xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision afc98d90)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44 
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47 	return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49 
50 static ssize_t disksize_show(struct device *dev,
51 		struct device_attribute *attr, char *buf)
52 {
53 	struct zram *zram = dev_to_zram(dev);
54 
55 	return sprintf(buf, "%llu\n", zram->disksize);
56 }
57 
58 static ssize_t initstate_show(struct device *dev,
59 		struct device_attribute *attr, char *buf)
60 {
61 	struct zram *zram = dev_to_zram(dev);
62 
63 	return sprintf(buf, "%u\n", zram->init_done);
64 }
65 
66 static ssize_t num_reads_show(struct device *dev,
67 		struct device_attribute *attr, char *buf)
68 {
69 	struct zram *zram = dev_to_zram(dev);
70 
71 	return sprintf(buf, "%llu\n",
72 			(u64)atomic64_read(&zram->stats.num_reads));
73 }
74 
75 static ssize_t num_writes_show(struct device *dev,
76 		struct device_attribute *attr, char *buf)
77 {
78 	struct zram *zram = dev_to_zram(dev);
79 
80 	return sprintf(buf, "%llu\n",
81 			(u64)atomic64_read(&zram->stats.num_writes));
82 }
83 
84 static ssize_t invalid_io_show(struct device *dev,
85 		struct device_attribute *attr, char *buf)
86 {
87 	struct zram *zram = dev_to_zram(dev);
88 
89 	return sprintf(buf, "%llu\n",
90 			(u64)atomic64_read(&zram->stats.invalid_io));
91 }
92 
93 static ssize_t notify_free_show(struct device *dev,
94 		struct device_attribute *attr, char *buf)
95 {
96 	struct zram *zram = dev_to_zram(dev);
97 
98 	return sprintf(buf, "%llu\n",
99 			(u64)atomic64_read(&zram->stats.notify_free));
100 }
101 
102 static ssize_t zero_pages_show(struct device *dev,
103 		struct device_attribute *attr, char *buf)
104 {
105 	struct zram *zram = dev_to_zram(dev);
106 
107 	return sprintf(buf, "%u\n", atomic_read(&zram->stats.pages_zero));
108 }
109 
110 static ssize_t orig_data_size_show(struct device *dev,
111 		struct device_attribute *attr, char *buf)
112 {
113 	struct zram *zram = dev_to_zram(dev);
114 
115 	return sprintf(buf, "%llu\n",
116 		(u64)(atomic_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
117 }
118 
119 static ssize_t compr_data_size_show(struct device *dev,
120 		struct device_attribute *attr, char *buf)
121 {
122 	struct zram *zram = dev_to_zram(dev);
123 
124 	return sprintf(buf, "%llu\n",
125 			(u64)atomic64_read(&zram->stats.compr_size));
126 }
127 
128 static ssize_t mem_used_total_show(struct device *dev,
129 		struct device_attribute *attr, char *buf)
130 {
131 	u64 val = 0;
132 	struct zram *zram = dev_to_zram(dev);
133 	struct zram_meta *meta = zram->meta;
134 
135 	down_read(&zram->init_lock);
136 	if (zram->init_done)
137 		val = zs_get_total_size_bytes(meta->mem_pool);
138 	up_read(&zram->init_lock);
139 
140 	return sprintf(buf, "%llu\n", val);
141 }
142 
143 /* flag operations needs meta->tb_lock */
144 static int zram_test_flag(struct zram_meta *meta, u32 index,
145 			enum zram_pageflags flag)
146 {
147 	return meta->table[index].flags & BIT(flag);
148 }
149 
150 static void zram_set_flag(struct zram_meta *meta, u32 index,
151 			enum zram_pageflags flag)
152 {
153 	meta->table[index].flags |= BIT(flag);
154 }
155 
156 static void zram_clear_flag(struct zram_meta *meta, u32 index,
157 			enum zram_pageflags flag)
158 {
159 	meta->table[index].flags &= ~BIT(flag);
160 }
161 
162 static inline int is_partial_io(struct bio_vec *bvec)
163 {
164 	return bvec->bv_len != PAGE_SIZE;
165 }
166 
167 /*
168  * Check if request is within bounds and aligned on zram logical blocks.
