1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/debugfs.h> 35 #include <linux/cpuhotplug.h> 36 #include <linux/part_stat.h> 37 38 #include "zram_drv.h" 39 40 static DEFINE_IDR(zram_index_idr); 41 /* idr index must be protected */ 42 static DEFINE_MUTEX(zram_index_mutex); 43 44 static int zram_major; 45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 46 47 /* Module params (documentation at end) */ 48 static unsigned int num_devices = 1; 49 /* 50 * Pages that compress to sizes equals or greater than this are stored 51 * uncompressed in memory. 52 */ 53 static size_t huge_class_size; 54 55 static const struct block_device_operations zram_devops; 56 static const struct block_device_operations zram_wb_devops; 57 58 static void zram_free_page(struct zram *zram, size_t index); 59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 60 u32 index, int offset, struct bio *bio); 61 62 63 static int zram_slot_trylock(struct zram *zram, u32 index) 64 { 65 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 66 } 67 68 static void zram_slot_lock(struct zram *zram, u32 index) 69 { 70 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 71 } 72 73 static void zram_slot_unlock(struct zram *zram, u32 index) 74 { 75 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 76 } 77 78 static inline bool init_done(struct zram *zram) 79 { 80 return zram->disksize; 81 } 82 83 static inline struct zram *dev_to_zram(struct device *dev) 84 { 85 return (struct zram *)dev_to_disk(dev)->private_data; 86 } 87 88 static unsigned long zram_get_handle(struct zram *zram, u32 index) 89 { 90 return zram->table[index].handle; 91 } 92 93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 94 { 95 zram->table[index].handle = handle; 96 } 97 98 /* flag operations require table entry bit_spin_lock() being held */ 99 static bool zram_test_flag(struct zram *zram, u32 index, 100 enum zram_pageflags flag) 101 { 102 return zram->table[index].flags & BIT(flag); 103 } 104 105 static void zram_set_flag(struct zram *zram, u32 index, 106 enum zram_pageflags flag) 107 { 108 zram->table[index].flags |= BIT(flag); 109 } 110 111 static void zram_clear_flag(struct zram *zram, u32 index, 112 enum zram_pageflags flag) 113 { 114 zram->table[index].flags &= ~BIT(flag); 115 } 116 117 static inline void zram_set_element(struct zram *zram, u32 index, 118 unsigned long element) 119 { 120 zram->table[index].element = element; 121 } 122 123 static unsigned long zram_get_element(struct zram *zram, u32 index) 124 { 125 return zram->table[index].element; 126 } 127 128 static size_t zram_get_obj_size(struct zram *zram, u32 index) 129 { 130 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 131 } 132 133 static void zram_set_obj_size(struct zram *zram, 134 u32 index, size_t size) 135 { 136 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 137 138 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 139 } 140 141 static inline bool zram_allocated(struct zram *zram, u32 index) 142 { 143 return zram_get_obj_size(zram, index) || 144 zram_test_flag(zram, index, ZRAM_SAME) || 145 zram_test_flag(zram, index, ZRAM_WB); 146 } 147 148 #if PAGE_SIZE != 4096 149 static inline bool is_partial_io(struct bio_vec *bvec) 150 { 151 return bvec->bv_len != PAGE_SIZE; 152 } 153 #else 154 static inline bool is_partial_io(struct bio_vec *bvec) 155 { 156 return false; 157 } 158 #endif 159 160 /* 161 * Check if request is within bounds and aligned on zram logical blocks. 162 */ 163 static inline bool valid_io_request(struct zram *zram, 164 sector_t start, unsigned int size) 165 { 166 u64 end, bound; 167 168 /* unaligned request */ 169 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 170 return false; 171 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 172 return false; 173 174 end = start + (size >> SECTOR_SHIFT); 175 bound = zram->disksize >> SECTOR_SHIFT; 176 /* out of range range */ 177 if (unlikely(start >= bound || end > bound || start > end)) 178 return false; 179 180 /* I/O request is valid */ 181 return true; 182 } 183 184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 185 { 186 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 187 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 188 } 189 190 static inline void update_used_max(struct zram *zram, 191 const unsigned long pages) 192 { 193 unsigned long old_max, cur_max; 194 195 old_max = atomic_long_read(&zram->stats.max_used_pages); 196 197 do { 198 cur_max = old_max; 199 if (pages > cur_max) 200 old_max = atomic_long_cmpxchg( 201 &zram->stats.max_used_pages, cur_max, pages); 202 } while (old_max != cur_max); 203 } 204 205 static inline void zram_fill_page(void *ptr, unsigned long len, 206 unsigned long value) 207 { 208 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 209 memset_l(ptr, value, len / sizeof(unsigned long)); 210 } 211 212 static bool page_same_filled(void *ptr, unsigned long *element) 213 { 214 unsigned long *page; 215 unsigned long val; 216 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 217 218 page = (unsigned long *)ptr; 219 val = page[0]; 220 221 if (val != page[last_pos]) 222 return false; 223 224 for (pos = 1; pos < last_pos; pos++) { 225 if (val != page[pos]) 226 return false; 227 } 228 229 *element = val; 230 231 return true; 232 } 233 234 static ssize_t initstate_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 u32 val; 238 struct zram *zram = dev_to_zram(dev); 239 240 down_read(&zram->init_lock); 241 val = init_done(zram); 242 up_read(&zram->init_lock); 243 244 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 245 } 246 247 static ssize_t disksize_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct zram *zram = dev_to_zram(dev); 251 252 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 253 } 254 255 static ssize_t mem_limit_store(struct device *dev, 256 struct device_attribute *attr, const char *buf, size_t len) 257 { 258 u64 limit; 259 char *tmp; 260 struct zram *zram = dev_to_zram(dev); 261 262 limit = memparse(buf, &tmp); 263 if (buf == tmp) /* no chars parsed, invalid input */ 264 return -EINVAL; 265 266 down_write(&zram->init_lock); 267 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 268 up_write(&zram->init_lock); 269 270 return len; 271 } 272 273 static ssize_t mem_used_max_store(struct device *dev, 274 struct device_attribute *attr, const char *buf, size_t len) 275 { 276 int err; 277 unsigned long val; 278 struct zram *zram = dev_to_zram(dev); 279 280 err = kstrtoul(buf, 10, &val); 281 if (err || val != 0) 282 return -EINVAL; 283 284 down_read(&zram->init_lock); 285 if (init_done(zram)) { 286 atomic_long_set(&zram->stats.max_used_pages, 287 zs_get_total_pages(zram->mem_pool)); 288 } 289 up_read(&zram->init_lock); 290 291 return len; 292 } 293 294 static ssize_t idle_store(struct device *dev, 295 struct device_attribute *attr, const char *buf, size_t len) 296 { 297 struct zram *zram = dev_to_zram(dev); 298 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 299 int index; 300 301 if (!sysfs_streq(buf, "all")) 302 return -EINVAL; 303 304 down_read(&zram->init_lock); 305 if (!init_done(zram)) { 306 up_read(&zram->init_lock); 307 return -EINVAL; 308 } 309 310 for (index = 0; index < nr_pages; index++) { 311 /* 312 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 313 * See the comment in writeback_store. 