1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 34 #include "zram_drv.h" 35 36 static DEFINE_IDR(zram_index_idr); 37 /* idr index must be protected */ 38 static DEFINE_MUTEX(zram_index_mutex); 39 40 static int zram_major; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 static inline void deprecated_attr_warn(const char *name) 47 { 48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n", 49 task_pid_nr(current), 50 current->comm, 51 name, 52 "See zram documentation."); 53 } 54 55 #define ZRAM_ATTR_RO(name) \ 56 static ssize_t name##_show(struct device *d, \ 57 struct device_attribute *attr, char *b) \ 58 { \ 59 struct zram *zram = dev_to_zram(d); \ 60 \ 61 deprecated_attr_warn(__stringify(name)); \ 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 63 (u64)atomic64_read(&zram->stats.name)); \ 64 } \ 65 static DEVICE_ATTR_RO(name); 66 67 static inline bool init_done(struct zram *zram) 68 { 69 return zram->disksize; 70 } 71 72 static inline struct zram *dev_to_zram(struct device *dev) 73 { 74 return (struct zram *)dev_to_disk(dev)->private_data; 75 } 76 77 /* flag operations require table entry bit_spin_lock() being held */ 78 static int zram_test_flag(struct zram_meta *meta, u32 index, 79 enum zram_pageflags flag) 80 { 81 return meta->table[index].value & BIT(flag); 82 } 83 84 static void zram_set_flag(struct zram_meta *meta, u32 index, 85 enum zram_pageflags flag) 86 { 87 meta->table[index].value |= BIT(flag); 88 } 89 90 static void zram_clear_flag(struct zram_meta *meta, u32 index, 91 enum zram_pageflags flag) 92 { 93 meta->table[index].value &= ~BIT(flag); 94 } 95 96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 97 { 98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 99 } 100 101 static void zram_set_obj_size(struct zram_meta *meta, 102 u32 index, size_t size) 103 { 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 105 106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 107 } 108 109 static inline int is_partial_io(struct bio_vec *bvec) 110 { 111 return bvec->bv_len != PAGE_SIZE; 112 } 113 114 /* 115 * Check if request is within bounds and aligned on zram logical blocks. 116 */ 117 static inline int valid_io_request(struct zram *zram, 118 sector_t start, unsigned int size) 119 { 120 u64 end, bound; 121 122 /* unaligned request */ 123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 124 return 0; 125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 126 return 0; 127 128 end = start + (size >> SECTOR_SHIFT); 129 bound = zram->disksize >> SECTOR_SHIFT; 130 /* out of range range */ 131 if (unlikely(start >= bound || end > bound || start > end)) 132 return 0; 133 134 /* I/O request is valid */ 135 return 1; 136 } 137 138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 139 { 140 if (*offset + bvec->bv_len >= PAGE_SIZE) 141 (*index)++; 142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 143 } 144 145 static inline void update_used_max(struct zram *zram, 146 const unsigned long pages) 147 { 148 unsigned long old_max, cur_max; 149 150 old_max = atomic_long_read(&zram->stats.max_used_pages); 151 152 do { 153 cur_max = old_max; 154 if (pages > cur_max) 155 old_max = atomic_long_cmpxchg( 156 &zram->stats.max_used_pages, cur_max, pages); 157 } while (old_max != cur_max); 158 } 159 160 static int page_zero_filled(void *ptr) 161 { 162 unsigned int pos; 163 unsigned long *page; 164 165 page = (unsigned long *)ptr; 166 167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 168 if (page[pos]) 169 return 0; 170 } 171 172 return 1; 173 } 174 175 static void handle_zero_page(struct bio_vec *bvec) 176 { 177 struct page *page = bvec->bv_page; 178 void *user_mem; 179 180 user_mem = kmap_atomic(page); 181 if (is_partial_io(bvec)) 182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 183 else 184 clear_page(user_mem); 185 kunmap_atomic(user_mem); 186 187 flush_dcache_page(page); 188 } 189 190 static ssize_t initstate_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 u32 val; 194 struct zram *zram = dev_to_zram(dev); 195 196 down_read(&zram->init_lock); 197 val = init_done(zram); 198 up_read(&zram->init_lock); 199 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 201 } 202 203 static ssize_t disksize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct zram *zram = dev_to_zram(dev); 207 208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 209 } 210 211 static ssize_t orig_data_size_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 struct zram *zram = dev_to_zram(dev); 215 216 deprecated_attr_warn("orig_data_size"); 217 return scnprintf(buf, PAGE_SIZE, "%llu\n", 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 219 } 220 221 static ssize_t