169  */
170 static inline int valid_io_request(struct zram *zram, struct bio *bio)
171 {
172 	u64 start, end, bound;
173 
174 	/* unaligned request */
175 	if (unlikely(bio->bi_iter.bi_sector &
176 		     (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
177 		return 0;
178 	if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
179 		return 0;
180 
181 	start = bio->bi_iter.bi_sector;
182 	end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
183 	bound = zram->disksize >> SECTOR_SHIFT;
184 	/* out of range range */
185 	if (unlikely(start >= bound || end > bound || start > end))
186 		return 0;
187 
188 	/* I/O request is valid */
189 	return 1;
190 }
191 
192 static void zram_meta_free(struct zram_meta *meta)
193 {
194 	zs_destroy_pool(meta->mem_pool);
195 	kfree(meta->compress_workmem);
196 	free_pages((unsigned long)meta->compress_buffer, 1);
197 	vfree(meta->table);
198 	kfree(meta);
199 }
200 
201 static struct zram_meta *zram_meta_alloc(u64 disksize)
202 {
203 	size_t num_pages;
204 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
205 	if (!meta)
206 		goto out;
207 
208 	meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
209 	if (!meta->compress_workmem)
210 		goto free_meta;
211 
212 	meta->compress_buffer =
213 		(void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
214 	if (!meta->compress_buffer) {
215 		pr_err("Error allocating compressor buffer space\n");
216 		goto free_workmem;
217 	}
218 
219 	num_pages = disksize >> PAGE_SHIFT;
220 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
221 	if (!meta->table) {
222 		pr_err("Error allocating zram address table\n");
223 		goto free_buffer;
224 	}
225 
226 	meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
227 	if (!meta->mem_pool) {
228 		pr_err("Error creating memory pool\n");
229 		goto free_table;
230 	}
231 
232 	rwlock_init(&meta->tb_lock);
233 	mutex_init(&meta->buffer_lock);
234 	return meta;
235 
236 free_table:
237 	vfree(meta->table);
238 free_buffer:
239 	free_pages((unsigned long)meta->compress_buffer, 1);
240 free_workmem:
241 	kfree(meta->compress_workmem);
242 free_meta:
243 	kfree(meta);
244 	meta = NULL;
245 out:
246 	return meta;
247 }
248 
249 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
250 {
251 	if (*offset + bvec->bv_len >= PAGE_SIZE)
252 		(*index)++;
253 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
254 }
255 
256 static int page_zero_filled(void *ptr)
257 {
258 	unsigned int pos;
259 	unsigned long *page;
260 
261 	page = (unsigned long *)ptr;
262 
263 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
264 		if (page[pos])
265 			return 0;
266 	}
267 
268 	return 1;
269 }
270 
271 static void handle_zero_page(struct bio_vec *bvec)
272 {
273 	struct page *page = bvec->bv_page;
274 	void *user_mem;
275 
276 	user_mem = kmap_atomic(page);
277 	if (is_partial_io(bvec))
278 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
279 	else
280 		clear_page(user_mem);
281 	kunmap_atomic(user_mem);
282 
283 	flush_dcache_page(page);
284 }
285 
286 /* NOTE: caller should hold meta->tb_lock with write-side */
287 static void zram_free_page(struct zram *zram, size_t index)
288 {
289 	struct zram_meta *meta = zram->meta;
290 	unsigned long handle = meta->table[index].handle;
291 	u16 size = meta->table[index].size;
292 
293 	if (unlikely(!handle)) {
294 		/*
295 		 * No memory is allocated for zero filled pages.
296 		 * Simply clear zero page flag.
