xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35 
36 #include "zram_drv.h"
37 
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41 
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44 
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47 /*
48  * Pages that compress to sizes equals or greater than this are stored
49  * uncompressed in memory.
50  */
51 static size_t huge_class_size;
52 
53 static void zram_free_page(struct zram *zram, size_t index);
54 
55 static inline bool init_done(struct zram *zram)
56 {
57 	return zram->disksize;
58 }
59 
60 static inline struct zram *dev_to_zram(struct device *dev)
61 {
62 	return (struct zram *)dev_to_disk(dev)->private_data;
63 }
64 
65 static unsigned long zram_get_handle(struct zram *zram, u32 index)
66 {
67 	return zram->table[index].handle;
68 }
69 
70 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
71 {
72 	zram->table[index].handle = handle;
73 }
74 
75 /* flag operations require table entry bit_spin_lock() being held */
76 static int zram_test_flag(struct zram *zram, u32 index,
77 			enum zram_pageflags flag)
78 {
79 	return zram->table[index].value & BIT(flag);
80 }
81 
82 static void zram_set_flag(struct zram *zram, u32 index,
83 			enum zram_pageflags flag)
84 {
85 	zram->table[index].value |= BIT(flag);
86 }
87 
88 static void zram_clear_flag(struct zram *zram, u32 index,
89 			enum zram_pageflags flag)
90 {
91 	zram->table[index].value &= ~BIT(flag);
92 }
93 
94 static inline void zram_set_element(struct zram *zram, u32 index,
95 			unsigned long element)
96 {
97 	zram->table[index].element = element;
98 }
99 
100 static unsigned long zram_get_element(struct zram *zram, u32 index)
101 {
102 	return zram->table[index].element;
103 }
104 
105 static size_t zram_get_obj_size(struct zram *zram, u32 index)
106 {
107 	return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
108 }
109 
110 static void zram_set_obj_size(struct zram *zram,
111 					u32 index, size_t size)
112 {
113 	unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
114 
115 	zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
116 }
117 
118 #if PAGE_SIZE != 4096
119 static inline bool is_partial_io(struct bio_vec *bvec)
120 {
121 	return bvec->bv_len != PAGE_SIZE;
122 }
123 #else
124 static inline bool is_partial_io(struct bio_vec *bvec)
125 {
126 	return false;
127 }
128 #endif
129 
130 /*
131  * Check if request is within bounds and aligned on zram logical blocks.
132  */
133 static inline bool valid_io_request(struct zram *zram,
134 		sector_t start, unsigned int size)
135 {
136 	u64 end, bound;
137 
138 	/* unaligned request */
139 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
140 		return false;
141 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
142 		return false;
143 
144 	end = start + (size >> SECTOR_SHIFT);
145 	bound = zram->disksize >> SECTOR_SHIFT;
146 	/* out of range range */
147 	if (unlikely(start >= bound || end > bound || start > end))
148 		return false;
149 
150 	/* I/O request is valid */
151 	return true;
152 }
153 
154 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
155 {
156 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
157 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
158 }
159 
160 static inline void update_used_max(struct zram *zram,
161 					const unsigned long pages)
162 {
163 	unsigned long old_max, cur_max;
164 
165 	old_max = atomic_long_read(&zram->stats.max_used_pages);
166 
167 	do {
168 		cur_max = old_max;
169 		if (pages > cur_max)
170 			old_max = atomic_long_cmpxchg(
171 				&zram->stats.max_used_pages, cur_max, pages);
172 	} while (old_max != cur_max);
173 }
174 
175 static inline void zram_fill_page(void *ptr, unsigned long len,
176 					unsigned long value)
177 {
178 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
179 	memset_l(ptr, value, len / sizeof(unsigned long));
180 }
181 
182 static bool page_same_filled(void *ptr, unsigned long *element)
183 {
184 	unsigned int pos;
185 	unsigned long *page;
186 	unsigned long val;
187 
188 	page = (unsigned long *)ptr;
189 	val = page[0];
190 
191 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
192 		if (val != page[pos])
193 			return false;
194 	}
195 
196 	*element = val;
197 
198 	return true;
199 }
200 
201 static ssize_t initstate_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	u32 val;
205 	struct zram *zram = dev_to_zram(dev);
206 
207 	down_read(&zram->init_lock);
208 	val = init_done(zram);
209 	up_read(&zram->init_lock);
210 
211 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
212 }
213 
214 static ssize_t disksize_show(struct device *dev,
215 		struct device_attribute *attr, char *buf)
216 {
217 	struct zram *zram = dev_to_zram(dev);
218 
219 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
220 }
221 
222 static ssize_t mem_limit_store(struct device *dev,
223 		struct device_attribute *attr, const char *buf, size_t len)
224 {
225 	u64 limit;
226 	char *tmp;
227 	struct zram *zram = dev_to_zram(dev);
228 
229 	limit = memparse(buf, &tmp);
230 	if (buf == tmp) /* no chars parsed, invalid input */
231 		return -EINVAL;
232 
233 	down_write(&zram->init_lock);
234 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
235 	up_write(&zram->init_lock);
236 
237 	return len;
238 }
239 
240 static ssize_t mem_used_max_store(struct device *dev,
241 		struct device_attribute *attr, const char *buf, size_t len)
242 {
243 	int err;
244 	unsigned long val;
245 	struct zram *zram = dev_to_zram(dev);
246 
247 	err = kstrtoul(buf, 10, &val);
248 	if (err || val != 0)
249 		return -EINVAL;
250 
251 	down_read(&zram->init_lock);
252 	if (init_done(zram)) {
253 		atomic_long_set(&zram->stats.max_used_pages,
254 				zs_get_total_pages(zram->mem_pool));
255 	}
256 	up_read(&zram->init_lock);
257 
258 	return len;
259 }
260 
261 #ifdef CONFIG_ZRAM_WRITEBACK
262 static bool zram_wb_enabled(struct zram *zram)
263 {
