->stats.failed_writes),
838 			(u64)atomic64_read(&zram->stats.invalid_io),
839 			(u64)atomic64_read(&zram->stats.notify_free));
840 	up_read(&zram->init_lock);
841 
842 	return ret;
843 }
844 
845 static ssize_t mm_stat_show(struct device *dev,
846 		struct device_attribute *attr, char *buf)
847 {
848 	struct zram *zram = dev_to_zram(dev);
849 	struct zs_pool_stats pool_stats;
850 	u64 orig_size, mem_used = 0;
851 	long max_used;
852 	ssize_t ret;
853 
854 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
855 
856 	down_read(&zram->init_lock);
857 	if (init_done(zram)) {
858 		mem_used = zs_get_total_pages(zram->mem_pool);
859 		zs_pool_stats(zram->mem_pool, &pool_stats);
860 	}
861 
862 	orig_size = atomic64_read(&zram->stats.pages_stored);
863 	max_used = atomic_long_read(&zram->stats.max_used_pages);
864 
865 	ret = scnprintf(buf, PAGE_SIZE,
866 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
867 			orig_size << PAGE_SHIFT,
868 			(u64)atomic64_read(&zram->stats.compr_data_size),
869 			mem_used << PAGE_SHIFT,
870 			zram->limit_pages << PAGE_SHIFT,
871 			max_used << PAGE_SHIFT,
872 			(u64)atomic64_read(&zram->stats.same_pages),
873 			pool_stats.pages_compacted,
874 			(u64)atomic64_read(&zram->stats.huge_pages));
875 	up_read(&zram->init_lock);
876 
877 	return ret;
878 }
879 
880 static ssize_t debug_stat_show(struct device *dev,
881 		struct device_attribute *attr, char *buf)
882 {
883 	int version = 1;
884 	struct zram *zram = dev_to_zram(dev);
885 	ssize_t ret;
886 
887 	down_read(&zram->init_lock);
888 	ret = scnprintf(buf, PAGE_SIZE,
889 			"version: %d\n%8llu\n",
890 			version,
891 			(u64)atomic64_read(&zram->stats.writestall));
892 	up_read(&zram->init_lock);
893 
894 	return ret;
895 }
896 
897 static DEVICE_ATTR_RO(io_stat);
898 static DEVICE_ATTR_RO(mm_stat);
899 static DEVICE_ATTR_RO(debug_stat);
900 
901 static void zram_meta_free(struct zram *zram, u64 disksize)
902 {
903 	size_t num_pages = disksize >> PAGE_SHIFT;
904 	size_t index;
905 
906 	/* Free all pages that are still in this zram device */
907 	for (index = 0; index < num_pages; index++)
908 		zram_free_page(zram, index);
909 
910 	zs_destroy_pool(zram->mem_pool);
911 	vfree(zram->table);
912 }
913 
914 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
915 {
916 	size_t num_pages;
917 
918 	num_pages = disksize >> PAGE_SHIFT;
919 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
920 	if (!zram->table)
921 		return false;
922 
923 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
924 	if (!zram->mem_pool) {
925 		vfree(zram->table);
926 		return false;
927 	}
928 
929 	if (!huge_class_size)
930 		huge_class_size = zs_huge_class_size(zram->mem_pool);
931 	return true;
932 }
933 
934 /*
935  * To protect concurrent access to the same index entry,
936  * caller should hold this table index entry's bit_spinlock to
937  * indicate this index entry is accessing.
938  */
939 static void zram_free_page(struct zram *zram, size_t index)
940 {
941 	unsigned long handle;
942 
943 	zram_reset_access(zram, index);
944 
945 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
946 		zram_clear_flag(zram, index, ZRAM_HUGE);
947 		atomic64_dec(&zram->stats.huge_pages);
948 	}
949 
950 	if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
951 		zram_wb_clear(zram, index);
952 		atomic64_dec(&zram->stats.pages_stored);
953 		return;
954 	}
955 
956 	/*
957 	 * No memory is allocated for same element filled pages.
958 	 * Simply clear same page flag.