314 */ 315 zram_slot_lock(zram, index); 316 if (zram_allocated(zram, index) && 317 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) 318 zram_set_flag(zram, index, ZRAM_IDLE); 319 zram_slot_unlock(zram, index); 320 } 321 322 up_read(&zram->init_lock); 323 324 return len; 325 } 326 327 #ifdef CONFIG_ZRAM_WRITEBACK 328 static ssize_t writeback_limit_enable_store(struct device *dev, 329 struct device_attribute *attr, const char *buf, size_t len) 330 { 331 struct zram *zram = dev_to_zram(dev); 332 u64 val; 333 ssize_t ret = -EINVAL; 334 335 if (kstrtoull(buf, 10, &val)) 336 return ret; 337 338 down_read(&zram->init_lock); 339 spin_lock(&zram->wb_limit_lock); 340 zram->wb_limit_enable = val; 341 spin_unlock(&zram->wb_limit_lock); 342 up_read(&zram->init_lock); 343 ret = len; 344 345 return ret; 346 } 347 348 static ssize_t writeback_limit_enable_show(struct device *dev, 349 struct device_attribute *attr, char *buf) 350 { 351 bool val; 352 struct zram *zram = dev_to_zram(dev); 353 354 down_read(&zram->init_lock); 355 spin_lock(&zram->wb_limit_lock); 356 val = zram->wb_limit_enable; 357 spin_unlock(&zram->wb_limit_lock); 358 up_read(&zram->init_lock); 359 360 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 361 } 362 363 static ssize_t writeback_limit_store(struct device *dev, 364 struct device_attribute *attr, const char *buf, size_t len) 365 { 366 struct zram *zram = dev_to_zram(dev); 367 u64 val; 368 ssize_t ret = -EINVAL; 369 370 if (kstrtoull(buf, 10, &val)) 371 return ret; 372 373 down_read(&zram->init_lock); 374 spin_lock(&zram->wb_limit_lock); 375 zram->bd_wb_limit = val; 376 spin_unlock(&zram->wb_limit_lock); 377 up_read(&zram->init_lock); 378 ret = len; 379 380 return ret; 381 } 382 383 static ssize_t writeback_limit_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 u64 val; 387 struct zram *zram = dev_to_zram(dev); 388 389 down_read(&zram->init_lock); 390 spin_lock(&zram->wb_limit_lock); 391 val = zram->bd_wb_limit; 392 spin_unlock(&zram->wb_limit_lock); 393 up_read(&zram->init_lock); 394 395 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 396 } 397 398 static void reset_bdev(struct zram *zram) 399 { 400 struct block_device *bdev; 401 402 if (!zram->backing_dev) 403 return; 404 405 bdev = zram->bdev; 406 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 407 /* hope filp_close flush all of IO */ 408 filp_close(zram->backing_dev, NULL); 409 zram->backing_dev = NULL; 410 zram->bdev = NULL; 411 zram->disk->fops = &zram_devops; 412 kvfree(zram->bitmap); 413 zram->bitmap = NULL; 414 } 415 416 static ssize_t backing_dev_show(struct device *dev, 417 struct device_attribute *attr, char *buf) 418 { 419 struct file *file; 420 struct zram *zram = dev_to_zram(dev); 421 char *p; 422 ssize_t ret; 423 424 down_read(&zram->init_lock); 425 file = zram->backing_dev; 426 if (!file) { 427 memcpy(buf, "none\n", 5); 428 up_read(&zram->init_lock); 429 return 5; 430 } 431 432 p = file_path(file, buf, PAGE_SIZE - 1); 433 if (IS_ERR(p)) { 434 ret = PTR_ERR(p); 435 goto out; 436 } 437 438 ret = strlen(p); 439 memmove(buf, p, ret); 440 buf[ret++] = '\n'; 441 out: 442 up_read(&zram->init_lock); 443 return ret; 444 } 445 446 static ssize_t backing_dev_store(struct device *dev, 447 struct device_attribute *attr, const char *buf, size_t len) 448 { 449 char *file_name; 450 size_t sz; 451 struct file *backing_dev = NULL; 452 struct inode *inode; 453 struct address_space *mapping; 454 unsigned int bitmap_sz; 455 unsigned long nr_pages, *bitmap = NULL; 456 struct block_device *bdev = NULL; 457 int err; 458 struct zram *zram = dev_to_zram(dev); 459 460 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 461 if (!file_name) 462 return -ENOMEM; 463 464 down_write(&zram->init_lock); 465 if (init_done(zram)) { 466 pr_info("Can't setup backing device for initialized device\n"); 467 err = -EBUSY; 468 goto out; 469 } 470 471 strlcpy(file_name, buf, PATH_MAX); 472 /* ignore trailing newline */ 473 sz = strlen(file_name); 474 if (sz > 0 && file_name[sz - 1] == '\n') 475 file_name[sz - 1] = 0x00; 476 477 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 478 if (IS_ERR(backing_dev)) { 479 err = PTR_ERR(backing_dev); 480 backing_dev = NULL; 481 goto out; 482 } 483 484 mapping = backing_dev->f_mapping; 485 inode = mapping->host; 486 487 /* Support only block device in this moment */ 488 if (!S_ISBLK(inode->i_mode)) { 489 err = -ENOTBLK; 490 goto out; 491 } 492 493 bdev = blkdev_get_by_dev(inode->i_rdev, 494 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 495 if (IS_ERR(bdev)) { 496 err = PTR_ERR(bdev); 497 bdev = NULL; 498 goto out; 499 } 500 501 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 502 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 503 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 504 if (!bitmap) { 505 err = -ENOMEM; 506 goto out; 507 } 508 509 reset_bdev(zram); 510 511 zram->bdev = bdev; 512 zram->backing_dev = backing_dev; 513 zram->bitmap = bitmap; 514 zram->nr_pages = nr_pages; 515 /* 516 * With writeback feature, zram does asynchronous IO so it's no longer 517 * synchronous device so let's remove synchronous io flag. Othewise, 518 * upper layer(e.g., swap) could wait IO completion rather than 519 * (submit and return), which will cause system sluggish. 520 * Furthermore, when the IO function returns(e.g., swap_readpage), 521 * upper layer expects IO was done so it could deallocate the page 522 * freely but in fact, IO is going on so finally could cause 523 * use-after-free when the IO is really done. 524 */ 525 zram->disk->fops = &zram_wb_devops; 526 up_write(&zram->init_lock); 527 528 pr_info("setup backing device %s\n", file_name); 529 kfree(file_name); 530 531 return len; 532 out: 533 kvfree(bitmap); 534 535 if (bdev) 536 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 537 538 if (backing_dev) 539 filp_close(backing_dev, NULL); 540 541 up_write(&zram->init_lock); 542 543 kfree(file_name); 544 545 return err; 546 } 547 548 static unsigned long alloc_block_bdev(struct zram *zram) 549 { 550 unsigned long blk_idx = 1; 551 retry: 552 /* skip 0 bit to confuse zram.handle = 0 */ 553 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 554 if (blk_idx == zram->nr_pages) 555 return 0; 556 557 if (test_and_set_bit(blk_idx, zram->bitmap)) 558 goto retry; 559 560 atomic64_inc(&zram->stats.bd_count); 561 return blk_idx; 562 } 563 564 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 565 { 566 int was_set; 567 568 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 569 WARN_ON_ONCE(!was_set); 570 atomic64_dec(&zram->stats.bd_count); 571 } 572 573 static void zram_page_end_io(struct bio *bio) 574 { 575 struct page *page = bio_first_page_all(bio); 576 577 page_endio(page, op_is_write(bio_op(bio)), 578 blk_status_to_errno(bio->bi_status)); 579 bio_put(bio); 580 } 581 582 /* 583 * Returns 1 if the submission is successful. 