1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/debugfs.h> 35 #include <linux/cpuhotplug.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = "lzo-rle"; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static void zram_free_page(struct zram *zram, size_t index); 55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 56 u32 index, int offset, struct bio *bio); 57 58 59 static int zram_slot_trylock(struct zram *zram, u32 index) 60 { 61 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 62 } 63 64 static void zram_slot_lock(struct zram *zram, u32 index) 65 { 66 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 67 } 68 69 static void zram_slot_unlock(struct zram *zram, u32 index) 70 { 71 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 72 } 73 74 static inline bool init_done(struct zram *zram) 75 { 76 return zram->disksize; 77 } 78 79 static inline struct zram *dev_to_zram(struct device *dev) 80 { 81 return (struct zram *)dev_to_disk(dev)->private_data; 82 } 83 84 static unsigned long zram_get_handle(struct zram *zram, u32 index) 85 { 86 return zram->table[index].handle; 87 } 88 89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 90 { 91 zram->table[index].handle = handle; 92 } 93 94 /* flag operations require table entry bit_spin_lock() being held */ 95 static bool zram_test_flag(struct zram *zram, u32 index, 96 enum zram_pageflags flag) 97 { 98 return zram->table[index].flags & BIT(flag); 99 } 100 101 static void zram_set_flag(struct zram *zram, u32 index, 102 enum zram_pageflags flag) 103 { 104 zram->table[index].flags |= BIT(flag); 105 } 106 107 static void zram_clear_flag(struct zram *zram, u32 index, 108 enum zram_pageflags flag) 109 { 110 zram->table[index].flags &= ~BIT(flag); 111 } 112 113 static inline void zram_set_element(struct zram *zram, u32 index, 114 unsigned long element) 115 { 116 zram->table[index].element = element; 117 } 118 119 static unsigned long zram_get_element(struct zram *zram, u32 index) 120 { 121 return zram->table[index].element; 122 } 123 124 static size_t zram_get_obj_size(struct zram *zram, u32 index) 125 { 126 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 127 } 128 129 static void zram_set_obj_size(struct zram *zram, 130 u32 index, size_t size) 131 { 132 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 133 134 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 135 } 136 137 static inline bool zram_allocated(struct zram *zram, u32 index) 138 { 139 return zram_get_obj_size(zram, index) || 140 zram_test_flag(zram, index, ZRAM_SAME) || 141 zram_test_flag(zram, index, ZRAM_WB); 142 } 143 144 #if PAGE_SIZE != 4096 145 static inline bool is_partial_io(struct bio_vec *bvec) 146 { 147 return bvec->bv_len != PAGE_SIZE; 148 } 149 #else 150 static inline bool is_partial_io(struct bio_vec *bvec) 151 { 152 return false; 153 } 154 #endif 155 156 /* 157 * Check if request is within bounds and aligned on zram logical blocks. 158 */ 159 static inline bool valid_io_request(struct zram *zram, 160 sector_t start, unsigned int size) 161 { 162 u64 end, bound; 163 164 /* unaligned request */ 165 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 166 return false; 167 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 168 return false; 169 170 end = start + (size >> SECTOR_SHIFT); 171 bound = zram->disksize >> SECTOR_SHIFT; 172 /* out of range range */ 173 if (unlikely(start >= bound || end > bound || start > end)) 174 return false; 175 176 /* I/O request is valid */ 177 return true; 178 } 179 180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 181 { 182 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 183 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 184 } 185 186 static inline void update_used_max(struct zram *zram, 187 const unsigned long pages) 188 { 189 unsigned long old_max, cur_max; 190 191 old_max = atomic_long_read(&zram->stats.max_used_pages); 192 193 do { 194 cur_max = old_max; 