1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/debugfs.h> 35 #include <linux/cpuhotplug.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = "lzo"; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static void zram_free_page(struct zram *zram, size_t index); 55 56 static void zram_slot_lock(struct zram *zram, u32 index) 57 { 58 bit_spin_lock(ZRAM_LOCK, &zram->table[index].value); 59 } 60 61 static void zram_slot_unlock(struct zram *zram, u32 index) 62 { 63 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value); 64 } 65 66 static inline bool init_done(struct zram *zram) 67 { 68 return zram->disksize; 69 } 70 71 static inline bool zram_allocated(struct zram *zram, u32 index) 72 { 73 74 return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) || 75 zram->table[index].handle; 76 } 77 78 static inline struct zram *dev_to_zram(struct device *dev) 79 { 80 return (struct zram *)dev_to_disk(dev)->private_data; 81 } 82 83 static unsigned long zram_get_handle(struct zram *zram, u32 index) 84 { 85 return zram->table[index].handle; 86 } 87 88 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 89 { 90 zram->table[index].handle = handle; 91 } 92 93 /* flag operations require table entry bit_spin_lock() being held */ 94 static bool zram_test_flag(struct zram *zram, u32 index, 95 enum zram_pageflags flag) 96 { 97 return zram->table[index].value & BIT(flag); 98 } 99 100 static void zram_set_flag(struct zram *zram, u32 index, 101 enum zram_pageflags flag) 102 { 103 zram->table[index].value |= BIT(flag); 104 } 105 106 static void zram_clear_flag(struct zram *zram, u32 index, 107 enum zram_pageflags flag) 108 { 109 zram->table[index].value &= ~BIT(flag); 110 } 111 112 static inline void zram_set_element(struct zram *zram, u32 index, 113 unsigned long element) 114 { 115 zram->table[index].element = element; 116 } 117 118 static unsigned long zram_get_element(struct zram *zram, u32 index) 119 { 120 return zram->table[index].element; 121 } 122 123 static size_t zram_get_obj_size(struct zram *zram, u32 index) 124 { 125 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 126 } 127 128 static void zram_set_obj_size(struct zram *zram, 129 u32 index, size_t size) 130 { 131 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT; 132 133 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 134 } 135 136 #if PAGE_SIZE != 4096 137 static inline bool is_partial_io(struct bio_vec *bvec) 138 { 139 return bvec->bv_len != PAGE_SIZE; 140 } 141 #else 142 static inline bool is_partial_io(struct bio_vec *bvec) 143 { 144 return false; 145 } 146 #endif 147 148 /* 149 * Check if request is within bounds and aligned on zram logical blocks. 150 */ 151 static inline bool valid_io_request(struct zram *zram, 152 sector_t start, unsigned int size) 153 { 154 u64 end, bound; 155 156 /* unaligned request */ 157 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 158 return false; 159 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 160 return false; 161 162 end = start + (size >> SECTOR_SHIFT); 163 bound = zram->disksize >> SECTOR_SHIFT; 164 /* out of range range */ 165 if (unlikely(start >= bound || end > bound || start > end)) 166 return false; 167 168 /* I/O request is valid */ 169 return true; 170 } 171 172 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 173 { 174 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 175 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 176 } 177 178 static inline void update_used_max(struct zram *zram, 179 const unsigned long pages) 180 { 181 unsigned long old_max, cur_max; 182 183 old_max = atomic_long_read(&zram->stats.max_used_pages); 184 185 do { 186 cur_max = old_max; 187 if (pages > cur_max) 188 old_max = atomic_long_cmpxchg( 189 &zram->stats.max_used_pages, cur_max, pages); 190 } while (old_max != cur_max); 191 } 192 193 static inline void zram_fill_page(void *ptr, unsigned long len, 194 unsigned long value) 195 { 196 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 197 memset_l(ptr, value, len / sizeof(unsigned long)); 198 } 199 200 static bool page_same_filled(void *ptr, unsigned long *element) 201 { 202 unsigned int pos; 203 unsigned long *page; 204 unsigned long val; 205 206 page = (unsigned long *)ptr; 207 val = page[0]; 208 209 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) { 210 if (val != page[pos]) 211 return false; 212 } 213 214 *element = val; 215 216 return true; 217 } 218 219 static ssize_t initstate_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221 { 222 u32 val; 223 struct zram *zram = dev_to_zram(dev); 224 225 down_read(&zram->init_lock); 226 val = init_done(zram); 227 up_read(&zram->init_lock); 228 229 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 230 } 231 232 static ssize_t disksize_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 struct zram *zram = dev_to_zram(dev); 236 237 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 238 } 239 240 static ssize_t mem_limit_store(struct device *dev, 241 struct device_attribute *attr, const char *buf, size_t len) 242 { 243 u64 limit; 244 char *tmp; 245 struct zram *zram = dev_to_zram(dev); 246 247 limit = memparse(buf, &tmp); 248 if (buf == tmp) /* no chars parsed, invalid input */ 249 return -EINVAL; 250 251 down_write(&zram->init_lock); 252 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 253 up_write(&zram->init_lock); 254 255 return len; 256 } 257 258 static ssize_t mem_used_max_store(struct device *dev, 259 struct device_attribute *attr, const char *buf, size_t len) 260 { 261 int err; 262 unsigned long val; 263 struct zram *zram = dev_to_zram(dev); 264 265 err = kstrtoul(buf, 10, &val); 266 if (err || val != 0) 267 return -EINVAL; 268 269 down_read(&zram->init_lock); 270 if (init_done(zram)) { 271 atomic_long_set(&zram->stats.max_used_pages, 272 zs_get_total_pages(zram->mem_pool)); 273 } 274 up_read(&zram->init_lock); 275 276 return len; 277 } 278 279 #ifdef CONFIG_ZRAM_WRITEBACK 280 static bool zram_wb_enabled(struct zram *zram) 281 { 282 return zram->backing_dev; 283 } 284 285 static void reset_bdev(struct zram *zram) 286 { 287 struct block_device *bdev; 288 289 if (!zram_wb_enabled(zram)) 290 return; 291 292 bdev = zram->bdev; 293 if (zram->old_block_size) 294 set_blocksize(bdev, zram->old_block_size); 295 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 