264 	return zram->backing_dev;
265 }
266 
267 static void reset_bdev(struct zram *zram)
268 {
269 	struct block_device *bdev;
270 
271 	if (!zram_wb_enabled(zram))
272 		return;
273 
274 	bdev = zram->bdev;
275 	if (zram->old_block_size)
276 		set_blocksize(bdev, zram->old_block_size);
277 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
278 	/* hope filp_close flush all of IO */
279 	filp_close(zram->backing_dev, NULL);
280 	zram->backing_dev = NULL;
281 	zram->old_block_size = 0;
282 	zram->bdev = NULL;
283 
284 	kvfree(zram->bitmap);
285 	zram->bitmap = NULL;
286 }
287 
288 static ssize_t backing_dev_show(struct device *dev,
289 		struct device_attribute *attr, char *buf)
290 {
291 	struct zram *zram = dev_to_zram(dev);
292 	struct file *file = zram->backing_dev;
293 	char *p;
294 	ssize_t ret;
295 
296 	down_read(&zram->init_lock);
297 	if (!zram_wb_enabled(zram)) {
298 		memcpy(buf, "none\n", 5);
299 		up_read(&zram->init_lock);
300 		return 5;
301 	}
302 
303 	p = file_path(file, buf, PAGE_SIZE - 1);
304 	if (IS_ERR(p)) {
305 		ret = PTR_ERR(p);
306 		goto out;
307 	}
308 
309 	ret = strlen(p);
310 	memmove(buf, p, ret);
311 	buf[ret++] = '\n';
312 out:
313 	up_read(&zram->init_lock);
314 	return ret;
315 }
316 
317 static ssize_t backing_dev_store(struct device *dev,
318 		struct device_attribute *attr, const char *buf, size_t len)
319 {
320 	char *file_name;
321 	struct file *backing_dev = NULL;
322 	struct inode *inode;
323 	struct address_space *mapping;
324 	unsigned int bitmap_sz, old_block_size = 0;
325 	unsigned long nr_pages, *bitmap = NULL;
326 	struct block_device *bdev = NULL;
327 	int err;
328 	struct zram *zram = dev_to_zram(dev);
329 
330 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
331 	if (!file_name)
332 		return -ENOMEM;
333 
334 	down_write(&zram->init_lock);
335 	if (init_done(zram)) {
336 		pr_info("Can't setup backing device for initialized device\n");
337 		err = -EBUSY;
338 		goto out;
339 	}
340 
341 	strlcpy(file_name, buf, len);
342 
343 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
344 	if (IS_ERR(backing_dev)) {
345 		err = PTR_ERR(backing_dev);
346 		backing_dev = NULL;
347 		goto out;
348 	}
349 
350 	mapping = backing_dev->f_mapping;
351 	inode = mapping->host;
352 
353 	/* Support only block device in this moment */
354 	if (!S_ISBLK(inode->i_mode)) {
355 		err = -ENOTBLK;
356 		goto out;
357 	}
358 
359 	bdev = bdgrab(I_BDEV(inode));
360 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
361 	if (err < 0)
362 		goto out;
363 
364 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
365 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
366 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
367 	if (!bitmap) {
368 		err = -ENOMEM;
369 		goto out;
370 	}
371 
372 	old_block_size = block_size(bdev);
373 	err = set_blocksize(bdev, PAGE_SIZE);
374 	if (err)
375 		goto out;
376 
377 	reset_bdev(zram);
378 	spin_lock_init(&zram->bitmap_lock);
379 
380 	zram->old_block_size = old_block_size;
381 	zram->bdev = bdev;
382 	zram->backing_dev = backing_dev;
383 	zram->bitmap = bitmap;
384 	zram->nr_pages = nr_pages;
385 	up_write(&zram->init_lock);
386 
387 	pr_info("setup backing device %s\n", file_name);
388 	kfree(file_name);
389 
390 	return len;
391 out:
392 	if (bitmap)
393 		kvfree(bitmap);
394 
395 	if (bdev)
396 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
397 
398 	if (backing_dev)
399 		filp_close(backing_dev, NULL);
400 
401 	up_write(&zram->init_lock);
402 
403 	kfree(file_name);
404 
405 	return err;
406 }
407 
408 static unsigned long get_entry_bdev(struct zram *zram)
409 {
410 	unsigned long entry;
411 
412 	spin_lock(&zram->bitmap_lock);
413 	/* skip 0 bit to confuse zram.handle = 0 */
414 	entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
415 	if (entry == zram->nr_pages) {
416 		spin_unlock(&zram->bitmap_lock);
417 		return 0;
418 	}
419 
420 	set_bit(entry, zram->bitmap);
421 	spin_unlock(&zram->bitmap_lock);
422 
423 	return entry;
424 }
425 
426 static void put_entry_bdev(struct zram *zram, unsigned long entry)
427 {
428 	int was_set;
429 
430 	spin_lock(&zram->bitmap_lock);
431 	was_set = test_and_clear_bit(entry, zram->bitmap);
432 	spin_unlock(&zram->bitmap_lock);
433 	WARN_ON_ONCE(!was_set);
434 }
435 
436 static void zram_page_end_io(struct bio *bio)
437 {
438 	struct page *page = bio_first_page_all(bio);
439 
440 	page_endio(page, op_is_write(bio_op(bio)),
441 			blk_status_to_errno(bio->bi_status));
442 	bio_put(bio);
443 }
444 
445 /*
446  * Returns 1 if the submission is successful.
447  */
448 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
449 			unsigned long entry, struct bio *parent)
450 {
451 	struct bio *bio;
452 
453 	bio = bio_alloc(GFP_ATOMIC, 1);
454 	if (!bio)
455 		return -ENOMEM;
456 
457 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
458 	bio_set_dev(bio, zram->bdev);
459 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
460 		bio_put(bio);
461 		return -EIO;
462 	}
463 
464 	if (!parent) {
465 		bio->bi_opf = REQ_OP_READ;
466 		bio->bi_end_io = zram_page_end_io;
467 	} else {
468 		bio->bi_opf = parent->bi_opf;
469 		bio_chain(bio, parent);
470 	}
471 
472 	submit_bio(bio);
473 	return 1;
474 }
475 
476 struct zram_work {
477 	struct work_struct work;
478 	struct zram *zram;
479 	unsigned long entry;
480 	struct bio *bio;
481 };
482 
483 #if PAGE_SIZE != 4096
484 static void zram_sync_read(struct work_struct *work)
485 {
486 	struct bio_vec bvec;
487 	struct zram_work *zw = container_of(work, struct zram_work, work);
488 	struct zram *zram = zw->zram;
489 	unsigned long entry = zw->entry;
490 	struct bio *bio = zw->bio;
491 
492 	read_from_bdev_async(zram, &bvec, entry, bio);
493 }
494 
495 /*
496  * Block layer want one ->make_request_fn to be active at a time
497  * so if we use chained IO with parent IO in same context,
498  * it's a deadlock. To avoid, it, it uses worker thread context.