195 if (pages > cur_max) 196 old_max = atomic_long_cmpxchg( 197 &zram->stats.max_used_pages, cur_max, pages); 198 } while (old_max != cur_max); 199 } 200 201 static inline void zram_fill_page(void *ptr, unsigned long len, 202 unsigned long value) 203 { 204 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 205 memset_l(ptr, value, len / sizeof(unsigned long)); 206 } 207 208 static bool page_same_filled(void *ptr, unsigned long *element) 209 { 210 unsigned int pos; 211 unsigned long *page; 212 unsigned long val; 213 214 page = (unsigned long *)ptr; 215 val = page[0]; 216 217 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) { 218 if (val != page[pos]) 219 return false; 220 } 221 222 *element = val; 223 224 return true; 225 } 226 227 static ssize_t initstate_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 u32 val; 231 struct zram *zram = dev_to_zram(dev); 232 233 down_read(&zram->init_lock); 234 val = init_done(zram); 235 up_read(&zram->init_lock); 236 237 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 238 } 239 240 static ssize_t disksize_show(struct device *dev, 241 struct device_attribute *attr, char *buf) 242 { 243 struct zram *zram = dev_to_zram(dev); 244 245 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 246 } 247 248 static ssize_t mem_limit_store(struct device *dev, 249 struct device_attribute *attr, const char *buf, size_t len) 250 { 251 u64 limit; 252 char *tmp; 253 struct zram *zram = dev_to_zram(dev); 254 255 limit = memparse(buf, &tmp); 256 if (buf == tmp) /* no chars parsed, invalid input */ 257 return -EINVAL; 258 259 down_write(&zram->init_lock); 260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 261 up_write(&zram->init_lock); 262 263 return len; 264 } 265 266 static ssize_t mem_used_max_store(struct device *dev, 267 struct device_attribute *attr, const char *buf, size_t len) 268 { 269 int err; 270 unsigned long val; 271 struct zram *zram = dev_to_zram(dev); 272 273 err = kstrtoul(buf, 10, &val); 274 if (err || val != 0) 275 return -EINVAL; 276 277 down_read(&zram->init_lock); 278 if (init_done(zram)) { 279 atomic_long_set(&zram->stats.max_used_pages, 280 zs_get_total_pages(zram->mem_pool)); 281 } 282 up_read(&zram->init_lock); 283 284 return len; 285 } 286 287 static ssize_t idle_store(struct device *dev, 288 struct device_attribute *attr, const char *buf, size_t len) 289 { 290 struct zram *zram = dev_to_zram(dev); 291 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 292 int index; 293 294 if (!sysfs_streq(buf, "all")) 295 return -EINVAL; 296 297 down_read(&zram->init_lock); 298 if (!init_done(zram)) { 299 up_read(&zram->init_lock); 300 return -EINVAL; 301 } 302 303 for (index = 0; index < nr_pages; index++) { 304 /* 305 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 306 * See the comment in writeback_store. 307 */ 308 zram_slot_lock(zram, index); 309 if (zram_allocated(zram, index) && 310 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) 311 zram_set_flag(zram, index, ZRAM_IDLE); 312 zram_slot_unlock(zram, index); 313 } 314 315 up_read(&zram->init_lock); 316 317 return len; 318 } 319 320 #ifdef CONFIG_ZRAM_WRITEBACK 321 static ssize_t writeback_limit_enable_store(struct device *dev, 322 struct device_attribute *attr, const char *buf, size_t len) 323 { 324 struct zram *zram = dev_to_zram(dev); 325 u64 val; 326 ssize_t ret = -EINVAL; 327 328 if (kstrtoull(buf, 10, &val)) 329 return ret; 330 331 down_read(&zram->init_lock); 332 spin_lock(&zram->wb_limit_lock); 333 zram->wb_limit_enable = val; 334 spin_unlock(&zram->wb_limit_lock); 335 up_read(&zram->init_lock); 336 ret = len; 337 338 return ret; 339 } 340 341 static ssize_t writeback_limit_enable_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 bool val; 345 struct zram *zram = dev_to_zram(dev); 346 347 down_read(&zram->init_lock); 348 spin_lock(&zram->wb_limit_lock); 349 val = zram->wb_limit_enable; 350 spin_unlock(&zram->wb_limit_lock); 351 