584 */ 585 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 586 unsigned long entry, struct bio *parent) 587 { 588 struct bio *bio; 589 590 bio = bio_alloc(GFP_ATOMIC, 1); 591 if (!bio) 592 return -ENOMEM; 593 594 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 595 bio_set_dev(bio, zram->bdev); 596 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 597 bio_put(bio); 598 return -EIO; 599 } 600 601 if (!parent) { 602 bio->bi_opf = REQ_OP_READ; 603 bio->bi_end_io = zram_page_end_io; 604 } else { 605 bio->bi_opf = parent->bi_opf; 606 bio_chain(bio, parent); 607 } 608 609 submit_bio(bio); 610 return 1; 611 } 612 613 #define PAGE_WB_SIG "page_index=" 614 615 #define PAGE_WRITEBACK 0 616 #define HUGE_WRITEBACK 1 617 #define IDLE_WRITEBACK 2 618 619 620 static ssize_t writeback_store(struct device *dev, 621 struct device_attribute *attr, const char *buf, size_t len) 622 { 623 struct zram *zram = dev_to_zram(dev); 624 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 625 unsigned long index = 0; 626 struct bio bio; 627 struct bio_vec bio_vec; 628 struct page *page; 629 ssize_t ret = len; 630 int mode; 631 unsigned long blk_idx = 0; 632 633 if (sysfs_streq(buf, "idle")) 634 mode = IDLE_WRITEBACK; 635 else if (sysfs_streq(buf, "huge")) 636 mode = HUGE_WRITEBACK; 637 else { 638 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 639 return -EINVAL; 640 641 ret = kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index); 642 if (ret || index >= nr_pages) 643 return -EINVAL; 644 645 nr_pages = 1; 646 mode = PAGE_WRITEBACK; 647 } 648 649 down_read(&zram->init_lock); 650 if (!init_done(zram)) { 651 ret = -EINVAL; 652 goto release_init_lock; 653 } 654 655 if (!zram->backing_dev) { 656 ret = -ENODEV; 657 goto release_init_lock; 658 } 659 660 page = alloc_page(GFP_KERNEL); 661 if (!page) { 662 ret = -ENOMEM; 663 goto release_init_lock; 664 } 665 666 while (nr_pages--) { 667 struct bio_vec bvec; 668 669 bvec.bv_page = page; 670 bvec.bv_len = PAGE_SIZE; 671 bvec.bv_offset = 0; 672 673 spin_lock(&zram->wb_limit_lock); 674 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 675 spin_unlock(&zram->wb_limit_lock); 676 ret = -EIO; 677 break; 678 } 679 spin_unlock(&zram->wb_limit_lock); 680 681 if (!blk_idx) { 682 blk_idx = alloc_block_bdev(zram); 683 if (!blk_idx) { 684 ret = -ENOSPC; 685 break; 686 } 687 } 688 689 zram_slot_lock(zram, index); 690 if (!zram_allocated(zram, index)) 691 goto next; 692 693 if (zram_test_flag(zram, index, ZRAM_WB) || 694 zram_test_flag(zram, index, ZRAM_SAME) || 695 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 696 goto next; 697 698 if (mode == IDLE_WRITEBACK && 699 !zram_test_flag(zram, index, ZRAM_IDLE)) 700 goto next; 701 if (mode == HUGE_WRITEBACK && 702 !zram_test_flag(zram, index, ZRAM_HUGE)) 703 goto next; 704 /* 705 * Clearing ZRAM_UNDER_WB is duty of caller. 706 * IOW, zram_free_page never clear it. 707 */ 708 zram_set_flag(zram, index, ZRAM_UNDER_WB); 709 /* Need for hugepage writeback racing */ 710 zram_set_flag(zram, index, ZRAM_IDLE); 711 zram_slot_unlock(zram, index); 712 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 713 zram_slot_lock(zram, index); 714 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 715 zram_clear_flag(zram, index, ZRAM_IDLE); 716 zram_slot_unlock(zram, index); 717 continue; 718 } 719 720 bio_init(&bio, &bio_vec, 1); 721 bio_set_dev(&bio, zram->bdev); 722 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 723 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC; 724 725 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 726 bvec.bv_offset); 727 /* 728 * XXX: A single page IO would be inefficient for write 729 * but it would be not bad as starter. 730 */ 731 ret = submit_bio_wait(&bio); 732 if (ret) { 733 zram_slot_lock(zram, index); 734 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 735 zram_clear_flag(zram, index, ZRAM_IDLE); 736 zram_slot_unlock(zram, index); 737 continue; 738 } 739 740 atomic64_inc(&zram->stats.bd_writes); 741 /* 742 * We released zram_slot_lock so need to check if the slot was 743 * changed. If there is freeing for the slot, we can catch it 744 * easily by zram_allocated. 745 * A subtle case is the slot is freed/reallocated/marked as 746 * ZRAM_IDLE again. To close the race, idle_store doesn't 747 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 748 * Thus, we could close the race by checking ZRAM_IDLE bit. 749 */ 750 zram_slot_lock(zram, index); 751 if (!zram_allocated(zram, index) || 752 !zram_test_flag(zram, index, ZRAM_IDLE)) { 753 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 754 zram_clear_flag(zram, index, ZRAM_IDLE); 755 goto next; 756 } 757 758 zram_free_page(zram, index); 759 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 760 zram_set_flag(zram, index, ZRAM_WB); 761 zram_set_element(zram, index, blk_idx); 762 blk_idx = 0; 763 atomic64_inc(&zram->stats.pages_stored); 764 spin_lock(&zram->wb_limit_lock); 765 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 766 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 767 spin_unlock(&zram->wb_limit_lock); 768 next: 769 zram_slot_unlock(zram, index); 770 } 771 772 if (blk_idx) 773 free_block_bdev(zram, blk_idx); 774 __free_page(page); 775 release_init_lock: 776 up_read(&zram->init_lock); 777 778 return ret; 779 } 780 781 struct zram_work { 782 struct work_struct work; 783 struct zram *zram; 784 unsigned long entry; 785 struct bio *bio; 786 struct bio_vec bvec; 787 }; 788 789 #if PAGE_SIZE != 4096 790 static void zram_sync_read(struct work_struct *work) 791 { 792 struct zram_work *zw = container_of(work, struct zram_work, work); 793 struct zram *zram = zw->zram; 794 unsigned long entry = zw->entry; 795 struct bio *bio = zw->bio; 796 797 read_from_bdev_async(zram, &zw->bvec, entry, bio); 798 } 799 800 /* 801 * Block layer want one ->submit_bio to be active at a time, so if we use 802 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 803 * use a worker thread context. 804 */ 805 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 806 unsigned long entry, struct bio *bio) 807 { 808 struct zram_work work; 809 810 work.bvec = *bvec; 811 work.zram = zram; 812 work.entry = entry; 813 work.bio = bio; 814 815 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 816 queue_work(system_unbound_wq, &work.work); 817 flush_work(&work.work); 818 destroy_work_on_stack(&work.work); 819 820 return 1; 821 } 822 #else 823 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 824 unsigned long entry, struct bio *bio) 825 { 826 WARN_ON(1); 827 return -EIO; 828 } 829 #endif 830 831 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 832 unsigned long entry, struct bio *parent, bool sync) 833 { 834 atomic64_inc(&zram->stats.bd_reads); 835 if (sync) 836 return read_from_bdev_sync(zram, bvec, entry, parent); 837 else 838 return read_from_bdev_async(zram, bvec, entry, parent); 839 } 840 #else 841 static inline void reset_bdev(struct zram *zram) {}; 842 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 843 unsigned long entry, struct bio *parent, bool sync) 844 { 845 return -EIO; 846 } 847 848 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 849 #endif 850 851 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 852 853 static struct dentry *zram_debugfs_root; 854 855 static void zram_debugfs_create(void) 856 { 857 zram_debugfs_root = debugfs_create_dir("zram", NULL); 858 } 859 860 static void zram_debugfs_destroy(void) 861 { 862 debugfs_remove_recursive(zram_debugfs_root); 863 } 864 865 static void zram_accessed(struct zram *zram, u32 index) 866 { 867 zram_clear_flag(zram, index, ZRAM_IDLE); 868 zram->table[index].ac_time = ktime_get_boottime(); 869 } 870 871 static ssize_t read_block_state(struct file *file, char __user *buf, 872 size_t count, loff_t *ppos) 873 { 874 char *kbuf; 875 ssize_t index, written = 0; 876 struct zram *zram = file->private_data; 877 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 878 struct timespec64 ts; 879 880 kbuf = kvmalloc(count, GFP_KERNEL); 881 if (!kbuf) 882 return -ENOMEM; 883 884 down_read(&zram->init_lock); 885 if (!init_done(zram)) { 886 up_read(&zram->init_lock); 887 kvfree(kbuf); 888 return -EINVAL; 889 } 890 891 for (index = *ppos; index < nr_pages; index++) { 892 int copied; 893 894 zram_slot_lock(zram, index); 895 if (!zram_allocated(zram, index)) 896 goto next; 897 898 ts = ktime_to_timespec64(zram->table[index].ac_time); 899 copied = snprintf(kbuf + written, count, 900 "%12zd %12lld.%06lu %c%c%c%c\n", 901 index, (s64)ts.tv_sec, 902 ts.tv_nsec / NSEC_PER_USEC, 903 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 904 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 905 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 906 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); 907 908 if (count < copied) { 909 zram_slot_unlock(zram, index); 910 break; 911 } 912 written += copied; 913 count -= copied; 914 next: 915 zram_slot_unlock(zram, index); 916 *ppos += 1; 917 } 918 919 up_read(&zram->init_lock); 920 if (copy_to_user(buf, kbuf, written)) 921 written = -EFAULT; 922 kvfree(kbuf); 923 924 return written; 925 } 926 927 static const struct file_operations proc_zram_block_state_op = { 928 .open = simple_open, 929 .read = read_block_state, 930 .llseek = default_llseek, 931 }; 932 933 static void zram_debugfs_register(struct zram *zram) 934 { 935 if (!zram_debugfs_root) 936 return; 937 938 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 939 zram_debugfs_root); 940 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 941 zram, &proc_zram_block_state_op); 942 } 943 944 static void zram_debugfs_unregister(struct zram *zram) 945 { 946 debugfs_remove_recursive(zram->debugfs_dir); 947 } 948 #else 949 static void zram_debugfs_create(void) {}; 950 static void zram_debugfs_destroy(void) {}; 951 static void zram_accessed(struct zram *zram, u32 index) 952 { 953 zram_clear_flag(zram, index, ZRAM_IDLE); 954 }; 955 static void zram_debugfs_register(struct zram *zram) {}; 956 static void zram_debugfs_unregister(struct zram *zram) {}; 957 #endif 958 959 /* 960 * We switched to per-cpu streams and this attr is not needed anymore. 961 * However, we will keep it around for some time, because: 962 * a) we may revert per-cpu streams in the future 963 * b) it's visible to user space and we need to follow our 2 years 964 * retirement rule; but we already have a number of 'soon to be 965 * altered' attrs, so max_comp_streams need to wait for the next 966 * layoff cycle. 967 */ 968 static ssize_t max_comp_streams_show(struct device *dev, 969 struct device_attribute *attr, char *buf) 970 { 971 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 972 } 973 974 static ssize_t max_comp_streams_store(struct device *dev, 975 struct device_attribute *attr, const char *buf, size_t len) 976 { 977 return len; 978 } 979 980 static ssize_t comp_algorithm_show(struct device *dev, 981 struct device_attribute *attr, char *buf) 982 { 983 size_t sz; 984 struct zram *zram = dev_to_zram(dev); 985 986 down_read(&zram->init_lock); 987 sz = zcomp_available_show(zram->compressor, buf); 988 up_read(&zram->init_lock); 989 990 return sz; 991 } 992 993 static ssize_t comp_algorithm_store(struct device *dev, 994 struct device_attribute *attr, const char *buf, size_t len) 995 { 996 struct zram *zram = dev_to_zram(dev); 997 char compressor[ARRAY_SIZE(zram->compressor)]; 998 size_t sz; 999 1000 strlcpy(compressor, buf, sizeof(compressor)); 1001 /* ignore trailing newline */ 1002 sz = strlen(compressor); 1003 if (sz > 0 && compressor[sz - 1] == '\n') 1004 compressor[sz - 1] = 0x00; 1005 1006 if (!zcomp_available_algorithm(compressor)) 1007 return -EINVAL; 1008 1009 down_write(&zram->init_lock); 1010 if (init_done(zram)) { 1011 up_write(&zram->init_lock); 1012 pr_info("Can't change algorithm for initialized device\n"); 1013 return -EBUSY; 1014 } 1015 1016 strcpy(zram->compressor, compressor); 1017 up_write(&zram->init_lock); 1018 return len; 1019 } 1020 1021 static ssize_t compact_store(struct device *dev, 1022 struct device_attribute *attr, const char *buf, size_t len) 1023 { 1024 struct zram *zram = dev_to_zram(dev); 1025 1026 down_read(&zram->init_lock); 1027 if (!init_done(zram)) { 1028 up_read(&zram->init_lock); 1029 return -EINVAL; 1030 } 1031 1032 zs_compact(zram->mem_pool); 1033 up_read(&zram->init_lock); 1034 1035 return len; 1036 } 1037 1038 static ssize_t io_stat_show(struct device *dev, 1039 struct device_attribute *attr, char *buf) 1040 { 1041 struct zram *zram = dev_to_zram(dev); 1042 ssize_t ret; 1043 1044 down_read(&zram->init_lock); 1045 ret = scnprintf(buf, PAGE_SIZE, 1046 "%8llu %8llu %8llu %8llu\n", 1047 (u64)atomic64_read(&zram->stats.failed_reads), 1048 (u64)atomic64_read(&zram->stats.failed_writes), 1049 (u64)atomic64_read(&zram->stats.invalid_io), 1050 (u64)atomic64_read(&zram->stats.notify_free)); 1051 up_read(&zram->init_lock); 1052 1053 return ret; 1054 } 1055 1056 static ssize_t mm_stat_show(struct device *dev, 1057 struct device_attribute *attr, char *buf) 1058 { 1059 struct zram *zram = dev_to_zram(dev); 1060 struct zs_pool_stats pool_stats; 1061 u64 orig_size, mem_used = 0; 1062 long max_used; 1063 ssize_t ret; 1064 1065 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1066 1067 down_read(&zram->init_lock); 1068 if (init_done(zram)) { 1069 mem_used = zs_get_total_pages(zram->mem_pool); 1070 zs_pool_stats(zram->mem_pool, &pool_stats); 1071 } 1072 1073 orig_size = atomic64_read(&zram->stats.pages_stored); 1074 max_used = atomic_long_read(&zram->stats.max_used_pages); 1075 1076 ret = scnprintf(buf, PAGE_SIZE, 1077 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1078 orig_size << PAGE_SHIFT, 1079 (u64)atomic64_read(&zram->stats.compr_data_size), 1080 mem_used << PAGE_SHIFT, 1081 zram->limit_pages << PAGE_SHIFT, 1082 max_used << PAGE_SHIFT, 1083 (u64)atomic64_read(&zram->stats.same_pages), 1084 atomic_long_read(&pool_stats.pages_compacted), 1085 (u64)atomic64_read(&zram->stats.huge_pages), 1086 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1087 up_read(&zram->init_lock); 1088 1089 return ret; 1090 } 1091 1092 #ifdef CONFIG_ZRAM_WRITEBACK 1093 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1094 static ssize_t bd_stat_show(struct device *dev, 1095 struct device_attribute *attr, char *buf) 1096 { 1097 struct zram *zram = dev_to_zram(dev); 1098 ssize_t ret; 1099 1100 down_read(&zram->init_lock); 1101 ret = scnprintf(buf, PAGE_SIZE, 1102 "%8llu %8llu %8llu\n", 1103 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1104 