1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/debugfs.h> 35 #include <linux/cpuhotplug.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = "lzo-rle"; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static void zram_free_page(struct zram *zram, size_t index); 55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 56 u32 index, int offset, struct bio *bio); 57 58 59 static int zram_slot_trylock(struct zram *zram, u32 index) 60 { 61 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 62 } 63 64 static void zram_slot_lock(struct zram *zram, u32 index) 65 { 66 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 67 } 68 69 static void zram_slot_unlock(struct zram *zram, u32 index) 70 { 71 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 72 } 73 74 static inline bool init_done(struct zram *zram) 75 { 76 return zram->disksize; 77 } 78 79 static inline struct zram *dev_to_zram(struct device *dev) 80 { 81 return (struct zram *)dev_to_disk(dev)->private_data; 82 } 83 84 static unsigned long zram_get_handle(struct zram *zram, u32 index) 85 { 86 return zram->table[index].handle; 87 } 88 89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 90 { 91 zram->table[index].handle = handle; 92 } 93 94 /* flag operations require table entry bit_spin_lock() being held */ 95 static bool zram_test_flag(struct zram *zram, u32 index, 96 enum zram_pageflags flag) 97 { 98 return zram->table[index].flags & BIT(flag); 99 } 100 101 static void zram_set_flag(struct zram *zram, u32 index, 102 enum zram_pageflags flag) 103 { 104 zram->table[index].flags |= BIT(flag); 105 } 106 107 static void zram_clear_flag(struct zram *zram, u32 index, 108 enum zram_pageflags flag) 109 { 110 zram->table[index].flags &= ~BIT(flag); 111 } 112 113 static inline void zram_set_element(struct zram *zram, u32 index, 114 unsigned long element) 115 { 116 zram->table[index].element = element; 117 } 118 119 static unsigned long zram_get_element(struct zram *zram, u32 index) 120 { 121 return zram->table[index].element; 122 } 123 124 static size_t zram_get_obj_size(struct zram *zram, u32 index) 125 { 126 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 127 } 128 129 static void zram_set_obj_size(struct zram *zram, 130 u32 index, size_t size) 131 { 132 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 133 134 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 135 } 136 137 static inline bool zram_allocated(struct zram *zram, u32 index) 138 { 139 return zram_get_obj_size(zram, index) || 140 zram_test_flag(zram, index, ZRAM_SAME) || 141 zram_test_flag(zram, index, ZRAM_WB); 142 } 143 144 #if PAGE_SIZE != 4096 145 static inline bool is_partial_io(struct bio_vec *bvec) 146 { 147 return bvec->bv_len != PAGE_SIZE; 148 } 149 #else 150 static inline bool is_partial_io(struct bio_vec *bvec) 151 { 152 return false; 153 } 154 #endif 155 156 /* 157 * Check if request is within bounds and aligned on zram logical blocks. 158 */ 159 static inline bool valid_io_request(struct zram *zram, 160 sector_t start, unsigned int size) 161 { 162 u64 end, bound; 163 164 /* unaligned request */ 165 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 166 return false; 167 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 168 return false; 169 170 end = start + (size >> SECTOR_SHIFT); 171 bound = zram->disksize >> SECTOR_SHIFT; 172 /* out of range range */ 173 if (unlikely(start >= bound || end > bound || start > end)) 174 return false; 175 176 /* I/O request is valid */ 177 return true; 178 } 179 180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 181 { 182 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 183 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 184 } 185 186 static inline void update_used_max(struct zram *zram, 187 const unsigned long pages) 188 { 189 unsigned long old_max, cur_max; 190 191 old_max = atomic_long_read(&zram->stats.max_used_pages); 192 193 do { 194 cur_max = old_max; 195 if (pages > cur_max) 196 old_max = atomic_long_cmpxchg( 197 &zram->stats.max_used_pages, cur_max, pages); 198 } while (old_max != cur_max); 199 } 200 201 static inline void zram_fill_page(void *ptr, unsigned long len, 202 unsigned long value) 203 { 204 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 205 memset_l(ptr, value, len / sizeof(unsigned long)); 206 } 207 208 static bool page_same_filled(void *ptr, unsigned long *element) 209 { 210 unsigned long *page; 211 unsigned long val; 212 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 213 214 page = (unsigned long *)ptr; 215 val = page[0]; 216 217 if (val != page[last_pos]) 218 return false; 219 220 for (pos = 1; pos < last_pos; pos++) { 221 if (val != page[pos]) 222 return false; 223 } 224 225 *element = val; 226 227 return true; 228 } 229 230 static ssize_t initstate_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 u32 val; 234 struct zram *zram = dev_to_zram(dev); 235 236 down_read(&zram->init_lock); 237 val = init_done(zram); 238 up_read(&zram->init_lock); 239 240 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 241 } 242 243 static ssize_t disksize_show(struct device *dev, 244 struct device_attribute *attr, char *buf) 245 { 246 struct zram *zram = dev_to_zram(dev); 247 248 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 249 } 250 251 static ssize_t mem_limit_store(struct device *dev, 252 struct device_attribute *attr, const char *buf, size_t len) 253 { 254 u64 limit; 255 char *tmp; 256 struct zram *zram = dev_to_zram(dev); 257 258 limit = memparse(buf, &tmp); 259 if (buf == tmp) /* no chars parsed, invalid input */ 260 return -EINVAL; 261 262 down_write(&zram->init_lock); 263 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 264 up_write(&zram->init_lock); 265 266 return len; 267 } 268 269 static ssize_t mem_used_max_store(struct device *dev, 270 struct device_attribute *attr, const char *buf, size_t len) 271 { 272 int err; 273 unsigned long val; 274 struct zram *zram = dev_to_zram(dev); 275 276 err = kstrtoul(buf, 10, &val); 277 if (err || val != 0) 278 return -EINVAL; 279 280 down_read(&zram->init_lock); 281 if (init_done(zram)) { 282 atomic_long_set(&zram->stats.max_used_pages, 283 zs_get_total_pages(zram->mem_pool)); 284 } 285 up_read(&zram->init_lock); 286 287 return len; 288 } 289 290 static ssize_t idle_store(struct device *dev, 291 struct device_attribute *attr, const char *buf, size_t len) 292 { 293 struct zram *zram = dev_to_zram(dev); 294 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 295 int index; 296 297 if (!sysfs_streq(buf, "all")) 298 return -EINVAL; 299 300 down_read(&zram->init_lock); 301 if (!init_done(zram)) { 302 up_read(&zram->init_lock); 303 return -EINVAL; 304 } 305 306 for (index = 0; index < nr_pages; index++) { 307 /* 308 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 309 * See the comment in writeback_store. 