297 		 */
298 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
299 			zram_clear_flag(meta, index, ZRAM_ZERO);
300 			atomic_dec(&zram->stats.pages_zero);
301 		}
302 		return;
303 	}
304 
305 	if (unlikely(size > max_zpage_size))
306 		atomic_dec(&zram->stats.bad_compress);
307 
308 	zs_free(meta->mem_pool, handle);
309 
310 	if (size <= PAGE_SIZE / 2)
311 		atomic_dec(&zram->stats.good_compress);
312 
313 	atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
314 	atomic_dec(&zram->stats.pages_stored);
315 
316 	meta->table[index].handle = 0;
317 	meta->table[index].size = 0;
318 }
319 
320 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
321 {
322 	int ret = LZO_E_OK;
323 	size_t clen = PAGE_SIZE;
324 	unsigned char *cmem;
325 	struct zram_meta *meta = zram->meta;
326 	unsigned long handle;
327 	u16 size;
328 
329 	read_lock(&meta->tb_lock);
330 	handle = meta->table[index].handle;
331 	size = meta->table[index].size;
332 
333 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
334 		read_unlock(&meta->tb_lock);
335 		clear_page(mem);
336 		return 0;
337 	}
338 
339 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
340 	if (size == PAGE_SIZE)
341 		copy_page(mem, cmem);
342 	else
343 		ret = lzo1x_decompress_safe(cmem, size,	mem, &clen);
344 	zs_unmap_object(meta->mem_pool, handle);
345 	read_unlock(&meta->tb_lock);
346 
347 	/* Should NEVER happen. Return bio error if it does. */
348 	if (unlikely(ret != LZO_E_OK)) {
349 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
350 		atomic64_inc(&zram->stats.failed_reads);
351 		return ret;
352 	}
353 
354 	return 0;
355 }
356 
357 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
358 			  u32 index, int offset, struct bio *bio)
359 {
360 	int ret;
361 	struct page *page;
362 	unsigned char *user_mem, *uncmem = NULL;
363 	struct zram_meta *meta = zram->meta;
364 	page = bvec->bv_page;
365 
366 	read_lock(&meta->tb_lock);
367 	if (unlikely(!meta->table[index].handle) ||
368 			zram_test_flag(meta, index, ZRAM_ZERO)) {
369 		read_unlock(&meta->tb_lock);
370 		handle_zero_page(bvec);
371 		return 0;
372 	}
373 	read_unlock(&meta->tb_lock);
374 
375 	if (is_partial_io(bvec))
376 		/* Use  a temporary buffer to decompress the page */
377 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
378 
379 	user_mem = kmap_atomic(page);
380 	if (!is_partial_io(bvec))
381 		uncmem = user_mem;
382 
383 	if (!uncmem) {
384 		pr_info("Unable to allocate temp memory\n");
385 		ret = -ENOMEM;
386 		goto out_cleanup;
387 	}
388 
389 	ret = zram_decompress_page(zram, uncmem, index);
390 	/* Should NEVER happen. Return bio error if it does. */
391 	if (unlikely(ret != LZO_E_OK))
392 		goto out_cleanup;
393 
394 	if (is_partial_io(bvec))
395 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
396 				bvec->bv_len);
397 
398 	flush_dcache_page(page);
399 	ret = 0;
400 out_cleanup:
401 	kunmap_atomic(user_mem);
402 	if (is_partial_io(bvec))
403 		kfree(uncmem);
404 	return ret;
405 }
406 
407 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
408 			   int offset)
409 {
410 	int ret = 0;
411 	size_t clen;
412 	unsigned long handle;
413 	struct page *page;
414 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
415 	struct zram_meta *meta = zram->meta;
416 	bool locked = false;
417 
418 	page = bvec->bv_page;
419 	src = meta->compress_buffer;
420 
421 	if (is_partial_io(bvec)) {
422 		/*
423 		 * This is a partial IO. We need to read the full page
424 		 * before to write the changes.