up_read(&zram->init_lock); 352 353 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 354 } 355 356 static ssize_t writeback_limit_store(struct device *dev, 357 struct device_attribute *attr, const char *buf, size_t len) 358 { 359 struct zram *zram = dev_to_zram(dev); 360 u64 val; 361 ssize_t ret = -EINVAL; 362 363 if (kstrtoull(buf, 10, &val)) 364 return ret; 365 366 down_read(&zram->init_lock); 367 spin_lock(&zram->wb_limit_lock); 368 zram->bd_wb_limit = val; 369 spin_unlock(&zram->wb_limit_lock); 370 up_read(&zram->init_lock); 371 ret = len; 372 373 return ret; 374 } 375 376 static ssize_t writeback_limit_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 u64 val; 380 struct zram *zram = dev_to_zram(dev); 381 382 down_read(&zram->init_lock); 383 spin_lock(&zram->wb_limit_lock); 384 val = zram->bd_wb_limit; 385 spin_unlock(&zram->wb_limit_lock); 386 up_read(&zram->init_lock); 387 388 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 389 } 390 391 static void reset_bdev(struct zram *zram) 392 { 393 struct block_device *bdev; 394 395 if (!zram->backing_dev) 396 return; 397 398 bdev = zram->bdev; 399 if (zram->old_block_size) 400 set_blocksize(bdev, zram->old_block_size); 401 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 402 /* hope filp_close flush all of IO */ 403 filp_close(zram->backing_dev, NULL); 404 zram->backing_dev = NULL; 405 zram->old_block_size = 0; 406 zram->bdev = NULL; 407 zram->disk->queue->backing_dev_info->capabilities |= 408 BDI_CAP_SYNCHRONOUS_IO; 409 kvfree(zram->bitmap); 410 zram->bitmap = NULL; 411 } 412 413 static ssize_t backing_dev_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct file *file; 417 struct zram *zram = dev_to_zram(dev); 418 char *p; 419 ssize_t ret; 420 421 down_read(&zram->init_lock); 422 file = zram->backing_dev; 423 if (!file) { 424 memcpy(buf, "none\n", 5); 425 up_read(&zram->init_lock); 426 return 5; 427 } 428 429 p = file_path(file, buf, PAGE_SIZE - 1); 430 if (IS_ERR(p)) { 431 ret = PTR_ERR(p); 432 goto out; 433 } 434 435 ret = strlen(p); 436 memmove(buf, p, ret); 437 buf[ret++] = '\n'; 438 out: 439 up_read(&zram->init_lock); 440 return ret; 441 } 442 443 static ssize_t backing_dev_store(struct device *dev, 444 struct device_attribute *attr, const char *buf, size_t len) 445 { 446 char *file_name; 447 size_t sz; 448 struct file *backing_dev = NULL; 449 struct inode *inode; 450 struct address_space *mapping; 451 unsigned int bitmap_sz, old_block_size = 0; 452 unsigned long nr_pages, *bitmap = NULL; 453 struct block_device *bdev = NULL; 454 int err; 455 struct zram *zram = dev_to_zram(dev); 456 457 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 458 if (!file_name) 459 return -ENOMEM; 460 461 down_write(&zram->init_lock); 462 if (init_done(zram)) { 463 pr_info("Can't setup backing device for initialized device\n"); 464 err = -EBUSY; 465 goto out; 466 } 467 468 strlcpy(file_name, buf, PATH_MAX); 469 /* ignore trailing newline */ 470 sz = strlen(file_name); 471 if (sz > 0 && file_name[sz - 1] == '\n') 472 file_name[sz - 1] = 0x00; 473 474 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 475 if (IS_ERR(backing_dev)) { 476 err = PTR_ERR(backing_dev); 477 backing_dev = NULL; 478 goto out; 479 } 480 481 mapping = backing_dev->f_mapping; 482 inode = mapping->host; 483 484 /* Support only block device in this moment */ 485 if (!S_ISBLK(inode->i_mode)) { 486 err = -ENOTBLK; 487 goto out; 488 } 489 490 bdev = bdgrab(I_BDEV(inode)); 491 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 492 if (err < 0) { 493 bdev = NULL; 494 goto out; 495 } 496 497 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 498 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 499 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 500 if (!bitmap) { 501 err = -ENOMEM; 502 goto out; 503 } 504 505 old_block_size = block_size(bdev); 506 err = set_blocksize(bdev, PAGE_SIZE); 507 if (err) 508 goto out; 509 510 reset_bdev(zram); 511 512 zram->old_block_size = old_block_size; 513 zram->bdev = bdev; 514 zram->backing_dev = backing_dev; 515 zram->bitmap = bitmap; 516 zram->nr_pages = nr_pages; 517 /* 518 * With writeback feature, zram does asynchronous IO so it's no longer 519 * synchronous device so let's remove synchronous io flag. Othewise, 520 * upper layer(e.g., swap) could wait IO completion rather than 521 * (submit and return), which will cause system sluggish. 