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1105 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1106 up_read(&zram->init_lock); 1107 1108 return ret; 1109 } 1110 #endif 1111 1112 static ssize_t debug_stat_show(struct device *dev, 1113 struct device_attribute *attr, char *buf) 1114 { 1115 int version = 1; 1116 struct zram *zram = dev_to_zram(dev); 1117 ssize_t ret; 1118 1119 down_read(&zram->init_lock); 1120 ret = scnprintf(buf, PAGE_SIZE, 1121 "version: %d\n%8llu %8llu\n", 1122 version, 1123 (u64)atomic64_read(&zram->stats.writestall), 1124 (u64)atomic64_read(&zram->stats.miss_free)); 1125 up_read(&zram->init_lock); 1126 1127 return ret; 1128 } 1129 1130 static DEVICE_ATTR_RO(io_stat); 1131 static DEVICE_ATTR_RO(mm_stat); 1132 #ifdef CONFIG_ZRAM_WRITEBACK 1133 static DEVICE_ATTR_RO(bd_stat); 1134 #endif 1135 static DEVICE_ATTR_RO(debug_stat); 1136 1137 static void zram_meta_free(struct zram *zram, u64 disksize) 1138 { 1139 size_t num_pages = disksize >> PAGE_SHIFT; 1140 size_t index; 1141 1142 /* Free all pages that are still in this zram device */ 1143 for (index = 0; index < num_pages; index++) 1144 zram_free_page(zram, index); 1145 1146 zs_destroy_pool(zram->mem_pool); 1147 vfree(zram->table); 1148 } 1149 1150 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1151 { 1152 size_t num_pages; 1153 1154 num_pages = disksize >> PAGE_SHIFT; 1155 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1156 if (!zram->table) 1157 return false; 1158 1159 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1160 if (!zram->mem_pool) { 1161 vfree(zram->table); 1162 return false; 1163 } 1164 1165 if (!huge_class_size) 1166 huge_class_size = zs_huge_class_size(zram->mem_pool); 1167 return true; 1168 } 1169 1170 /* 1171 * To protect concurrent access to the same index entry, 1172 * caller should hold this table index entry's bit_spinlock to 1173 * indicate this index entry is accessing. 1174 */ 1175 static void zram_free_page(struct zram *zram, size_t index) 1176 { 1177 unsigned long handle; 1178 1179 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1180 zram->table[index].ac_time = 0; 1181 #endif 1182 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1183 zram_clear_flag(zram, index, ZRAM_IDLE); 1184 1185 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1186 zram_clear_flag(zram, index, ZRAM_HUGE); 1187 atomic64_dec(&zram->stats.huge_pages); 1188 } 1189 1190 if (zram_test_flag(zram, index, ZRAM_WB)) { 1191 zram_clear_flag(zram, index, ZRAM_WB); 1192 free_block_bdev(zram, zram_get_element(zram, index)); 1193 goto out; 1194 } 1195 1196 /* 1197 * No memory is allocated for same element filled pages. 1198 * Simply clear same page flag. 1199 */ 1200 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1201 zram_clear_flag(zram, index, ZRAM_SAME); 1202 atomic64_dec(&zram->stats.same_pages); 1203 goto out; 1204 } 1205 1206 handle = zram_get_handle(zram, index); 1207 if (!handle) 1208 return; 1209 1210 zs_free(zram->mem_pool, handle); 1211 1212 atomic64_sub(zram_get_obj_size(zram, index), 1213 &zram->stats.compr_data_size); 1214 out: 1215 atomic64_dec(&zram->stats.pages_stored); 1216 zram_set_handle(zram, index, 0); 1217 zram_set_obj_size(zram, index, 0); 1218 WARN_ON_ONCE(zram->table[index].flags & 1219 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1220 } 1221 1222 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1223 struct bio *bio, bool partial_io) 1224 { 1225 struct zcomp_strm *zstrm; 1226 unsigned long handle; 1227 unsigned int size; 1228 void *src, *dst; 1229 int ret; 1230 1231 zram_slot_lock(zram, index); 1232 if (zram_test_flag(zram, index, ZRAM_WB)) { 1233 struct bio_vec bvec; 1234 1235 zram_slot_unlock(zram, index); 1236 1237 bvec.bv_page = page; 1238 bvec.bv_len = PAGE_SIZE; 1239 bvec.bv_offset = 0; 1240 return read_from_bdev(zram, &bvec, 1241 zram_get_element(zram, index), 1242 bio, partial_io); 1243 } 1244 1245 handle = zram_get_handle(zram, index); 1246 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1247 unsigned long value; 1248 void *mem; 1249 1250 value = handle ? zram_get_element(zram, index) : 0; 1251 mem = kmap_atomic(page); 1252 zram_fill_page(mem, PAGE_SIZE, value); 1253 kunmap_atomic(mem); 1254 zram_slot_unlock(zram, index); 1255 return 0; 1256 } 1257 1258 size = zram_get_obj_size(zram, index); 1259 1260 if (size != PAGE_SIZE) 1261 zstrm = zcomp_stream_get(zram->comp); 1262 1263 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1264 if (size == PAGE_SIZE) { 1265 dst = kmap_atomic(page); 1266 memcpy(dst, src, PAGE_SIZE); 1267 kunmap_atomic(dst); 1268 ret = 0; 1269 } else { 1270 dst = kmap_atomic(page); 1271 ret = zcomp_decompress(zstrm, src, size, dst); 1272 kunmap_atomic(dst); 1273 zcomp_stream_put(zram->comp); 1274 } 1275 zs_unmap_object(zram->mem_pool, handle); 1276 zram_slot_unlock(zram, index); 1277 1278 /* Should NEVER happen. Return bio error if it does. */ 1279 if (WARN_ON(ret)) 1280 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1281 1282 return ret; 1283 } 1284 1285 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1286 u32 index, int offset, struct bio *bio) 1287 { 1288 int ret; 1289 struct page *page; 1290 1291 page = bvec->bv_page; 1292 if (is_partial_io(bvec)) { 1293 /* Use a temporary buffer to decompress the page */ 1294 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1295 if (!page) 1296 return -ENOMEM; 1297 } 1298 1299 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1300 if (unlikely(ret)) 1301 goto out; 1302 1303 if (is_partial_io(bvec)) { 1304 void *dst = kmap_atomic(bvec->bv_page); 1305 void *src = kmap_atomic(page); 1306 1307 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 1308 kunmap_atomic(src); 1309 kunmap_atomic(dst); 1310 } 1311 out: 1312 if (is_partial_io(bvec)) 1313 __free_page(page); 1314 1315 return ret; 1316 } 1317 1318 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1319 u32 index, struct bio *bio) 1320 { 1321 int ret = 0; 1322 unsigned long alloced_pages; 1323 unsigned long handle = 0; 1324 unsigned int comp_len = 0; 1325 void *src, *dst, *mem; 1326 struct zcomp_strm *zstrm; 1327 struct page *page = bvec->bv_page; 1328 unsigned long element = 0; 1329 enum zram_pageflags flags = 0; 1330 1331 mem = kmap_atomic(page); 1332 if (page_same_filled(mem, &element)) { 1333 kunmap_atomic(mem); 1334 /* Free memory associated with this sector now. */ 1335 flags = ZRAM_SAME; 1336 atomic64_inc(&zram->stats.same_pages); 1337 goto out; 1338 } 1339 kunmap_atomic(mem); 1340 1341 compress_again: 1342 zstrm = zcomp_stream_get(zram->comp); 1343 src = kmap_atomic(page); 1344 ret = zcomp_compress(zstrm, src, &comp_len); 1345 kunmap_atomic(src); 1346 1347 if (unlikely(ret)) { 1348 zcomp_stream_put(zram->comp); 1349 pr_err("Compression failed! err=%d\n", ret); 1350 zs_free(zram->mem_pool, handle); 1351 return ret; 1352 } 1353 1354 if (comp_len >= huge_class_size) 1355 comp_len = PAGE_SIZE; 1356 /* 1357 * handle allocation has 2 paths: 1358 * a) fast path is executed with preemption disabled (for 1359 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1360 * since we can't sleep; 1361 * b) slow path enables preemption and attempts to allocate 1362 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1363 * put per-cpu compression stream and, thus, to re-do 1364 * the compression once handle is allocated. 