425 		 */
426 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
427 		if (!uncmem) {
428 			ret = -ENOMEM;
429 			goto out;
430 		}
431 		ret = zram_decompress_page(zram, uncmem, index);
432 		if (ret)
433 			goto out;
434 	}
435 
436 	mutex_lock(&meta->buffer_lock);
437 	locked = true;
438 	user_mem = kmap_atomic(page);
439 
440 	if (is_partial_io(bvec)) {
441 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
442 		       bvec->bv_len);
443 		kunmap_atomic(user_mem);
444 		user_mem = NULL;
445 	} else {
446 		uncmem = user_mem;
447 	}
448 
449 	if (page_zero_filled(uncmem)) {
450 		kunmap_atomic(user_mem);
451 		/* Free memory associated with this sector now. */
452 		write_lock(&zram->meta->tb_lock);
453 		zram_free_page(zram, index);
454 		zram_set_flag(meta, index, ZRAM_ZERO);
455 		write_unlock(&zram->meta->tb_lock);
456 
457 		atomic_inc(&zram->stats.pages_zero);
458 		ret = 0;
459 		goto out;
460 	}
461 
462 	ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
463 			       meta->compress_workmem);
464 	if (!is_partial_io(bvec)) {
465 		kunmap_atomic(user_mem);
466 		user_mem = NULL;
467 		uncmem = NULL;
468 	}
469 
470 	if (unlikely(ret != LZO_E_OK)) {
471 		pr_err("Compression failed! err=%d\n", ret);
472 		goto out;
473 	}
474 
475 	if (unlikely(clen > max_zpage_size)) {
476 		atomic_inc(&zram->stats.bad_compress);
477 		clen = PAGE_SIZE;
478 		src = NULL;
479 		if (is_partial_io(bvec))
480 			src = uncmem;
481 	}
482 
483 	handle = zs_malloc(meta->mem_pool, clen);
484 	if (!handle) {
485 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
486 			index, clen);
487 		ret = -ENOMEM;
488 		goto out;
489 	}
490 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
491 
492 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
493 		src = kmap_atomic(page);
494 		copy_page(cmem, src);
495 		kunmap_atomic(src);
496 	} else {
497 		memcpy(cmem, src, clen);
498 	}
499 
500 	zs_unmap_object(meta->mem_pool, handle);
501 
502 	/*
503 	 * Free memory associated with this sector
504 	 * before overwriting unused sectors.
505 	 */
506 	write_lock(&zram->meta->tb_lock);
507 	zram_free_page(zram, index);
508 
509 	meta->table[index].handle = handle;
510 	meta->table[index].size = clen;
511 	write_unlock(&zram->meta->tb_lock);
512 
513 	/* Update stats */
514 	atomic64_add(clen, &zram->stats.compr_size);
515 	atomic_inc(&zram->stats.pages_stored);
516 	if (clen <= PAGE_SIZE / 2)
517 		atomic_inc(&zram->stats.good_compress);
518 
519 out:
520 	if (locked)
521 		mutex_unlock(&meta->buffer_lock);
522 	if (is_partial_io(bvec))
523 		kfree(uncmem);
524 
525 	if (ret)
526 		atomic64_inc(&zram->stats.failed_writes);
527 	return ret;
528 }
529 
530 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
531 			int offset, struct bio *bio, int rw)
532 {
533 	int ret;
534 
535 	if (rw == READ)
536 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
537 	else
538 		ret = zram_bvec_write(zram, bvec, index, offset);
539 
540 	return ret;
541 }
542 
543 static void zram_reset_device(struct zram *zram, bool reset_capacity)
544 {
545 	size_t index;
546 	struct zram_meta *meta;
547 
548 	down_write(&zram->init_lock);
549 	if (!zram->init_done) {
550 		up_write(&zram->init_lock);
551 		return;
552 	}
553 
554 	meta = zram->meta;
555 	zram->init_done = 0;
556 
557 	/* Free all pages that are still in this zram device */
558 	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
559 		unsigned long handle = meta->table[index].handle;
560 		if (!handle)
561 			continue;