296 /* hope filp_close flush all of IO */ 297 filp_close(zram->backing_dev, NULL); 298 zram->backing_dev = NULL; 299 zram->old_block_size = 0; 300 zram->bdev = NULL; 301 zram->disk->queue->backing_dev_info->capabilities |= 302 BDI_CAP_SYNCHRONOUS_IO; 303 kvfree(zram->bitmap); 304 zram->bitmap = NULL; 305 } 306 307 static ssize_t backing_dev_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 struct zram *zram = dev_to_zram(dev); 311 struct file *file = zram->backing_dev; 312 char *p; 313 ssize_t ret; 314 315 down_read(&zram->init_lock); 316 if (!zram_wb_enabled(zram)) { 317 memcpy(buf, "none\n", 5); 318 up_read(&zram->init_lock); 319 return 5; 320 } 321 322 p = file_path(file, buf, PAGE_SIZE - 1); 323 if (IS_ERR(p)) { 324 ret = PTR_ERR(p); 325 goto out; 326 } 327 328 ret = strlen(p); 329 memmove(buf, p, ret); 330 buf[ret++] = '\n'; 331 out: 332 up_read(&zram->init_lock); 333 return ret; 334 } 335 336 static ssize_t backing_dev_store(struct device *dev, 337 struct device_attribute *attr, const char *buf, size_t len) 338 { 339 char *file_name; 340 size_t sz; 341 struct file *backing_dev = NULL; 342 struct inode *inode; 343 struct address_space *mapping; 344 unsigned int bitmap_sz, old_block_size = 0; 345 unsigned long nr_pages, *bitmap = NULL; 346 struct block_device *bdev = NULL; 347 int err; 348 struct zram *zram = dev_to_zram(dev); 349 350 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 351 if (!file_name) 352 return -ENOMEM; 353 354 down_write(&zram->init_lock); 355 if (init_done(zram)) { 356 pr_info("Can't setup backing device for initialized device\n"); 357 err = -EBUSY; 358 goto out; 359 } 360 361 strlcpy(file_name, buf, PATH_MAX); 362 /* ignore trailing newline */ 363 sz = strlen(file_name); 364 if (sz > 0 && file_name[sz - 1] == '\n') 365 file_name[sz - 1] = 0x00; 366 367 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 368 if (IS_ERR(backing_dev)) { 369 err = PTR_ERR(backing_dev); 370 backing_dev = NULL; 371 goto out; 372 } 373 374 mapping = backing_dev->f_mapping; 375 inode = mapping->host; 376 377 /* Support only block device in this moment */ 378 if (!S_ISBLK(inode->i_mode)) { 379 err = -ENOTBLK; 380 goto out; 381 } 382 383 bdev = bdgrab(I_BDEV(inode)); 384 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 385 if (err < 0) 386 goto out; 387 388 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 389 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 390 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 391 if (!bitmap) { 392 err = -ENOMEM; 393 goto out; 394 } 395 396 old_block_size = block_size(bdev); 397 err = set_blocksize(bdev, PAGE_SIZE); 398 if (err) 399 goto out; 400 401 reset_bdev(zram); 402 spin_lock_init(&zram->bitmap_lock); 403 404 zram->old_block_size = old_block_size; 405 zram->bdev = bdev; 406 zram->backing_dev = backing_dev; 407 zram->bitmap = bitmap; 408 zram->nr_pages = nr_pages; 409 /* 410 * With writeback feature, zram does asynchronous IO so it's no longer 411 * synchronous device so let's remove synchronous io flag. Othewise, 412 * upper layer(e.g., swap) could wait IO completion rather than 413 * (submit and return), which will cause system sluggish. 414 * Furthermore, when the IO function returns(e.g., swap_readpage), 415 * upper layer expects IO was done so it could deallocate the page 416 * freely but in fact, IO is going on so finally could cause 417 * use-after-free when the IO is really done. 418 */ 419 zram->disk->queue->backing_dev_info->capabilities &= 420 ~BDI_CAP_SYNCHRONOUS_IO; 421 up_write(&zram->init_lock); 422 423 pr_info("setup backing device %s\n", file_name); 424 kfree(file_name); 425 426 return len; 427 out: 428 if (bitmap) 429 kvfree(bitmap); 430 431 if (bdev) 432 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 433 434 if (backing_dev) 435 filp_close(backing_dev, NULL); 436 437 up_write(&zram->init_lock); 438 439 kfree(file_name); 440 441 return err; 442 } 443 444 static unsigned long get_entry_bdev(struct zram *zram) 445 { 446 unsigned long entry; 447 448 spin_lock(&zram->bitmap_lock); 449 /* skip 0 bit to confuse zram.handle = 0 */ 450 entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1); 451 if (entry == zram->nr_pages) { 452 spin_unlock(&zram->bitmap_lock); 453 return 0; 454 } 455 456 set_bit(entry, zram->bitmap); 457 spin_unlock(&zram->bitmap_lock); 458 459 return entry; 460 } 461 462 static void put_entry_bdev(struct zram *zram, unsigned long entry) 463 { 464 int was_set; 465 466 spin_lock(&zram->bitmap_lock); 467 was_set = test_and_clear_bit(entry, zram->bitmap); 468 spin_unlock(&zram->bitmap_lock); 469 WARN_ON_ONCE(!was_set); 470 } 471 472 static void zram_page_end_io(struct bio *bio) 473 { 474 struct page *page = bio_first_page_all(bio); 475 476 page_endio(page, op_is_write(bio_op(bio)), 477 blk_status_to_errno(bio->bi_status)); 478 bio_put(bio); 479 } 480 481 /* 482 * Returns 1 if the submission is successful. 483 */ 484 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 485 unsigned long entry, struct bio *parent) 486 { 487 struct bio *bio; 488 489 bio = bio_alloc(GFP_ATOMIC, 1); 490 if (!bio) 491 return -ENOMEM; 492 493 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 494 bio_set_dev(bio, zram->bdev); 495 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 496 bio_put(bio); 497 return -EIO; 498 } 499 500 if (!parent) { 501 bio->bi_opf = REQ_OP_READ; 502 bio->bi_end_io = zram_page_end_io; 503 } else { 504 bio->bi_opf = parent->bi_opf; 505 bio_chain(bio, parent); 506 } 507 508 submit_bio(bio); 509 return 1; 510 } 511 512 struct zram_work { 513 struct work_struct work; 514 struct zram *zram; 515 unsigned long entry; 516 struct bio *bio; 517 }; 518 519 #if PAGE_SIZE != 4096 520 static void zram_sync_read(struct work_struct *work) 521 { 522 struct bio_vec bvec; 523 struct zram_work *zw = container_of(work, struct zram_work, work); 524 struct zram *zram = zw->zram; 525 unsigned long entry = zw->entry; 526 struct bio *bio = zw->bio; 527 528 read_from_bdev_async(zram, &bvec, entry, bio); 529 } 530 531 /* 532 * Block layer want one ->make_request_fn to be active at a time 533 * so if we use chained IO with parent IO in same context, 534 * it's a deadlock. To avoid, it, it uses worker thread context. 