mem_used_total_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 u64 val = 0; 225 struct zram *zram = dev_to_zram(dev); 226 227 deprecated_attr_warn("mem_used_total"); 228 down_read(&zram->init_lock); 229 if (init_done(zram)) { 230 struct zram_meta *meta = zram->meta; 231 val = zs_get_total_pages(meta->mem_pool); 232 } 233 up_read(&zram->init_lock); 234 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 236 } 237 238 static ssize_t mem_limit_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 u64 val; 242 struct zram *zram = dev_to_zram(dev); 243 244 deprecated_attr_warn("mem_limit"); 245 down_read(&zram->init_lock); 246 val = zram->limit_pages; 247 up_read(&zram->init_lock); 248 249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 250 } 251 252 static ssize_t mem_limit_store(struct device *dev, 253 struct device_attribute *attr, const char *buf, size_t len) 254 { 255 u64 limit; 256 char *tmp; 257 struct zram *zram = dev_to_zram(dev); 258 259 limit = memparse(buf, &tmp); 260 if (buf == tmp) /* no chars parsed, invalid input */ 261 return -EINVAL; 262 263 down_write(&zram->init_lock); 264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 265 up_write(&zram->init_lock); 266 267 return len; 268 } 269 270 static ssize_t mem_used_max_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 u64 val = 0; 274 struct zram *zram = dev_to_zram(dev); 275 276 deprecated_attr_warn("mem_used_max"); 277 down_read(&zram->init_lock); 278 if (init_done(zram)) 279 val = atomic_long_read(&zram->stats.max_used_pages); 280 up_read(&zram->init_lock); 281 282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 283 } 284 285 static ssize_t mem_used_max_store(struct device *dev, 286 struct device_attribute *attr, const char *buf, size_t len) 287 { 288 int err; 289 unsigned long val; 290 struct zram *zram = dev_to_zram(dev); 291 292 err = kstrtoul(buf, 10, &val); 293 if (err || val != 0) 294 return -EINVAL; 295 296 down_read(&zram->init_lock); 297 if (init_done(zram)) { 298 struct zram_meta *meta = zram->meta; 299 atomic_long_set(&zram->stats.max_used_pages, 300 zs_get_total_pages(meta->mem_pool)); 301 } 302 up_read(&zram->init_lock); 303 304 return len; 305 } 306 307 static ssize_t max_comp_streams_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 int val; 311 struct zram *zram = dev_to_zram(dev); 312 313 down_read(&zram->init_lock); 314 val = zram->max_comp_streams; 315 up_read(&zram->init_lock); 316 317 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 318 } 319 320 static ssize_t max_comp_streams_store(struct device *dev, 321 struct device_attribute *attr, const char *buf, size_t len) 322 { 323 int num; 324 struct zram *zram = dev_to_zram(dev); 325 int ret; 326 327 ret = kstrtoint(buf, 0, &num); 328 if (ret < 0) 329 return ret; 330 if (num < 1) 331 return -EINVAL; 332 333 down_write(&zram->init_lock); 334 if (init_done(zram)) { 335 if (!zcomp_set_max_streams(zram->comp, num)) { 336 pr_info("Cannot change max compression streams\n"); 337 ret = -EINVAL; 338 goto out; 339 } 340 } 341 342 zram->max_comp_streams = num; 343 ret = len; 344 out: 345 up_write(&zram->init_lock); 346 return ret; 347 } 348 349 static ssize_t comp_algorithm_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 size_t sz; 353 struct zram *zram = dev_to_zram(dev); 354 355 down_read(&zram->init_lock); 356 sz = zcomp_available_show(zram->compressor, buf); 357 up_read(&zram->init_lock); 358 359 return sz; 360 } 361 362 static ssize_t comp_algorithm_store(struct device *dev, 363 struct device_attribute *attr, const char *buf, size_t len) 364 { 365 struct zram *zram = dev_to_zram(dev); 366 size_t sz; 367 368 down_write(&zram->init_lock); 369 if (init_done(zram)) { 370 up_write(&zram->init_lock); 371 pr_info("Can't change algorithm for initialized device\n"); 372 return -EBUSY; 373 } 374 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 375 376 /* ignore trailing newline */ 377 sz = strlen(zram->compressor); 378 if (sz > 0 && zram->compressor[sz - 1] == '\n') 379 zram->compressor[sz - 1] = 0x00; 380 381 if (!zcomp_available_algorithm(zram->compressor)) 382 len = -EINVAL; 383 384 up_write(&zram->init_lock); 385 return len; 386 } 387 388 static ssize_t compact_store(struct device *dev, 389 struct device_attribute *attr, const char *buf, size_t len) 390 { 391 unsigned long nr_migrated; 392 struct zram *zram = dev_to_zram(dev); 393 struct zram_meta *meta; 394 395 down_read(&zram->init_lock); 396 if (!init_done(zram)) { 397 up_read(&zram->init_lock); 398 return -EINVAL; 399 } 400 401 meta = zram->meta; 402 nr_migrated = zs_compact(meta->mem_pool); 403 atomic64_add(nr_migrated, &zram->stats.num_migrated); 404 up_read(&zram->init_lock); 405 406 return len; 407 } 408 409 