562 
563 		zs_free(meta->mem_pool, handle);
564 	}
565 
566 	zram_meta_free(zram->meta);
567 	zram->meta = NULL;
568 	/* Reset stats */
569 	memset(&zram->stats, 0, sizeof(zram->stats));
570 
571 	zram->disksize = 0;
572 	if (reset_capacity)
573 		set_capacity(zram->disk, 0);
574 	up_write(&zram->init_lock);
575 }
576 
577 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
578 {
579 	if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
580 		pr_info(
581 		"There is little point creating a zram of greater than "
582 		"twice the size of memory since we expect a 2:1 compression "
583 		"ratio. Note that zram uses about 0.1%% of the size of "
584 		"the disk when not in use so a huge zram is "
585 		"wasteful.\n"
586 		"\tMemory Size: %lu kB\n"
587 		"\tSize you selected: %llu kB\n"
588 		"Continuing anyway ...\n",
589 		(totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
590 		);
591 	}
592 
593 	/* zram devices sort of resembles non-rotational disks */
594 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
595 
596 	zram->meta = meta;
597 	zram->init_done = 1;
598 
599 	pr_debug("Initialization done!\n");
600 }
601 
602 static ssize_t disksize_store(struct device *dev,
603 		struct device_attribute *attr, const char *buf, size_t len)
604 {
605 	u64 disksize;
606 	struct zram_meta *meta;
607 	struct zram *zram = dev_to_zram(dev);
608 
609 	disksize = memparse(buf, NULL);
610 	if (!disksize)
611 		return -EINVAL;
612 
613 	disksize = PAGE_ALIGN(disksize);
614 	meta = zram_meta_alloc(disksize);
615 	down_write(&zram->init_lock);
616 	if (zram->init_done) {
617 		up_write(&zram->init_lock);
618 		zram_meta_free(meta);
619 		pr_info("Cannot change disksize for initialized device\n");
620 		return -EBUSY;
621 	}
622 
623 	zram->disksize = disksize;
624 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
625 	zram_init_device(zram, meta);
626 	up_write(&zram->init_lock);
627 
628 	return len;
629 }
630 
631 static ssize_t reset_store(struct device *dev,
632 		struct device_attribute *attr, const char *buf, size_t len)
633 {
634 	int ret;
635 	unsigned short do_reset;
636 	struct zram *zram;
637 	struct block_device *bdev;
638 
639 	zram = dev_to_zram(dev);
640 	bdev = bdget_disk(zram->disk, 0);
641 
642 	if (!bdev)
643 		return -ENOMEM;
644 
645 	/* Do not reset an active device! */
646 	if (bdev->bd_holders) {
647 		ret = -EBUSY;
648 		goto out;
649 	}
650 
651 	ret = kstrtou16(buf, 10, &do_reset);
652 	if (ret)
653 		goto out;
654 
655 	if (!do_reset) {
656 		ret = -EINVAL;
657 		goto out;
658 	}
659 
660 	/* Make sure all pending I/O is finished */
661 	fsync_bdev(bdev);
662 	bdput(bdev);
663 
664 	zram_reset_device(zram, true);
665 	return len;
666 
667 out:
668 	bdput(bdev);
669 	return ret;
670 }
671 
672 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
673 {
674 	int offset;
675 	u32 index;
676 	struct bio_vec bvec;
677 	struct bvec_iter iter;
678 
679 	switch (rw) {
680 	case READ:
681 		atomic64_inc(&zram->stats.num_reads);
682 		break;
683 	case WRITE:
684 		atomic64_inc(&zram->stats.num_writes);
685 		break;
686 	}
687 
688 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
689 	offset = (bio->bi_iter.bi_sector &
690 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
691 
692 	bio_for_each_segment(bvec, bio, iter) {
693 		int max_transfer_size = PAGE_SIZE - offset;
694 
695 		if (bvec.bv_len > max_transfer_size) {
696 			/*
697 			 * zram_bvec_rw() can only make operation on a single
698 			 * zram page. Split the bio vector.