535 */ 536 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 537 unsigned long entry, struct bio *bio) 538 { 539 struct zram_work work; 540 541 work.zram = zram; 542 work.entry = entry; 543 work.bio = bio; 544 545 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 546 queue_work(system_unbound_wq, &work.work); 547 flush_work(&work.work); 548 destroy_work_on_stack(&work.work); 549 550 return 1; 551 } 552 #else 553 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 554 unsigned long entry, struct bio *bio) 555 { 556 WARN_ON(1); 557 return -EIO; 558 } 559 #endif 560 561 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 562 unsigned long entry, struct bio *parent, bool sync) 563 { 564 if (sync) 565 return read_from_bdev_sync(zram, bvec, entry, parent); 566 else 567 return read_from_bdev_async(zram, bvec, entry, parent); 568 } 569 570 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec, 571 u32 index, struct bio *parent, 572 unsigned long *pentry) 573 { 574 struct bio *bio; 575 unsigned long entry; 576 577 bio = bio_alloc(GFP_ATOMIC, 1); 578 if (!bio) 579 return -ENOMEM; 580 581 entry = get_entry_bdev(zram); 582 if (!entry) { 583 bio_put(bio); 584 return -ENOSPC; 585 } 586 587 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 588 bio_set_dev(bio, zram->bdev); 589 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, 590 bvec->bv_offset)) { 591 bio_put(bio); 592 put_entry_bdev(zram, entry); 593 return -EIO; 594 } 595 596 if (!parent) { 597 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 598 bio->bi_end_io = zram_page_end_io; 599 } else { 600 bio->bi_opf = parent->bi_opf; 601 bio_chain(bio, parent); 602 } 603 604 submit_bio(bio); 605 *pentry = entry; 606 607 return 0; 608 } 609 610 static void zram_wb_clear(struct zram *zram, u32 index) 611 { 612 unsigned long entry; 613 614 zram_clear_flag(zram, index, ZRAM_WB); 615 entry = zram_get_element(zram, index); 616 zram_set_element(zram, index, 0); 617 put_entry_bdev(zram, entry); 618 } 619 620 #else 621 static bool zram_wb_enabled(struct zram *zram) { return false; } 622 static inline void reset_bdev(struct zram *zram) {}; 623 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec, 624 u32 index, struct bio *parent, 625 unsigned long *pentry) 626 627 { 628 return -EIO; 629 } 630 631 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 632 unsigned long entry, struct bio *parent, bool sync) 633 { 634 return -EIO; 635 } 636 static void zram_wb_clear(struct zram *zram, u32 index) {} 637 #endif 638 639 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 640 641 static struct dentry *zram_debugfs_root; 642 643 static void zram_debugfs_create(void) 644 { 645 zram_debugfs_root = debugfs_create_dir("zram", NULL); 646 } 647 648 static void zram_debugfs_destroy(void) 649 { 650 debugfs_remove_recursive(zram_debugfs_root); 651 } 652 653 static void zram_accessed(struct zram *zram, u32 index) 654 { 655 zram->table[index].ac_time = ktime_get_boottime(); 656 } 657 658 static void zram_reset_access(struct zram *zram, u32 index) 659 { 660 zram->table[index].ac_time = 0; 661 } 662 663 static ssize_t read_block_state(struct file *file, char __user *buf, 664 size_t count, loff_t *ppos) 665 { 666 char *kbuf; 667 ssize_t index, written = 0; 668 struct zram *zram = file->private_data; 669 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 670 struct timespec64 ts; 671 672 kbuf = kvmalloc(count, GFP_KERNEL); 673 if (!kbuf) 674 return -ENOMEM; 675 676 down_read(&zram->init_lock); 677 if (!init_done(zram)) { 678 up_read(&zram->init_lock); 679 kvfree(kbuf); 680 return -EINVAL; 681 } 682 683 for (index = *ppos; index < nr_pages; index++) { 684 int copied; 685 686 zram_slot_lock(zram, index); 687 if (!zram_allocated(zram, index)) 688 goto next; 689 690 ts = ktime_to_timespec64(zram->table[index].ac_time); 691 copied = snprintf(kbuf + written, count, 692 "%12zd %12lld.%06lu %c%c%c\n", 693 index, (s64)ts.tv_sec, 694 ts.tv_nsec / NSEC_PER_USEC, 695 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 696 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 697 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.'); 698 699 if (count < copied) { 700 zram_slot_unlock(zram, index); 701 break; 702 } 703 written += copied; 704 count -= copied; 705 next: 706 zram_slot_unlock(zram, index); 707 *ppos += 1; 708 } 709 710 up_read(&zram->init_lock); 711 if (copy_to_user(buf, kbuf, written)) 712 written = -EFAULT; 713 kvfree(kbuf); 714 715 return written; 716 } 717 718 static const struct file_operations proc_zram_block_state_op = { 719 .open = simple_open, 720 .read = read_block_state, 721 .llseek = default_llseek, 722 }; 723 724 static void zram_debugfs_register(struct zram *zram) 725 { 726 if (!zram_debugfs_root) 727 return; 728 729 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 730 zram_debugfs_root); 731 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 732 zram, &proc_zram_block_state_op); 733 } 734 735 static void zram_debugfs_unregister(struct zram *zram) 736 { 737 debugfs_remove_recursive(zram->debugfs_dir); 738 } 739 #else 740 static void zram_debugfs_create(void) {}; 741 static void zram_debugfs_destroy(void) {}; 742 static void zram_accessed(struct zram *zram, u32 index) {}; 743 static void zram_reset_access(struct zram *zram, u32 index) {}; 744 static void zram_debugfs_register(struct zram *zram) {}; 745 static void zram_debugfs_unregister(struct zram *zram) {}; 746 #endif 747 748 /* 749 * We switched to per-cpu streams and this attr is not needed anymore. 750 * However, we will keep it around for some time, because: 751 * a) we may revert per-cpu streams in the future 752 * b) it's visible to user space and we need to follow our 2 years 753 * retirement rule; but we already have a number of 'soon to be 754 * altered' attrs, so max_comp_streams need to wait for the next 755 * layoff cycle. 