1365 * 1366 * if we have a 'non-null' handle here then we are coming 1367 * from the slow path and handle has already been allocated. 1368 */ 1369 if (!handle) 1370 handle = zs_malloc(zram->mem_pool, comp_len, 1371 __GFP_KSWAPD_RECLAIM | 1372 __GFP_NOWARN | 1373 __GFP_HIGHMEM | 1374 __GFP_MOVABLE); 1375 if (!handle) { 1376 zcomp_stream_put(zram->comp); 1377 atomic64_inc(&zram->stats.writestall); 1378 handle = zs_malloc(zram->mem_pool, comp_len, 1379 GFP_NOIO | __GFP_HIGHMEM | 1380 __GFP_MOVABLE); 1381 if (handle) 1382 goto compress_again; 1383 return -ENOMEM; 1384 } 1385 1386 alloced_pages = zs_get_total_pages(zram->mem_pool); 1387 update_used_max(zram, alloced_pages); 1388 1389 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1390 zcomp_stream_put(zram->comp); 1391 zs_free(zram->mem_pool, handle); 1392 return -ENOMEM; 1393 } 1394 1395 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1396 1397 src = zstrm->buffer; 1398 if (comp_len == PAGE_SIZE) 1399 src = kmap_atomic(page); 1400 memcpy(dst, src, comp_len); 1401 if (comp_len == PAGE_SIZE) 1402 kunmap_atomic(src); 1403 1404 zcomp_stream_put(zram->comp); 1405 zs_unmap_object(zram->mem_pool, handle); 1406 atomic64_add(comp_len, &zram->stats.compr_data_size); 1407 out: 1408 /* 1409 * Free memory associated with this sector 1410 * before overwriting unused sectors. 1411 */ 1412 zram_slot_lock(zram, index); 1413 zram_free_page(zram, index); 1414 1415 if (comp_len == PAGE_SIZE) { 1416 zram_set_flag(zram, index, ZRAM_HUGE); 1417 atomic64_inc(&zram->stats.huge_pages); 1418 atomic64_inc(&zram->stats.huge_pages_since); 1419 } 1420 1421 if (flags) { 1422 zram_set_flag(zram, index, flags); 1423 zram_set_element(zram, index, element); 1424 } else { 1425 zram_set_handle(zram, index, handle); 1426 zram_set_obj_size(zram, index, comp_len); 1427 } 1428 zram_slot_unlock(zram, index); 1429 1430 /* Update stats */ 1431 atomic64_inc(&zram->stats.pages_stored); 1432 return ret; 1433 } 1434 1435 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1436 u32 index, int offset, struct bio *bio) 1437 { 1438 int ret; 1439 struct page *page = NULL; 1440 void *src; 1441 struct bio_vec vec; 1442 1443 vec = *bvec; 1444 if (is_partial_io(bvec)) { 1445 void *dst; 1446 /* 1447 * This is a partial IO. We need to read the full page 1448 * before to write the changes. 1449 */ 1450 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1451 if (!page) 1452 return -ENOMEM; 1453 1454 ret = __zram_bvec_read(zram, page, index, bio, true); 1455 if (ret) 1456 goto out; 1457 1458 src = kmap_atomic(bvec->bv_page); 1459 dst = kmap_atomic(page); 1460 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 1461 kunmap_atomic(dst); 1462 kunmap_atomic(src); 1463 1464 vec.bv_page = page; 1465 vec.bv_len = PAGE_SIZE; 1466 vec.bv_offset = 0; 1467 } 1468 1469 ret = __zram_bvec_write(zram, &vec, index, bio); 1470 out: 1471 if (is_partial_io(bvec)) 1472 __free_page(page); 1473 return ret; 1474 } 1475 1476 /* 1477 * zram_bio_discard - handler on discard request 1478 * @index: physical block index in PAGE_SIZE units 1479 * @offset: byte offset within physical block 1480 */ 1481 static void zram_bio_discard(struct zram *zram, u32 index, 1482 int offset, struct bio *bio) 1483 { 1484 size_t n = bio->bi_iter.bi_size; 1485 1486 /* 1487 * zram manages data in physical block size units. Because logical block 1488 * size isn't identical with physical block size on some arch, we 1489 * could get a discard request pointing to a specific offset within a 1490 * certain physical block. Although we can handle this request by 1491 * reading that physiclal block and decompressing and partially zeroing 1492 * and re-compressing and then re-storing it, this isn't reasonable 1493 * because our intent with a discard request is to save memory. So 1494 * skipping this logical block is appropriate here. 1495 */ 1496 if (offset) { 1497 if (n <= (PAGE_SIZE - offset)) 1498 return; 1499 1500 n -= (PAGE_SIZE - offset); 1501 index++; 1502 } 1503 1504 while (n >= PAGE_SIZE) { 1505 zram_slot_lock(zram, index); 1506 zram_free_page(zram, index); 1507 zram_slot_unlock(zram, index); 1508 atomic64_inc(&zram->stats.notify_free); 1509 index++; 1510 n -= PAGE_SIZE; 1511 } 1512 } 1513 1514 /* 1515 * Returns errno if it has some problem. Otherwise return 0 or 1. 1516 * Returns 0 if IO request was done synchronously 1517 * Returns 1 if IO request was successfully submitted. 1518 */ 1519 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1520 int offset, unsigned int op, struct bio *bio) 1521 { 1522 int ret; 1523 1524 if (!op_is_write(op)) { 1525 atomic64_inc(&zram->stats.num_reads); 1526 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1527 flush_dcache_page(bvec->bv_page); 1528 } else { 1529 atomic64_inc(&zram->stats.num_writes); 1530 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1531 } 1532 1533 zram_slot_lock(zram, index); 1534 zram_accessed(zram, index); 1535 zram_slot_unlock(zram, index); 1536 1537 if (unlikely(ret < 0)) { 1538 if (!op_is_write(op)) 1539 atomic64_inc(&zram->stats.failed_reads); 1540 else 1541 atomic64_inc(&zram->stats.failed_writes); 1542 } 1543 1544 return ret; 1545 } 1546 1547 static void __zram_make_request(struct zram *zram, struct bio *bio) 1548 { 1549 int offset; 1550 u32 index; 1551 struct bio_vec bvec; 1552 struct bvec_iter iter; 1553 unsigned long start_time; 1554 1555 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1556 offset = (bio->bi_iter.bi_sector & 1557 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1558 1559 switch (bio_op(bio)) { 1560 case REQ_OP_DISCARD: 1561 case REQ_OP_WRITE_ZEROES: 1562 zram_bio_discard(zram, index, offset, bio); 1563 bio_endio(bio); 1564 return; 1565 default: 1566 break; 1567 } 1568 1569 start_time = bio_start_io_acct(bio); 1570 bio_for_each_segment(bvec, bio, iter) { 1571 struct bio_vec bv = bvec; 1572 unsigned int unwritten = bvec.bv_len; 1573 1574 do { 1575 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1576 unwritten); 1577 if (zram_bvec_rw(zram, &bv, index, offset, 1578 bio_op(bio), bio) < 0) { 1579 bio->bi_status = BLK_STS_IOERR; 1580 break; 1581 } 1582 1583 bv.bv_offset += bv.bv_len; 1584 unwritten -= bv.bv_len; 1585 1586 update_position(&index, &offset, &bv); 1587 } while (unwritten); 1588 } 1589 bio_end_io_acct(bio, start_time); 1590 bio_endio(bio); 1591 } 1592 1593 /* 1594 * Handler function for all zram I/O requests. 