522 * Furthermore, when the IO function returns(e.g., swap_readpage), 523 * upper layer expects IO was done so it could deallocate the page 524 * freely but in fact, IO is going on so finally could cause 525 * use-after-free when the IO is really done. 526 */ 527 zram->disk->queue->backing_dev_info->capabilities &= 528 ~BDI_CAP_SYNCHRONOUS_IO; 529 up_write(&zram->init_lock); 530 531 pr_info("setup backing device %s\n", file_name); 532 kfree(file_name); 533 534 return len; 535 out: 536 if (bitmap) 537 kvfree(bitmap); 538 539 if (bdev) 540 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 541 542 if (backing_dev) 543 filp_close(backing_dev, NULL); 544 545 up_write(&zram->init_lock); 546 547 kfree(file_name); 548 549 return err; 550 } 551 552 static unsigned long alloc_block_bdev(struct zram *zram) 553 { 554 unsigned long blk_idx = 1; 555 retry: 556 /* skip 0 bit to confuse zram.handle = 0 */ 557 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 558 if (blk_idx == zram->nr_pages) 559 return 0; 560 561 if (test_and_set_bit(blk_idx, zram->bitmap)) 562 goto retry; 563 564 atomic64_inc(&zram->stats.bd_count); 565 return blk_idx; 566 } 567 568 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 569 { 570 int was_set; 571 572 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 573 WARN_ON_ONCE(!was_set); 574 atomic64_dec(&zram->stats.bd_count); 575 } 576 577 static void zram_page_end_io(struct bio *bio) 578 { 579 struct page *page = bio_first_page_all(bio); 580 581 page_endio(page, op_is_write(bio_op(bio)), 582 blk_status_to_errno(bio->bi_status)); 583 bio_put(bio); 584 } 585 586 /* 587 * Returns 1 if the submission is successful. 588 */ 589 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 590 unsigned long entry, struct bio *parent) 591 { 592 struct bio *bio; 593 594 bio = bio_alloc(GFP_ATOMIC, 1); 595 if (!bio) 596 return -ENOMEM; 597 598 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 599 bio_set_dev(bio, zram->bdev); 600 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 601 bio_put(bio); 602 return -EIO; 603 } 604 605 if (!parent) { 606 bio->bi_opf = REQ_OP_READ; 607 bio->bi_end_io = zram_page_end_io; 608 } else { 609 bio->bi_opf = parent->bi_opf; 610 bio_chain(bio, parent); 611 } 612 613 submit_bio(bio); 614 return 1; 615 } 616 617 #define HUGE_WRITEBACK 1 618 #define IDLE_WRITEBACK 2 619 620 static ssize_t writeback_store(struct device *dev, 621 struct device_attribute *attr, const char *buf, size_t len) 622 { 623 struct zram *zram = dev_to_zram(dev); 624 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 625 unsigned long index; 626 struct bio bio; 627 struct bio_vec bio_vec; 628 struct page *page; 629 ssize_t ret; 630 int mode; 631 unsigned long blk_idx = 0; 632 633 if (sysfs_streq(buf, "idle")) 634 mode = IDLE_WRITEBACK; 635 else if (sysfs_streq(buf, "huge")) 636 mode = HUGE_WRITEBACK; 637 else 638 return -EINVAL; 639 640 down_read(&zram->init_lock); 641 if (!init_done(zram)) { 642 ret = -EINVAL; 643 goto release_init_lock; 644 } 645 646 if (!zram->backing_dev) { 647 ret = -ENODEV; 648 goto release_init_lock; 649 } 650 651 page = alloc_page(GFP_KERNEL); 652 if (!page) { 653 ret = -ENOMEM; 654 goto release_init_lock; 655 } 656 657 for (index = 0; index < nr_pages; index++) { 658 struct bio_vec bvec; 659 660 bvec.bv_page = page; 661 bvec.bv_len = PAGE_SIZE; 662 bvec.bv_offset = 0; 663 664 spin_lock(&zram->wb_limit_lock); 665 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 666 