756 */ 757 static ssize_t max_comp_streams_show(struct device *dev, 758 struct device_attribute *attr, char *buf) 759 { 760 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 761 } 762 763 static ssize_t max_comp_streams_store(struct device *dev, 764 struct device_attribute *attr, const char *buf, size_t len) 765 { 766 return len; 767 } 768 769 static ssize_t comp_algorithm_show(struct device *dev, 770 struct device_attribute *attr, char *buf) 771 { 772 size_t sz; 773 struct zram *zram = dev_to_zram(dev); 774 775 down_read(&zram->init_lock); 776 sz = zcomp_available_show(zram->compressor, buf); 777 up_read(&zram->init_lock); 778 779 return sz; 780 } 781 782 static ssize_t comp_algorithm_store(struct device *dev, 783 struct device_attribute *attr, const char *buf, size_t len) 784 { 785 struct zram *zram = dev_to_zram(dev); 786 char compressor[ARRAY_SIZE(zram->compressor)]; 787 size_t sz; 788 789 strlcpy(compressor, buf, sizeof(compressor)); 790 /* ignore trailing newline */ 791 sz = strlen(compressor); 792 if (sz > 0 && compressor[sz - 1] == '\n') 793 compressor[sz - 1] = 0x00; 794 795 if (!zcomp_available_algorithm(compressor)) 796 return -EINVAL; 797 798 down_write(&zram->init_lock); 799 if (init_done(zram)) { 800 up_write(&zram->init_lock); 801 pr_info("Can't change algorithm for initialized device\n"); 802 return -EBUSY; 803 } 804 805 strcpy(zram->compressor, compressor); 806 up_write(&zram->init_lock); 807 return len; 808 } 809 810 static ssize_t compact_store(struct device *dev, 811 struct device_attribute *attr, const char *buf, size_t len) 812 { 813 struct zram *zram = dev_to_zram(dev); 814 815 down_read(&zram->init_lock); 816 if (!init_done(zram)) { 817 up_read(&zram->init_lock); 818 return -EINVAL; 819 } 820 821 zs_compact(zram->mem_pool); 822 up_read(&zram->init_lock); 823 824 return len; 825 } 826 827 static ssize_t io_stat_show(struct device *dev, 828 struct device_attribute *attr, char *buf) 829 { 830 struct zram *zram = dev_to_zram(dev); 831 ssize_t ret; 832 833 down_read(&zram->init_lock); 834 ret = scnprintf(buf, PAGE_SIZE, 835 "%8llu %8llu %8llu %8llu\n", 836 (u64)atomic64_read(&zram->stats.failed_reads), 837 (u64)atomic64_read(&zram->stats.failed_writes), 838 (u64)atomic64_read(&zram->stats.invalid_io), 839 (u64)atomic64_read(&zram->stats.notify_free)); 840 up_read(&zram->init_lock); 841 842 return ret; 843 } 844 845 static ssize_t mm_stat_show(struct device *dev, 846 struct device_attribute *attr, char *buf) 847 { 848 struct zram *zram = dev_to_zram(dev); 849 struct zs_pool_stats pool_stats; 850 u64 orig_size, mem_used = 0; 851 long max_used; 852 ssize_t ret; 853 854 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 855 856 down_read(&zram->init_lock); 857 if (init_done(zram)) { 858 mem_used = zs_get_total_pages(zram->mem_pool); 859 zs_pool_stats(zram->mem_pool, &pool_stats); 860 } 861 862 orig_size = atomic64_read(&zram->stats.pages_stored); 863 max_used = atomic_long_read(&zram->stats.max_used_pages); 864 865 ret = scnprintf(buf, PAGE_SIZE, 866 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n", 867 orig_size << PAGE_SHIFT, 868 (u64)atomic64_read(&zram->stats.compr_data_size), 869 mem_used << PAGE_SHIFT, 870 zram->limit_pages << PAGE_SHIFT, 871 max_used << PAGE_SHIFT, 872 (u64)atomic64_read(&zram->stats.same_pages), 873 pool_stats.pages_compacted, 874 (u64)atomic64_read(&zram->stats.huge_pages)); 875 up_read(&zram->init_lock); 876 877 return ret; 878 } 879 880 static ssize_t debug_stat_show(struct device *dev, 881 struct device_attribute *attr, char *buf) 882 { 883 int version = 1; 884 struct zram *zram = dev_to_zram(dev); 885 ssize_t ret; 886 887 down_read(&zram->init_lock); 888 ret = scnprintf(buf, PAGE_SIZE, 889 "version: %d\n%8llu\n", 890 version, 891 (u64)atomic64_read(&zram->stats.writestall)); 892 up_read(&zram->init_lock); 893 894 return ret; 895 } 896 897 static DEVICE_ATTR_RO(io_stat); 898 static DEVICE_ATTR_RO(mm_stat); 899 static DEVICE_ATTR_RO(debug_stat); 900 901 static void zram_meta_free(struct zram *zram, u64 disksize) 902 { 903 size_t num_pages = disksize >> PAGE_SHIFT; 904 size_t index; 905 906 /* Free all pages that are still in this zram device */ 907 for (index = 0; index < num_pages; index++) 908 zram_free_page(zram, index); 909 910 zs_destroy_pool(zram->mem_pool); 911 vfree(zram->table); 912 } 913 914 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 915 { 916 size_t num_pages; 917 918 num_pages = disksize >> PAGE_SHIFT; 919 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 920 if (!zram->table) 921 return false; 922 923 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 924 if (!zram->mem_pool) { 925 vfree(zram->table); 926 return false; 927 } 928 929 if (!huge_class_size) 930 huge_class_size = zs_huge_class_size(zram->mem_pool); 931 return true; 932 } 933 934 /* 935 * To protect concurrent access to the same index entry, 936 * caller should hold this table index entry's bit_spinlock to 937 * indicate this index entry is accessing. 938 */ 939 static void zram_free_page(struct zram *zram, size_t index) 940 { 941 unsigned long handle; 942 943 zram_reset_access(zram, index); 944 945 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 946 zram_clear_flag(zram, index, ZRAM_HUGE); 947 atomic64_dec(&zram->stats.huge_pages); 948 } 949 950 if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) { 951 zram_wb_clear(zram, index); 952 atomic64_dec(&zram->stats.pages_stored); 953 return; 954 } 955 956 /* 957 * No memory is allocated for same element filled pages. 958 * Simply clear same page flag. 959 */ 960 if (zram_test_flag(zram, index, ZRAM_SAME)) { 961 zram_clear_flag(zram, index, ZRAM_SAME); 962 zram_set_element(zram, index, 0); 963 atomic64_dec(&zram->stats.same_pages); 964 atomic64_dec(&zram->stats.pages_stored); 965 return; 966 } 967 968 handle = zram_get_handle(zram, index); 969 if (!handle) 970 return; 971 972 zs_free(zram->mem_pool, handle); 973 974 atomic64_sub(zram_get_obj_size(zram, index), 975 &zram->stats.compr_data_size); 976 atomic64_dec(&zram->stats.pages_stored); 977 978 zram_set_handle(zram, index, 0); 979 zram_set_obj_size(zram, index, 0); 980 } 981 982 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 983 struct bio *bio, bool partial_io) 984 { 985 int ret; 986 unsigned long handle; 987 unsigned int size; 988 void *src, *dst; 989 990 if (zram_wb_enabled(zram)) { 991 zram_slot_lock(zram, index); 992 if (zram_test_flag(zram, index, ZRAM_WB)) { 993 struct bio_vec bvec; 994 995 zram_slot_unlock(zram, index); 996 997 bvec.bv_page = page; 998 bvec.bv_len = PAGE_SIZE; 999 bvec.bv_offset = 0; 1000 return read_from_bdev(zram, &bvec, 1001 zram_get_element(zram, index), 1002 bio, partial_io); 1003 } 1004 zram_slot_unlock(zram, index); 1005 } 1006 1007 zram_slot_lock(zram, index); 