959 	 */
960 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
961 		zram_clear_flag(zram, index, ZRAM_SAME);
962 		zram_set_element(zram, index, 0);
963 		atomic64_dec(&zram->stats.same_pages);
964 		atomic64_dec(&zram->stats.pages_stored);
965 		return;
966 	}
967 
968 	handle = zram_get_handle(zram, index);
969 	if (!handle)
970 		return;
971 
972 	zs_free(zram->mem_pool, handle);
973 
974 	atomic64_sub(zram_get_obj_size(zram, index),
975 			&zram->stats.compr_data_size);
976 	atomic64_dec(&zram->stats.pages_stored);
977 
978 	zram_set_handle(zram, index, 0);
979 	zram_set_obj_size(zram, index, 0);
980 }
981 
982 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
983 				struct bio *bio, bool partial_io)
984 {
985 	int ret;
986 	unsigned long handle;
987 	unsigned int size;
988 	void *src, *dst;
989 
990 	if (zram_wb_enabled(zram)) {
991 		zram_slot_lock(zram, index);
992 		if (zram_test_flag(zram, index, ZRAM_WB)) {
993 			struct bio_vec bvec;
994 
995 			zram_slot_unlock(zram, index);
996 
997 			bvec.bv_page = page;
998 			bvec.bv_len = PAGE_SIZE;
999 			bvec.bv_offset = 0;
1000 			return read_from_bdev(zram, &bvec,
1001 					zram_get_element(zram, index),
1002 					bio, partial_io);
1003 		}
1004 		zram_slot_unlock(zram, index);
1005 	}
1006 
1007 	zram_slot_lock(zram, index);
1008 	handle = zram_get_handle(zram, index);
1009 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1010 		unsigned long value;
1011 		void *mem;
1012 
1013 		value = handle ? zram_get_element(zram, index) : 0;
1014 		mem = kmap_atomic(page);
1015 		zram_fill_page(mem, PAGE_SIZE, value);
1016 		kunmap_atomic(mem);
1017 		zram_slot_unlock(zram, index);
1018 		return 0;
1019 	}
1020 
1021 	size = zram_get_obj_size(zram, index);
1022 
1023 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1024 	if (size == PAGE_SIZE) {
1025 		dst = kmap_atomic(page);
1026 		memcpy(dst, src, PAGE_SIZE);
1027 		kunmap_atomic(dst);
1028 		ret = 0;
1029 	} else {
1030 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1031 
1032 		dst = kmap_atomic(page);
1033 		ret = zcomp_decompress(zstrm, src, size, dst);
1034 		kunmap_atomic(dst);
1035 		zcomp_stream_put(zram->comp);
1036 	}
1037 	zs_unmap_object(zram->mem_pool, handle);
1038 	zram_slot_unlock(zram, index);
1039 
1040 	/* Should NEVER happen. Return bio error if it does. */
1041 	if (unlikely(ret))
1042 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1043 
1044 	return ret;
1045 }
1046 
1047 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1048 				u32 index, int offset, struct bio *bio)
1049 {
1050 	int ret;
1051 	struct page *page;
1052 
1053 	page = bvec->bv_page;
1054 	if (is_partial_io(bvec)) {
1055 		/* Use a temporary buffer to decompress the page */
1056 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1057 		if (!page)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1062 	if (unlikely(ret))
1063 		goto out;
1064 
1065 	if (is_partial_io(bvec)) {
1066 		void *dst = kmap_atomic(bvec->bv_page);
1067 		void *src = kmap_atomic(page);
1068 
1069 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1070 		kunmap_atomic(src);
1071 		kunmap_atomic(dst);
1072 	}
1073 out:
1074 	if (is_partial_io(bvec))
1075 		__free_page(page);
1076 
1077 	return ret;
1078 }
1079 
1080 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1081 				u32 index, struct bio *bio)
1082 {
1083 	int ret = 0;
1084 	unsigned long alloced_pages;
1085 	unsigned long handle = 0;
1086 	unsigned int comp_len = 0;
1087 	void *src, *dst, *mem;
1088 	struct zcomp_strm *zstrm;
1089 	struct page *page = bvec->bv_page;
1090 	unsigned long element = 0;
1091 	enum zram_pageflags flags = 0;
1092 	bool allow_wb = true;
1093 
1094 	mem = kmap_atomic(page);
1095 	if (page_same_filled(mem, &element)) {
1096 		kunmap_atomic(mem);
1097 		/* Free memory associated with this sector now. */
1098 		flags = ZRAM_SAME;
1099 		atomic64_inc(&zram->stats.same_pages);
1100 		goto out;
1101 	}
1102 	kunmap_atomic(mem);
1103 
1104 compress_again:
1105 	zstrm = zcomp_stream_get(zram->comp);
1106 	src = kmap_atomic(page);
1107 	ret = zcomp_compress(zstrm, src, &comp_len);
1108 	kunmap_atomic(src);
1109 
1110 	if (unlikely(ret)) {
1111 		zcomp_stream_put(zram->comp);
1112 		pr_err("Compression failed! err=%d\n", ret);
1113 		zs_free(zram->mem_pool, handle);
1114 		return ret;
1115 	}
1116 
1117 	if (unlikely(comp_len >= huge_class_size)) {
1118 		comp_len = PAGE_SIZE;
1119 		if (zram_wb_enabled(zram) && allow_wb) {
1120 			zcomp_stream_put(zram->comp);
1121 			ret = write_to_bdev(zram, bvec, index, bio, &element);
1122 			if (!ret) {
1123 				flags = ZRAM_WB;
1124 				ret = 1;
1125 				goto out;
1126 			}
1127 			allow_wb = false;
1128 			goto compress_again;
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * handle allocation has 2 paths:
1134 	 * a) fast path is executed with preemption disabled (for
1135 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1136 	 *  since we can't sleep;
1137 	 * b) slow path enables preemption and attempts to allocate
1138 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1139 	 *  put per-cpu compression stream and, thus, to re-do
1140 	 *  the compression once handle is allocated.