310 */ 311 zram_slot_lock(zram, index); 312 if (zram_allocated(zram, index) && 313 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) 314 zram_set_flag(zram, index, ZRAM_IDLE); 315 zram_slot_unlock(zram, index); 316 } 317 318 up_read(&zram->init_lock); 319 320 return len; 321 } 322 323 #ifdef CONFIG_ZRAM_WRITEBACK 324 static ssize_t writeback_limit_enable_store(struct device *dev, 325 struct device_attribute *attr, const char *buf, size_t len) 326 { 327 struct zram *zram = dev_to_zram(dev); 328 u64 val; 329 ssize_t ret = -EINVAL; 330 331 if (kstrtoull(buf, 10, &val)) 332 return ret; 333 334 down_read(&zram->init_lock); 335 spin_lock(&zram->wb_limit_lock); 336 zram->wb_limit_enable = val; 337 spin_unlock(&zram->wb_limit_lock); 338 up_read(&zram->init_lock); 339 ret = len; 340 341 return ret; 342 } 343 344 static ssize_t writeback_limit_enable_show(struct device *dev, 345 struct device_attribute *attr, char *buf) 346 { 347 bool val; 348 struct zram *zram = dev_to_zram(dev); 349 350 down_read(&zram->init_lock); 351 spin_lock(&zram->wb_limit_lock); 352 val = zram->wb_limit_enable; 353 spin_unlock(&zram->wb_limit_lock); 354 up_read(&zram->init_lock); 355 356 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 357 } 358 359 static ssize_t writeback_limit_store(struct device *dev, 360 struct device_attribute *attr, const char *buf, size_t len) 361 { 362 struct zram *zram = dev_to_zram(dev); 363 u64 val; 364 ssize_t ret = -EINVAL; 365 366 if (kstrtoull(buf, 10, &val)) 367 return ret; 368 369 down_read(&zram->init_lock); 370 spin_lock(&zram->wb_limit_lock); 371 zram->bd_wb_limit = val; 372 spin_unlock(&zram->wb_limit_lock); 373 up_read(&zram->init_lock); 374 ret = len; 375 376 return ret; 377 } 378 379 static ssize_t writeback_limit_show(struct device *dev, 380 struct device_attribute *attr, char *buf) 381 { 382 u64 val; 383 struct zram *zram = dev_to_zram(dev); 384 385 down_read(&zram->init_lock); 386 spin_lock(&zram->wb_limit_lock); 387 val = zram->bd_wb_limit; 388 spin_unlock(&zram->wb_limit_lock); 389 up_read(&zram->init_lock); 390 391 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 392 } 393 394 static void reset_bdev(struct zram *zram) 395 { 396 struct block_device *bdev; 397 398 if (!zram->backing_dev) 399 return; 400 401 bdev = zram->bdev; 402 if (zram->old_block_size) 403 set_blocksize(bdev, zram->old_block_size); 404 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 405 /* hope filp_close flush all of IO */ 406 filp_close(zram->backing_dev, NULL); 407 zram->backing_dev = NULL; 408 zram->old_block_size = 0; 409 zram->bdev = NULL; 410 zram->disk->queue->backing_dev_info->capabilities |= 411 BDI_CAP_SYNCHRONOUS_IO; 412 kvfree(zram->bitmap); 413 zram->bitmap = NULL; 414 } 415 416 static ssize_t backing_dev_show(struct device *dev, 417 struct device_attribute *attr, char *buf) 418 { 419 struct file *file; 420 struct zram *zram = dev_to_zram(dev); 421 char *p; 422 ssize_t ret; 423 424 down_read(&zram->init_lock); 425 file = zram->backing_dev; 426 if (!file) { 427 memcpy(buf, "none\n", 5); 428 up_read(&zram->init_lock); 429 return 5; 430 } 431 432 p = file_path(file, buf, PAGE_SIZE - 1); 433 if (IS_ERR(p)) { 434 ret = PTR_ERR(p); 435 goto out; 436 } 437 438 ret = strlen(p); 439 memmove(buf, p, ret); 440 buf[ret++] = '\n'; 441 out: 442 up_read(&zram->init_lock); 443 return ret; 444 } 445 446 static ssize_t backing_dev_store(struct device *dev, 447 struct device_attribute *attr, const char *buf, size_t len) 448 { 449 char *file_name; 450 size_t sz; 451 struct file *backing_dev = NULL; 452 struct inode *inode; 453 struct address_space *mapping; 454 unsigned int bitmap_sz, old_block_size = 0; 455 unsigned long nr_pages, *bitmap = NULL; 456 struct block_device *bdev = NULL; 457 int err; 458 struct zram *zram = dev_to_zram(dev); 459 460 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 461 if (!file_name) 462 return -ENOMEM; 463 464 down_write(&zram->init_lock); 465 if (init_done(zram)) { 466 pr_info("Can't setup backing device for initialized device\n"); 467 err = -EBUSY; 468 goto out; 469 } 470 471 strlcpy(file_name, buf, PATH_MAX); 472 /* ignore trailing newline */ 473 sz = strlen(file_name); 474 if (sz > 0 && file_name[sz - 1] == '\n') 475 file_name[sz - 1] = 0x00; 476 477 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 478 if (IS_ERR(backing_dev)) { 479 err = PTR_ERR(backing_dev); 480 backing_dev = NULL; 481 goto out; 482 } 483 484 mapping = backing_dev->f_mapping; 485 inode = mapping->host; 486 487 /* Support only block device in this moment */ 488 if (!S_ISBLK(inode->i_mode)) { 489 err = -ENOTBLK; 490 goto out; 491 } 492 493 bdev = bdgrab(I_BDEV(inode)); 494 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 495 if (err < 0) { 496 bdev = NULL; 497 goto out; 498 } 499 500 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 501 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 502 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 503 if (!bitmap) { 504 err = -ENOMEM; 505 goto out; 506 } 507 508 old_block_size = block_size(bdev); 509 err = set_blocksize(bdev, PAGE_SIZE); 510 if (err) 511 goto out; 512 513 reset_bdev(zram); 514 515 zram->old_block_size = old_block_size; 516 zram->bdev = bdev; 517 zram->backing_dev = backing_dev; 518 zram->bitmap = bitmap; 519 zram->nr_pages = nr_pages; 520 /* 521 * With writeback feature, zram does asynchronous IO so it's no longer 522 * synchronous device so let's remove synchronous io flag. Othewise, 523 * upper layer(e.g., swap) could wait IO completion rather than 524 * (submit and return), which will cause system sluggish. 525 * Furthermore, when the IO function returns(e.g., swap_readpage), 526 * upper layer expects IO was done so it could deallocate the page 527 * freely but in fact, IO is going on so finally could cause 528 * use-after-free when the IO is really done. 529 */ 530 zram->disk->queue->backing_dev_info->capabilities &= 531 ~BDI_CAP_SYNCHRONOUS_IO; 532 up_write(&zram->init_lock); 533 534 pr_info("setup backing device %s\n", file_name); 535 kfree(file_name); 536 537 return len; 538 out: 539 if (bitmap) 540 kvfree(bitmap); 541 542 if (bdev) 543 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 544 545 if (backing_dev) 546 filp_close(backing_dev, NULL); 547 548 up_write(&zram->init_lock); 549 550 kfree(file_name); 551 552 return err; 553 } 554 555 static unsigned long alloc_block_bdev(struct zram *zram) 556 { 557 unsigned long blk_idx = 1; 558 retry: 559 /* skip 0 bit to confuse zram.handle = 0 */ 560 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 561 if (blk_idx == zram->nr_pages) 562 return 0; 563 564 if (test_and_set_bit(blk_idx, zram->bitmap)) 565 goto retry; 566 567 atomic64_inc(&zram->stats.bd_count); 568 return blk_idx; 569 } 570 571 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 572 { 573 int was_set; 574 575 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 576 WARN_ON_ONCE(!was_set); 577 atomic64_dec(&zram->stats.bd_count); 578 } 579 580 static void zram_page_end_io(struct bio *bio) 581 { 582 struct page *page = bio_first_page_all(bio); 583 584 page_endio(page, op_is_write(bio_op(bio)), 585 blk_status_to_errno(bio->bi_status)); 586 bio_put(bio); 587 } 588 589 /* 590 * Returns 1 if the submission is successful. 