699 			 */
700 			struct bio_vec bv;
701 
702 			bv.bv_page = bvec.bv_page;
703 			bv.bv_len = max_transfer_size;
704 			bv.bv_offset = bvec.bv_offset;
705 
706 			if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
707 				goto out;
708 
709 			bv.bv_len = bvec.bv_len - max_transfer_size;
710 			bv.bv_offset += max_transfer_size;
711 			if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
712 				goto out;
713 		} else
714 			if (zram_bvec_rw(zram, &bvec, index, offset, bio, rw)
715 			    < 0)
716 				goto out;
717 
718 		update_position(&index, &offset, &bvec);
719 	}
720 
721 	set_bit(BIO_UPTODATE, &bio->bi_flags);
722 	bio_endio(bio, 0);
723 	return;
724 
725 out:
726 	bio_io_error(bio);
727 }
728 
729 /*
730  * Handler function for all zram I/O requests.
731  */
732 static void zram_make_request(struct request_queue *queue, struct bio *bio)
733 {
734 	struct zram *zram = queue->queuedata;
735 
736 	down_read(&zram->init_lock);
737 	if (unlikely(!zram->init_done))
738 		goto error;
739 
740 	if (!valid_io_request(zram, bio)) {
741 		atomic64_inc(&zram->stats.invalid_io);
742 		goto error;
743 	}
744 
745 	__zram_make_request(zram, bio, bio_data_dir(bio));
746 	up_read(&zram->init_lock);
747 
748 	return;
749 
750 error:
751 	up_read(&zram->init_lock);
752 	bio_io_error(bio);
753 }
754 
755 static void zram_slot_free_notify(struct block_device *bdev,
756 				unsigned long index)
757 {
758 	struct zram *zram;
759 	struct zram_meta *meta;
760 
761 	zram = bdev->bd_disk->private_data;
762 	meta = zram->meta;
763 
764 	write_lock(&meta->tb_lock);
765 	zram_free_page(zram, index);
766 	write_unlock(&meta->tb_lock);
767 	atomic64_inc(&zram->stats.notify_free);
768 }
769 
770 static const struct block_device_operations zram_devops = {
771 	.swap_slot_free_notify = zram_slot_free_notify,
772 	.owner = THIS_MODULE
773 };
774 
775 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
776 		disksize_show, disksize_store);
777 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
778 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
779 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
780 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
781 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
782 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
783 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
784 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
785 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
786 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
787 
788 static struct attribute *zram_disk_attrs[] = {
789 	&dev_attr_disksize.attr,
790 	&dev_attr_initstate.attr,
791 	&dev_attr_reset.attr,
792 	&dev_attr_num_reads.attr,
793 	&dev_attr_num_writes.attr,
794 	&dev_attr_invalid_io.attr,
795 	&dev_attr_notify_free.attr,
796 	&dev_attr_zero_pages.attr,
797 	&dev_attr_orig_data_size.attr,
798 	&dev_attr_compr_data_size.attr,
799 	&dev_attr_mem_used_total.attr,
800 	NULL,
801 };
802 
803 static struct attribute_group zram_disk_attr_group = {
804 	.attrs = zram_disk_attrs,
805 };
806 
807 static int create_device(struct zram *zram, int device_id)
808 {
809 	int ret = -ENOMEM;
810 
811 	init_rwsem(&zram->init_lock);
812 
813 	zram->queue = blk_alloc_queue(GFP_KERNEL);
814 	if (!zram->queue) {
815 		pr_err("Error allocating disk queue for device %d\n",
816 			device_id);
817 		goto out;
818 	}
819 
820 	blk_queue_make_request(zram->queue, zram_make_request);
821 	zram->queue->queuedata = zram;
822 
823 	 /* gendisk structure */
824 	zram->disk = alloc_disk(1);
825 	if (!zram->disk) {
826 		pr_warn("Error allocating disk structure for device %d\n",
827 			device_id);
828 		goto out_free_queue;
829 	}
830 
831 	zram->disk->major = zram_major;
832 	zram->disk->first_minor = device_id;
833 	zram->disk->fops = &zram_devops;
834 	zram->disk->queue = zram->queue;
835 	zram->disk->private_data = zram;
836 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
837 
838 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
839 	set_capacity(zram->disk, 0);
840 
841 	/*
842 	 * To ensure that we always get PAGE_SIZE aligned
843 	 * and n*PAGE_SIZED sized I/O requests.