1141 	 *
1142 	 * if we have a 'non-null' handle here then we are coming
1143 	 * from the slow path and handle has already been allocated.
1144 	 */
1145 	if (!handle)
1146 		handle = zs_malloc(zram->mem_pool, comp_len,
1147 				__GFP_KSWAPD_RECLAIM |
1148 				__GFP_NOWARN |
1149 				__GFP_HIGHMEM |
1150 				__GFP_MOVABLE);
1151 	if (!handle) {
1152 		zcomp_stream_put(zram->comp);
1153 		atomic64_inc(&zram->stats.writestall);
1154 		handle = zs_malloc(zram->mem_pool, comp_len,
1155 				GFP_NOIO | __GFP_HIGHMEM |
1156 				__GFP_MOVABLE);
1157 		if (handle)
1158 			goto compress_again;
1159 		return -ENOMEM;
1160 	}
1161 
1162 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1163 	update_used_max(zram, alloced_pages);
1164 
1165 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1166 		zcomp_stream_put(zram->comp);
1167 		zs_free(zram->mem_pool, handle);
1168 		return -ENOMEM;
1169 	}
1170 
1171 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1172 
1173 	src = zstrm->buffer;
1174 	if (comp_len == PAGE_SIZE)
1175 		src = kmap_atomic(page);
1176 	memcpy(dst, src, comp_len);
1177 	if (comp_len == PAGE_SIZE)
1178 		kunmap_atomic(src);
1179 
1180 	zcomp_stream_put(zram->comp);
1181 	zs_unmap_object(zram->mem_pool, handle);
1182 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1183 out:
1184 	/*
1185 	 * Free memory associated with this sector
1186 	 * before overwriting unused sectors.
1187 	 */
1188 	zram_slot_lock(zram, index);
1189 	zram_free_page(zram, index);
1190 
1191 	if (comp_len == PAGE_SIZE) {
1192 		zram_set_flag(zram, index, ZRAM_HUGE);
1193 		atomic64_inc(&zram->stats.huge_pages);
1194 	}
1195 
1196 	if (flags) {
1197 		zram_set_flag(zram, index, flags);
1198 		zram_set_element(zram, index, element);
1199 	}  else {
1200 		zram_set_handle(zram, index, handle);
1201 		zram_set_obj_size(zram, index, comp_len);
1202 	}
1203 	zram_slot_unlock(zram, index);
1204 
1205 	/* Update stats */
1206 	atomic64_inc(&zram->stats.pages_stored);
1207 	return ret;
1208 }
1209 
1210 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1211 				u32 index, int offset, struct bio *bio)
1212 {
1213 	int ret;
1214 	struct page *page = NULL;
1215 	void *src;
1216 	struct bio_vec vec;
1217 
1218 	vec = *bvec;
1219 	if (is_partial_io(bvec)) {
1220 		void *dst;
1221 		/*
1222 		 * This is a partial IO. We need to read the full page
1223 		 * before to write the changes.