591 */ 592 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 593 unsigned long entry, struct bio *parent) 594 { 595 struct bio *bio; 596 597 bio = bio_alloc(GFP_ATOMIC, 1); 598 if (!bio) 599 return -ENOMEM; 600 601 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 602 bio_set_dev(bio, zram->bdev); 603 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 604 bio_put(bio); 605 return -EIO; 606 } 607 608 if (!parent) { 609 bio->bi_opf = REQ_OP_READ; 610 bio->bi_end_io = zram_page_end_io; 611 } else { 612 bio->bi_opf = parent->bi_opf; 613 bio_chain(bio, parent); 614 } 615 616 submit_bio(bio); 617 return 1; 618 } 619 620 #define HUGE_WRITEBACK 1 621 #define IDLE_WRITEBACK 2 622 623 static ssize_t writeback_store(struct device *dev, 624 struct device_attribute *attr, const char *buf, size_t len) 625 { 626 struct zram *zram = dev_to_zram(dev); 627 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 628 unsigned long index; 629 struct bio bio; 630 struct bio_vec bio_vec; 631 struct page *page; 632 ssize_t ret = len; 633 int mode; 634 unsigned long blk_idx = 0; 635 636 if (sysfs_streq(buf, "idle")) 637 mode = IDLE_WRITEBACK; 638 else if (sysfs_streq(buf, "huge")) 639 mode = HUGE_WRITEBACK; 640 else 641 return -EINVAL; 642 643 down_read(&zram->init_lock); 644 if (!init_done(zram)) { 645 ret = -EINVAL; 646 goto release_init_lock; 647 } 648 649 if (!zram->backing_dev) { 650 ret = -ENODEV; 651 goto release_init_lock; 652 } 653 654 page = alloc_page(GFP_KERNEL); 655 if (!page) { 656 ret = -ENOMEM; 657 goto release_init_lock; 658 } 659 660 for (index = 0; index < nr_pages; index++) { 661 struct bio_vec bvec; 662 663 bvec.bv_page = page; 664 bvec.bv_len = PAGE_SIZE; 665 bvec.bv_offset = 0; 666 667 spin_lock(&zram->wb_limit_lock); 668 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 669 spin_unlock(&zram->wb_limit_lock); 670 ret = -EIO; 671 break; 672 } 673 spin_unlock(&zram->wb_limit_lock); 674 675 if (!blk_idx) { 676 blk_idx = alloc_block_bdev(zram); 677 if (!blk_idx) { 678 ret = -ENOSPC; 679 break; 680 } 681 } 682 683 zram_slot_lock(zram, index); 684 if (!zram_allocated(zram, index)) 685 goto next; 686 687 if (zram_test_flag(zram, index, ZRAM_WB) || 688 zram_test_flag(zram, index, ZRAM_SAME) || 689 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 690 goto next; 691 692 if (mode == IDLE_WRITEBACK && 693 !zram_test_flag(zram, index, ZRAM_IDLE)) 694 goto next; 695 if (mode == HUGE_WRITEBACK && 696 !zram_test_flag(zram, index, ZRAM_HUGE)) 697 goto next; 698 /* 699 * Clearing ZRAM_UNDER_WB is duty of caller. 700 * IOW, zram_free_page never clear it. 701 */ 702 zram_set_flag(zram, index, ZRAM_UNDER_WB); 703 /* Need for hugepage writeback racing */ 704 zram_set_flag(zram, index, ZRAM_IDLE); 705 zram_slot_unlock(zram, index); 706 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 707 zram_slot_lock(zram, index); 708 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 709 zram_clear_flag(zram, index, ZRAM_IDLE); 710 zram_slot_unlock(zram, index); 711 continue; 712 } 713 714 bio_init(&bio, &bio_vec, 1); 715 bio_set_dev(&bio, zram->bdev); 716 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 717 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC; 718 719 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 720 bvec.bv_offset); 721 /* 722 * XXX: A single page IO would be inefficient for write 723 * but it would be not bad as starter. 724 */ 725 ret = submit_bio_wait(&bio); 726 if (ret) { 727 zram_slot_lock(zram, index); 728 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 729 zram_clear_flag(zram, index, ZRAM_IDLE); 730 zram_slot_unlock(zram, index); 731 continue; 732 } 733 734 atomic64_inc(&zram->stats.bd_writes); 735 /* 736 * We released zram_slot_lock so need to check if the slot was 737 * changed. If there is freeing for the slot, we can catch it 738 * easily by zram_allocated. 739 * A subtle case is the slot is freed/reallocated/marked as 740 * ZRAM_IDLE again. To close the race, idle_store doesn't 741 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 742 * Thus, we could close the race by checking ZRAM_IDLE bit. 743 */ 744 zram_slot_lock(zram, index); 745 if (!zram_allocated(zram, index) || 746 !zram_test_flag(zram, index, ZRAM_IDLE)) { 747 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 748 zram_clear_flag(zram, index, ZRAM_IDLE); 749 goto next; 750 } 751 752 zram_free_page(zram, index); 753 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 754 zram_set_flag(zram, index, ZRAM_WB); 755 zram_set_element(zram, index, blk_idx); 756 blk_idx = 0; 757 atomic64_inc(&zram->stats.pages_stored); 758 spin_lock(&zram->wb_limit_lock); 759 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 760 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 761 spin_unlock(&zram->wb_limit_lock); 762 next: 763 zram_slot_unlock(zram, index); 764 } 765 766 if (blk_idx) 767 free_block_bdev(zram, blk_idx); 768 __free_page(page); 769 release_init_lock: 770 up_read(&zram->init_lock); 771 772 return ret; 773 } 774 775 struct zram_work { 776 struct work_struct work; 777 struct zram *zram; 778 unsigned long entry; 779 struct bio *bio; 780 struct bio_vec bvec; 781 }; 782 783 #if PAGE_SIZE != 4096 784 static void zram_sync_read(struct work_struct *work) 785 { 786 struct zram_work *zw = container_of(work, struct zram_work, work); 787 struct zram *zram = zw->zram; 788 unsigned long entry = zw->entry; 789 struct bio *bio = zw->bio; 790 791 read_from_bdev_async(zram, &zw->bvec, entry, bio); 792 } 793 794 /* 795 * Block layer want one ->make_request_fn to be active at a time 796 * so if we use chained IO with parent IO in same context, 797 * it's a deadlock. To avoid, it, it uses worker thread context. 798 */ 799 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 800 unsigned long entry, struct bio *bio) 801 { 802 struct zram_work work; 803 804 work.bvec = *bvec; 805 work.zram = zram; 806 work.entry = entry; 807 work.bio = bio; 808 809 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 810 queue_work(system_unbound_wq, &work.work); 811 flush_work(&work.work); 812 destroy_work_on_stack(&work.work); 813 814 return 1; 815 } 816 #else 817 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 818 unsigned long entry, struct bio *bio) 819 { 820 WARN_ON(1); 821 return -EIO; 822 } 823 #endif 824 825 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 826 unsigned long entry, struct bio *parent, bool sync) 827 { 828 atomic64_inc(&zram->stats.bd_reads); 829 if (sync) 830 return read_from_bdev_sync(zram, bvec, entry, parent); 831 else 832 return read_from_bdev_async(zram, bvec, entry, parent); 833 } 834 #else 835 static inline void reset_bdev(struct zram *zram) {}; 836 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 837 unsigned long entry, struct bio *parent, bool sync) 838 { 839 return -EIO; 840 } 841 842 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 843 #endif 844 845 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 846 847 static struct dentry *zram_debugfs_root; 848 849 static void zram_debugfs_create(void) 850 { 851 zram_debugfs_root = debugfs_create_dir("zram", NULL); 852 } 853 854 static void zram_debugfs_destroy(void) 855 { 856 debugfs_remove_recursive(zram_debugfs_root); 857 } 858 859 static void zram_accessed(struct zram *zram, u32 index) 860 { 861 zram_clear_flag(zram, index, ZRAM_IDLE); 862 zram->table[index].ac_time = ktime_get_boottime(); 863 } 864 865 static ssize_t read_block_state(struct file *file, char __user *buf, 866 size_t count, loff_t *ppos) 867 { 868 char *kbuf; 869 ssize_t index, written = 0; 870 struct zram *zram = file->private_data; 871 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 872 struct timespec64 ts; 873 874 kbuf = kvmalloc(count, GFP_KERNEL); 875 if (!kbuf) 876 return -ENOMEM; 877 878 down_read(&zram->init_lock); 879 if (!init_done(zram)) { 880 up_read(&zram->init_lock); 881 kvfree(kbuf); 882 return -EINVAL; 883 } 884 885 for (index = *ppos; index < nr_pages; index++) { 886 int copied; 887 888 zram_slot_lock(zram, index); 889 if (!zram_allocated(zram, index)) 890 goto next; 891 892 ts = ktime_to_timespec64(zram->table[index].ac_time); 893 copied = snprintf(kbuf + written, count, 894 "%12zd %12lld.