static ssize_t io_stat_show(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 struct zram *zram = dev_to_zram(dev); 413 ssize_t ret; 414 415 down_read(&zram->init_lock); 416 ret = scnprintf(buf, PAGE_SIZE, 417 "%8llu %8llu %8llu %8llu\n", 418 (u64)atomic64_read(&zram->stats.failed_reads), 419 (u64)atomic64_read(&zram->stats.failed_writes), 420 (u64)atomic64_read(&zram->stats.invalid_io), 421 (u64)atomic64_read(&zram->stats.notify_free)); 422 up_read(&zram->init_lock); 423 424 return ret; 425 } 426 427 static ssize_t mm_stat_show(struct device *dev, 428 struct device_attribute *attr, char *buf) 429 { 430 struct zram *zram = dev_to_zram(dev); 431 u64 orig_size, mem_used = 0; 432 long max_used; 433 ssize_t ret; 434 435 down_read(&zram->init_lock); 436 if (init_done(zram)) 437 mem_used = zs_get_total_pages(zram->meta->mem_pool); 438 439 orig_size = atomic64_read(&zram->stats.pages_stored); 440 max_used = atomic_long_read(&zram->stats.max_used_pages); 441 442 ret = scnprintf(buf, PAGE_SIZE, 443 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n", 444 orig_size << PAGE_SHIFT, 445 (u64)atomic64_read(&zram->stats.compr_data_size), 446 mem_used << PAGE_SHIFT, 447 zram->limit_pages << PAGE_SHIFT, 448 max_used << PAGE_SHIFT, 449 (u64)atomic64_read(&zram->stats.zero_pages), 450 (u64)atomic64_read(&zram->stats.num_migrated)); 451 up_read(&zram->init_lock); 452 453 return ret; 454 } 455 456 static DEVICE_ATTR_RO(io_stat); 457 static DEVICE_ATTR_RO(mm_stat); 458 ZRAM_ATTR_RO(num_reads); 459 ZRAM_ATTR_RO(num_writes); 460 ZRAM_ATTR_RO(failed_reads); 461 ZRAM_ATTR_RO(failed_writes); 462 ZRAM_ATTR_RO(invalid_io); 463 ZRAM_ATTR_RO(notify_free); 464 ZRAM_ATTR_RO(zero_pages); 465 ZRAM_ATTR_RO(compr_data_size); 466 467 static inline bool zram_meta_get(struct zram *zram) 468 { 469 if (atomic_inc_not_zero(&zram->refcount)) 470 return true; 471 return false; 472 } 473 474 static inline void zram_meta_put(struct zram *zram) 475 { 476 atomic_dec(&zram->refcount); 477 } 478 479 static void zram_meta_free(struct zram_meta *meta, u64 disksize) 480 { 481 size_t num_pages = disksize >> PAGE_SHIFT; 482 size_t index; 483 484 /* Free all pages that are still in this zram device */ 485 for (index = 0; index < num_pages; index++) { 486 unsigned long handle = meta->table[index].handle; 487 488 if (!handle) 489 continue; 490 491 zs_free(meta->mem_pool, handle); 492 } 493 494 zs_destroy_pool(meta->mem_pool); 495 vfree(meta->table); 496 kfree(meta); 497 } 498 499 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize) 500 { 501 size_t num_pages; 502 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 503 504 if (!meta) 505 return NULL; 506 507 num_pages = disksize >> PAGE_SHIFT; 508 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 509 if (!meta->table) { 510 pr_err("Error allocating zram address table\n"); 511 goto out_error; 512 } 513 514 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM); 515 if (!meta->mem_pool) { 516 pr_err("Error creating memory pool\n"); 517 goto out_error; 518 } 519 520 return meta; 521 522 out_error: 523 vfree(meta->table); 524 kfree(meta); 525 return NULL; 526 } 527 528 /* 529 * To protect concurrent access to the same index entry, 530 * caller should hold this table index entry's bit_spinlock to 531 * indicate this index entry is accessing. 532 */ 533 static void zram_free_page(struct zram *zram, size_t index) 534 { 535 struct zram_meta *meta = zram->meta; 536 unsigned long handle = meta->table[index].handle; 537 538 if (unlikely(!handle)) { 539 /* 540 * No memory is allocated for zero filled pages. 541 * Simply clear zero page flag. 542 */ 543 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 544 zram_clear_flag(meta, index, ZRAM_ZERO); 545 atomic64_dec(&zram->stats.zero_pages); 546 } 547 return; 548 } 549 550 zs_free(meta->mem_pool, handle); 551 552 atomic64_sub(zram_get_obj_size(meta, index), 553 &zram->stats.compr_data_size); 554 atomic64_dec(&zram->stats.pages_stored); 555 556 meta->table[index].handle = 0; 557 zram_set_obj_size(meta, index, 0); 558 } 559 560 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 561 { 562 int ret = 0; 563 unsigned char *cmem; 564 struct zram_meta *meta = zram->meta; 565 unsigned long handle; 566 size_t size; 567 568 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 569 handle = meta->table[index].handle; 570 size = zram_get_obj_size(meta, index); 571 572 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 573 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 574 clear_page(mem); 575 return 0; 576 } 577 578 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 579 if (size == PAGE_SIZE) 580 copy_page(mem, cmem); 581 else 582 ret = zcomp_decompress(zram->comp, cmem, size, mem); 