1224 		 */
1225 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1226 		if (!page)
1227 			return -ENOMEM;
1228 
1229 		ret = __zram_bvec_read(zram, page, index, bio, true);
1230 		if (ret)
1231 			goto out;
1232 
1233 		src = kmap_atomic(bvec->bv_page);
1234 		dst = kmap_atomic(page);
1235 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1236 		kunmap_atomic(dst);
1237 		kunmap_atomic(src);
1238 
1239 		vec.bv_page = page;
1240 		vec.bv_len = PAGE_SIZE;
1241 		vec.bv_offset = 0;
1242 	}
1243 
1244 	ret = __zram_bvec_write(zram, &vec, index, bio);
1245 out:
1246 	if (is_partial_io(bvec))
1247 		__free_page(page);
1248 	return ret;
1249 }
1250 
1251 /*
1252  * zram_bio_discard - handler on discard request
1253  * @index: physical block index in PAGE_SIZE units
1254  * @offset: byte offset within physical block
1255  */
1256 static void zram_bio_discard(struct zram *zram, u32 index,
1257 			     int offset, struct bio *bio)
1258 {
1259 	size_t n = bio->bi_iter.bi_size;
1260 
1261 	/*
1262 	 * zram manages data in physical block size units. Because logical block
1263 	 * size isn't identical with physical block size on some arch, we
1264 	 * could get a discard request pointing to a specific offset within a
1265 	 * certain physical block.  Although we can handle this request by
1266 	 * reading that physiclal block and decompressing and partially zeroing
1267 	 * and re-compressing and then re-storing it, this isn't reasonable
1268 	 * because our intent with a discard request is to save memory.  So
1269 	 * skipping this logical block is appropriate here.
1270 	 */
1271 	if (offset) {
1272 		if (n <= (PAGE_SIZE - offset))
1273 			return;
1274 
1275 		n -= (PAGE_SIZE - offset);
1276 		index++;
1277 	}
1278 
1279 	while (n >= PAGE_SIZE) {
1280 		zram_slot_lock(zram, index);
1281 		zram_free_page(zram, index);
1282 		zram_slot_unlock(zram, index);
1283 		atomic64_inc(&zram->stats.notify_free);
1284 		index++;
1285 		n -= PAGE_SIZE;
1286 	}
1287 }
1288 
1289 /*
1290  * Returns errno if it has some problem. Otherwise return 0 or 1.
1291  * Returns 0 if IO request was done synchronously
1292  * Returns 1 if IO request was successfully submitted.
1293  */
1294 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1295 			int offset, unsigned int op, struct bio *bio)
1296 {
1297 	unsigned long start_time = jiffies;
1298 	struct request_queue *q = zram->disk->queue;
1299 	int ret;
1300 
1301 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1302 			&zram->disk->part0);
1303 
1304 	if (!op_is_write(op)) {
1305 		atomic64_inc(&zram->stats.num_reads);
1306 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1307 		flush_dcache_page(bvec->bv_page);
1308 	} else {
1309 		atomic64_inc(&zram->stats.num_writes);
1310 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1311 	}
1312 
1313 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1314 
1315 	zram_slot_lock(zram, index);
1316 	zram_accessed(zram, index);
1317 	zram_slot_unlock(zram, index);
1318 
1319 	if (unlikely(ret < 0)) {
1320 		if (!op_is_write(op))
1321 			atomic64_inc(&zram->stats.failed_reads);
1322 		else
1323 			atomic64_inc(&zram->stats.failed_writes);
1324 	}
1325 
1326 	return ret;
1327 }
1328 
1329 static void __zram_make_request(struct zram *zram, struct bio *bio)
1330 {
1331 	int offset;
1332 	u32 index;
1333 	struct bio_vec bvec;
1334 	struct bvec_iter iter;
1335 
1336 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1337 	offset = (bio->bi_iter.bi_sector &
1338 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1339 
1340 	switch (bio_op(bio)) {
1341 	case REQ_OP_DISCARD:
1342 	case REQ_OP_WRITE_ZEROES:
1343 		zram_bio_discard(zram, index, offset, bio);
1344 		bio_endio(bio);
1345 		return;
1346 	default:
1347 		break;
1348 	}
1349 
1350 	bio_for_each_segment(bvec, bio, iter) {
1351 		struct bio_vec bv = bvec;
1352 		unsigned int unwritten = bvec.bv_len;
1353 
1354 		do {
1355 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1356 							unwritten);
1357 			if (zram_bvec_rw(zram, &bv, index, offset,
1358 					 bio_op(bio), bio) < 0)
1359 				goto out;
1360 
1361 			bv.bv_offset += bv.bv_len;
1362 			unwritten -= bv.bv_len;
1363 
1364 			update_position(&index, &offset, &bv);
1365 		} while (unwritten);
1366 	}
1367 
1368 	bio_endio(bio);
1369 	return;
1370 
1371 out:
1372 	bio_io_error(bio);
1373 }
1374 
1375 /*
1376  * Handler function for all zram I/O requests.