%06lu %c%c%c%c\n", 895 index, (s64)ts.tv_sec, 896 ts.tv_nsec / NSEC_PER_USEC, 897 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 898 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 899 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 900 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); 901 902 if (count < copied) { 903 zram_slot_unlock(zram, index); 904 break; 905 } 906 written += copied; 907 count -= copied; 908 next: 909 zram_slot_unlock(zram, index); 910 *ppos += 1; 911 } 912 913 up_read(&zram->init_lock); 914 if (copy_to_user(buf, kbuf, written)) 915 written = -EFAULT; 916 kvfree(kbuf); 917 918 return written; 919 } 920 921 static const struct file_operations proc_zram_block_state_op = { 922 .open = simple_open, 923 .read = read_block_state, 924 .llseek = default_llseek, 925 }; 926 927 static void zram_debugfs_register(struct zram *zram) 928 { 929 if (!zram_debugfs_root) 930 return; 931 932 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 933 zram_debugfs_root); 934 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 935 zram, &proc_zram_block_state_op); 936 } 937 938 static void zram_debugfs_unregister(struct zram *zram) 939 { 940 debugfs_remove_recursive(zram->debugfs_dir); 941 } 942 #else 943 static void zram_debugfs_create(void) {}; 944 static void zram_debugfs_destroy(void) {}; 945 static void zram_accessed(struct zram *zram, u32 index) 946 { 947 zram_clear_flag(zram, index, ZRAM_IDLE); 948 }; 949 static void zram_debugfs_register(struct zram *zram) {}; 950 static void zram_debugfs_unregister(struct zram *zram) {}; 951 #endif 952 953 /* 954 * We switched to per-cpu streams and this attr is not needed anymore. 955 * However, we will keep it around for some time, because: 956 * a) we may revert per-cpu streams in the future 957 * b) it's visible to user space and we need to follow our 2 years 958 * retirement rule; but we already have a number of 'soon to be 959 * altered' attrs, so max_comp_streams need to wait for the next 960 * layoff cycle. 961 */ 962 static ssize_t max_comp_streams_show(struct device *dev, 963 struct device_attribute *attr, char *buf) 964 { 965 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 966 } 967 968 static ssize_t max_comp_streams_store(struct device *dev, 969 struct device_attribute *attr, const char *buf, size_t len) 970 { 971 return len; 972 } 973 974 static ssize_t comp_algorithm_show(struct device *dev, 975 struct device_attribute *attr, char *buf) 976 { 977 size_t sz; 978 struct zram *zram = dev_to_zram(dev); 979 980 down_read(&zram->init_lock); 981 sz = zcomp_available_show(zram->compressor, buf); 982 up_read(&zram->init_lock); 983 984 return sz; 985 } 986 987 static ssize_t comp_algorithm_store(struct device *dev, 988 struct device_attribute *attr, const char *buf, size_t len) 989 { 990 struct zram *zram = dev_to_zram(dev); 991 char compressor[ARRAY_SIZE(zram->compressor)]; 992 size_t sz; 993 994 strlcpy(compressor, buf, sizeof(compressor)); 995 /* ignore trailing newline */ 996 sz = strlen(compressor); 997 if (sz > 0 && compressor[sz - 1] == '\n') 998 compressor[sz - 1] = 0x00; 999 1000 if (!zcomp_available_algorithm(compressor)) 1001 return -EINVAL; 1002 1003 down_write(&zram->init_lock); 1004 if (init_done(zram)) { 1005 up_write(&zram->init_lock); 1006 pr_info("Can't change algorithm for initialized device\n"); 1007 return -EBUSY; 1008 } 1009 1010 strcpy(zram->compressor, compressor); 1011 up_write(&zram->init_lock); 1012 return len; 1013 } 1014 1015 static ssize_t compact_store(struct device *dev, 1016 struct device_attribute *attr, const char *buf, size_t len) 1017 { 1018 struct zram *zram = dev_to_zram(dev); 1019 1020 down_read(&zram->init_lock); 1021 if (!init_done(zram)) { 1022 up_read(&zram->init_lock); 1023 return -EINVAL; 1024 } 1025 1026 zs_compact(zram->mem_pool); 1027 up_read(&zram->init_lock); 1028 1029 return len; 1030 } 1031 1032 static ssize_t io_stat_show(struct device *dev, 1033 struct device_attribute *attr, char *buf) 1034 { 1035 struct zram *zram = dev_to_zram(dev); 1036 ssize_t ret; 1037 1038 down_read(&zram->init_lock); 1039 ret = scnprintf(buf, PAGE_SIZE, 1040 "%8llu %8llu %8llu %8llu\n", 1041 (u64)atomic64_read(&zram->stats.failed_reads), 1042 (u64)atomic64_read(&zram->stats.failed_writes), 1043 (u64)atomic64_read(&zram->stats.invalid_io), 1044 (u64)atomic64_read(&zram->stats.notify_free)); 1045 up_read(&zram->init_lock); 1046 1047 return ret; 1048 } 1049 1050 static ssize_t mm_stat_show(struct device *dev, 1051 struct device_attribute *attr, char *buf) 1052 { 1053 struct zram *zram = dev_to_zram(dev); 1054 struct zs_pool_stats pool_stats; 1055 u64 orig_size, mem_used = 0; 1056 long max_used; 1057 ssize_t ret; 1058 1059 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1060 1061 down_read(&zram->init_lock); 1062 if (init_done(zram)) { 1063 mem_used = zs_get_total_pages(zram->mem_pool); 1064 zs_pool_stats(zram->mem_pool, &pool_stats); 1065 } 1066 1067 orig_size = atomic64_read(&zram->stats.pages_stored); 1068 max_used = atomic_long_read(&zram->stats.max_used_pages); 1069 1070 ret = scnprintf(buf, PAGE_SIZE, 1071 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n", 1072 orig_size << PAGE_SHIFT, 1073 (u64)atomic64_read(&zram->stats.compr_data_size), 1074 mem_used << PAGE_SHIFT, 1075 zram->limit_pages << PAGE_SHIFT, 1076 max_used << PAGE_SHIFT, 1077 (u64)atomic64_read(&zram->stats.same_pages), 1078 pool_stats.pages_compacted, 1079 (u64)atomic64_read(&zram->stats.huge_pages)); 1080 up_read(&zram->init_lock); 1081 1082 return ret; 1083 } 1084 1085 #ifdef CONFIG_ZRAM_WRITEBACK 1086 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1087 static ssize_t bd_stat_show(struct device *dev, 1088 struct device_attribute *attr, char *buf) 1089 { 1090 struct zram *zram = dev_to_zram(dev); 1091 ssize_t ret; 1092 1093 down_read(&zram->init_lock); 1094 ret = scnprintf(buf, PAGE_SIZE, 1095 "%8llu %8llu %8llu\n", 1096 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1097 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1098 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1099 up_read(&zram->init_lock); 1100 1101 return ret; 1102 } 1103 #endif 1104 1105 static ssize_t debug_stat_show(struct device *dev, 1106 struct device_attribute *attr, char *buf) 1107 { 1108 int version = 1; 1109 struct zram *zram = dev_to_zram(dev); 1110 ssize_t ret; 1111 1112 down_read(&zram->init_lock); 1113 ret = scnprintf(buf, PAGE_SIZE, 1114 "version: %d\n%8llu %8llu\n", 1115 version, 1116 (u64)atomic64_read(&zram->stats.writestall), 1117 (u64)atomic64_read(&zram->stats.miss_free)); 1118 up_read(&zram->init_lock); 1119 1120 return ret; 1121 } 1122 1123 static DEVICE_ATTR_RO(io_stat); 1124 static DEVICE_ATTR_RO(mm_stat); 1125 #ifdef CONFIG_ZRAM_WRITEBACK 1126 static DEVICE_ATTR_RO(bd_stat); 1127 #endif 1128 static DEVICE_ATTR_RO(debug_stat); 1129 1130 static void zram_meta_free(struct zram *zram, u64 disksize) 1131 { 1132 size_t num_pages = disksize >> PAGE_SHIFT; 1133 size_t index; 1134 1135 /* Free all pages that are still in this zram device */ 1136 for (index = 0; index < num_pages; index++) 1137 zram_free_page(zram, index); 1138 1139 zs_destroy_pool(zram->mem_pool); 1140 vfree(zram->table); 1141 } 1142 1143 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1144 { 1145 size_t num_pages; 1146 1147 num_pages = disksize >> PAGE_SHIFT; 1148 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1149 if (!zram->table) 1150 return false; 1151 1152 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1153 if (!zram->mem_pool) { 1154 vfree(zram->table); 1155 return false; 1156 } 1157 1158 if (!huge_class_size) 1159 huge_class_size = zs_huge_class_size(zram->mem_pool); 1160 return true; 1161 } 1162 1163 /* 1164 * To protect concurrent access to the same index entry, 1165 * caller should hold this table index entry's bit_spinlock to 1166 * indicate this index entry is accessing. 1167 */ 1168 static void zram_free_page(struct zram *zram, size_t index) 1169 { 1170 unsigned long handle; 1171 1172 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1173 zram->table[index].ac_time = 0; 1174 #endif 1175 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1176 zram_clear_flag(zram, index, ZRAM_IDLE); 1177 1178 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1179 zram_clear_flag(zram, index, ZRAM_HUGE); 1180 atomic64_dec(&zram->stats.huge_pages); 1181 } 1182 1183 if (zram_test_flag(zram, index, ZRAM_WB)) { 1184 zram_clear_flag(zram, index, ZRAM_WB); 1185 free_block_bdev(zram, zram_get_element(zram, index)); 1186 goto out; 1187 } 1188 1189 /* 1190 * No memory is allocated for same element filled pages. 1191 * Simply clear same page flag. 1192 */ 1193 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1194 zram_clear_flag(zram, index, ZRAM_SAME); 1195 atomic64_dec(&zram->stats.same_pages); 1196 goto out; 1197 } 1198 1199 handle = zram_get_handle(zram, index); 1200 if (!handle) 1201 return; 1202 1203 zs_free(zram->mem_pool, handle); 1204 1205 atomic64_sub(zram_get_obj_size(zram, index), 1206 &zram->stats.compr_data_size); 1207 out: 1208 atomic64_dec(&zram->stats.pages_stored); 1209 zram_set_handle(zram, index, 0); 1210 zram_set_obj_size(zram, index, 0); 1211 WARN_ON_ONCE(zram->table[index].flags & 1212 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1213 } 1214 1215 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1216 struct bio *bio, bool partial_io) 1217 { 1218 int ret; 1219 unsigned long handle; 1220 unsigned int size; 1221 void *src, *dst; 1222 1223 zram_slot_lock(zram, index); 1224 if (zram_test_flag(zram, index, ZRAM_WB)) { 1225 struct bio_vec bvec; 1226 1227 zram_slot_unlock(zram, index); 1228 1229 bvec.bv_page = page; 1230 bvec.bv_len = PAGE_SIZE; 1231 bvec.bv_offset = 0; 1232 return read_from_bdev(zram, &bvec, 1233 zram_get_element(zram, index), 1234 bio, partial_io); 1235 } 1236 1237 handle = zram_get_handle(zram, index); 1238 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1239 unsigned long value; 1240 void *mem; 1241 1242 value = handle ? zram_get_element(zram, index) : 0; 1243 mem = kmap_atomic(page); 1244 zram_fill_page(mem, PAGE_SIZE, value); 1245 kunmap_atomic(mem); 1246 zram_slot_unlock(zram, index); 1247 return 0; 1248 } 1249 1250 size = zram_get_obj_size(zram, index); 1251 1252 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1253 if (size == PAGE_SIZE) { 1254 dst = kmap_atomic(page); 1255 memcpy(dst, src, PAGE_SIZE); 1256 kunmap_atomic(dst); 1257 ret = 0; 1258 } else { 1259 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); 1260 1261 dst = kmap_atomic(page); 1262 ret = zcomp_decompress(zstrm, src, size, dst); 1263 kunmap_atomic(dst); 1264 zcomp_stream_put(zram->comp); 1265 } 1266 zs_unmap_object(zram->mem_pool, handle); 1267 zram_slot_unlock(zram, index); 1268 1269 /* Should NEVER happen. Return bio error if it does. */ 1270 if (unlikely(ret)) 1271 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1272 1273 return ret; 1274 } 1275 1276 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1277 u32 index, int offset, struct bio *bio) 1278 { 1279 int ret; 1280 struct page *page; 1281 1282 page = bvec->bv_page; 1283 if (is_partial_io(bvec)) { 1284 /* Use a temporary buffer to decompress the page */ 1285 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1286 if (!page) 1287 return -ENOMEM; 1288 } 1289 1290 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1291 if (unlikely(ret)) 1292 goto out; 1293 1294 if (is_partial_io(bvec)) { 1295 void *dst = kmap_atomic(bvec->bv_page); 1296 void *src = kmap_atomic(page); 1297 1298 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 1299 kunmap_atomic(src); 1300 kunmap_atomic(dst); 1301 } 1302 out: 1303 if (is_partial_io(bvec)) 1304 __free_page(page); 1305 1306 return ret; 1307 } 1308 1309 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1310 u32 index, struct bio *bio) 1311 { 1312 int ret = 0; 1313 unsigned long alloced_pages; 1314 unsigned long handle = 0; 1315 unsigned int comp_len = 0; 1316 void *src, *dst, *mem; 1317 struct zcomp_strm *zstrm; 1318 struct page *page = bvec->bv_page; 1319 unsigned long element = 0; 1320 enum zram_pageflags flags = 0; 1321 1322 mem = kmap_atomic(page); 1323 if (page_same_filled(mem, &element)) { 1324 kunmap_atomic(mem); 1325 /* Free memory associated with this sector now. */ 1326 flags = ZRAM_SAME; 1327 atomic64_inc(&zram->stats.same_pages); 1328 goto out; 1329 } 1330 kunmap_atomic(mem); 1331 1332 compress_again: 1333 zstrm = zcomp_stream_get(zram->comp); 1334 src = kmap_atomic(page); 1335 ret = zcomp_compress(zstrm, src, &comp_len); 1336 kunmap_atomic(src); 1337 1338 if (unlikely(ret)) { 1339 zcomp_stream_put(zram->comp); 1340 pr_err("Compression failed! err=%d\n", ret); 1341 zs_free(zram->mem_pool, handle); 1342 return ret; 1343 } 1344 1345 if (comp_len >= huge_class_size) 1346 comp_len = PAGE_SIZE; 1347 /* 1348 * handle allocation has 2 paths: 1349 * a) fast path is executed with preemption disabled (for 1350 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1351 * since we can't sleep; 1352 * b) slow path enables preemption and attempts to allocate 1353 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1354 * put per-cpu compression stream and, thus, to re-do 1355 * the compression once handle is allocated. 1356 * 1357 * if we have a 'non-null' handle here then we are coming 1358 * from the slow path and handle has already been allocated. 