583 zs_unmap_object(meta->mem_pool, handle); 584 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 585 586 /* Should NEVER happen. Return bio error if it does. */ 587 if (unlikely(ret)) { 588 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 589 return ret; 590 } 591 592 return 0; 593 } 594 595 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 596 u32 index, int offset) 597 { 598 int ret; 599 struct page *page; 600 unsigned char *user_mem, *uncmem = NULL; 601 struct zram_meta *meta = zram->meta; 602 page = bvec->bv_page; 603 604 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 605 if (unlikely(!meta->table[index].handle) || 606 zram_test_flag(meta, index, ZRAM_ZERO)) { 607 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 608 handle_zero_page(bvec); 609 return 0; 610 } 611 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 612 613 if (is_partial_io(bvec)) 614 /* Use a temporary buffer to decompress the page */ 615 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 616 617 user_mem = kmap_atomic(page); 618 if (!is_partial_io(bvec)) 619 uncmem = user_mem; 620 621 if (!uncmem) { 622 pr_info("Unable to allocate temp memory\n"); 623 ret = -ENOMEM; 624 goto out_cleanup; 625 } 626 627 ret = zram_decompress_page(zram, uncmem, index); 628 /* Should NEVER happen. Return bio error if it does. */ 629 if (unlikely(ret)) 630 goto out_cleanup; 631 632 if (is_partial_io(bvec)) 633 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 634 bvec->bv_len); 635 636 flush_dcache_page(page); 637 ret = 0; 638 out_cleanup: 639 kunmap_atomic(user_mem); 640 if (is_partial_io(bvec)) 641 kfree(uncmem); 642 return ret; 643 } 644 645 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 646 int offset) 647 { 648 int ret = 0; 649 size_t clen; 650 unsigned long handle; 651 struct page *page; 652 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 653 struct zram_meta *meta = zram->meta; 654 struct zcomp_strm *zstrm = NULL; 655 unsigned long alloced_pages; 656 657 page = bvec->bv_page; 658 if (is_partial_io(bvec)) { 659 /* 660 * This is a partial IO. We need to read the full page 661 * before to write the changes. 662 */ 663 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 664 if (!uncmem) { 665 ret = -ENOMEM; 666 goto out; 667 } 668 ret = zram_decompress_page(zram, uncmem, index); 669 if (ret) 670 goto out; 671 } 672 673 zstrm = zcomp_strm_find(zram->comp); 674 user_mem = kmap_atomic(page); 675 676 if (is_partial_io(bvec)) { 677 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 678 bvec->bv_len); 679 kunmap_atomic(user_mem); 680 user_mem = NULL; 681 } else { 682 uncmem = user_mem; 683 } 684 685 if (page_zero_filled(uncmem)) { 686 if (user_mem) 687 kunmap_atomic(user_mem); 688 /* Free memory associated with this sector now. */ 689 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 690 zram_free_page(zram, index); 691 zram_set_flag(meta, index, ZRAM_ZERO); 692 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 693 694 atomic64_inc(&zram->stats.zero_pages); 695 ret = 0; 696 goto out; 697 } 698 699 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 700 if (!is_partial_io(bvec)) { 701 kunmap_atomic(user_mem); 702 user_mem = NULL; 703 uncmem = NULL; 704 } 705 706 if (unlikely(ret)) { 707 pr_err("Compression failed! err=%d\n", ret); 708 goto out; 709 } 710 src = zstrm->buffer; 711 if (unlikely(clen > max_zpage_size)) { 712 clen = PAGE_SIZE; 713 if (is_partial_io(bvec)) 714 src = uncmem; 715 } 716 717 handle = zs_malloc(meta->mem_pool, clen); 718 if (!handle) { 719 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 720 index, clen); 721 ret = -ENOMEM; 722 goto out; 723 } 724 725 alloced_pages = zs_get_total_pages(meta->mem_pool); 726 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 727 zs_free(meta->mem_pool, handle); 728 ret = -ENOMEM; 729 goto out; 730 } 731 732 update_used_max(zram, alloced_pages); 733 734 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 735 736 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 737 src = kmap_atomic(page); 738 copy_page(cmem, src); 739 kunmap_atomic(src); 740 } else { 741 memcpy(cmem, src, clen); 742 } 743 744 zcomp_strm_release(zram->comp, zstrm); 745 zstrm = NULL; 746 zs_unmap_object(meta->mem_pool, handle); 747 748 /* 749 * Free memory associated with this sector 750 * before overwriting unused sectors. 