1008 handle = zram_get_handle(zram, index); 1009 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1010 unsigned long value; 1011 void *mem; 1012 1013 value = handle ? zram_get_element(zram, index) : 0; 1014 mem = kmap_atomic(page); 1015 zram_fill_page(mem, PAGE_SIZE, value); 1016 kunmap_atomic(mem); 1017 zram_slot_unlock(zram, index); 1018 return 0; 1019 } 1020 1021 size = zram_get_obj_size(zram, index); 1022 1023 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1024 if (size == PAGE_SIZE) { 1025 dst = kmap_atomic(page); 1026 memcpy(dst, src, PAGE_SIZE); 1027 kunmap_atomic(dst); 1028 ret = 0; 1029 } else { 1030 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); 1031 1032 dst = kmap_atomic(page); 1033 ret = zcomp_decompress(zstrm, src, size, dst); 1034 kunmap_atomic(dst); 1035 zcomp_stream_put(zram->comp); 1036 } 1037 zs_unmap_object(zram->mem_pool, handle); 1038 zram_slot_unlock(zram, index); 1039 1040 /* Should NEVER happen. Return bio error if it does. */ 1041 if (unlikely(ret)) 1042 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1043 1044 return ret; 1045 } 1046 1047 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1048 u32 index, int offset, struct bio *bio) 1049 { 1050 int ret; 1051 struct page *page; 1052 1053 page = bvec->bv_page; 1054 if (is_partial_io(bvec)) { 1055 /* Use a temporary buffer to decompress the page */ 1056 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1057 if (!page) 1058 return -ENOMEM; 1059 } 1060 1061 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1062 if (unlikely(ret)) 1063 goto out; 1064 1065 if (is_partial_io(bvec)) { 1066 void *dst = kmap_atomic(bvec->bv_page); 1067 void *src = kmap_atomic(page); 1068 1069 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 1070 kunmap_atomic(src); 1071 kunmap_atomic(dst); 1072 } 1073 out: 1074 if (is_partial_io(bvec)) 1075 __free_page(page); 1076 1077 return ret; 1078 } 1079 1080 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1081 u32 index, struct bio *bio) 1082 { 1083 int ret = 0; 1084 unsigned long alloced_pages; 1085 unsigned long handle = 0; 1086 unsigned int comp_len = 0; 1087 void *src, *dst, *mem; 1088 struct zcomp_strm *zstrm; 1089 struct page *page = bvec->bv_page; 1090 unsigned long element = 0; 1091 enum zram_pageflags flags = 0; 1092 bool allow_wb = true; 1093 1094 mem = kmap_atomic(page); 1095 if (page_same_filled(mem, &element)) { 1096 kunmap_atomic(mem); 1097 /* Free memory associated with this sector now. */ 1098 flags = ZRAM_SAME; 1099 atomic64_inc(&zram->stats.same_pages); 1100 goto out; 1101 } 1102 kunmap_atomic(mem); 1103 1104 compress_again: 1105 zstrm = zcomp_stream_get(zram->comp); 1106 src = kmap_atomic(page); 1107 ret = zcomp_compress(zstrm, src, &comp_len); 1108 kunmap_atomic(src); 1109 1110 if (unlikely(ret)) { 1111 zcomp_stream_put(zram->comp); 1112 pr_err("Compression failed! err=%d\n", ret); 1113 zs_free(zram->mem_pool, handle); 1114 return ret; 1115 } 1116 1117 if (unlikely(comp_len >= huge_class_size)) { 1118 comp_len = PAGE_SIZE; 1119 if (zram_wb_enabled(zram) && allow_wb) { 1120 zcomp_stream_put(zram->comp); 1121 ret = write_to_bdev(zram, bvec, index, bio, &element); 1122 if (!ret) { 1123 flags = ZRAM_WB; 1124 ret = 1; 1125 goto out; 1126 } 1127 allow_wb = false; 1128 goto compress_again; 1129 } 1130 } 1131 1132 /* 1133 * handle allocation has 2 paths: 1134 * a) fast path is executed with preemption disabled (for 1135 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1136 * since we can't sleep; 1137 * b) slow path enables preemption and attempts to allocate 1138 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1139 * put per-cpu compression stream and, thus, to re-do 1140 * the compression once handle is allocated. 1141 * 1142 * if we have a 'non-null' handle here then we are coming 1143 * from the slow path and handle has already been allocated. 1144 */ 1145 if (!handle) 1146 handle = zs_malloc(zram->mem_pool, comp_len, 1147 __GFP_KSWAPD_RECLAIM | 1148 __GFP_NOWARN | 1149 __GFP_HIGHMEM | 1150 __GFP_MOVABLE); 1151 if (!handle) { 1152 zcomp_stream_put(zram->comp); 1153 atomic64_inc(&zram->stats.writestall); 1154 handle = zs_malloc(zram->mem_pool, comp_len, 1155 GFP_NOIO | __GFP_HIGHMEM | 1156 __GFP_MOVABLE); 1157 if (handle) 1158 goto compress_again; 1159 return -ENOMEM; 1160 } 1161 1162 alloced_pages = zs_get_total_pages(zram->mem_pool); 1163 update_used_max(zram, alloced_pages); 1164 1165 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1166 zcomp_stream_put(zram->comp); 1167 zs_free(zram->mem_pool, handle); 1168 return -ENOMEM; 1169 } 1170 1171 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1172 1173 src = zstrm->buffer; 1174 if (comp_len == PAGE_SIZE) 1175 src = kmap_atomic(page); 1176 memcpy(dst, src, comp_len); 1177 if (comp_len == PAGE_SIZE) 1178 kunmap_atomic(src); 1179 1180 zcomp_stream_put(zram->comp); 1181 zs_unmap_object(zram->mem_pool, handle); 1182 atomic64_add(comp_len, &zram->stats.compr_data_size); 1183 out: 1184 /* 1185 * Free memory associated with this sector 1186 * before overwriting unused sectors. 1187 */ 1188 zram_slot_lock(zram, index); 1189 zram_free_page(zram, index); 1190 1191 if (comp_len == PAGE_SIZE) { 1192 zram_set_flag(zram, index, ZRAM_HUGE); 1193 atomic64_inc(&zram->stats.huge_pages); 1194 } 1195 1196 if (flags) { 1197 zram_set_flag(zram, index, flags); 1198 zram_set_element(zram, index, element); 1199 } else { 1200 zram_set_handle(zram, index, handle); 1201 zram_set_obj_size(zram, index, comp_len); 1202 } 1203 zram_slot_unlock(zram, index); 1204 1205 /* Update stats */ 1206 atomic64_inc(&zram->stats.pages_stored); 1207 return ret; 1208 } 1209 1210 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1211 u32 index, int offset, struct bio *bio) 1212 { 1213 int ret; 1214 struct page *page = NULL; 1215 void *src; 1216 struct bio_vec vec; 1217 1218 vec = *bvec; 1219 if (is_partial_io(bvec)) { 1220 void *dst; 1221 /* 1222 * This is a partial IO. We need to read the full page 1223 * before to write the changes. 