1359 */ 1360 if (!handle) 1361 handle = zs_malloc(zram->mem_pool, comp_len, 1362 __GFP_KSWAPD_RECLAIM | 1363 __GFP_NOWARN | 1364 __GFP_HIGHMEM | 1365 __GFP_MOVABLE); 1366 if (!handle) { 1367 zcomp_stream_put(zram->comp); 1368 atomic64_inc(&zram->stats.writestall); 1369 handle = zs_malloc(zram->mem_pool, comp_len, 1370 GFP_NOIO | __GFP_HIGHMEM | 1371 __GFP_MOVABLE); 1372 if (handle) 1373 goto compress_again; 1374 return -ENOMEM; 1375 } 1376 1377 alloced_pages = zs_get_total_pages(zram->mem_pool); 1378 update_used_max(zram, alloced_pages); 1379 1380 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1381 zcomp_stream_put(zram->comp); 1382 zs_free(zram->mem_pool, handle); 1383 return -ENOMEM; 1384 } 1385 1386 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1387 1388 src = zstrm->buffer; 1389 if (comp_len == PAGE_SIZE) 1390 src = kmap_atomic(page); 1391 memcpy(dst, src, comp_len); 1392 if (comp_len == PAGE_SIZE) 1393 kunmap_atomic(src); 1394 1395 zcomp_stream_put(zram->comp); 1396 zs_unmap_object(zram->mem_pool, handle); 1397 atomic64_add(comp_len, &zram->stats.compr_data_size); 1398 out: 1399 /* 1400 * Free memory associated with this sector 1401 * before overwriting unused sectors. 1402 */ 1403 zram_slot_lock(zram, index); 1404 zram_free_page(zram, index); 1405 1406 if (comp_len == PAGE_SIZE) { 1407 zram_set_flag(zram, index, ZRAM_HUGE); 1408 atomic64_inc(&zram->stats.huge_pages); 1409 } 1410 1411 if (flags) { 1412 zram_set_flag(zram, index, flags); 1413 zram_set_element(zram, index, element); 1414 } else { 1415 zram_set_handle(zram, index, handle); 1416 zram_set_obj_size(zram, index, comp_len); 1417 } 1418 zram_slot_unlock(zram, index); 1419 1420 /* Update stats */ 1421 atomic64_inc(&zram->stats.pages_stored); 1422 return ret; 1423 } 1424 1425 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1426 u32 index, int offset, struct bio *bio) 1427 { 1428 int ret; 1429 struct page *page = NULL; 1430 void *src; 1431 struct bio_vec vec; 1432 1433 vec = *bvec; 1434 if (is_partial_io(bvec)) { 1435 void *dst; 1436 /* 1437 * This is a partial IO. We need to read the full page 1438 * before to write the changes. 1439 */ 1440 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1441 if (!page) 1442 return -ENOMEM; 1443 1444 ret = __zram_bvec_read(zram, page, index, bio, true); 1445 if (ret) 1446 goto out; 1447 1448 src = kmap_atomic(bvec->bv_page); 1449 dst = kmap_atomic(page); 1450 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 1451 kunmap_atomic(dst); 1452 kunmap_atomic(src); 1453 1454 vec.bv_page = page; 1455 vec.bv_len = PAGE_SIZE; 1456 vec.bv_offset = 0; 1457 } 1458 1459 ret = __zram_bvec_write(zram, &vec, index, bio); 1460 out: 1461 if (is_partial_io(bvec)) 1462 __free_page(page); 1463 return ret; 1464 } 1465 1466 /* 1467 * zram_bio_discard - handler on discard request 1468 * @index: physical block index in PAGE_SIZE units 1469 * @offset: byte offset within physical block 1470 */ 1471 static void zram_bio_discard(struct zram *zram, u32 index, 1472 int offset, struct bio *bio) 1473 { 1474 size_t n = bio->bi_iter.bi_size; 1475 1476 /* 1477 * zram manages data in physical block size units. Because logical block 1478 * size isn't identical with physical block size on some arch, we 1479 * could get a discard request pointing to a specific offset within a 1480 * certain physical block. Although we can handle this request by 1481 * reading that physiclal block and decompressing and partially zeroing 1482 * and re-compressing and then re-storing it, this isn't reasonable 1483 * because our intent with a discard request is to save memory. So 1484 * skipping this logical block is appropriate here. 1485 */ 1486 if (offset) { 1487 if (n <= (PAGE_SIZE - offset)) 1488 return; 1489 1490 n -= (PAGE_SIZE - offset); 1491 index++; 1492 } 1493 1494 while (n >= PAGE_SIZE) { 1495 zram_slot_lock(zram, index); 1496 zram_free_page(zram, index); 1497 zram_slot_unlock(zram, index); 1498 atomic64_inc(&zram->stats.notify_free); 1499 index++; 1500 n -= PAGE_SIZE; 1501 } 1502 } 1503 1504 /* 1505 * Returns errno if it has some problem. Otherwise return 0 or 1. 1506 * Returns 0 if IO request was done synchronously 1507 * Returns 1 if IO request was successfully submitted. 1508 */ 1509 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1510 int offset, unsigned int op, struct bio *bio) 1511 { 1512 unsigned long start_time = jiffies; 1513 struct request_queue *q = zram->disk->queue; 1514 int ret; 1515 1516 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT, 1517 &zram->disk->part0); 1518 1519 if (!op_is_write(op)) { 1520 atomic64_inc(&zram->stats.num_reads); 1521 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1522 flush_dcache_page(bvec->bv_page); 1523 } else { 1524 atomic64_inc(&zram->stats.num_writes); 1525 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1526 } 1527 1528 generic_end_io_acct(q, op, &zram->disk->part0, start_time); 1529 1530 zram_slot_lock(zram, index); 1531 zram_accessed(zram, index); 1532 zram_slot_unlock(zram, index); 1533 1534 if (unlikely(ret < 0)) { 1535 if (!op_is_write(op)) 1536 atomic64_inc(&zram->stats.failed_reads); 1537 else 1538 atomic64_inc(&zram->stats.failed_writes); 1539 } 1540 1541 return ret; 1542 } 1543 1544 static void __zram_make_request(struct zram *zram, struct bio *bio) 1545 { 1546 int offset; 1547 u32 index; 1548 struct bio_vec bvec; 1549 struct bvec_iter iter; 1550 1551 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1552 offset = (bio->bi_iter.bi_sector & 1553 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1554 1555 switch (bio_op(bio)) { 1556 case REQ_OP_DISCARD: 1557 case REQ_OP_WRITE_ZEROES: 1558 zram_bio_discard(zram, index, offset, bio); 1559 bio_endio(bio); 1560 return; 1561 default: 1562 break; 1563 } 1564 1565 bio_for_each_segment(bvec, bio, iter) { 1566 struct bio_vec bv = bvec; 1567 unsigned int unwritten = bvec.bv_len; 1568 1569 do { 1570 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1571 unwritten); 1572 if (zram_bvec_rw(zram, &bv, index, offset, 1573 bio_op(bio), bio) < 0) 1574 goto out; 1575 1576 bv.bv_offset += bv.bv_len; 1577 unwritten -= bv.bv_len; 1578 1579 update_position(&index, &offset, &bv); 1580 } while (unwritten); 1581 } 1582 1583 bio_endio(bio); 1584 return; 1585 1586 out: 1587 bio_io_error(bio); 1588 } 1589 1590 /* 1591 * Handler function for all zram I/O requests. 