499  */
500 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
501 				unsigned long entry, struct bio *bio)
502 {
503 	struct zram_work work;
504 
505 	work.zram = zram;
506 	work.entry = entry;
507 	work.bio = bio;
508 
509 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
510 	queue_work(system_unbound_wq, &work.work);
511 	flush_work(&work.work);
512 	destroy_work_on_stack(&work.work);
513 
514 	return 1;
515 }
516 #else
517 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
518 				unsigned long entry, struct bio *bio)
519 {
520 	WARN_ON(1);
521 	return -EIO;
522 }
523 #endif
524 
525 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
526 			unsigned long entry, struct bio *parent, bool sync)
527 {
528 	if (sync)
529 		return read_from_bdev_sync(zram, bvec, entry, parent);
530 	else
531 		return read_from_bdev_async(zram, bvec, entry, parent);
532 }
533 
534 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
535 					u32 index, struct bio *parent,
536 					unsigned long *pentry)
537 {
538 	struct bio *bio;
539 	unsigned long entry;
540 
541 	bio = bio_alloc(GFP_ATOMIC, 1);
542 	if (!bio)
543 		return -ENOMEM;
544 
545 	entry = get_entry_bdev(zram);
546 	if (!entry) {
547 		bio_put(bio);
548 		return -ENOSPC;
549 	}
550 
551 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
552 	bio_set_dev(bio, zram->bdev);
553 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
554 					bvec->bv_offset)) {
555 		bio_put(bio);
556 		put_entry_bdev(zram, entry);
557 		return -EIO;
558 	}
559 
560 	if (!parent) {
561 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
562 		bio->bi_end_io = zram_page_end_io;
563 	} else {
564 		bio->bi_opf = parent->bi_opf;
565 		bio_chain(bio, parent);
566 	}
567 
568 	submit_bio(bio);
569 	*pentry = entry;
570 
571 	return 0;
572 }
573 
574 static void zram_wb_clear(struct zram *zram, u32 index)
575 {
576 	unsigned long entry;
577 
578 	zram_clear_flag(zram, index, ZRAM_WB);
579 	entry = zram_get_element(zram, index);
580 	zram_set_element(zram, index, 0);
581 	put_entry_bdev(zram, entry);
582 }
583 
584 #else
585 static bool zram_wb_enabled(struct zram *zram) { return false; }
586 static inline void reset_bdev(struct zram *zram) {};
587 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
588 					u32 index, struct bio *parent,
589 					unsigned long *pentry)
590 
591 {
592 	return -EIO;
593 }
594 
595 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
596 			unsigned long entry, struct bio *parent, bool sync)
597 {
598 	return -EIO;
599 }
600 static void zram_wb_clear(struct zram *zram, u32 index) {}
601 #endif
602 
603 
604 /*
605  * We switched to per-cpu streams and this attr is not needed anymore.
606  * However, we will keep it around for some time, because:
607  * a) we may revert per-cpu streams in the future
608  * b) it's visible to user space and we need to follow our 2 years
609  *    retirement rule; but we already have a number of 'soon to be
610  *    altered' attrs, so max_comp_streams need to wait for the next
611  *    layoff cycle.
612  */
613 static ssize_t max_comp_streams_show(struct device *dev,
614 		struct device_attribute *attr, char *buf)
615 {
616 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
617 }
618 
619 static ssize_t max_comp_streams_store(struct device *dev,
620 		struct device_attribute *attr, const char *buf, size_t len)
621 {
622 	return len;
623 }
624 
625 static ssize_t comp_algorithm_show(struct device *dev,
626 		struct device_attribute *attr, char *buf)
627 {
628 	size_t sz;
629 	struct zram *zram = dev_to_zram(dev);
630 
631 	down_read(&zram->init_lock);
632 	sz = zcomp_available_show(zram->compressor, buf);
633 	up_read(&zram->init_lock);
634 
635 	return sz;
636 }
637 
638 static ssize_t comp_algorithm_store(struct device *dev,
639 		struct device_attribute *attr, const char *buf, size_t len)
640 {
641 	struct zram *zram = dev_to_zram(dev);
642 	char compressor[ARRAY_SIZE(zram->compressor)];
643 	size_t sz;
644 
645 	strlcpy(compressor, buf, sizeof(compressor));
646 	/* ignore trailing newline */
647 	sz = strlen(compressor);
648 	if (sz > 0 && compressor[sz - 1] == '\n')
649 		compressor[sz - 1] = 0x00;
650 
651 	if (!zcomp_available_algorithm(compressor))
652 		return -EINVAL;
653 
654 	down_write(&zram->init_lock);
655 	if (init_done(zram)) {
656 		up_write(&zram->init_lock);
657 		pr_info("Can't change algorithm for initialized device\n");
658 		return -EBUSY;
659 	}
660 
661 	strcpy(zram->compressor, compressor);
662 	up_write(&zram->init_lock);
663 	return len;
664 }
665 
666 static ssize_t compact_store(struct device *dev,
667 		struct device_attribute *attr, const char *buf, size_t len)
668 {
669 	struct zram *zram = dev_to_zram(dev);
670 
671 	down_read(&zram->init_lock);
672 	if (!init_done(zram)) {
673 		up_read(&zram->init_lock);
674 		return -EINVAL;
675 	}
676 
677 	zs_compact(zram->mem_pool);
678 	up_read(&zram->init_lock);
679 
680 	return len;
681 }
682 
683 static ssize_t io_stat_show(struct device *dev,
684 		struct device_attribute *attr, char *buf)
685 {
686 	struct zram *zram = dev_to_zram(dev);
687 	ssize_t ret;
688 
689 	down_read(&zram->init_lock);
690 	ret = scnprintf(buf, PAGE_SIZE,
691 			"%8llu %8llu %8llu %8llu\n",
692 			(u64)atomic64_read(&zram->stats.failed_reads),
693 			(u64)atomic64_read(&zram->stats.failed_writes),
694 			(u64)atomic64_read(&zram->stats.invalid_io),
695 			(u64)atomic64_read(&zram->stats.notify_free));
696 	up_read(&zram->init_lock);
697 
698 	return ret;
699 }
700 
701 static ssize_t mm_stat_show(struct device *dev,
702 		struct device_attribute *attr, char *buf)
703 {
704 	struct zram *zram = dev_to_zram(dev);
705 	struct zs_pool_stats pool_stats;
706 	u64 orig_size, mem_used = 0;
707 	long max_used;
708 	ssize_t ret;
709 
710 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
711 
712 	down_read(&zram->init_lock);
713 	if (init_done(zram)) {
714 		mem_used = zs_get_total_pages(zram->mem_pool);
715 		zs_pool_stats(zram->mem_pool, &pool_stats);
716 	}
717 
718 	orig_size = atomic64_read(&zram->stats.pages_stored);
719 	max_used = atomic_long_read(&zram->stats.max_used_pages);
720 
721 	ret = scnprintf(buf, PAGE_SIZE,
722 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
723 			orig_size << PAGE_SHIFT,
724 			(u64)atomic64_read(&zram->stats.compr_data_size),
725 			mem_used << PAGE_SHIFT,
726 			zram->limit_pages << PAGE_SHIFT,
727 			max_used << PAGE_SHIFT,
728 			(u64)atomic64_read(&zram->stats.same_pages),
729 			pool_stats.pages_compacted);
730 	up_read(&zram->init_lock);
731 
732 	return ret;
733 }
734 
735 static ssize_t debug_stat_show(struct device *dev,
736 		struct device_attribute *attr, char *buf)
737 {
738 	int version = 1;
739 	struct zram *zram = dev_to_zram(dev);
740 	ssize_t ret;
741 
742 	down_read(&zram->init_lock);
743 	ret = scnprintf(buf, PAGE_SIZE,
744 			"version: %d\n%8llu\n",
745 			version,
746 			(u64)atomic64_read(&zram->stats.writestall));
747 	up_read(&zram->init_lock);