spin_unlock(&zram->wb_limit_lock); 667 ret = -EIO; 668 break; 669 } 670 spin_unlock(&zram->wb_limit_lock); 671 672 if (!blk_idx) { 673 blk_idx = alloc_block_bdev(zram); 674 if (!blk_idx) { 675 ret = -ENOSPC; 676 break; 677 } 678 } 679 680 zram_slot_lock(zram, index); 681 if (!zram_allocated(zram, index)) 682 goto next; 683 684 if (zram_test_flag(zram, index, ZRAM_WB) || 685 zram_test_flag(zram, index, ZRAM_SAME) || 686 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 687 goto next; 688 689 if (mode == IDLE_WRITEBACK && 690 !zram_test_flag(zram, index, ZRAM_IDLE)) 691 goto next; 692 if (mode == HUGE_WRITEBACK && 693 !zram_test_flag(zram, index, ZRAM_HUGE)) 694 goto next; 695 /* 696 * Clearing ZRAM_UNDER_WB is duty of caller. 697 * IOW, zram_free_page never clear it. 698 */ 699 zram_set_flag(zram, index, ZRAM_UNDER_WB); 700 /* Need for hugepage writeback racing */ 701 zram_set_flag(zram, index, ZRAM_IDLE); 702 zram_slot_unlock(zram, index); 703 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 704 zram_slot_lock(zram, index); 705 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 706 zram_clear_flag(zram, index, ZRAM_IDLE); 707 zram_slot_unlock(zram, index); 708 continue; 709 } 710 711 bio_init(&bio, &bio_vec, 1); 712 bio_set_dev(&bio, zram->bdev); 713 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 714 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC; 715 716 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 717 bvec.bv_offset); 718 /* 719 * XXX: A single page IO would be inefficient for write 720 * but it would be not bad as starter. 721 */ 722 ret = submit_bio_wait(&bio); 723 if (ret) { 724 zram_slot_lock(zram, index); 725 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 726 zram_clear_flag(zram, index, ZRAM_IDLE); 727 zram_slot_unlock(zram, index); 728 continue; 729 } 730 731 atomic64_inc(&zram->stats.bd_writes); 732 /* 733 * We released zram_slot_lock so need to check if the slot was 734 * changed. If there is freeing for the slot, we can catch it 735 * easily by zram_allocated. 736 * A subtle case is the slot is freed/reallocated/marked as 737 * ZRAM_IDLE again. To close the race, idle_store doesn't 738 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 739 * Thus, we could close the race by checking ZRAM_IDLE bit. 740 */ 741 zram_slot_lock(zram, index); 742 if (!zram_allocated(zram, index) || 743 !zram_test_flag(zram, index, ZRAM_IDLE)) { 744 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 745 zram_clear_flag(zram, index, ZRAM_IDLE); 746 goto next; 747 } 748 749 zram_free_page(zram, index); 750 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 751 zram_set_flag(zram, index, ZRAM_WB); 752 zram_set_element(zram, index, blk_idx); 753 blk_idx = 0; 754 atomic64_inc(&zram->stats.pages_stored); 755 spin_lock(&zram->wb_limit_lock); 756 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 757 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 758 spin_unlock(&zram->wb_limit_lock); 759 next: 760 zram_slot_unlock(zram, index); 761 } 762 763 if (blk_idx) 764 free_block_bdev(zram, blk_idx); 765 ret = len; 766 __free_page(page); 767 release_init_lock: 768 up_read(&zram->init_lock); 769 770 return ret; 771 } 772 773 struct zram_work { 774 struct work_struct work; 775 struct zram *zram; 776 unsigned long entry; 777 struct bio *bio; 778 struct bio_vec bvec; 779 }; 780 781 #if PAGE_SIZE != 4096 782 static void zram_sync_read(struct work_struct *work) 783 { 784 struct zram_work *zw = container_of(work, struct zram_work, work); 785 struct zram *zram = zw->zram; 786 unsigned long entry = zw->entry; 787 struct bio *bio = zw->bio; 788 789 read_from_bdev_async(zram, &zw->bvec, entry, bio); 790 } 791 792 /* 793 * Block layer want one ->make_request_fn to be active at a time 794 * so if we use chained IO with parent IO in same context, 795 * it's a deadlock. To avoid, it, it uses worker thread context. 