1595 */ 1596 static blk_qc_t zram_submit_bio(struct bio *bio) 1597 { 1598 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1599 1600 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1601 bio->bi_iter.bi_size)) { 1602 atomic64_inc(&zram->stats.invalid_io); 1603 goto error; 1604 } 1605 1606 __zram_make_request(zram, bio); 1607 return BLK_QC_T_NONE; 1608 1609 error: 1610 bio_io_error(bio); 1611 return BLK_QC_T_NONE; 1612 } 1613 1614 static void zram_slot_free_notify(struct block_device *bdev, 1615 unsigned long index) 1616 { 1617 struct zram *zram; 1618 1619 zram = bdev->bd_disk->private_data; 1620 1621 atomic64_inc(&zram->stats.notify_free); 1622 if (!zram_slot_trylock(zram, index)) { 1623 atomic64_inc(&zram->stats.miss_free); 1624 return; 1625 } 1626 1627 zram_free_page(zram, index); 1628 zram_slot_unlock(zram, index); 1629 } 1630 1631 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1632 struct page *page, unsigned int op) 1633 { 1634 int offset, ret; 1635 u32 index; 1636 struct zram *zram; 1637 struct bio_vec bv; 1638 unsigned long start_time; 1639 1640 if (PageTransHuge(page)) 1641 return -ENOTSUPP; 1642 zram = bdev->bd_disk->private_data; 1643 1644 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1645 atomic64_inc(&zram->stats.invalid_io); 1646 ret = -EINVAL; 1647 goto out; 1648 } 1649 1650 index = sector >> SECTORS_PER_PAGE_SHIFT; 1651 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1652 1653 bv.bv_page = page; 1654 bv.bv_len = PAGE_SIZE; 1655 bv.bv_offset = 0; 1656 1657 start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op); 1658 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1659 disk_end_io_acct(bdev->bd_disk, op, start_time); 1660 out: 1661 /* 1662 * If I/O fails, just return error(ie, non-zero) without 1663 * calling page_endio. 1664 * It causes resubmit the I/O with bio request by upper functions 1665 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1666 * bio->bi_end_io does things to handle the error 1667 * (e.g., SetPageError, set_page_dirty and extra works). 1668 */ 1669 if (unlikely(ret < 0)) 1670 return ret; 1671 1672 switch (ret) { 1673 case 0: 1674 page_endio(page, op_is_write(op), 0); 1675 break; 1676 case 1: 1677 ret = 0; 1678 break; 1679 default: 1680 WARN_ON(1); 1681 } 1682 return ret; 1683 } 1684 1685 static void zram_reset_device(struct zram *zram) 1686 { 1687 struct zcomp *comp; 1688 u64 disksize; 1689 1690 down_write(&zram->init_lock); 1691 1692 zram->limit_pages = 0; 1693 1694 if (!init_done(zram)) { 1695 up_write(&zram->init_lock); 1696 return; 1697 } 1698 1699 comp = zram->comp; 1700 disksize = zram->disksize; 1701 zram->disksize = 0; 1702 1703 set_capacity_and_notify(zram->disk, 0); 1704 part_stat_set_all(zram->disk->part0, 0); 1705 1706 up_write(&zram->init_lock); 1707 /* I/O operation under all of CPU are done so let's free */ 1708 zram_meta_free(zram, disksize); 1709 memset(&zram->stats, 0, sizeof(zram->stats)); 1710 zcomp_destroy(comp); 1711 reset_bdev(zram); 1712 } 1713 1714 static ssize_t disksize_store(struct device *dev, 1715 struct device_attribute *attr, const char *buf, size_t len) 1716 { 1717 u64 disksize; 1718 struct zcomp *comp; 1719 struct zram *zram = dev_to_zram(dev); 1720 int err; 1721 1722 disksize = memparse(buf, NULL); 1723 if (!disksize) 1724 return -EINVAL; 1725 1726 down_write(&zram->init_lock); 1727 if (init_done(zram)) { 1728 pr_info("Cannot change disksize for initialized device\n"); 1729 err = -EBUSY; 1730 goto out_unlock; 1731 } 1732 1733 disksize = PAGE_ALIGN(disksize); 1734 if (!zram_meta_alloc(zram, disksize)) { 1735 err = -ENOMEM; 1736 goto out_unlock; 1737 } 1738 1739 comp = zcomp_create(zram->compressor); 1740 if (IS_ERR(comp)) { 1741 pr_err("Cannot initialise %s compressing backend\n", 1742 zram->compressor); 1743 err = PTR_ERR(comp); 1744 goto out_free_meta; 1745 } 1746 1747 zram->comp = comp; 1748 zram->disksize = disksize; 1749 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 1750 up_write(&zram->init_lock); 1751 1752 return len; 1753 1754 out_free_meta: 1755 zram_meta_free(zram, disksize); 1756 out_unlock: 1757 up_write(&zram->init_lock); 1758 return err; 1759 } 1760 1761 static ssize_t reset_store(struct device *dev, 1762 struct device_attribute *attr, const char *buf, size_t len) 1763 { 1764 int ret; 1765 unsigned short do_reset; 1766 struct zram *zram; 1767 struct block_device *bdev; 1768 1769 ret = kstrtou16(buf, 10, &do_reset); 1770 if (ret) 1771 return ret; 1772 1773 if (!do_reset) 1774 return -EINVAL; 1775 1776 zram = dev_to_zram(dev); 1777 bdev = zram->disk->part0; 1778 1779 mutex_lock(&bdev->bd_mutex); 1780 /* Do not reset an active device or claimed device */ 1781 if (bdev->bd_openers || zram->claim) { 1782 mutex_unlock(&bdev->bd_mutex); 1783 return -EBUSY; 1784 } 1785 1786 /* From now on, anyone can't open /dev/zram[0-9] */ 1787 zram->claim = true; 1788 mutex_unlock(&bdev->bd_mutex); 1789 1790 /* Make sure all the pending I/O are finished */ 1791 fsync_bdev(bdev); 1792 zram_reset_device(zram); 1793 1794 mutex_lock(&bdev->bd_mutex); 1795 zram->claim = false; 1796 mutex_unlock(&bdev->bd_mutex); 1797 1798 return len; 1799 } 1800 1801 static int zram_open(struct block_device *bdev, fmode_t mode) 1802 { 1803 int ret = 0; 1804 struct zram *zram; 1805 1806 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1807 1808 zram = bdev->bd_disk->private_data; 1809 /* zram was claimed to reset so open request fails */ 1810 if (zram->claim) 1811 ret = -EBUSY; 1812 1813 return ret; 1814 } 1815 1816 static const struct block_device_operations zram_devops = { 1817 .open = zram_open, 1818 .submit_bio = zram_submit_bio, 1819 .swap_slot_free_notify = zram_slot_free_notify, 1820 .rw_page = zram_rw_page, 1821 .owner = THIS_MODULE 1822 }; 1823 1824 static const struct block_device_operations zram_wb_devops = { 1825 .open = zram_open, 1826 .submit_bio = zram_submit_bio, 1827 .swap_slot_free_notify = zram_slot_free_notify, 1828 .owner = THIS_MODULE 1829 }; 1830 1831 static DEVICE_ATTR_WO(compact); 1832 static DEVICE_ATTR_RW(disksize); 1833 static DEVICE_ATTR_RO(initstate); 1834 static DEVICE_ATTR_WO(reset); 1835 static DEVICE_ATTR_WO(mem_limit); 1836 static DEVICE_ATTR_WO(mem_used_max); 1837 static DEVICE_ATTR_WO(idle); 1838 static DEVICE_ATTR_RW(max_comp_streams); 1839 static DEVICE_ATTR_RW(comp_algorithm); 1840 #ifdef CONFIG_ZRAM_WRITEBACK 1841 static DEVICE_ATTR_RW(backing_dev); 1842 static DEVICE_ATTR_WO(writeback); 1843 static DEVICE_ATTR_RW(writeback_limit); 1844 static DEVICE_ATTR_RW(writeback_limit_enable); 1845 #endif 1846 1847 static struct attribute *zram_disk_attrs[] = { 1848 &dev_attr_disksize.attr, 1849 &dev_attr_initstate.attr, 1850 &dev_attr_reset.attr, 1851 &dev_attr_compact.attr, 1852 &dev_attr_mem_limit.attr, 1853 &dev_attr_mem_used_max.attr, 1854 &dev_attr_idle.attr, 1855 &dev_attr_max_comp_streams.attr, 1856 &dev_attr_comp_algorithm.attr, 1857 #ifdef CONFIG_ZRAM_WRITEBACK 1858 &dev_attr_backing_dev.attr, 1859 &dev_attr_writeback.attr, 1860 &dev_attr_writeback_limit.attr, 1861 &dev_attr_writeback_limit_enable.attr, 1862 #endif 1863 &dev_attr_io_stat.attr, 1864 &dev_attr_mm_stat.attr, 1865 #ifdef CONFIG_ZRAM_WRITEBACK 1866 &dev_attr_bd_stat.attr, 1867 #endif 1868 &dev_attr_debug_stat.attr, 1869 NULL, 1870 }; 1871 1872 static const struct attribute_group zram_disk_attr_group = { 1873 .attrs = zram_disk_attrs, 1874 }; 1875 1876 static const struct attribute_group *zram_disk_attr_groups[] = { 1877 &zram_disk_attr_group, 1878 NULL, 1879 }; 1880 1881 /* 1882 * Allocate and initialize new zram device. the function returns 1883 * '>= 0' device_id upon success, and negative value otherwise. 