748 
749 	return ret;
750 }
751 
752 static DEVICE_ATTR_RO(io_stat);
753 static DEVICE_ATTR_RO(mm_stat);
754 static DEVICE_ATTR_RO(debug_stat);
755 
756 static void zram_slot_lock(struct zram *zram, u32 index)
757 {
758 	bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
759 }
760 
761 static void zram_slot_unlock(struct zram *zram, u32 index)
762 {
763 	bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
764 }
765 
766 static void zram_meta_free(struct zram *zram, u64 disksize)
767 {
768 	size_t num_pages = disksize >> PAGE_SHIFT;
769 	size_t index;
770 
771 	/* Free all pages that are still in this zram device */
772 	for (index = 0; index < num_pages; index++)
773 		zram_free_page(zram, index);
774 
775 	zs_destroy_pool(zram->mem_pool);
776 	vfree(zram->table);
777 }
778 
779 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
780 {
781 	size_t num_pages;
782 
783 	num_pages = disksize >> PAGE_SHIFT;
784 	zram->table = vzalloc(num_pages * sizeof(*zram->table));
785 	if (!zram->table)
786 		return false;
787 
788 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
789 	if (!zram->mem_pool) {
790 		vfree(zram->table);
791 		return false;
792 	}
793 
794 	if (!huge_class_size)
795 		huge_class_size = zs_huge_class_size(zram->mem_pool);
796 	return true;
797 }
798 
799 /*
800  * To protect concurrent access to the same index entry,
801  * caller should hold this table index entry's bit_spinlock to
802  * indicate this index entry is accessing.
803  */
804 static void zram_free_page(struct zram *zram, size_t index)
805 {
806 	unsigned long handle;
807 
808 	if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
809 		zram_wb_clear(zram, index);
810 		atomic64_dec(&zram->stats.pages_stored);
811 		return;
812 	}
813 
814 	/*
815 	 * No memory is allocated for same element filled pages.
816 	 * Simply clear same page flag.
817 	 */
818 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
819 		zram_clear_flag(zram, index, ZRAM_SAME);
820 		zram_set_element(zram, index, 0);
821 		atomic64_dec(&zram->stats.same_pages);
822 		atomic64_dec(&zram->stats.pages_stored);
823 		return;
824 	}
825 
826 	handle = zram_get_handle(zram, index);
827 	if (!handle)
828 		return;
829 
830 	zs_free(zram->mem_pool, handle);
831 
832 	atomic64_sub(zram_get_obj_size(zram, index),
833 			&zram->stats.compr_data_size);
834 	atomic64_dec(&zram->stats.pages_stored);
835 
836 	zram_set_handle(zram, index, 0);
837 	zram_set_obj_size(zram, index, 0);
838 }
839 
840 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
841 				struct bio *bio, bool partial_io)
842 {
843 	int ret;
844 	unsigned long handle;
845 	unsigned int size;
846 	void *src, *dst;
847 
848 	if (zram_wb_enabled(zram)) {
849 		zram_slot_lock(zram, index);
850 		if (zram_test_flag(zram, index, ZRAM_WB)) {
851 			struct bio_vec bvec;
852 
853 			zram_slot_unlock(zram, index);
854 
855 			bvec.bv_page = page;
856 			bvec.bv_len = PAGE_SIZE;
857 			bvec.bv_offset = 0;
858 			return read_from_bdev(zram, &bvec,
859 					zram_get_element(zram, index),
860 					bio, partial_io);
861 		}
862 		zram_slot_unlock(zram, index);
863 	}
864 
865 	zram_slot_lock(zram, index);
866 	handle = zram_get_handle(zram, index);
867 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
868 		unsigned long value;
869 		void *mem;
870 
871 		value = handle ? zram_get_element(zram, index) : 0;
872 		mem = kmap_atomic(page);
873 		zram_fill_page(mem, PAGE_SIZE, value);
874 		kunmap_atomic(mem);
875 		zram_slot_unlock(zram, index);
876 		return 0;
877 	}
878 
879 	size = zram_get_obj_size(zram, index);
880 
881 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
882 	if (size == PAGE_SIZE) {
883 		dst = kmap_atomic(page);
884 		memcpy(dst, src, PAGE_SIZE);
885 		kunmap_atomic(dst);
886 		ret = 0;
887 	} else {
888 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
889 
890 		dst = kmap_atomic(page);
891 		ret = zcomp_decompress(zstrm, src, size, dst);
892 		kunmap_atomic(dst);
893 		zcomp_stream_put(zram->comp);
894 	}
895 	zs_unmap_object(zram->mem_pool, handle);
896 	zram_slot_unlock(zram, index);
897 
898 	/* Should NEVER happen. Return bio error if it does. */
899 	if (unlikely(ret))
900 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
901 
902 	return ret;
903 }
904 
905 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
906 				u32 index, int offset, struct bio *bio)
907 {
908 	int ret;
909 	struct page *page;
910 
911 	page = bvec->bv_page;
912 	if (is_partial_io(bvec)) {
913 		/* Use a temporary buffer to decompress the page */
914 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
915 		if (!page)
916 			return -ENOMEM;
917 	}
918 
919 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
920 	if (unlikely(ret))
921 		goto out;
922 
923 	if (is_partial_io(bvec)) {
924 		void *dst = kmap_atomic(bvec->bv_page);
925 		void *src = kmap_atomic(page);
926 
927 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
928 		kunmap_atomic(src);
929 		kunmap_atomic(dst);
930 	}
931 out:
932 	if (is_partial_io(bvec))
933 		__free_page(page);
934 
935 	return ret;
936 }
937 
938 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
939 				u32 index, struct bio *bio)
940 {
941 	int ret = 0;
942 	unsigned long alloced_pages;
943 	unsigned long handle = 0;
944 	unsigned int comp_len = 0;
945 	void *src, *dst, *mem;
946 	struct zcomp_strm *zstrm;
947 	struct page *page = bvec->bv_page;
948 	unsigned long element = 0;
949 	enum zram_pageflags flags = 0;
950 	bool allow_wb = true;
951 
952 	mem = kmap_atomic(page);
953 	if (page_same_filled(mem, &element)) {
954 		kunmap_atomic(mem);
955 		/* Free memory associated with this sector now. */
956 		flags = ZRAM_SAME;
957 		atomic64_inc(&zram->stats.same_pages);
958 		goto out;
959 	}
960 	kunmap_atomic(mem);
961 
962 compress_again:
963 	zstrm = zcomp_stream_get(zram->comp);
964 	src = kmap_atomic(page);
965 	ret = zcomp_compress(zstrm, src, &comp_len);
966 	kunmap_atomic(src);
967 
968 	if (unlikely(ret)) {
969 		zcomp_stream_put(zram->comp);
970 		pr_err("Compression failed! err=%d\n", ret);
971 		zs_free(zram->mem_pool, handle);
972 		return ret;
973 	}
974 
975 	if (unlikely(comp_len >= huge_class_size)) {
976 		if (zram_wb_enabled(zram) && allow_wb) {
977 			zcomp_stream_put(zram->comp);
978 			ret = write_to_bdev(zram, bvec, index, bio, &element);
979 			if (!ret) {
980 				flags = ZRAM_WB;
981 				ret = 1;
982 				goto out;
983 			}
984 			allow_wb = false;
985 			goto compress_again;
986 		}
987 		comp_len = PAGE_SIZE;
988 	}
989 
990 	/*
991 	 * handle allocation has 2 paths:
992 	 * a) fast path is executed with preemption disabled (for
993 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
994 	 *  since we can't sleep;
995 	 * b) slow path enables preemption and attempts to allocate
996 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
997 	 *  put per-cpu compression stream and, thus, to re-do
998 	 *  the compression once handle is allocated.