1224 */ 1225 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1226 if (!page) 1227 return -ENOMEM; 1228 1229 ret = __zram_bvec_read(zram, page, index, bio, true); 1230 if (ret) 1231 goto out; 1232 1233 src = kmap_atomic(bvec->bv_page); 1234 dst = kmap_atomic(page); 1235 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 1236 kunmap_atomic(dst); 1237 kunmap_atomic(src); 1238 1239 vec.bv_page = page; 1240 vec.bv_len = PAGE_SIZE; 1241 vec.bv_offset = 0; 1242 } 1243 1244 ret = __zram_bvec_write(zram, &vec, index, bio); 1245 out: 1246 if (is_partial_io(bvec)) 1247 __free_page(page); 1248 return ret; 1249 } 1250 1251 /* 1252 * zram_bio_discard - handler on discard request 1253 * @index: physical block index in PAGE_SIZE units 1254 * @offset: byte offset within physical block 1255 */ 1256 static void zram_bio_discard(struct zram *zram, u32 index, 1257 int offset, struct bio *bio) 1258 { 1259 size_t n = bio->bi_iter.bi_size; 1260 1261 /* 1262 * zram manages data in physical block size units. Because logical block 1263 * size isn't identical with physical block size on some arch, we 1264 * could get a discard request pointing to a specific offset within a 1265 * certain physical block. Although we can handle this request by 1266 * reading that physiclal block and decompressing and partially zeroing 1267 * and re-compressing and then re-storing it, this isn't reasonable 1268 * because our intent with a discard request is to save memory. So 1269 * skipping this logical block is appropriate here. 1270 */ 1271 if (offset) { 1272 if (n <= (PAGE_SIZE - offset)) 1273 return; 1274 1275 n -= (PAGE_SIZE - offset); 1276 index++; 1277 } 1278 1279 while (n >= PAGE_SIZE) { 1280 zram_slot_lock(zram, index); 1281 zram_free_page(zram, index); 1282 zram_slot_unlock(zram, index); 1283 atomic64_inc(&zram->stats.notify_free); 1284 index++; 1285 n -= PAGE_SIZE; 1286 } 1287 } 1288 1289 /* 1290 * Returns errno if it has some problem. Otherwise return 0 or 1. 1291 * Returns 0 if IO request was done synchronously 1292 * Returns 1 if IO request was successfully submitted. 1293 */ 1294 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1295 int offset, unsigned int op, struct bio *bio) 1296 { 1297 unsigned long start_time = jiffies; 1298 struct request_queue *q = zram->disk->queue; 1299 int ret; 1300 1301 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT, 1302 &zram->disk->part0); 1303 1304 if (!op_is_write(op)) { 1305 atomic64_inc(&zram->stats.num_reads); 1306 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1307 flush_dcache_page(bvec->bv_page); 1308 } else { 1309 atomic64_inc(&zram->stats.num_writes); 1310 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1311 } 1312 1313 generic_end_io_acct(q, op, &zram->disk->part0, start_time); 1314 1315 zram_slot_lock(zram, index); 1316 zram_accessed(zram, index); 1317 zram_slot_unlock(zram, index); 1318 1319 if (unlikely(ret < 0)) { 1320 if (!op_is_write(op)) 1321 atomic64_inc(&zram->stats.failed_reads); 1322 else 1323 atomic64_inc(&zram->stats.failed_writes); 1324 } 1325 1326 return ret; 1327 } 1328 1329 static void __zram_make_request(struct zram *zram, struct bio *bio) 1330 { 1331 int offset; 1332 u32 index; 1333 struct bio_vec bvec; 1334 struct bvec_iter iter; 1335 1336 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1337 offset = (bio->bi_iter.bi_sector & 1338 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1339 1340 switch (bio_op(bio)) { 1341 case REQ_OP_DISCARD: 1342 case REQ_OP_WRITE_ZEROES: 1343 zram_bio_discard(zram, index, offset, bio); 1344 bio_endio(bio); 1345 return; 1346 default: 1347 break; 1348 } 1349 1350 bio_for_each_segment(bvec, bio, iter) { 1351 struct bio_vec bv = bvec; 1352 unsigned int unwritten = bvec.bv_len; 1353 1354 do { 1355 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1356 unwritten); 1357 if (zram_bvec_rw(zram, &bv, index, offset, 1358 bio_op(bio), bio) < 0) 1359 goto out; 1360 1361 bv.bv_offset += bv.bv_len; 1362 unwritten -= bv.bv_len; 1363 1364 update_position(&index, &offset, &bv); 1365 } while (unwritten); 1366 } 1367 1368 bio_endio(bio); 1369 return; 1370 1371 out: 1372 bio_io_error(bio); 1373 } 1374 1375 /* 1376 * Handler function for all zram I/O requests. 1377 */ 1378 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 1379 { 1380 struct zram *zram = queue->queuedata; 1381 1382 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1383 bio->bi_iter.bi_size)) { 1384 atomic64_inc(&zram->stats.invalid_io); 1385 goto error; 1386 } 1387 1388 __zram_make_request(zram, bio); 1389 return BLK_QC_T_NONE; 1390 1391 error: 1392 bio_io_error(bio); 1393 return BLK_QC_T_NONE; 1394 } 1395 1396 static void zram_slot_free_notify(struct block_device *bdev, 1397 unsigned long index) 1398 { 1399 struct zram *zram; 1400 1401 zram = bdev->bd_disk->private_data; 1402 1403 zram_slot_lock(zram, index); 1404 zram_free_page(zram, index); 1405 zram_slot_unlock(zram, index); 1406 atomic64_inc(&zram->stats.notify_free); 1407 } 1408 1409 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1410 struct page *page, unsigned int op) 1411 { 1412 int offset, ret; 1413 u32 index; 1414 struct zram *zram; 1415 struct bio_vec bv; 1416 1417 if (PageTransHuge(page)) 1418 return -ENOTSUPP; 1419 zram = bdev->bd_disk->private_data; 1420 1421 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1422 atomic64_inc(&zram->stats.invalid_io); 1423 ret = -EINVAL; 1424 goto out; 1425 } 1426 1427 index = sector >> SECTORS_PER_PAGE_SHIFT; 1428 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1429 1430 bv.bv_page = page; 1431 bv.bv_len = PAGE_SIZE; 1432 bv.bv_offset = 0; 1433 1434 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1435 out: 1436 /* 1437 * If I/O fails, just return error(ie, non-zero) without 1438 * calling page_endio. 1439 * It causes resubmit the I/O with bio request by upper functions 1440 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1441 * bio->bi_end_io does things to handle the error 1442 * (e.g., SetPageError, set_page_dirty and extra works). 