844 	 */
845 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
846 	blk_queue_logical_block_size(zram->disk->queue,
847 					ZRAM_LOGICAL_BLOCK_SIZE);
848 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
849 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
850 
851 	add_disk(zram->disk);
852 
853 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
854 				&zram_disk_attr_group);
855 	if (ret < 0) {
856 		pr_warn("Error creating sysfs group");
857 		goto out_free_disk;
858 	}
859 
860 	zram->init_done = 0;
861 	return 0;
862 
863 out_free_disk:
864 	del_gendisk(zram->disk);
865 	put_disk(zram->disk);
866 out_free_queue:
867 	blk_cleanup_queue(zram->queue);
868 out:
869 	return ret;
870 }
871 
872 static void destroy_device(struct zram *zram)
873 {
874 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
875 			&zram_disk_attr_group);
876 
877 	del_gendisk(zram->disk);
878 	put_disk(zram->disk);
879 
880 	blk_cleanup_queue(zram->queue);
881 }
882 
883 static int __init zram_init(void)
884 {
885 	int ret, dev_id;
886 
887 	if (num_devices > max_num_devices) {
888 		pr_warn("Invalid value for num_devices: %u\n",
889 				num_devices);
890 		ret = -EINVAL;
891 		goto out;
892 	}
893 
894 	zram_major = register_blkdev(0, "zram");
895 	if (zram_major <= 0) {
896 		pr_warn("Unable to get major number\n");
897 		ret = -EBUSY;
898 		goto out;
899 	}
900 
901 	/* Allocate the device array and initialize each one */
902 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
903 	if (!zram_devices) {
904 		ret = -ENOMEM;
905 		goto unregister;
906 	}
907 
908 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
909 		ret = create_device(&zram_devices[dev_id], dev_id);
910 		if (ret)
911 			goto free_devices;
912 	}
913 
914 	pr_info("Created %u device(s) ...\n", num_devices);
915 
916 	return 0;
917 
918 free_devices:
919 	while (dev_id)
920 		destroy_device(&zram_devices[--dev_id]);
921 	kfree(zram_devices);
922 unregister:
923 	unregister_blkdev(zram_major, "zram");
924 out:
925 	return ret;
926 }
927 
928 static void __exit zram_exit(void)
929 {
930 	int i;
931 	struct zram *zram;
932 
933 	for (i = 0; i < num_devices; i++) {
934 		zram = &zram_devices[i];
935 
936 		destroy_device(zram);
937 		/*
938 		 * Shouldn't access zram->disk after destroy_device
939 		 * because destroy_device already released zram->disk.
940 		 */
941 		zram_reset_device(zram, false);
942 	}
943 
944 	unregister_blkdev(zram_major, "zram");
945 
946 	kfree(zram_devices);
947 	pr_debug("Cleanup done!\n");
948 }
949 
950 module_init(zram_init);
951 module_exit(zram_exit);
952 
953 module_param(num_devices, uint, 0);
954 MODULE_PARM_DESC(num_devices, "Number of zram devices");
955 
956 MODULE_LICENSE("Dual BSD/GPL");
957 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
958 MODULE_DESCRIPTION("Compressed RAM Block Device");
959