999 	 *
1000 	 * if we have a 'non-null' handle here then we are coming
1001 	 * from the slow path and handle has already been allocated.
1002 	 */
1003 	if (!handle)
1004 		handle = zs_malloc(zram->mem_pool, comp_len,
1005 				__GFP_KSWAPD_RECLAIM |
1006 				__GFP_NOWARN |
1007 				__GFP_HIGHMEM |
1008 				__GFP_MOVABLE);
1009 	if (!handle) {
1010 		zcomp_stream_put(zram->comp);
1011 		atomic64_inc(&zram->stats.writestall);
1012 		handle = zs_malloc(zram->mem_pool, comp_len,
1013 				GFP_NOIO | __GFP_HIGHMEM |
1014 				__GFP_MOVABLE);
1015 		if (handle)
1016 			goto compress_again;
1017 		return -ENOMEM;
1018 	}
1019 
1020 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1021 	update_used_max(zram, alloced_pages);
1022 
1023 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1024 		zcomp_stream_put(zram->comp);
1025 		zs_free(zram->mem_pool, handle);
1026 		return -ENOMEM;
1027 	}
1028 
1029 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1030 
1031 	src = zstrm->buffer;
1032 	if (comp_len == PAGE_SIZE)
1033 		src = kmap_atomic(page);
1034 	memcpy(dst, src, comp_len);
1035 	if (comp_len == PAGE_SIZE)
1036 		kunmap_atomic(src);
1037 
1038 	zcomp_stream_put(zram->comp);
1039 	zs_unmap_object(zram->mem_pool, handle);
1040 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1041 out:
1042 	/*
1043 	 * Free memory associated with this sector
1044 	 * before overwriting unused sectors.
1045 	 */
1046 	zram_slot_lock(zram, index);
1047 	zram_free_page(zram, index);
1048 
1049 	if (flags) {
1050 		zram_set_flag(zram, index, flags);
1051 		zram_set_element(zram, index, element);
1052 	}  else {
1053 		zram_set_handle(zram, index, handle);
1054 		zram_set_obj_size(zram, index, comp_len);
1055 	}
1056 	zram_slot_unlock(zram, index);
1057 
1058 	/* Update stats */
1059 	atomic64_inc(&zram->stats.pages_stored);
1060 	return ret;
1061 }
1062 
1063 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1064 				u32 index, int offset, struct bio *bio)
1065 {
1066 	int ret;
1067 	struct page *page = NULL;
1068 	void *src;
1069 	struct bio_vec vec;
1070 
1071 	vec = *bvec;
1072 	if (is_partial_io(bvec)) {
1073 		void *dst;
1074 		/*
1075 		 * This is a partial IO. We need to read the full page
1076 		 * before to write the changes.
1077 		 */
1078 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1079 		if (!page)
1080 			return -ENOMEM;
1081 
1082 		ret = __zram_bvec_read(zram, page, index, bio, true);
1083 		if (ret)
1084 			goto out;
1085 
1086 		src = kmap_atomic(bvec->bv_page);
1087 		dst = kmap_atomic(page);
1088 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1089 		kunmap_atomic(dst);
1090 		kunmap_atomic(src);
1091 
1092 		vec.bv_page = page;
1093 		vec.bv_len = PAGE_SIZE;
1094 		vec.bv_offset = 0;
1095 	}
1096 
1097 	ret = __zram_bvec_write(zram, &vec, index, bio);
1098 out:
1099 	if (is_partial_io(bvec))
1100 		__free_page(page);
1101 	return ret;
1102 }
1103 
1104 /*
1105  * zram_bio_discard - handler on discard request
1106  * @index: physical block index in PAGE_SIZE units
1107  * @offset: byte offset within physical block
1108  */
1109 static void zram_bio_discard(struct zram *zram, u32 index,
1110 			     int offset, struct bio *bio)
1111 {
1112 	size_t n = bio->bi_iter.bi_size;
1113 
1114 	/*
1115 	 * zram manages data in physical block size units. Because logical block
1116 	 * size isn't identical with physical block size on some arch, we
1117 	 * could get a discard request pointing to a specific offset within a
1118 	 * certain physical block.  Although we can handle this request by
1119 	 * reading that physiclal block and decompressing and partially zeroing
1120 	 * and re-compressing and then re-storing it, this isn't reasonable
1121 	 * because our intent with a discard request is to save memory.  So
1122 	 * skipping this logical block is appropriate here.
1123 	 */
1124 	if (offset) {
1125 		if (n <= (PAGE_SIZE - offset))
1126 			return;
1127 
1128 		n -= (PAGE_SIZE - offset);
1129 		index++;
1130 	}
1131 
1132 	while (n >= PAGE_SIZE) {
1133 		zram_slot_lock(zram, index);
1134 		zram_free_page(zram, index);
1135 		zram_slot_unlock(zram, index);
1136 		atomic64_inc(&zram->stats.notify_free);
1137 		index++;
1138 		n -= PAGE_SIZE;
1139 	}
1140 }
1141 
1142 /*
1143  * Returns errno if it has some problem. Otherwise return 0 or 1.
1144  * Returns 0 if IO request was done synchronously
1145  * Returns 1 if IO request was successfully submitted.