1377  */
1378 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1379 {
1380 	struct zram *zram = queue->queuedata;
1381 
1382 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1383 					bio->bi_iter.bi_size)) {
1384 		atomic64_inc(&zram->stats.invalid_io);
1385 		goto error;
1386 	}
1387 
1388 	__zram_make_request(zram, bio);
1389 	return BLK_QC_T_NONE;
1390 
1391 error:
1392 	bio_io_error(bio);
1393 	return BLK_QC_T_NONE;
1394 }
1395 
1396 static void zram_slot_free_notify(struct block_device *bdev,
1397 				unsigned long index)
1398 {
1399 	struct zram *zram;
1400 
1401 	zram = bdev->bd_disk->private_data;
1402 
1403 	zram_slot_lock(zram, index);
1404 	zram_free_page(zram, index);
1405 	zram_slot_unlock(zram, index);
1406 	atomic64_inc(&zram->stats.notify_free);
1407 }
1408 
1409 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1410 		       struct page *page, unsigned int op)
1411 {
1412 	int offset, ret;
1413 	u32 index;
1414 	struct zram *zram;
1415 	struct bio_vec bv;
1416 
1417 	if (PageTransHuge(page))
1418 		return -ENOTSUPP;
1419 	zram = bdev->bd_disk->private_data;
1420 
1421 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1422 		atomic64_inc(&zram->stats.invalid_io);
1423 		ret = -EINVAL;
1424 		goto out;
1425 	}
1426 
1427 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1428 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1429 
1430 	bv.bv_page = page;
1431 	bv.bv_len = PAGE_SIZE;
1432 	bv.bv_offset = 0;
1433 
1434 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1435 out:
1436 	/*
1437 	 * If I/O fails, just return error(ie, non-zero) without
1438 	 * calling page_endio.
1439 	 * It causes resubmit the I/O with bio request by upper functions
1440 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1441 	 * bio->bi_end_io does things to handle the error
1442 	 * (e.g., SetPageError, set_page_dirty and extra works).
1443 	 */
1444 	if (unlikely(ret < 0))
1445 		return ret;
1446 
1447 	switch (ret) {
1448 	case 0:
1449 		page_endio(page, op_is_write(op), 0);
1450 		break;
1451 	case 1:
1452 		ret = 0;
1453 		break;
1454 	default:
1455 		WARN_ON(1);
1456 	}
1457 	return ret;
1458 }
1459 
1460 static void zram_reset_device(struct zram *zram)
1461 {
1462 	struct zcomp *comp;
1463 	u64 disksize;
1464 
1465 	down_write(&zram->init_lock);
1466 
1467 	zram->limit_pages = 0;
1468 
1469 	if (!init_done(zram)) {
1470 		up_write(&zram->init_lock);
1471 		return;
1472 	}
1473 
1474 	comp = zram->comp;
1475 	disksize = zram->disksize;
1476 	zram->disksize = 0;
1477 
1478 	set_capacity(zram->disk, 0);
1479 	part_stat_set_all(&zram->disk->part0, 0);
1480 
1481 	up_write(&zram->init_lock);
1482 	/* I/O operation under all of CPU are done so let's free */
1483 	zram_meta_free(zram, disksize);
1484 	memset(&zram->stats, 0, sizeof(zram->stats));
1485 	zcomp_destroy(comp);
1486 	reset_bdev(zram);
1487 }
1488 
1489 static ssize_t disksize_store(struct device *dev,
1490 		struct device_attribute *attr, const char *buf, size_t len)
1491 {
1492 	u64 disksize;
1493 	struct zcomp *comp;
1494 	struct zram *zram = dev_to_zram(dev);
1495 	int err;
1496 
1497 	disksize = memparse(buf, NULL);
1498 	if (!disksize)
1499 		return -EINVAL;
1500 
1501 	down_write(&zram->init_lock);
1502 	if (init_done(zram)) {
1503 		pr_info("Cannot change disksize for initialized device\n");
1504 		err = -EBUSY;
1505 		goto out_unlock;
1506 	}
1507 
1508 	disksize = PAGE_ALIGN(disksize);
1509 	if (!zram_meta_alloc(zram, disksize)) {
1510 		err = -ENOMEM;
1511 		goto out_unlock;