751 */ 752 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 753 zram_free_page(zram, index); 754 755 meta->table[index].handle = handle; 756 zram_set_obj_size(meta, index, clen); 757 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 758 759 /* Update stats */ 760 atomic64_add(clen, &zram->stats.compr_data_size); 761 atomic64_inc(&zram->stats.pages_stored); 762 out: 763 if (zstrm) 764 zcomp_strm_release(zram->comp, zstrm); 765 if (is_partial_io(bvec)) 766 kfree(uncmem); 767 return ret; 768 } 769 770 /* 771 * zram_bio_discard - handler on discard request 772 * @index: physical block index in PAGE_SIZE units 773 * @offset: byte offset within physical block 774 */ 775 static void zram_bio_discard(struct zram *zram, u32 index, 776 int offset, struct bio *bio) 777 { 778 size_t n = bio->bi_iter.bi_size; 779 struct zram_meta *meta = zram->meta; 780 781 /* 782 * zram manages data in physical block size units. Because logical block 783 * size isn't identical with physical block size on some arch, we 784 * could get a discard request pointing to a specific offset within a 785 * certain physical block. Although we can handle this request by 786 * reading that physiclal block and decompressing and partially zeroing 787 * and re-compressing and then re-storing it, this isn't reasonable 788 * because our intent with a discard request is to save memory. So 789 * skipping this logical block is appropriate here. 790 */ 791 if (offset) { 792 if (n <= (PAGE_SIZE - offset)) 793 return; 794 795 n -= (PAGE_SIZE - offset); 796 index++; 797 } 798 799 while (n >= PAGE_SIZE) { 800 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 801 zram_free_page(zram, index); 802 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 803 atomic64_inc(&zram->stats.notify_free); 804 index++; 805 n -= PAGE_SIZE; 806 } 807 } 808 809 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 810 int offset, int rw) 811 { 812 unsigned long start_time = jiffies; 813 int ret; 814 815 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT, 816 &zram->disk->part0); 817 818 if (rw == READ) { 819 atomic64_inc(&zram->stats.num_reads); 820 ret = zram_bvec_read(zram, bvec, index, offset); 821 } else { 822 atomic64_inc(&zram->stats.num_writes); 823 ret = zram_bvec_write(zram, bvec, index, offset); 824 } 825 826 generic_end_io_acct(rw, &zram->disk->part0, start_time); 827 828 if (unlikely(ret)) { 829 if (rw == READ) 830 atomic64_inc(&zram->stats.failed_reads); 831 else 832 atomic64_inc(&zram->stats.failed_writes); 833 } 834 835 return ret; 836 } 837 838 static void __zram_make_request(struct zram *zram, struct bio *bio) 839 { 840 int offset, rw; 841 u32 index; 842 struct bio_vec bvec; 843 struct bvec_iter iter; 844 845 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 846 offset = (bio->bi_iter.bi_sector & 847 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 848 849 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 850 zram_bio_discard(zram, index, offset, bio); 851 bio_endio(bio, 0); 852 return; 853 } 854 855 rw = bio_data_dir(bio); 856 bio_for_each_segment(bvec, bio, iter) { 857 int max_transfer_size = PAGE_SIZE - offset; 858 859 if (bvec.bv_len > max_transfer_size) { 860 /* 861 * zram_bvec_rw() can only make operation on a single 862 * zram page. Split the bio vector. 863 */ 864 struct bio_vec bv; 865 866 bv.bv_page = bvec.bv_page; 867 bv.bv_len = max_transfer_size; 868 bv.bv_offset = bvec.bv_offset; 869 870 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0) 871 goto out; 872 873 bv.bv_len = bvec.bv_len - max_transfer_size; 874 bv.bv_offset += max_transfer_size; 875 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0) 876 goto out; 877 } else 878 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0) 879 goto out; 880 881 update_position(&index, &offset, &bvec); 882 } 883 884 set_bit(BIO_UPTODATE, &bio->bi_flags); 885 bio_endio(bio, 0); 886 return; 887 888 out: 889 bio_io_error(bio); 890 } 891 892 /* 893 * Handler function for all zram I/O requests. 894 */ 895 static void zram_make_request(struct request_queue *queue, struct bio *bio) 896 { 897 struct zram *zram = queue->queuedata; 898 899 if (unlikely(!zram_meta_get(zram))) 900 goto error; 901 902 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 903 bio->bi_iter.bi_size)) { 904 atomic64_inc(&zram->stats.invalid_io); 905 goto put_zram; 906 } 907 908 __zram_make_request(zram, bio); 909 zram_meta_put(zram); 910 return; 911 put_zram: 912 zram_meta_put(zram); 913 error: 914 bio_io_error(bio); 915 } 916 917 static void zram_slot_free_notify(struct block_device *bdev, 918 unsigned long index) 919 { 920 struct zram *zram; 921 struct zram_meta *meta; 922 923 zram = bdev->bd_disk->private_data; 924 meta = zram->meta; 925 926 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 927 zram_free_page(zram, index); 928 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 929 atomic64_inc(&zram->stats.notify_free); 930 } 931 932 static int zram_rw_page(struct block_device *bdev, sector_t sector, 933 struct page *page, int