1146  */
1147 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1148 			int offset, bool is_write, struct bio *bio)
1149 {
1150 	unsigned long start_time = jiffies;
1151 	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
1152 	struct request_queue *q = zram->disk->queue;
1153 	int ret;
1154 
1155 	generic_start_io_acct(q, rw_acct, bvec->bv_len >> SECTOR_SHIFT,
1156 			&zram->disk->part0);
1157 
1158 	if (!is_write) {
1159 		atomic64_inc(&zram->stats.num_reads);
1160 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1161 		flush_dcache_page(bvec->bv_page);
1162 	} else {
1163 		atomic64_inc(&zram->stats.num_writes);
1164 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1165 	}
1166 
1167 	generic_end_io_acct(q, rw_acct, &zram->disk->part0, start_time);
1168 
1169 	if (unlikely(ret < 0)) {
1170 		if (!is_write)
1171 			atomic64_inc(&zram->stats.failed_reads);
1172 		else
1173 			atomic64_inc(&zram->stats.failed_writes);
1174 	}
1175 
1176 	return ret;
1177 }
1178 
1179 static void __zram_make_request(struct zram *zram, struct bio *bio)
1180 {
1181 	int offset;
1182 	u32 index;
1183 	struct bio_vec bvec;
1184 	struct bvec_iter iter;
1185 
1186 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1187 	offset = (bio->bi_iter.bi_sector &
1188 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1189 
1190 	switch (bio_op(bio)) {
1191 	case REQ_OP_DISCARD:
1192 	case REQ_OP_WRITE_ZEROES:
1193 		zram_bio_discard(zram, index, offset, bio);
1194 		bio_endio(bio);
1195 		return;
1196 	default:
1197 		break;
1198 	}
1199 
1200 	bio_for_each_segment(bvec, bio, iter) {
1201 		struct bio_vec bv = bvec;
1202 		unsigned int unwritten = bvec.bv_len;
1203 
1204 		do {
1205 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1206 							unwritten);
1207 			if (zram_bvec_rw(zram, &bv, index, offset,
1208 					op_is_write(bio_op(bio)), bio) < 0)
1209 				goto out;
1210 
1211 			bv.bv_offset += bv.bv_len;
1212 			unwritten -= bv.bv_len;
1213 
1214 			update_position(&index, &offset, &bv);
1215 		} while (unwritten);
1216 	}
1217 
1218 	bio_endio(bio);
1219 	return;
1220 
1221 out:
1222 	bio_io_error(bio);
1223 }
1224 
1225 /*
1226  * Handler function for all zram I/O requests.
1227  */
1228 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1229 {
1230 	struct zram *zram = queue->queuedata;
1231 
1232 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1233 					bio->bi_iter.bi_size)) {
1234 		atomic64_inc(&zram->stats.invalid_io);
1235 		goto error;
1236 	}
1237 
1238 	__zram_make_request(zram, bio);
1239 	return BLK_QC_T_NONE;
1240 
1241 error:
1242 	bio_io_error(bio);
1243 	return BLK_QC_T_NONE;
1244 }
1245 
1246 static void zram_slot_free_notify(struct block_device *bdev,
1247 				unsigned long index)
1248 {
1249 	struct zram *zram;
1250 
1251 	zram = bdev->bd_disk->private_data;
1252 
1253 	zram_slot_lock(zram, index);
1254 	zram_free_page(zram, index);
1255 	zram_slot_unlock(zram, index);
1256 	atomic64_inc(&zram->stats.notify_free);
1257 }
1258 
1259 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1260 		       struct page *page, bool is_write)
1261 {
1262 	int offset, ret;
1263 	u32 index;
1264 	struct zram *zram;
1265 	struct bio_vec bv;
1266 
1267 	if (PageTransHuge(page))
1268 		return -ENOTSUPP;
1269 	zram = bdev->bd_disk->private_data;
1270 
1271 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1272 		atomic64_inc(&zram->stats.invalid_io);
1273 		ret = -EINVAL;
1274 		goto out;
1275 	}
1276 
1277 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1278 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1279 
1280 	bv.bv_page = page;
1281 	bv.bv_len = PAGE_SIZE;
1282 	bv.bv_offset = 0;
1283 
1284 	ret = zram_bvec_rw(zram, &bv, index, offset, is_write, NULL);
1285 out:
1286 	/*
1287 	 * If I/O fails, just return error(ie, non-zero) without
1288 	 * calling page_endio.
1289 	 * It causes resubmit the I/O with bio request by upper functions
1290 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1291 	 * bio->bi_end_io does things to handle the error
1292 	 * (e.g., SetPageError, set_page_dirty and extra works).
1293 	 */
1294 	if (unlikely(ret < 0))
1295 		return ret;
1296 
1297 	switch (ret) {
1298 	case 0:
1299 		page_endio(page, is_write, 0);
1300 		break;
1301 	case 1:
1302 		ret = 0;
1303 		break;
1304 	default:
1305 		WARN_ON(1);
1306 	}
1307 	return ret;
1308 }
1309 
1310 static void zram_reset_device(struct zram *zram)
1311 {
1312 	struct zcomp *comp;
1313 	u64 disksize;
1314 
1315 	down_write(&zram->init_lock);
1316 
1317 	zram->limit_pages = 0;
1318 
1319 	if (!init_done(zram)) {
1320 		up_write(&zram->init_lock);
1321 		return;
1322 	}
1323 
1324 	comp = zram->comp;
1325 	disksize = zram->disksize;
1326 	zram->disksize = 0;
1327 
1328 	set_capacity(zram->disk, 0);
1329 	part_stat_set_all(&zram->disk->part0, 0);
1330 
1331 	up_write(&zram->init_lock);
1332 	/* I/O operation under all of CPU are done so let's free */
1333 	zram_meta_free(zram, disksize);
1334 	memset(&zram->stats, 0, sizeof(zram->stats));
1335 	zcomp_destroy(comp);
1336 	reset_bdev(zram);
1337 }
1338 
1339 static ssize_t disksize_store(struct device *dev,
1340 		struct device_attribute *attr, const char *buf, size_t len)
1341 {
1342 	u64 disksize;
1343 	struct zcomp *comp;
1344 	struct zram *zram = dev_to_zram(dev);
1345 	int err;
1346 
1347 	disksize = memparse(buf, NULL);
1348 	if (!disksize)
1349 		return -EINVAL;
1350 
1351 	down_write(&zram->init_lock);
1352 	if (init_done(zram)) {
1353 		pr_info("Cannot change disksize for initialized device\n");
1354 		err = -EBUSY;
1355 		goto out_unlock;
1356 	}
1357 
1358 	disksize = PAGE_ALIGN(disksize);
1359 	if (!zram_meta_alloc(zram, disksize)) {
1360 		err = -ENOMEM;
1361 		goto out_unlock;
1362 	}
1363 
1364 	comp = zcomp_create(zram->compressor);
1365 	if (IS_ERR(comp)) {
1366 		pr_err("Cannot initialise %s compressing backend\n",