1512 	}
1513 
1514 	comp = zcomp_create(zram->compressor);
1515 	if (IS_ERR(comp)) {
1516 		pr_err("Cannot initialise %s compressing backend\n",
1517 				zram->compressor);
1518 		err = PTR_ERR(comp);
1519 		goto out_free_meta;
1520 	}
1521 
1522 	zram->comp = comp;
1523 	zram->disksize = disksize;
1524 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1525 
1526 	revalidate_disk(zram->disk);
1527 	up_write(&zram->init_lock);
1528 
1529 	return len;
1530 
1531 out_free_meta:
1532 	zram_meta_free(zram, disksize);
1533 out_unlock:
1534 	up_write(&zram->init_lock);
1535 	return err;
1536 }
1537 
1538 static ssize_t reset_store(struct device *dev,
1539 		struct device_attribute *attr, const char *buf, size_t len)
1540 {
1541 	int ret;
1542 	unsigned short do_reset;
1543 	struct zram *zram;
1544 	struct block_device *bdev;
1545 
1546 	ret = kstrtou16(buf, 10, &do_reset);
1547 	if (ret)
1548 		return ret;
1549 
1550 	if (!do_reset)
1551 		return -EINVAL;
1552 
1553 	zram = dev_to_zram(dev);
1554 	bdev = bdget_disk(zram->disk, 0);
1555 	if (!bdev)
1556 		return -ENOMEM;
1557 
1558 	mutex_lock(&bdev->bd_mutex);
1559 	/* Do not reset an active device or claimed device */
1560 	if (bdev->bd_openers || zram->claim) {
1561 		mutex_unlock(&bdev->bd_mutex);
1562 		bdput(bdev);
1563 		return -EBUSY;
1564 	}
1565 
1566 	/* From now on, anyone can't open /dev/zram[0-9] */
1567 	zram->claim = true;
1568 	mutex_unlock(&bdev->bd_mutex);
1569 
1570 	/* Make sure all the pending I/O are finished */
1571 	fsync_bdev(bdev);
1572 	zram_reset_device(zram);
1573 	revalidate_disk(zram->disk);
1574 	bdput(bdev);
1575 
1576 	mutex_lock(&bdev->bd_mutex);
1577 	zram->claim = false;
1578 	mutex_unlock(&bdev->bd_mutex);
1579 
1580 	return len;
1581 }
1582 
1583 static int zram_open(struct block_device *bdev, fmode_t mode)
1584 {
1585 	int ret = 0;
1586 	struct zram *zram;
1587 
1588 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1589 
1590 	zram = bdev->bd_disk->private_data;
1591 	/* zram was claimed to reset so open request fails */
1592 	if (zram->claim)
1593 		ret = -EBUSY;
1594 
1595 	return ret;
1596 }
1597 
1598 static const struct block_device_operations zram_devops = {
1599 	.open = zram_open,
1600 	.swap_slot_free_notify = zram_slot_free_notify,
1601 	.rw_page = zram_rw_page,
1602 	.owner = THIS_MODULE
1603 };
1604 
1605 static DEVICE_ATTR_WO(compact);
1606 static DEVICE_ATTR_RW(disksize);
1607 static DEVICE_ATTR_RO(initstate);
1608 static DEVICE_ATTR_WO(reset);
1609 static DEVICE_ATTR_WO(mem_limit);
1610 static DEVICE_ATTR_WO(mem_used_max);
1611 static DEVICE_ATTR_RW(max_comp_streams);
1612 static DEVICE_ATTR_RW(comp_algorithm);
1613 #ifdef CONFIG_ZRAM_WRITEBACK
1614 static DEVICE_ATTR_RW(backing_dev);
1615 #endif
1616 
1617 static struct attribute *zram_disk_attrs[] = {
1618 	&dev_attr_disksize.attr,
1619 	&dev_attr_initstate.attr,
1620 	&dev_attr_reset.attr,
1621 	&dev_attr_compact.attr,
1622 	&dev_attr_mem_limit.attr,
1623 	&dev_attr_mem_used_max.attr,
1624 	&dev_attr_max_comp_streams.attr,
1625 	&dev_attr_comp_algorithm.attr,
1626 #ifdef CONFIG_ZRAM_WRITEBACK
1627 	&dev_attr_backing_dev.attr,
1628 #endif
1629 	&dev_attr_io_stat.attr,
1630 	&dev_attr_mm_stat.attr,
1631 	&dev_attr_debug_stat.attr,
1632 	NULL,
1633 };
1634 
1635 static const struct attribute_group zram_disk_attr_group = {
1636 	.attrs = zram_disk_attrs,
1637 };
1638 
1639 /*
1640  * Allocate and initialize new zram device. the function returns
1641  * '>= 0' device_id upon success, and negative value otherwise.