796 */ 797 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 798 unsigned long entry, struct bio *bio) 799 { 800 struct zram_work work; 801 802 work.bvec = *bvec; 803 work.zram = zram; 804 work.entry = entry; 805 work.bio = bio; 806 807 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 808 queue_work(system_unbound_wq, &work.work); 809 flush_work(&work.work); 810 destroy_work_on_stack(&work.work); 811 812 return 1; 813 } 814 #else 815 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 816 unsigned long entry, struct bio *bio) 817 { 818 WARN_ON(1); 819 return -EIO; 820 } 821 #endif 822 823 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 824 unsigned long entry, struct bio *parent, bool sync) 825 { 826 atomic64_inc(&zram->stats.bd_reads); 827 if (sync) 828 return read_from_bdev_sync(zram, bvec, entry, parent); 829 else 830 return read_from_bdev_async(zram, bvec, entry, parent); 831 } 832 #else 833 static inline void reset_bdev(struct zram *zram) {}; 834 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 835 unsigned long entry, struct bio *parent, bool sync) 836 { 837 return -EIO; 838 } 839 840 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 841 #endif 842 843 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 844 845 static struct dentry *zram_debugfs_root; 846 847 static void zram_debugfs_create(void) 848 { 849 zram_debugfs_root = debugfs_create_dir("zram", NULL); 850 } 851 852 static void zram_debugfs_destroy(void) 853 { 854 debugfs_remove_recursive(zram_debugfs_root); 855 } 856 857 static void zram_accessed(struct zram *zram, u32 index) 858 { 859 zram_clear_flag(zram, index, ZRAM_IDLE); 860 zram->table[index].ac_time = ktime_get_boottime(); 861 } 862 863 static ssize_t read_block_state(struct file *file, char __user *buf, 864 size_t count, loff_t *ppos) 865 { 866 char *kbuf; 867 ssize_t index, written = 0; 868 struct zram *zram = file->private_data; 869 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 870 struct timespec64 ts; 871 872 kbuf = kvmalloc(count, GFP_KERNEL); 873 if (!kbuf) 874 return -ENOMEM; 875 876 down_read(&zram->init_lock); 877 if (!init_done(zram)) { 878 up_read(&zram->init_lock); 879 kvfree(kbuf); 880 return -EINVAL; 881 } 882 883 for (index = *ppos; index < nr_pages; index++) { 884 int copied; 885 886 zram_slot_lock(zram, index); 887 if (!zram_allocated(zram, index)) 888 goto next; 889 890 ts = ktime_to_timespec64(zram->table[index].ac_time); 891 copied = snprintf(kbuf + written, count, 892 "%12zd %12lld.%06lu %c%c%c%c\n", 893 index, (s64)ts.tv_sec, 894 ts.tv_nsec / NSEC_PER_USEC, 895 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 896 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 897 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 898 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); 899 900 if (count < copied) { 901 zram_slot_unlock(zram, index); 902 break; 903 } 904 written += copied; 905 count -= copied; 906 next: 907 zram_slot_unlock(zram, index); 908 *ppos += 1; 909 } 910 911 up_read(&zram->init_lock); 912 if (copy_to_user(buf, kbuf, written)) 913 written = -EFAULT; 914 kvfree(kbuf); 915 916 return written; 917 } 918 919 static const struct file_operations proc_zram_block_state_op = { 920 .open = simple_open, 921 .read = read_block_state, 922 .llseek = default_llseek, 923 }; 924 925 static void zram_debugfs_register(struct zram *zram) 926 { 927 if (!zram_debugfs_root) 928 return; 929 930 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 931 zram_debugfs_root); 932 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 933 zram, &proc_zram_block_state_op); 934 } 935 936 static void zram_debugfs_unregister(struct zram *zram) 937 { 938 debugfs_remove_recursive(zram->debugfs_dir); 939 } 940 #else 941 static void zram_debugfs_create(void) {}; 942 static void zram_debugfs_destroy(void) {}; 943 static void zram_accessed(struct zram *zram, u32 index) 944 { 945 zram_clear_flag(zram, index, ZRAM_IDLE); 946 }; 947 static void zram_debugfs_register(struct zram *zram) {}; 948 static void zram_debugfs_unregister(struct zram *zram) {}; 949 #endif 950 951 /* 952 * We switched to per-cpu streams and this attr is not needed anymore. 