1367 				zram->compressor);
1368 		err = PTR_ERR(comp);
1369 		goto out_free_meta;
1370 	}
1371 
1372 	zram->comp = comp;
1373 	zram->disksize = disksize;
1374 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1375 
1376 	revalidate_disk(zram->disk);
1377 	up_write(&zram->init_lock);
1378 
1379 	return len;
1380 
1381 out_free_meta:
1382 	zram_meta_free(zram, disksize);
1383 out_unlock:
1384 	up_write(&zram->init_lock);
1385 	return err;
1386 }
1387 
1388 static ssize_t reset_store(struct device *dev,
1389 		struct device_attribute *attr, const char *buf, size_t len)
1390 {
1391 	int ret;
1392 	unsigned short do_reset;
1393 	struct zram *zram;
1394 	struct block_device *bdev;
1395 
1396 	ret = kstrtou16(buf, 10, &do_reset);
1397 	if (ret)
1398 		return ret;
1399 
1400 	if (!do_reset)
1401 		return -EINVAL;
1402 
1403 	zram = dev_to_zram(dev);
1404 	bdev = bdget_disk(zram->disk, 0);
1405 	if (!bdev)
1406 		return -ENOMEM;
1407 
1408 	mutex_lock(&bdev->bd_mutex);
1409 	/* Do not reset an active device or claimed device */
1410 	if (bdev->bd_openers || zram->claim) {
1411 		mutex_unlock(&bdev->bd_mutex);
1412 		bdput(bdev);
1413 		return -EBUSY;
1414 	}
1415 
1416 	/* From now on, anyone can't open /dev/zram[0-9] */
1417 	zram->claim = true;
1418 	mutex_unlock(&bdev->bd_mutex);
1419 
1420 	/* Make sure all the pending I/O are finished */
1421 	fsync_bdev(bdev);
1422 	zram_reset_device(zram);
1423 	revalidate_disk(zram->disk);
1424 	bdput(bdev);
1425 
1426 	mutex_lock(&bdev->bd_mutex);
1427 	zram->claim = false;
1428 	mutex_unlock(&bdev->bd_mutex);
1429 
1430 	return len;
1431 }
1432 
1433 static int zram_open(struct block_device *bdev, fmode_t mode)
1434 {
1435 	int ret = 0;
1436 	struct zram *zram;
1437 
1438 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1439 
1440 	zram = bdev->bd_disk->private_data;
1441 	/* zram was claimed to reset so open request fails */
1442 	if (zram->claim)
1443 		ret = -EBUSY;
1444 
1445 	return ret;
1446 }
1447 
1448 static const struct block_device_operations zram_devops = {
1449 	.open = zram_open,
1450 	.swap_slot_free_notify = zram_slot_free_notify,
1451 	.rw_page = zram_rw_page,
1452 	.owner = THIS_MODULE
1453 };
1454 
1455 static DEVICE_ATTR_WO(compact);
1456 static DEVICE_ATTR_RW(disksize);
1457 static DEVICE_ATTR_RO(initstate);
1458 static DEVICE_ATTR_WO(reset);
1459 static DEVICE_ATTR_WO(mem_limit);
1460 static DEVICE_ATTR_WO(mem_used_max);
1461 static DEVICE_ATTR_RW(max_comp_streams);
1462 static DEVICE_ATTR_RW(comp_algorithm);
1463 #ifdef CONFIG_ZRAM_WRITEBACK
1464 static DEVICE_ATTR_RW(backing_dev);
1465 #endif
1466 
1467 static struct attribute *zram_disk_attrs[] = {
1468 	&dev_attr_disksize.attr,
1469 	&dev_attr_initstate.attr,
1470 	&dev_attr_reset.attr,
1471 	&dev_attr_compact.attr,
1472 	&dev_attr_mem_limit.attr,
1473 	&dev_attr_mem_used_max.attr,
1474 	&dev_attr_max_comp_streams.attr,
1475 	&dev_attr_comp_algorithm.attr,
1476 #ifdef CONFIG_ZRAM_WRITEBACK
1477 	&dev_attr_backing_dev.attr,
1478 #endif
1479 	&dev_attr_io_stat.attr,
1480 	&dev_attr_mm_stat.attr,
1481 	&dev_attr_debug_stat.attr,
1482 	NULL,
1483 };
1484 
1485 static const struct attribute_group zram_disk_attr_group = {
1486 	.attrs = zram_disk_attrs,
1487 };
1488 
1489 /*
1490  * Allocate and initialize new zram device. the function returns
1491  * '>= 0' device_id upon success, and negative value otherwise.
1492  */
1493 static int zram_add(void)
1494 {
1495 	struct zram *zram;
1496 	struct request_queue *queue;
1497 	int ret, device_id;
1498 
1499 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1500 	if (!zram)
1501 		return -ENOMEM;
1502 
1503 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1504 	if (ret < 0)
1505 		goto out_free_dev;
1506 	device_id = ret;
1507 
1508 	init_rwsem(&zram->init_lock);
1509 
1510 	queue = blk_alloc_queue(GFP_KERNEL);
1511 	if (!queue) {
1512 		pr_err("Error allocating disk queue for device %d\n",
1513 			device_id);
1514 		ret = -ENOMEM;
1515 		goto out_free_idr;
1516 	}
1517 
1518 	blk_queue_make_request(queue, zram_make_request);
1519 
1520 	/* gendisk structure */
1521 	zram->disk = alloc_disk(1);
1522 	if (!zram->disk) {
1523 		pr_err("Error allocating disk structure for device %d\n",
1524 			device_id);
1525 		ret = -ENOMEM;
1526 		goto out_free_queue;
1527 	}
1528 
1529 	zram->disk->major = zram_major;
1530 	zram->disk->first_minor = device_id;
1531 	zram->disk->fops = &zram_devops;
1532 	zram->disk->queue = queue;
1533 	zram->disk->queue->queuedata = zram;
1534 	zram->disk->private_data = zram;
1535 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1536 
1537 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1538 	set_capacity(zram->disk, 0);
1539 	/* zram devices sort of resembles non-rotational disks */
1540 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1541 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1542 
1543 	/*
1544 	 * To ensure that we always get PAGE_SIZE aligned
1545 	 * and n*PAGE_SIZED sized I/O requests.
1546 	 */
1547 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1548 	blk_queue_logical_block_size(zram->disk->queue,
1549 					ZRAM_LOGICAL_BLOCK_SIZE);
1550 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1551 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1552 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1553 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1554 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1555 
1556 	/*
1557 	 * zram_bio_discard() will clear all logical blocks if logical block
1558 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1559 	 * different, we will skip discarding some parts of logical blocks in
1560 	 * the part of the request range which isn't aligned to physical block
1561 	 * size.  So we can't ensure that all discarded logical blocks are
1562 	 * zeroed.