rw) 934 { 935 int offset, err = -EIO; 936 u32 index; 937 struct zram *zram; 938 struct bio_vec bv; 939 940 zram = bdev->bd_disk->private_data; 941 if (unlikely(!zram_meta_get(zram))) 942 goto out; 943 944 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 945 atomic64_inc(&zram->stats.invalid_io); 946 err = -EINVAL; 947 goto put_zram; 948 } 949 950 index = sector >> SECTORS_PER_PAGE_SHIFT; 951 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; 952 953 bv.bv_page = page; 954 bv.bv_len = PAGE_SIZE; 955 bv.bv_offset = 0; 956 957 err = zram_bvec_rw(zram, &bv, index, offset, rw); 958 put_zram: 959 zram_meta_put(zram); 960 out: 961 /* 962 * If I/O fails, just return error(ie, non-zero) without 963 * calling page_endio. 964 * It causes resubmit the I/O with bio request by upper functions 965 * of rw_page(e.g., swap_readpage, __swap_writepage) and 966 * bio->bi_end_io does things to handle the error 967 * (e.g., SetPageError, set_page_dirty and extra works). 968 */ 969 if (err == 0) 970 page_endio(page, rw, 0); 971 return err; 972 } 973 974 static void zram_reset_device(struct zram *zram) 975 { 976 struct zram_meta *meta; 977 struct zcomp *comp; 978 u64 disksize; 979 980 down_write(&zram->init_lock); 981 982 zram->limit_pages = 0; 983 984 if (!init_done(zram)) { 985 up_write(&zram->init_lock); 986 return; 987 } 988 989 meta = zram->meta; 990 comp = zram->comp; 991 disksize = zram->disksize; 992 /* 993 * Refcount will go down to 0 eventually and r/w handler 994 * cannot handle further I/O so it will bail out by 995 * check zram_meta_get. 996 */ 997 zram_meta_put(zram); 998 /* 999 * We want to free zram_meta in process context to avoid 1000 * deadlock between reclaim path and any other locks. 1001 */ 1002 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0); 1003 1004 /* Reset stats */ 1005 memset(&zram->stats, 0, sizeof(zram->stats)); 1006 zram->disksize = 0; 1007 zram->max_comp_streams = 1; 1008 1009 set_capacity(zram->disk, 0); 1010 part_stat_set_all(&zram->disk->part0, 0); 1011 1012 up_write(&zram->init_lock); 1013 /* I/O operation under all of CPU are done so let's free */ 1014 zram_meta_free(meta, disksize); 1015 zcomp_destroy(comp); 1016 } 1017 1018 static ssize_t disksize_store(struct device *dev, 1019 struct device_attribute *attr, const char *buf, size_t len) 1020 { 1021 u64 disksize; 1022 struct zcomp *comp; 1023 struct zram_meta *meta; 1024 struct zram *zram = dev_to_zram(dev); 1025 int err; 1026 1027 disksize = memparse(buf, NULL); 1028 if (!disksize) 1029 return -EINVAL; 1030 1031 disksize = PAGE_ALIGN(disksize); 1032 meta = zram_meta_alloc(zram->disk->disk_name, disksize); 1033 if (!meta) 1034 return -ENOMEM; 1035 1036 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 1037 if (IS_ERR(comp)) { 1038 pr_info("Cannot initialise %s compressing backend\n", 1039 zram->compressor); 1040 err = PTR_ERR(comp); 1041 goto out_free_meta; 1042 } 1043 1044 down_write(&zram->init_lock); 1045 if (init_done(zram)) { 1046 pr_info("Cannot change disksize for initialized device\n"); 1047 err = -EBUSY; 1048 goto out_destroy_comp; 1049 } 1050 1051 init_waitqueue_head(&zram->io_done); 1052 atomic_set(&zram->refcount, 1); 1053 zram->meta = meta; 1054 zram->comp = comp; 1055 zram->disksize = disksize; 1056 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1057 up_write(&zram->init_lock); 1058 1059 /* 1060 * Revalidate disk out of the init_lock to avoid lockdep splat. 1061 * It's okay because disk's capacity is protected by init_lock 1062 * so that revalidate_disk always sees up-to-date capacity. 1063 */ 1064 revalidate_disk(zram->disk); 1065 1066 return len; 1067 1068 out_destroy_comp: 1069 up_write(&zram->init_lock); 1070 zcomp_destroy(comp); 1071 out_free_meta: 1072 zram_meta_free(meta, disksize); 1073 return err; 1074 } 1075 1076 static ssize_t reset_store(struct device *dev, 1077 struct device_attribute *attr, const char *buf, size_t len) 1078 { 1079 int ret; 1080 unsigned short do_reset; 1081 struct zram *zram; 1082 struct block_device *bdev; 1083 1084 ret = kstrtou16(buf, 10, &do_reset); 1085 if (ret) 1086 return ret; 1087 1088 if (!do_reset) 1089 return -EINVAL; 1090 1091 zram = dev_to_zram(dev); 1092 bdev = bdget_disk(zram->disk, 0); 1093 if (!bdev) 1094 return -ENOMEM; 1095 1096 mutex_lock(&bdev->bd_mutex); 1097 /* Do not reset an active device or claimed device */ 1098 if (bdev->bd_openers || zram->claim) { 1099 mutex_unlock(&bdev->bd_mutex); 1100 bdput(bdev); 1101 return -EBUSY; 1102 } 1103 1104 /* From now on, anyone can't open /dev/zram[0-9] */ 1105 zram->claim = true; 1106 mutex_unlock(&bdev->bd_mutex); 1107 1108 /* Make sure all the pending I/O are finished */ 1109 fsync_bdev(bdev); 1110 