1592 */ 1593 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 1594 { 1595 struct zram *zram = queue->queuedata; 1596 1597 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1598 bio->bi_iter.bi_size)) { 1599 atomic64_inc(&zram->stats.invalid_io); 1600 goto error; 1601 } 1602 1603 __zram_make_request(zram, bio); 1604 return BLK_QC_T_NONE; 1605 1606 error: 1607 bio_io_error(bio); 1608 return BLK_QC_T_NONE; 1609 } 1610 1611 static void zram_slot_free_notify(struct block_device *bdev, 1612 unsigned long index) 1613 { 1614 struct zram *zram; 1615 1616 zram = bdev->bd_disk->private_data; 1617 1618 atomic64_inc(&zram->stats.notify_free); 1619 if (!zram_slot_trylock(zram, index)) { 1620 atomic64_inc(&zram->stats.miss_free); 1621 return; 1622 } 1623 1624 zram_free_page(zram, index); 1625 zram_slot_unlock(zram, index); 1626 } 1627 1628 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1629 struct page *page, unsigned int op) 1630 { 1631 int offset, ret; 1632 u32 index; 1633 struct zram *zram; 1634 struct bio_vec bv; 1635 1636 if (PageTransHuge(page)) 1637 return -ENOTSUPP; 1638 zram = bdev->bd_disk->private_data; 1639 1640 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1641 atomic64_inc(&zram->stats.invalid_io); 1642 ret = -EINVAL; 1643 goto out; 1644 } 1645 1646 index = sector >> SECTORS_PER_PAGE_SHIFT; 1647 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1648 1649 bv.bv_page = page; 1650 bv.bv_len = PAGE_SIZE; 1651 bv.bv_offset = 0; 1652 1653 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1654 out: 1655 /* 1656 * If I/O fails, just return error(ie, non-zero) without 1657 * calling page_endio. 1658 * It causes resubmit the I/O with bio request by upper functions 1659 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1660 * bio->bi_end_io does things to handle the error 1661 * (e.g., SetPageError, set_page_dirty and extra works). 1662 */ 1663 if (unlikely(ret < 0)) 1664 return ret; 1665 1666 switch (ret) { 1667 case 0: 1668 page_endio(page, op_is_write(op), 0); 1669 break; 1670 case 1: 1671 ret = 0; 1672 break; 1673 default: 1674 WARN_ON(1); 1675 } 1676 return ret; 1677 } 1678 1679 static void zram_reset_device(struct zram *zram) 1680 { 1681 struct zcomp *comp; 1682 u64 disksize; 1683 1684 down_write(&zram->init_lock); 1685 1686 zram->limit_pages = 0; 1687 1688 if (!init_done(zram)) { 1689 up_write(&zram->init_lock); 1690 return; 1691 } 1692 1693 comp = zram->comp; 1694 disksize = zram->disksize; 1695 zram->disksize = 0; 1696 1697 set_capacity(zram->disk, 0); 1698 part_stat_set_all(&zram->disk->part0, 0); 1699 1700 up_write(&zram->init_lock); 1701 /* I/O operation under all of CPU are done so let's free */ 1702 zram_meta_free(zram, disksize); 1703 memset(&zram->stats, 0, sizeof(zram->stats)); 1704 zcomp_destroy(comp); 1705 reset_bdev(zram); 1706 } 1707 1708 static ssize_t disksize_store(struct device *dev, 1709 struct device_attribute *attr, const char *buf, size_t len) 1710 { 1711 u64 disksize; 1712 struct zcomp *comp; 1713 struct zram *zram = dev_to_zram(dev); 1714 int err; 1715 1716 disksize = memparse(buf, NULL); 1717 if (!disksize) 1718 return -EINVAL; 1719 1720 down_write(&zram->init_lock); 1721 if (init_done(zram)) { 1722 pr_info("Cannot change disksize for initialized device\n"); 1723 err = -EBUSY; 1724 goto out_unlock; 1725 } 1726 1727 disksize = PAGE_ALIGN(disksize); 1728 if (!zram_meta_alloc(zram, disksize)) { 1729 err = -ENOMEM; 1730 goto out_unlock; 1731 } 1732 1733 comp = zcomp_create(zram->compressor); 1734 if (IS_ERR(comp)) { 1735 pr_err("Cannot initialise %s compressing backend\n", 1736 zram->compressor); 1737 err = PTR_ERR(comp); 1738 goto out_free_meta; 1739 } 1740 1741 zram->comp = comp; 1742 zram->disksize = disksize; 1743 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1744 1745 revalidate_disk(zram->disk); 1746 up_write(&zram->init_lock); 1747 1748 return len; 1749 1750 out_free_meta: 1751 zram_meta_free(zram, disksize); 1752 out_unlock: 1753 up_write(&zram->init_lock); 1754 return err; 1755 } 1756 1757 static ssize_t reset_store(struct device *dev, 1758 struct device_attribute *attr, const char *buf, size_t len) 1759 { 1760 int ret; 1761 unsigned short do_reset; 1762 struct zram *zram; 1763 struct block_device *bdev; 1764 1765 ret = kstrtou16(buf, 10, &do_reset); 1766 if (ret) 1767 return ret; 1768 1769 if (!do_reset) 1770 return -EINVAL; 1771 1772 zram = dev_to_zram(dev); 1773 bdev = bdget_disk(zram->disk, 0); 1774 if (!bdev) 1775 return -ENOMEM; 1776 1777 mutex_lock(&bdev->bd_mutex); 1778 /* Do not reset an active device or claimed device */ 1779 if (bdev->bd_openers || zram->claim) { 1780 mutex_unlock(&bdev->bd_mutex); 1781 bdput(bdev); 1782 return -EBUSY; 1783 } 1784 1785 /* From now on, anyone can't open /dev/zram[0-9] */ 1786 zram->claim = true; 1787 mutex_unlock(&bdev->bd_mutex); 1788 1789 /* Make sure all the pending I/O are finished */ 1790 fsync_bdev(bdev); 1791 zram_reset_device(zram); 1792 revalidate_disk(zram->disk); 1793 bdput(bdev); 1794 1795 mutex_lock(&bdev->bd_mutex); 1796 zram->claim = false; 1797 mutex_unlock(&bdev->bd_mutex); 1798 1799 return len; 1800 } 1801 1802 static int zram_open(struct block_device *bdev, fmode_t mode) 1803 { 1804 int ret = 0; 1805 struct zram *zram; 1806 1807 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1808 1809 zram = bdev->bd_disk->private_data; 1810 /* zram was claimed to reset so open request fails */ 1811 if (zram->claim) 1812 ret = -EBUSY; 1813 1814 return ret; 1815 } 1816 1817 static const struct block_device_operations zram_devops = { 1818 .open = zram_open, 1819 .swap_slot_free_notify = zram_slot_free_notify, 1820 .rw_page = zram_rw_page, 1821 .owner = THIS_MODULE 1822 }; 1823 1824 static DEVICE_ATTR_WO(compact); 1825 static DEVICE_ATTR_RW(disksize); 1826 static DEVICE_ATTR_RO(initstate); 1827 static DEVICE_ATTR_WO(reset); 1828 static DEVICE_ATTR_WO(mem_limit); 1829 static DEVICE_ATTR_WO(mem_used_max); 1830 static DEVICE_ATTR_WO(idle); 1831 static DEVICE_ATTR_RW(max_comp_streams); 1832 static DEVICE_ATTR_RW(comp_algorithm); 1833 #ifdef CONFIG_ZRAM_WRITEBACK 1834 static DEVICE_ATTR_RW(backing_dev); 1835 static DEVICE_ATTR_WO(writeback); 1836 static DEVICE_ATTR_RW(writeback_limit); 1837 static DEVICE_ATTR_RW(writeback_limit_enable); 1838 #endif 1839 1840 static struct attribute *zram_disk_attrs[] = { 1841 &dev_attr_disksize.attr, 1842 &dev_attr_initstate.attr, 1843 &dev_attr_reset.attr, 1844 &dev_attr_compact.attr, 1845 &dev_attr_mem_limit.attr, 1846 &dev_attr_mem_used_max.attr, 1847 &dev_attr_idle.attr, 1848 &dev_attr_max_comp_streams.attr, 1849 &dev_attr_comp_algorithm.attr, 1850 #ifdef CONFIG_ZRAM_WRITEBACK 1851 &dev_attr_backing_dev.attr, 1852 &dev_attr_writeback.attr, 1853 &dev_attr_writeback_limit.attr, 1854 &dev_attr_writeback_limit_enable.attr, 1855 #endif 1856 &dev_attr_io_stat.attr, 1857 &dev_attr_mm_stat.attr, 1858 #ifdef CONFIG_ZRAM_WRITEBACK 1859 &dev_attr_bd_stat.attr, 1860 #endif 1861 &dev_attr_debug_stat.attr, 1862 NULL, 1863 }; 1864 1865 static const struct attribute_group zram_disk_attr_group = { 1866 .attrs = zram_disk_attrs, 1867 }; 1868 1869 static const struct attribute_group *zram_disk_attr_groups[] = { 1870 &zram_disk_attr_group, 1871 NULL, 1872 }; 1873 1874 /* 1875 * Allocate and initialize new zram device. the function returns 1876 * '>= 0' device_id upon success, and negative value otherwise. 