1642  */
1643 static int zram_add(void)
1644 {
1645 	struct zram *zram;
1646 	struct request_queue *queue;
1647 	int ret, device_id;
1648 
1649 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1650 	if (!zram)
1651 		return -ENOMEM;
1652 
1653 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1654 	if (ret < 0)
1655 		goto out_free_dev;
1656 	device_id = ret;
1657 
1658 	init_rwsem(&zram->init_lock);
1659 
1660 	queue = blk_alloc_queue(GFP_KERNEL);
1661 	if (!queue) {
1662 		pr_err("Error allocating disk queue for device %d\n",
1663 			device_id);
1664 		ret = -ENOMEM;
1665 		goto out_free_idr;
1666 	}
1667 
1668 	blk_queue_make_request(queue, zram_make_request);
1669 
1670 	/* gendisk structure */
1671 	zram->disk = alloc_disk(1);
1672 	if (!zram->disk) {
1673 		pr_err("Error allocating disk structure for device %d\n",
1674 			device_id);
1675 		ret = -ENOMEM;
1676 		goto out_free_queue;
1677 	}
1678 
1679 	zram->disk->major = zram_major;
1680 	zram->disk->first_minor = device_id;
1681 	zram->disk->fops = &zram_devops;
1682 	zram->disk->queue = queue;
1683 	zram->disk->queue->queuedata = zram;
1684 	zram->disk->private_data = zram;
1685 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1686 
1687 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1688 	set_capacity(zram->disk, 0);
1689 	/* zram devices sort of resembles non-rotational disks */
1690 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1691 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1692 
1693 	/*
1694 	 * To ensure that we always get PAGE_SIZE aligned
1695 	 * and n*PAGE_SIZED sized I/O requests.
1696 	 */
1697 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1698 	blk_queue_logical_block_size(zram->disk->queue,
1699 					ZRAM_LOGICAL_BLOCK_SIZE);
1700 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1701 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1702 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1703 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1704 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1705 
1706 	/*
1707 	 * zram_bio_discard() will clear all logical blocks if logical block
1708 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1709 	 * different, we will skip discarding some parts of logical blocks in
1710 	 * the part of the request range which isn't aligned to physical block
1711 	 * size.  So we can't ensure that all discarded logical blocks are
1712 	 * zeroed.
1713 	 */
1714 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1715 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1716 
1717 	zram->disk->queue->backing_dev_info->capabilities |=
1718 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1719 	add_disk(zram->disk);
1720 
1721 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1722 				&zram_disk_attr_group);
1723 	if (ret < 0) {
1724 		pr_err("Error creating sysfs group for device %d\n",
1725 				device_id);
1726 		goto out_free_disk;
1727 	}
1728 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1729 
1730 	zram_debugfs_register(zram);
1731 	pr_info("Added device: %s\n", zram->disk->disk_name);
1732 	return device_id;
1733 
1734 out_free_disk:
1735 	del_gendisk(zram->disk);
1736 	put_disk(zram->disk);
1737 out_free_queue:
1738 	blk_cleanup_queue(queue);
1739 out_free_idr:
1740 	idr_remove(&zram_index_idr, device_id);
1741 out_free_dev:
1742 	kfree(zram);
1743 	return ret;
1744 }
1745 
1746 static int zram_remove(struct zram *zram)
1747 {
1748 	struct block_device *bdev;
1749 
1750 	bdev = bdget_disk(zram->disk, 0);
1751 	if (!bdev)
1752 		return -ENOMEM;
1753 
1754 	mutex_lock(&bdev->bd_mutex);
1755 	if (bdev->bd_openers || zram->claim) {
1756 		mutex_unlock(&bdev->bd_mutex);
1757 		bdput(bdev);
1758 		return -EBUSY;
1759 	}
1760 
1761 	zram->claim = true;
1762 	mutex_unlock(&bdev->bd_mutex);
1763 
1764 	zram_debugfs_unregister(zram);
1765 	/*
1766 	 * Remove sysfs first, so no one will perform a disksize
1767 	 * store while we destroy the devices. This also helps during
1768 	 * hot_remove -- zram_reset_device() is the last holder of
1769 	 * ->init_lock, no later/concurrent disksize_store() or any
1770 	 * other sysfs handlers are possible.