1884 */ 1885 static int zram_add(void) 1886 { 1887 struct zram *zram; 1888 struct request_queue *queue; 1889 int ret, device_id; 1890 1891 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1892 if (!zram) 1893 return -ENOMEM; 1894 1895 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1896 if (ret < 0) 1897 goto out_free_dev; 1898 device_id = ret; 1899 1900 init_rwsem(&zram->init_lock); 1901 #ifdef CONFIG_ZRAM_WRITEBACK 1902 spin_lock_init(&zram->wb_limit_lock); 1903 #endif 1904 queue = blk_alloc_queue(NUMA_NO_NODE); 1905 if (!queue) { 1906 pr_err("Error allocating disk queue for device %d\n", 1907 device_id); 1908 ret = -ENOMEM; 1909 goto out_free_idr; 1910 } 1911 1912 /* gendisk structure */ 1913 zram->disk = alloc_disk(1); 1914 if (!zram->disk) { 1915 pr_err("Error allocating disk structure for device %d\n", 1916 device_id); 1917 ret = -ENOMEM; 1918 goto out_free_queue; 1919 } 1920 1921 zram->disk->major = zram_major; 1922 zram->disk->first_minor = device_id; 1923 zram->disk->fops = &zram_devops; 1924 zram->disk->queue = queue; 1925 zram->disk->private_data = zram; 1926 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1927 1928 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1929 set_capacity(zram->disk, 0); 1930 /* zram devices sort of resembles non-rotational disks */ 1931 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1932 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1933 1934 /* 1935 * To ensure that we always get PAGE_SIZE aligned 1936 * and n*PAGE_SIZED sized I/O requests. 1937 */ 1938 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1939 blk_queue_logical_block_size(zram->disk->queue, 1940 ZRAM_LOGICAL_BLOCK_SIZE); 1941 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1942 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1943 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1944 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1945 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue); 1946 1947 /* 1948 * zram_bio_discard() will clear all logical blocks if logical block 1949 * size is identical with physical block size(PAGE_SIZE). But if it is 1950 * different, we will skip discarding some parts of logical blocks in 1951 * the part of the request range which isn't aligned to physical block 1952 * size. So we can't ensure that all discarded logical blocks are 1953 * zeroed. 1954 */ 1955 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1956 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1957 1958 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 1959 device_add_disk(NULL, zram->disk, zram_disk_attr_groups); 1960 1961 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1962 1963 zram_debugfs_register(zram); 1964 pr_info("Added device: %s\n", zram->disk->disk_name); 1965 return device_id; 1966 1967 out_free_queue: 1968 blk_cleanup_queue(queue); 1969 out_free_idr: 1970 idr_remove(&zram_index_idr, device_id); 1971 out_free_dev: 1972 kfree(zram); 1973 return ret; 1974 } 1975 1976 static int zram_remove(struct zram *zram) 1977 { 1978 struct block_device *bdev = zram->disk->part0; 1979 1980 mutex_lock(&bdev->bd_mutex); 1981 if (bdev->bd_openers || zram->claim) { 1982 mutex_unlock(&bdev->bd_mutex); 1983 return -EBUSY; 1984 } 1985 1986 zram->claim = true; 1987 mutex_unlock(&bdev->bd_mutex); 1988 1989 zram_debugfs_unregister(zram); 1990 1991 /* Make sure all the pending I/O are finished */ 1992 fsync_bdev(bdev); 1993 zram_reset_device(zram); 1994 1995 pr_info("Removed device: %s\n", zram->disk->disk_name); 1996 1997 del_gendisk(zram->disk); 1998 blk_cleanup_queue(zram->disk->queue); 1999 put_disk(zram->disk); 2000 kfree(zram); 2001 return 0; 2002 } 2003 2004 /* zram-control sysfs attributes */ 2005 2006 /* 2007 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2008 * sense that reading from this file does alter the state of your system -- it 2009 * creates a new un-initialized zram device and returns back this device's 2010 * device_id (or an error code if it fails to create a new device). 2011 */ 2012 static ssize_t hot_add_show(struct class *class, 2013 struct class_attribute *attr, 2014 char *buf) 2015 { 2016 int ret; 2017 2018 mutex_lock(&zram_index_mutex); 2019 ret = zram_add(); 2020 mutex_unlock(&zram_index_mutex); 2021 2022 if (ret < 0) 2023 return ret; 2024 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2025 } 2026 static struct class_attribute class_attr_hot_add = 2027 __ATTR(hot_add, 0400, hot_add_show, NULL); 2028 2029 static ssize_t hot_remove_store(struct class *class, 2030 struct class_attribute *attr, 2031 const char *buf, 2032 size_t count) 2033 { 2034 struct zram *zram; 2035 int ret, dev_id; 2036 2037 /* dev_id is gendisk->first_minor, which is `int' */ 2038 ret = kstrtoint(buf, 10, &dev_id); 2039 if (ret) 2040 return ret; 2041 if (dev_id < 0) 2042 return -EINVAL; 2043 2044 mutex_lock(&zram_index_mutex); 2045 2046 zram = idr_find(&zram_index_idr, dev_id); 2047 if (zram) { 2048 ret = zram_remove(zram); 2049 if (!ret) 2050 idr_remove(&zram_index_idr, dev_id); 2051 } else { 2052 ret = -ENODEV; 2053 } 2054 2055 mutex_unlock(&zram_index_mutex); 2056 return ret ? ret : count; 2057 } 2058 static CLASS_ATTR_WO(hot_remove); 2059 2060 static struct attribute *zram_control_class_attrs[] = { 2061 &class_attr_hot_add.attr, 2062 &class_attr_hot_remove.attr, 2063 NULL, 2064 }; 2065 ATTRIBUTE_GROUPS(zram_control_class); 2066 2067 static struct class zram_control_class = { 2068 .name = "zram-control", 2069 .owner = THIS_MODULE, 2070 .class_groups = zram_control_class_groups, 2071 }; 2072 2073 static int zram_remove_cb(int id, void *ptr, void *data) 2074 { 2075 zram_remove(ptr); 2076 return 0; 2077 } 2078 2079 static void destroy_devices(void) 2080 { 2081 class_unregister(&zram_control_class); 2082 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2083 zram_debugfs_destroy(); 2084 idr_destroy(&zram_index_idr); 2085 unregister_blkdev(zram_major, "zram"); 2086 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2087 } 2088 2089 static int __init zram_init(void) 2090 { 2091 int ret; 2092 2093 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2094 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2095 if (ret < 0) 2096 return ret; 2097 2098 ret = class_register(&zram_control_class); 2099 if (ret) { 2100 pr_err("Unable to register zram-control class\n"); 2101 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2102 return ret; 2103 } 2104 2105 zram_debugfs_create(); 2106 zram_major = register_blkdev(0, "zram"); 2107 if (zram_major <= 0) { 2108 pr_err("Unable to get major number\n"); 2109 class_unregister(&zram_control_class); 2110 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2111 return -EBUSY; 2112 } 2113 2114 while (num_devices != 0) { 2115 mutex_lock(&zram_index_mutex); 2116 ret = zram_add(); 2117 mutex_unlock(&zram_index_mutex); 2118 if (ret < 0) 2119 goto out_error; 2120 num_devices--; 2121 } 2122 2123 return 0; 2124 2125 out_error: 2126 destroy_devices(); 2127 return ret; 2128 } 2129 2130 static void __exit zram_exit(void) 2131 { 2132 destroy_devices(); 2133 } 2134 2135 module_init(zram_init); 2136 module_exit(zram_exit); 2137 2138 module_param(num_devices, uint, 0); 2139 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2140 2141 MODULE_LICENSE("Dual BSD/GPL"); 2142 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2143 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2144