1877 */ 1878 static int zram_add(void) 1879 { 1880 struct zram *zram; 1881 struct request_queue *queue; 1882 int ret, device_id; 1883 1884 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1885 if (!zram) 1886 return -ENOMEM; 1887 1888 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1889 if (ret < 0) 1890 goto out_free_dev; 1891 device_id = ret; 1892 1893 init_rwsem(&zram->init_lock); 1894 #ifdef CONFIG_ZRAM_WRITEBACK 1895 spin_lock_init(&zram->wb_limit_lock); 1896 #endif 1897 queue = blk_alloc_queue(GFP_KERNEL); 1898 if (!queue) { 1899 pr_err("Error allocating disk queue for device %d\n", 1900 device_id); 1901 ret = -ENOMEM; 1902 goto out_free_idr; 1903 } 1904 1905 blk_queue_make_request(queue, zram_make_request); 1906 1907 /* gendisk structure */ 1908 zram->disk = alloc_disk(1); 1909 if (!zram->disk) { 1910 pr_err("Error allocating disk structure for device %d\n", 1911 device_id); 1912 ret = -ENOMEM; 1913 goto out_free_queue; 1914 } 1915 1916 zram->disk->major = zram_major; 1917 zram->disk->first_minor = device_id; 1918 zram->disk->fops = &zram_devops; 1919 zram->disk->queue = queue; 1920 zram->disk->queue->queuedata = zram; 1921 zram->disk->private_data = zram; 1922 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1923 1924 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1925 set_capacity(zram->disk, 0); 1926 /* zram devices sort of resembles non-rotational disks */ 1927 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1928 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1929 1930 /* 1931 * To ensure that we always get PAGE_SIZE aligned 1932 * and n*PAGE_SIZED sized I/O requests. 1933 */ 1934 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1935 blk_queue_logical_block_size(zram->disk->queue, 1936 ZRAM_LOGICAL_BLOCK_SIZE); 1937 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1938 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1939 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1940 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1941 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue); 1942 1943 /* 1944 * zram_bio_discard() will clear all logical blocks if logical block 1945 * size is identical with physical block size(PAGE_SIZE). But if it is 1946 * different, we will skip discarding some parts of logical blocks in 1947 * the part of the request range which isn't aligned to physical block 1948 * size. So we can't ensure that all discarded logical blocks are 1949 * zeroed. 1950 */ 1951 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1952 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1953 1954 zram->disk->queue->backing_dev_info->capabilities |= 1955 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO); 1956 device_add_disk(NULL, zram->disk, zram_disk_attr_groups); 1957 1958 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1959 1960 zram_debugfs_register(zram); 1961 pr_info("Added device: %s\n", zram->disk->disk_name); 1962 return device_id; 1963 1964 out_free_queue: 1965 blk_cleanup_queue(queue); 1966 out_free_idr: 1967 idr_remove(&zram_index_idr, device_id); 1968 out_free_dev: 1969 kfree(zram); 1970 return ret; 1971 } 1972 1973 static int zram_remove(struct zram *zram) 1974 { 1975 struct block_device *bdev; 1976 1977 bdev = bdget_disk(zram->disk, 0); 1978 if (!bdev) 1979 return -ENOMEM; 1980 1981 mutex_lock(&bdev->bd_mutex); 1982 if (bdev->bd_openers || zram->claim) { 1983 mutex_unlock(&bdev->bd_mutex); 1984 bdput(bdev); 1985 return -EBUSY; 1986 } 1987 1988 zram->claim = true; 1989 mutex_unlock(&bdev->bd_mutex); 1990 1991 zram_debugfs_unregister(zram); 1992 1993 /* Make sure all the pending I/O are finished */ 1994 fsync_bdev(bdev); 1995 zram_reset_device(zram); 1996 bdput(bdev); 1997 1998 pr_info("Removed device: %s\n", zram->disk->disk_name); 1999 2000 del_gendisk(zram->disk); 2001 blk_cleanup_queue(zram->disk->queue); 2002 put_disk(zram->disk); 2003 kfree(zram); 2004 return 0; 2005 } 2006 2007 /* zram-control sysfs attributes */ 2008 2009 /* 2010 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2011 * sense that reading from this file does alter the state of your system -- it 2012 * creates a new un-initialized zram device and returns back this device's 2013 * device_id (or an error code if it fails to create a new device). 2014 */ 2015 static ssize_t hot_add_show(struct class *class, 2016 struct class_attribute *attr, 2017 char *buf) 2018 { 2019 int ret; 2020 2021 mutex_lock(&zram_index_mutex); 2022 ret = zram_add(); 2023 mutex_unlock(&zram_index_mutex); 2024 2025 if (ret < 0) 2026 return ret; 2027 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2028 } 2029 static CLASS_ATTR_RO(hot_add); 2030 2031 static ssize_t hot_remove_store(struct class *class, 2032 struct class_attribute *attr, 2033 const char *buf, 2034 size_t count) 2035 { 2036 struct zram *zram; 2037 int ret, dev_id; 2038 2039 /* dev_id is gendisk->first_minor, which is `int' */ 2040 ret = kstrtoint(buf, 10, &dev_id); 2041 if (ret) 2042 return ret; 2043 if (dev_id < 0) 2044 return -EINVAL; 2045 2046 mutex_lock(&zram_index_mutex); 2047 2048 zram = idr_find(&zram_index_idr, dev_id); 2049 if (zram) { 2050 ret = zram_remove(zram); 2051 if (!ret) 2052 idr_remove(&zram_index_idr, dev_id); 2053 } else { 2054 ret = -ENODEV; 2055 } 2056 2057 mutex_unlock(&zram_index_mutex); 2058 return ret ? ret : count; 2059 } 2060 static CLASS_ATTR_WO(hot_remove); 2061 2062 static struct attribute *zram_control_class_attrs[] = { 2063 &class_attr_hot_add.attr, 2064 &class_attr_hot_remove.attr, 2065 NULL, 2066 }; 2067 ATTRIBUTE_GROUPS(zram_control_class); 2068 2069 static struct class zram_control_class = { 2070 .name = "zram-control", 2071 .owner = THIS_MODULE, 2072 .class_groups = zram_control_class_groups, 2073 }; 2074 2075 static int zram_remove_cb(int id, void *ptr, void *data) 2076 { 2077 zram_remove(ptr); 2078 return 0; 2079 } 2080 2081 static void destroy_devices(void) 2082 { 2083 class_unregister(&zram_control_class); 2084 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2085 zram_debugfs_destroy(); 2086 idr_destroy(&zram_index_idr); 2087 unregister_blkdev(zram_major, "zram"); 2088 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2089 } 2090 2091 static int __init zram_init(void) 2092 { 2093 int ret; 2094 2095 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2096 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2097 if (ret < 0) 2098 return ret; 2099 2100 ret = class_register(&zram_control_class); 2101 if (ret) { 2102 pr_err("Unable to register zram-control class\n"); 2103 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2104 return ret; 2105 } 2106 2107 zram_debugfs_create(); 2108 zram_major = register_blkdev(0, "zram"); 2109 if (zram_major <= 0) { 2110 pr_err("Unable to get major number\n"); 2111 class_unregister(&zram_control_class); 2112 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2113 return -EBUSY; 2114 } 2115 2116 while (num_devices != 0) { 2117 mutex_lock(&zram_index_mutex); 2118 ret = zram_add(); 2119 mutex_unlock(&zram_index_mutex); 2120 if (ret < 0) 2121 goto out_error; 2122 num_devices--; 2123 } 2124 2125 return 0; 2126 2127 out_error: 2128 destroy_devices(); 2129 return ret; 2130 } 2131 2132 static void __exit zram_exit(void) 2133 { 2134 destroy_devices(); 2135 } 2136 2137 module_init(zram_init); 2138 module_exit(zram_exit); 2139 2140 module_param(num_devices, uint, 0); 2141 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2142 2143 MODULE_LICENSE("Dual BSD/GPL"); 2144 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2145 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2146