zram_reset_device(zram); 1111 revalidate_disk(zram->disk); 1112 bdput(bdev); 1113 1114 mutex_lock(&bdev->bd_mutex); 1115 zram->claim = false; 1116 mutex_unlock(&bdev->bd_mutex); 1117 1118 return len; 1119 } 1120 1121 static int zram_open(struct block_device *bdev, fmode_t mode) 1122 { 1123 int ret = 0; 1124 struct zram *zram; 1125 1126 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1127 1128 zram = bdev->bd_disk->private_data; 1129 /* zram was claimed to reset so open request fails */ 1130 if (zram->claim) 1131 ret = -EBUSY; 1132 1133 return ret; 1134 } 1135 1136 static const struct block_device_operations zram_devops = { 1137 .open = zram_open, 1138 .swap_slot_free_notify = zram_slot_free_notify, 1139 .rw_page = zram_rw_page, 1140 .owner = THIS_MODULE 1141 }; 1142 1143 static DEVICE_ATTR_WO(compact); 1144 static DEVICE_ATTR_RW(disksize); 1145 static DEVICE_ATTR_RO(initstate); 1146 static DEVICE_ATTR_WO(reset); 1147 static DEVICE_ATTR_RO(orig_data_size); 1148 static DEVICE_ATTR_RO(mem_used_total); 1149 static DEVICE_ATTR_RW(mem_limit); 1150 static DEVICE_ATTR_RW(mem_used_max); 1151 static DEVICE_ATTR_RW(max_comp_streams); 1152 static DEVICE_ATTR_RW(comp_algorithm); 1153 1154 static struct attribute *zram_disk_attrs[] = { 1155 &dev_attr_disksize.attr, 1156 &dev_attr_initstate.attr, 1157 &dev_attr_reset.attr, 1158 &dev_attr_num_reads.attr, 1159 &dev_attr_num_writes.attr, 1160 &dev_attr_failed_reads.attr, 1161 &dev_attr_failed_writes.attr, 1162 &dev_attr_compact.attr, 1163 &dev_attr_invalid_io.attr, 1164 &dev_attr_notify_free.attr, 1165 &dev_attr_zero_pages.attr, 1166 &dev_attr_orig_data_size.attr, 1167 &dev_attr_compr_data_size.attr, 1168 &dev_attr_mem_used_total.attr, 1169 &dev_attr_mem_limit.attr, 1170 &dev_attr_mem_used_max.attr, 1171 &dev_attr_max_comp_streams.attr, 1172 &dev_attr_comp_algorithm.attr, 1173 &dev_attr_io_stat.attr, 1174 &dev_attr_mm_stat.attr, 1175 NULL, 1176 }; 1177 1178 static struct attribute_group zram_disk_attr_group = { 1179 .attrs = zram_disk_attrs, 1180 }; 1181 1182 /* 1183 * Allocate and initialize new zram device. the function returns 1184 * '>= 0' device_id upon success, and negative value otherwise. 1185 */ 1186 static int zram_add(void) 1187 { 1188 struct zram *zram; 1189 struct request_queue *queue; 1190 int ret, device_id; 1191 1192 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1193 if (!zram) 1194 return -ENOMEM; 1195 1196 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1197 if (ret < 0) 1198 goto out_free_dev; 1199 device_id = ret; 1200 1201 init_rwsem(&zram->init_lock); 1202 1203 queue = blk_alloc_queue(GFP_KERNEL); 1204 if (!queue) { 1205 pr_err("Error allocating disk queue for device %d\n", 1206 device_id); 1207 ret = -ENOMEM; 1208 goto out_free_idr; 1209 } 1210 1211 blk_queue_make_request(queue, zram_make_request); 1212 1213 /* gendisk structure */ 1214 zram->disk = alloc_disk(1); 1215 if (!zram->disk) { 1216 pr_warn("Error allocating disk structure for device %d\n", 1217 device_id); 1218 ret = -ENOMEM; 1219 goto out_free_queue; 1220 } 1221 1222 zram->disk->major = zram_major; 1223 zram->disk->first_minor = device_id; 1224 zram->disk->fops = &zram_devops; 1225 zram->disk->queue = queue; 1226 zram->disk->queue->queuedata = zram; 1227 zram->disk->private_data = zram; 1228 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1229 1230 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1231 set_capacity(zram->disk, 0); 1232 /* zram devices sort of resembles non-rotational disks */ 1233 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1234 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1235 /* 1236 * To ensure that we always get PAGE_SIZE aligned 1237 * and n*PAGE_SIZED sized I/O requests. 1238 */ 1239 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1240 blk_queue_logical_block_size(zram->disk->queue, 1241 ZRAM_LOGICAL_BLOCK_SIZE); 1242 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1243 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1244 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1245 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 1246 /* 1247 * zram_bio_discard() will clear all logical blocks if logical block 1248 * size is identical with physical block size(PAGE_SIZE). But if it is 1249 * different, we will skip discarding some parts of logical blocks in 1250 * the part of the request range which isn't aligned to physical block 1251 * size. So we can't ensure that all discarded logical blocks are 1252 * zeroed. 