1771 	 */
1772 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1773 			&zram_disk_attr_group);
1774 
1775 	/* Make sure all the pending I/O are finished */
1776 	fsync_bdev(bdev);
1777 	zram_reset_device(zram);
1778 	bdput(bdev);
1779 
1780 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1781 
1782 	del_gendisk(zram->disk);
1783 	blk_cleanup_queue(zram->disk->queue);
1784 	put_disk(zram->disk);
1785 	kfree(zram);
1786 	return 0;
1787 }
1788 
1789 /* zram-control sysfs attributes */
1790 
1791 /*
1792  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1793  * sense that reading from this file does alter the state of your system -- it
1794  * creates a new un-initialized zram device and returns back this device's
1795  * device_id (or an error code if it fails to create a new device).
1796  */
1797 static ssize_t hot_add_show(struct class *class,
1798 			struct class_attribute *attr,
1799 			char *buf)
1800 {
1801 	int ret;
1802 
1803 	mutex_lock(&zram_index_mutex);
1804 	ret = zram_add();
1805 	mutex_unlock(&zram_index_mutex);
1806 
1807 	if (ret < 0)
1808 		return ret;
1809 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1810 }
1811 static CLASS_ATTR_RO(hot_add);
1812 
1813 static ssize_t hot_remove_store(struct class *class,
1814 			struct class_attribute *attr,
1815 			const char *buf,
1816 			size_t count)
1817 {
1818 	struct zram *zram;
1819 	int ret, dev_id;
1820 
1821 	/* dev_id is gendisk->first_minor, which is `int' */
1822 	ret = kstrtoint(buf, 10, &dev_id);
1823 	if (ret)
1824 		return ret;
1825 	if (dev_id < 0)
1826 		return -EINVAL;
1827 
1828 	mutex_lock(&zram_index_mutex);
1829 
1830 	zram = idr_find(&zram_index_idr, dev_id);
1831 	if (zram) {
1832 		ret = zram_remove(zram);
1833 		if (!ret)
1834 			idr_remove(&zram_index_idr, dev_id);
1835 	} else {
1836 		ret = -ENODEV;
1837 	}
1838 
1839 	mutex_unlock(&zram_index_mutex);
1840 	return ret ? ret : count;
1841 }
1842 static CLASS_ATTR_WO(hot_remove);
1843 
1844 static struct attribute *zram_control_class_attrs[] = {
1845 	&class_attr_hot_add.attr,
1846 	&class_attr_hot_remove.attr,
1847 	NULL,
1848 };
1849 ATTRIBUTE_GROUPS(zram_control_class);
1850 
1851 static struct class zram_control_class = {
1852 	.name		= "zram-control",
1853 	.owner		= THIS_MODULE,
1854 	.class_groups	= zram_control_class_groups,
1855 };
1856 
1857 static int zram_remove_cb(int id, void *ptr, void *data)
1858 {
1859 	zram_remove(ptr);
1860 	return 0;
1861 }
1862 
1863 static void destroy_devices(void)
1864 {
1865 	class_unregister(&zram_control_class);
1866 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1867 	zram_debugfs_destroy();
1868 	idr_destroy(&zram_index_idr);
1869 	unregister_blkdev(zram_major, "zram");
1870 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1871 }
1872 
1873 static int __init zram_init(void)
1874 {
1875 	int ret;
1876 
1877 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1878 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1879 	if (ret < 0)
1880 		return ret;
1881 
1882 	ret = class_register(&zram_control_class);
1883 	if (ret) {
1884 		pr_err("Unable to register zram-control class\n");
1885 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1886 		return ret;
1887 	}
1888 
1889 	zram_debugfs_create();
1890 	zram_major = register_blkdev(0, "zram");
1891 	if (zram_major <= 0) {
1892 		pr_err("Unable to get major number\n");
1893 		class_unregister(&zram_control_class);
1894 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1895 		return -EBUSY;
1896 	}
1897 
1898 	while (num_devices != 0) {
1899 		mutex_lock(&zram_index_mutex);
1900 		ret = zram_add();
1901 		mutex_unlock(&zram_index_mutex);
1902 		if (ret < 0)
1903 			goto out_error;
1904 		num_devices--;
1905 	}
1906 
1907 	return 0;
1908 
1909 out_error:
1910 	destroy_devices();
1911 	return ret;
1912 }
1913 
1914 static void __exit zram_exit(void)
1915 {
1916 	destroy_devices();
1917 }
1918 
1919 module_init(zram_init);
1920 module_exit(zram_exit);
1921 
1922 module_param(num_devices, uint, 0);
1923 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1924 
1925 MODULE_LICENSE("Dual BSD/GPL");
1926 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1927 MODULE_DESCRIPTION("Compressed RAM Block Device");
1928