1443 */ 1444 if (unlikely(ret < 0)) 1445 return ret; 1446 1447 switch (ret) { 1448 case 0: 1449 page_endio(page, op_is_write(op), 0); 1450 break; 1451 case 1: 1452 ret = 0; 1453 break; 1454 default: 1455 WARN_ON(1); 1456 } 1457 return ret; 1458 } 1459 1460 static void zram_reset_device(struct zram *zram) 1461 { 1462 struct zcomp *comp; 1463 u64 disksize; 1464 1465 down_write(&zram->init_lock); 1466 1467 zram->limit_pages = 0; 1468 1469 if (!init_done(zram)) { 1470 up_write(&zram->init_lock); 1471 return; 1472 } 1473 1474 comp = zram->comp; 1475 disksize = zram->disksize; 1476 zram->disksize = 0; 1477 1478 set_capacity(zram->disk, 0); 1479 part_stat_set_all(&zram->disk->part0, 0); 1480 1481 up_write(&zram->init_lock); 1482 /* I/O operation under all of CPU are done so let's free */ 1483 zram_meta_free(zram, disksize); 1484 memset(&zram->stats, 0, sizeof(zram->stats)); 1485 zcomp_destroy(comp); 1486 reset_bdev(zram); 1487 } 1488 1489 static ssize_t disksize_store(struct device *dev, 1490 struct device_attribute *attr, const char *buf, size_t len) 1491 { 1492 u64 disksize; 1493 struct zcomp *comp; 1494 struct zram *zram = dev_to_zram(dev); 1495 int err; 1496 1497 disksize = memparse(buf, NULL); 1498 if (!disksize) 1499 return -EINVAL; 1500 1501 down_write(&zram->init_lock); 1502 if (init_done(zram)) { 1503 pr_info("Cannot change disksize for initialized device\n"); 1504 err = -EBUSY; 1505 goto out_unlock; 1506 } 1507 1508 disksize = PAGE_ALIGN(disksize); 1509 if (!zram_meta_alloc(zram, disksize)) { 1510 err = -ENOMEM; 1511 goto out_unlock; 1512 } 1513 1514 comp = zcomp_create(zram->compressor); 1515 if (IS_ERR(comp)) { 1516 pr_err("Cannot initialise %s compressing backend\n", 1517 zram->compressor); 1518 err = PTR_ERR(comp); 1519 goto out_free_meta; 1520 } 1521 1522 zram->comp = comp; 1523 zram->disksize = disksize; 1524 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1525 1526 revalidate_disk(zram->disk); 1527 up_write(&zram->init_lock); 1528 1529 return len; 1530 1531 out_free_meta: 1532 zram_meta_free(zram, disksize); 1533 out_unlock: 1534 up_write(&zram->init_lock); 1535 return err; 1536 } 1537 1538 static ssize_t reset_store(struct device *dev, 1539 struct device_attribute *attr, const char *buf, size_t len) 1540 { 1541 int ret; 1542 unsigned short do_reset; 1543 struct zram *zram; 1544 struct block_device *bdev; 1545 1546 ret = kstrtou16(buf, 10, &do_reset); 1547 if (ret) 1548 return ret; 1549 1550 if (!do_reset) 1551 return -EINVAL; 1552 1553 zram = dev_to_zram(dev); 1554 bdev = bdget_disk(zram->disk, 0); 1555 if (!bdev) 1556 return -ENOMEM; 1557 1558 mutex_lock(&bdev->bd_mutex); 1559 /* Do not reset an active device or claimed device */ 1560 if (bdev->bd_openers || zram->claim) { 1561 mutex_unlock(&bdev->bd_mutex); 1562 bdput(bdev); 1563 return -EBUSY; 1564 } 1565 1566 /* From now on, anyone can't open /dev/zram[0-9] */ 1567 zram->claim = true; 1568 mutex_unlock(&bdev->bd_mutex); 1569 1570 /* Make sure all the pending I/O are finished */ 1571 fsync_bdev(bdev); 1572 zram_reset_device(zram); 1573 revalidate_disk(zram->disk); 1574 bdput(bdev); 1575 1576 mutex_lock(&bdev->bd_mutex); 1577 zram->claim = false; 1578 mutex_unlock(&bdev->bd_mutex); 1579 1580 return len; 1581 } 1582 1583 static int zram_open(struct block_device *bdev, fmode_t mode) 1584 { 1585 int ret = 0; 1586 struct zram *zram; 1587 1588 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1589 1590 zram = bdev->bd_disk->private_data; 1591 /* zram was claimed to reset so open request fails */ 1592 if (zram->claim) 1593 ret = -EBUSY; 1594 1595 return ret; 1596 } 1597 1598 static const struct block_device_operations zram_devops = { 1599 .open = zram_open, 1600 .swap_slot_free_notify = zram_slot_free_notify, 1601 .rw_page = zram_rw_page, 1602 .owner = THIS_MODULE 1603 }; 1604 1605 static DEVICE_ATTR_WO(compact); 1606 static DEVICE_ATTR_RW(disksize); 1607 static DEVICE_ATTR_RO(initstate); 1608 static DEVICE_ATTR_WO(reset); 1609 static DEVICE_ATTR_WO(mem_limit); 1610 static DEVICE_ATTR_WO(mem_used_max); 1611 static DEVICE_ATTR_RW(max_comp_streams); 1612 static DEVICE_ATTR_RW(comp_algorithm); 1613 #ifdef CONFIG_ZRAM_WRITEBACK 1614 static DEVICE_ATTR_RW(backing_dev); 1615 #endif 1616 1617 static struct attribute *zram_disk_attrs[] = { 1618 &dev_attr_disksize.attr, 1619 &dev_attr_initstate.attr, 1620 &dev_attr_reset.attr, 1621 &dev_attr_compact.attr, 1622 &dev_attr_mem_limit.attr, 1623 &dev_attr_mem_used_max.attr, 1624 &dev_attr_max_comp_streams.attr, 1625 &dev_attr_comp_algorithm.attr, 1626 #ifdef CONFIG_ZRAM_WRITEBACK 1627 &dev_attr_backing_dev.attr, 1628 #endif 1629 &dev_attr_io_stat.attr, 1630 &dev_attr_mm_stat.attr, 1631 &dev_attr_debug_stat.attr, 1632 NULL, 1633 }; 1634 1635 static const struct attribute_group zram_disk_attr_group = { 1636 .attrs = zram_disk_attrs, 1637 }; 1638 1639 /* 1640 * Allocate and initialize new zram device. the function returns 1641 * '>= 0' device_id upon success, and negative value otherwise. 1642 */ 1643 static int zram_add(void) 1644 { 1645 struct zram *zram; 1646 struct request_queue *queue; 1647 int ret, device_id; 1648 1649 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1650 if (!zram) 1651 return -ENOMEM; 1652 1653 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1654 if (ret < 0) 1655 goto out_free_dev; 1656 device_id = ret; 1657 1658 init_rwsem(&zram->init_lock); 1659 1660 queue = blk_alloc_queue(GFP_KERNEL); 1661 if (!queue) { 1662 pr_err("Error allocating disk queue for device %d\n", 1663 device_id); 1664 ret = -ENOMEM; 1665 goto out_free_idr; 1666 } 1667 1668 blk_queue_make_request(queue, zram_make_request); 1669 1670 /* gendisk structure */ 1671 zram->disk = alloc_disk(1); 1672 if (!zram->disk) { 1673 pr_err("Error allocating disk structure for device %d\n", 1674 device_id); 1675 ret = -ENOMEM; 1676 goto out_free_queue; 1677 } 1678 1679 zram->disk->major = zram_major; 1680 zram->disk->first_minor = device_id; 1681 zram->disk->fops = &zram_devops; 1682 zram->disk->queue = queue; 1683 zram->disk->queue->queuedata = zram; 1684 zram->disk->private_data = zram; 1685 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1686 1687 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1688 set_capacity(zram->disk, 0); 1689 /* zram devices sort of resembles non-rotational disks */ 1690 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1691 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1692 1693 /* 1694 * To ensure that we always get PAGE_SIZE aligned 1695 * and n*PAGE_SIZED sized I/O requests. 