1253 */ 1254 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1255 zram->disk->queue->limits.discard_zeroes_data = 1; 1256 else 1257 zram->disk->queue->limits.discard_zeroes_data = 0; 1258 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1259 1260 add_disk(zram->disk); 1261 1262 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1263 &zram_disk_attr_group); 1264 if (ret < 0) { 1265 pr_warn("Error creating sysfs group"); 1266 goto out_free_disk; 1267 } 1268 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1269 zram->meta = NULL; 1270 zram->max_comp_streams = 1; 1271 1272 pr_info("Added device: %s\n", zram->disk->disk_name); 1273 return device_id; 1274 1275 out_free_disk: 1276 del_gendisk(zram->disk); 1277 put_disk(zram->disk); 1278 out_free_queue: 1279 blk_cleanup_queue(queue); 1280 out_free_idr: 1281 idr_remove(&zram_index_idr, device_id); 1282 out_free_dev: 1283 kfree(zram); 1284 return ret; 1285 } 1286 1287 static int zram_remove(struct zram *zram) 1288 { 1289 struct block_device *bdev; 1290 1291 bdev = bdget_disk(zram->disk, 0); 1292 if (!bdev) 1293 return -ENOMEM; 1294 1295 mutex_lock(&bdev->bd_mutex); 1296 if (bdev->bd_openers || zram->claim) { 1297 mutex_unlock(&bdev->bd_mutex); 1298 bdput(bdev); 1299 return -EBUSY; 1300 } 1301 1302 zram->claim = true; 1303 mutex_unlock(&bdev->bd_mutex); 1304 1305 /* 1306 * Remove sysfs first, so no one will perform a disksize 1307 * store while we destroy the devices. This also helps during 1308 * hot_remove -- zram_reset_device() is the last holder of 1309 * ->init_lock, no later/concurrent disksize_store() or any 1310 * other sysfs handlers are possible. 1311 */ 1312 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1313 &zram_disk_attr_group); 1314 1315 /* Make sure all the pending I/O are finished */ 1316 fsync_bdev(bdev); 1317 zram_reset_device(zram); 1318 bdput(bdev); 1319 1320 pr_info("Removed device: %s\n", zram->disk->disk_name); 1321 1322 idr_remove(&zram_index_idr, zram->disk->first_minor); 1323 blk_cleanup_queue(zram->disk->queue); 1324 del_gendisk(zram->disk); 1325 put_disk(zram->disk); 1326 kfree(zram); 1327 return 0; 1328 } 1329 1330 /* zram-control sysfs attributes */ 1331 static ssize_t hot_add_show(struct class *class, 1332 struct class_attribute *attr, 1333 char *buf) 1334 { 1335 int ret; 1336 1337 mutex_lock(&zram_index_mutex); 1338 ret = zram_add(); 1339 mutex_unlock(&zram_index_mutex); 1340 1341 if (ret < 0) 1342 return ret; 1343 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 1344 } 1345 1346 static ssize_t hot_remove_store(struct class *class, 1347 struct class_attribute *attr, 1348 const char *buf, 1349 size_t count) 1350 { 1351 struct zram *zram; 1352 int ret, dev_id; 1353 1354 /* dev_id is gendisk->first_minor, which is `int' */ 1355 ret = kstrtoint(buf, 10, &dev_id); 1356 if (ret) 1357 return ret; 1358 if (dev_id < 0) 1359 return -EINVAL; 1360 1361 mutex_lock(&zram_index_mutex); 1362 1363 zram = idr_find(&zram_index_idr, dev_id); 1364 if (zram) 1365 ret = zram_remove(zram); 1366 else 1367 ret = -ENODEV; 1368 1369 mutex_unlock(&zram_index_mutex); 1370 return ret ? ret : count; 1371 } 1372 1373 static struct class_attribute zram_control_class_attrs[] = { 1374 __ATTR_RO(hot_add), 1375 __ATTR_WO(hot_remove), 1376 __ATTR_NULL, 1377 }; 1378 1379 static struct class zram_control_class = { 1380 .name = "zram-control", 1381 .owner = THIS_MODULE, 1382 .class_attrs = zram_control_class_attrs, 1383 }; 1384 1385 static int zram_remove_cb(int id, void *ptr, void *data) 1386 { 1387 zram_remove(ptr); 1388 return 0; 1389 } 1390 1391 static void destroy_devices(void) 1392 { 1393 class_unregister(&zram_control_class); 1394 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 1395 idr_destroy(&zram_index_idr); 1396 unregister_blkdev(zram_major, "zram"); 1397 } 1398 1399 static int __init zram_init(void) 1400 { 1401 int ret; 1402 1403 ret = class_register(&zram_control_class); 1404 if (ret) { 1405 pr_warn("Unable to register zram-control class\n"); 1406 return ret; 1407 } 1408 1409 zram_major = register_blkdev(0, "zram"); 1410 if (zram_major <= 0) { 1411 pr_warn("Unable to get major number\n"); 1412 class_unregister(&zram_control_class); 1413 return -EBUSY; 1414 } 1415 1416 while (num_devices != 0) { 1417 mutex_lock(&zram_index_mutex); 1418 ret = zram_add(); 1419 mutex_unlock(&zram_index_mutex); 1420 if (ret < 0) 1421 goto out_error; 1422 num_devices--; 1423 } 1424 1425 return 0; 1426 1427 out_error: 1428 destroy_devices(); 1429 return ret; 1430 } 1431 1432 static void __exit zram_exit(void) 1433 { 1434 destroy_devices(); 1435 } 1436 1437 module_init(zram_init); 1438 module_exit(zram_exit); 1439 1440 module_param(num_devices, uint, 0); 1441 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 1442 1443 MODULE_LICENSE("Dual BSD/GPL"); 1444 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1445 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1446