1563 	 */
1564 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1565 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1566 
1567 	zram->disk->queue->backing_dev_info->capabilities |=
1568 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1569 	add_disk(zram->disk);
1570 
1571 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1572 				&zram_disk_attr_group);
1573 	if (ret < 0) {
1574 		pr_err("Error creating sysfs group for device %d\n",
1575 				device_id);
1576 		goto out_free_disk;
1577 	}
1578 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1579 
1580 	pr_info("Added device: %s\n", zram->disk->disk_name);
1581 	return device_id;
1582 
1583 out_free_disk:
1584 	del_gendisk(zram->disk);
1585 	put_disk(zram->disk);
1586 out_free_queue:
1587 	blk_cleanup_queue(queue);
1588 out_free_idr:
1589 	idr_remove(&zram_index_idr, device_id);
1590 out_free_dev:
1591 	kfree(zram);
1592 	return ret;
1593 }
1594 
1595 static int zram_remove(struct zram *zram)
1596 {
1597 	struct block_device *bdev;
1598 
1599 	bdev = bdget_disk(zram->disk, 0);
1600 	if (!bdev)
1601 		return -ENOMEM;
1602 
1603 	mutex_lock(&bdev->bd_mutex);
1604 	if (bdev->bd_openers || zram->claim) {
1605 		mutex_unlock(&bdev->bd_mutex);
1606 		bdput(bdev);
1607 		return -EBUSY;
1608 	}
1609 
1610 	zram->claim = true;
1611 	mutex_unlock(&bdev->bd_mutex);
1612 
1613 	/*
1614 	 * Remove sysfs first, so no one will perform a disksize
1615 	 * store while we destroy the devices. This also helps during
1616 	 * hot_remove -- zram_reset_device() is the last holder of
1617 	 * ->init_lock, no later/concurrent disksize_store() or any
1618 	 * other sysfs handlers are possible.
1619 	 */
1620 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1621 			&zram_disk_attr_group);
1622 
1623 	/* Make sure all the pending I/O are finished */
1624 	fsync_bdev(bdev);
1625 	zram_reset_device(zram);
1626 	bdput(bdev);
1627 
1628 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1629 
1630 	del_gendisk(zram->disk);
1631 	blk_cleanup_queue(zram->disk->queue);
1632 	put_disk(zram->disk);
1633 	kfree(zram);
1634 	return 0;
1635 }
1636 
1637 /* zram-control sysfs attributes */
1638 
1639 /*
1640  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1641  * sense that reading from this file does alter the state of your system -- it
1642  * creates a new un-initialized zram device and returns back this device's
1643  * device_id (or an error code if it fails to create a new device).
1644  */
1645 static ssize_t hot_add_show(struct class *class,
1646 			struct class_attribute *attr,
1647 			char *buf)
1648 {
1649 	int ret;
1650 
1651 	mutex_lock(&zram_index_mutex);
1652 	ret = zram_add();
1653 	mutex_unlock(&zram_index_mutex);
1654 
1655 	if (ret < 0)
1656 		return ret;
1657 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1658 }
1659 static CLASS_ATTR_RO(hot_add);
1660 
1661 static ssize_t hot_remove_store(struct class *class,
1662 			struct class_attribute *attr,
1663 			const char *buf,
1664 			size_t count)
1665 {
1666 	struct zram *zram;
1667 	int ret, dev_id;
1668 
1669 	/* dev_id is gendisk->first_minor, which is `int' */
1670 	ret = kstrtoint(buf, 10, &dev_id);
1671 	if (ret)
1672 		return ret;
1673 	if (dev_id < 0)
1674 		return -EINVAL;
1675 
1676 	mutex_lock(&zram_index_mutex);
1677 
1678 	zram = idr_find(&zram_index_idr, dev_id);
1679 	if (zram) {
1680 		ret = zram_remove(zram);
1681 		if (!ret)
1682 			idr_remove(&zram_index_idr, dev_id);
1683 	} else {
1684 		ret = -ENODEV;
1685 	}
1686 
1687 	mutex_unlock(&zram_index_mutex);
1688 	return ret ? ret : count;
1689 }
1690 static CLASS_ATTR_WO(hot_remove);
1691 
1692 static struct attribute *zram_control_class_attrs[] = {
1693 	&class_attr_hot_add.attr,
1694 	&class_attr_hot_remove.attr,
1695 	NULL,
1696 };
1697 ATTRIBUTE_GROUPS(zram_control_class);
1698 
1699 static struct class zram_control_class = {
1700 	.name		= "zram-control",
1701 	.owner		= THIS_MODULE,
1702 	.class_groups	= zram_control_class_groups,
1703 };
1704 
1705 static int zram_remove_cb(int id, void *ptr, void *data)
1706 {
1707 	zram_remove(ptr);
1708 	return 0;
1709 }
1710 
1711 static void destroy_devices(void)
1712 {
1713 	class_unregister(&zram_control_class);
1714 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1715 	idr_destroy(&zram_index_idr);
1716 	unregister_blkdev(zram_major, "zram");
1717 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1718 }
1719 
1720 static int __init zram_init(void)
1721 {
1722 	int ret;
1723 
1724 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1725 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1726 	if (ret < 0)
1727 		return ret;
1728 
1729 	ret = class_register(&zram_control_class);
1730 	if (ret) {
1731 		pr_err("Unable to register zram-control class\n");
1732 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1733 		return ret;
1734 	}
1735 
1736 	zram_major = register_blkdev(0, "zram");
1737 	if (zram_major <= 0) {
1738 		pr_err("Unable to get major number\n");
1739 		class_unregister(&zram_control_class);
1740 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1741 		return -EBUSY;
1742 	}
1743 
1744 	while (num_devices != 0) {
1745 		mutex_lock(&zram_index_mutex);
1746 		ret = zram_add();
1747 		mutex_unlock(&zram_index_mutex);
1748 		if (ret < 0)
1749 			goto out_error;
1750 		num_devices--;
1751 	}
1752 
1753 	return 0;
1754 
1755 out_error:
1756 	destroy_devices();
1757 	return ret;
1758 }
1759 
1760 static void __exit zram_exit(void)
1761 {
1762 	destroy_devices();
1763 }
1764 
1765 module_init(zram_init);
1766 module_exit(zram_exit);
1767 
1768 module_param(num_devices, uint, 0);
1769 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1770 
1771 MODULE_LICENSE("Dual BSD/GPL");
1772 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1773 MODULE_DESCRIPTION("Compressed RAM Block Device");
1774