1696 */ 1697 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1698 blk_queue_logical_block_size(zram->disk->queue, 1699 ZRAM_LOGICAL_BLOCK_SIZE); 1700 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1701 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1702 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1703 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1704 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue); 1705 1706 /* 1707 * zram_bio_discard() will clear all logical blocks if logical block 1708 * size is identical with physical block size(PAGE_SIZE). But if it is 1709 * different, we will skip discarding some parts of logical blocks in 1710 * the part of the request range which isn't aligned to physical block 1711 * size. So we can't ensure that all discarded logical blocks are 1712 * zeroed. 1713 */ 1714 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1715 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1716 1717 zram->disk->queue->backing_dev_info->capabilities |= 1718 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO); 1719 add_disk(zram->disk); 1720 1721 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1722 &zram_disk_attr_group); 1723 if (ret < 0) { 1724 pr_err("Error creating sysfs group for device %d\n", 1725 device_id); 1726 goto out_free_disk; 1727 } 1728 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1729 1730 zram_debugfs_register(zram); 1731 pr_info("Added device: %s\n", zram->disk->disk_name); 1732 return device_id; 1733 1734 out_free_disk: 1735 del_gendisk(zram->disk); 1736 put_disk(zram->disk); 1737 out_free_queue: 1738 blk_cleanup_queue(queue); 1739 out_free_idr: 1740 idr_remove(&zram_index_idr, device_id); 1741 out_free_dev: 1742 kfree(zram); 1743 return ret; 1744 } 1745 1746 static int zram_remove(struct zram *zram) 1747 { 1748 struct block_device *bdev; 1749 1750 bdev = bdget_disk(zram->disk, 0); 1751 if (!bdev) 1752 return -ENOMEM; 1753 1754 mutex_lock(&bdev->bd_mutex); 1755 if (bdev->bd_openers || zram->claim) { 1756 mutex_unlock(&bdev->bd_mutex); 1757 bdput(bdev); 1758 return -EBUSY; 1759 } 1760 1761 zram->claim = true; 1762 mutex_unlock(&bdev->bd_mutex); 1763 1764 zram_debugfs_unregister(zram); 1765 /* 1766 * Remove sysfs first, so no one will perform a disksize 1767 * store while we destroy the devices. This also helps during 1768 * hot_remove -- zram_reset_device() is the last holder of 1769 * ->init_lock, no later/concurrent disksize_store() or any 1770 * other sysfs handlers are possible. 1771 */ 1772 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1773 &zram_disk_attr_group); 1774 1775 /* Make sure all the pending I/O are finished */ 1776 fsync_bdev(bdev); 1777 zram_reset_device(zram); 1778 bdput(bdev); 1779 1780 pr_info("Removed device: %s\n", zram->disk->disk_name); 1781 1782 del_gendisk(zram->disk); 1783 blk_cleanup_queue(zram->disk->queue); 1784 put_disk(zram->disk); 1785 kfree(zram); 1786 return 0; 1787 } 1788 1789 /* zram-control sysfs attributes */ 1790 1791 /* 1792 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 1793 * sense that reading from this file does alter the state of your system -- it 1794 * creates a new un-initialized zram device and returns back this device's 1795 * device_id (or an error code if it fails to create a new device). 1796 */ 1797 static ssize_t hot_add_show(struct class *class, 1798 struct class_attribute *attr, 1799 char *buf) 1800 { 1801 int ret; 1802 1803 mutex_lock(&zram_index_mutex); 1804 ret = zram_add(); 1805 mutex_unlock(&zram_index_mutex); 1806 1807 if (ret < 0) 1808 return ret; 1809 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 1810 } 1811 static CLASS_ATTR_RO(hot_add); 1812 1813 static ssize_t hot_remove_store(struct class *class, 1814 struct class_attribute *attr, 1815 const char *buf, 1816 size_t count) 1817 { 1818 struct zram *zram; 1819 int ret, dev_id; 1820 1821 /* dev_id is gendisk->first_minor, which is `int' */ 1822 ret = kstrtoint(buf, 10, &dev_id); 1823 if (ret) 1824 return ret; 1825 if (dev_id < 0) 1826 return -EINVAL; 1827 1828 mutex_lock(&zram_index_mutex); 1829 1830 zram = idr_find(&zram_index_idr, dev_id); 1831 if (zram) { 1832 ret = zram_remove(zram); 1833 if (!ret) 1834 idr_remove(&zram_index_idr, dev_id); 1835 } else { 1836 ret = -ENODEV; 1837 } 1838 1839 mutex_unlock(&zram_index_mutex); 1840 return ret ? ret : count; 1841 } 1842 static CLASS_ATTR_WO(hot_remove); 1843 1844 static struct attribute *zram_control_class_attrs[] = { 1845 &class_attr_hot_add.attr, 1846 &class_attr_hot_remove.attr, 1847 NULL, 1848 }; 1849 ATTRIBUTE_GROUPS(zram_control_class); 1850 1851 static struct class zram_control_class = { 1852 .name = "zram-control", 1853 .owner = THIS_MODULE, 1854 .class_groups = zram_control_class_groups, 1855 }; 1856 1857 static int zram_remove_cb(int id, void *ptr, void *data) 1858 { 1859 zram_remove(ptr); 1860 return 0; 1861 } 1862 1863 static void destroy_devices(void) 1864 { 1865 class_unregister(&zram_control_class); 1866 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 1867 zram_debugfs_destroy(); 1868 idr_destroy(&zram_index_idr); 1869 unregister_blkdev(zram_major, "zram"); 1870 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1871 } 1872 1873 static int __init zram_init(void) 1874 { 1875 int ret; 1876 1877 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 1878 zcomp_cpu_up_prepare, zcomp_cpu_dead); 1879 if (ret < 0) 1880 return ret; 1881 1882 ret = class_register(&zram_control_class); 1883 if (ret) { 1884 pr_err("Unable to register zram-control class\n"); 1885 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1886 return ret; 1887 } 1888 1889 zram_debugfs_create(); 1890 zram_major = register_blkdev(0, "zram"); 1891 if (zram_major <= 0) { 1892 pr_err("Unable to get major number\n"); 1893 class_unregister(&zram_control_class); 1894 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1895 return -EBUSY; 1896 } 1897 1898 while (num_devices != 0) { 1899 mutex_lock(&zram_index_mutex); 1900 ret = zram_add(); 1901 mutex_unlock(&zram_index_mutex); 1902 if (ret < 0) 1903 goto out_error; 1904 num_devices--; 1905 } 1906 1907 return 0; 1908 1909 out_error: 1910 destroy_devices(); 1911 return ret; 1912 } 1913 1914 static void __exit zram_exit(void) 1915 { 1916 destroy_devices(); 1917 } 1918 1919 module_init(zram_init); 1920 module_exit(zram_exit); 1921 1922 module_param(num_devices, uint, 0); 1923 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 1924 1925 MODULE_LICENSE("Dual BSD/GPL"); 1926 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1927 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1928