953 * However, we will keep it around for some time, because: 954 * a) we may revert per-cpu streams in the future 955 * b) it's visible to user space and we need to follow our 2 years 956 * retirement rule; but we already have a number of 'soon to be 957 * altered' attrs, so max_comp_streams need to wait for the next 958 * layoff cycle. 959 */ 960 static ssize_t max_comp_streams_show(struct device *dev, 961 struct device_attribute *attr, char *buf) 962 { 963 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 964 } 965 966 static ssize_t max_comp_streams_store(struct device *dev, 967 struct device_attribute *attr, const char *buf, size_t len) 968 { 969 return len; 970 } 971 972 static ssize_t comp_algorithm_show(struct device *dev, 973 struct device_attribute *attr, char *buf) 974 { 975 size_t sz; 976 struct zram *zram = dev_to_zram(dev); 977 978 down_read(&zram->init_lock); 979 sz = zcomp_available_show(zram->compressor, buf); 980 up_read(&zram->init_lock); 981 982 return sz; 983 } 984 985 static ssize_t comp_algorithm_store(struct device *dev, 986 struct device_attribute *attr, const char *buf, size_t len) 987 { 988 struct zram *zram = dev_to_zram(dev); 989 char compressor[ARRAY_SIZE(zram->compressor)]; 990 size_t sz; 991 992 strlcpy(compressor, buf, sizeof(compressor)); 993 /* ignore trailing newline */ 994 sz = strlen(compressor); 995 if (sz > 0 && compressor[sz - 1] == '\n') 996 compressor[sz - 1] = 0x00; 997 998 if (!zcomp_available_algorithm(compressor)) 999 return -EINVAL; 1000 1001 down_write(&zram->init_lock); 1002 if (init_done(zram)) { 1003 up_write(&zram->init_lock); 1004 pr_info("Can't change algorithm for initialized device\n"); 1005 return -EBUSY; 1006 } 1007 1008 strcpy(zram->compressor, compressor); 1009 up_write(&zram->init_lock); 1010 return len; 1011 } 1012 1013 static ssize_t compact_store(struct device *dev, 1014 struct device_attribute *attr, const char *buf, size_t len) 1015 { 1016 struct zram *zram = dev_to_zram(dev); 1017 1018 down_read(&zram->init_lock); 1019 if (!init_done(zram)) { 1020 up_read(&zram->init_lock); 1021 return -EINVAL; 1022 } 1023 1024 zs_compact(zram->mem_pool); 1025 up_read(&zram->init_lock); 1026 1027 return len; 1028 } 1029 1030 static ssize_t io_stat_show(struct device *dev, 1031 struct device_attribute *attr, char *buf) 1032 { 1033 struct zram *zram = dev_to_zram(dev); 1034 ssize_t ret; 1035 1036 down_read(&zram->init_lock); 1037 ret = scnprintf(buf, PAGE_SIZE, 1038 "%8llu %8llu %8llu %8llu\n", 1039 (u64)atomic64_read(&zram->stats.failed_reads), 1040 (u64)atomic64_read(&zram->stats.failed_writes), 1041 (u64)atomic64_read(&zram->stats.invalid_io), 1042 (u64)atomic64_read(&zram->stats.notify_free)); 1043 up_read(&zram->init_lock); 1044 1045 return ret; 1046 } 1047 1048 static ssize_t mm_stat_show(struct device *dev, 1049 struct device_attribute *attr, char *buf) 1050 { 1051 struct zram *zram = dev_to_zram(dev); 1052 struct zs_pool_stats pool_stats; 1053 u64 orig_size, mem_used = 0; 1054 long max_used; 1055 ssize_t ret; 1056 1057 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1058 1059 down_read(&zram->init_lock); 1060 if (init_done(zram)) { 1061 mem_used = zs_get_total_pages(zram->mem_pool); 1062 zs_pool_stats(zram->mem_pool, &pool_stats); 1063 } 1064 1065 orig_size = atomic64_read(&zram->stats.pages_stored); 1066 max_used = atomic_long_read(&zram->stats.max_used_pages); 1067 1068 ret = scnprintf(buf, PAGE_SIZE, 1069 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n", 1070 orig_size << PAGE_SHIFT, 1071 (u64)atomic64_read(&zram->stats.compr_data_size), 1072 mem_used << PAGE_SHIFT, 1073 zram->limit_pages << PAGE_SHIFT, 1074 max_used << PAGE_SHIFT, 1075 (u64)atomic64_read(&zram->stats.same_pages), 1076 pool_stats.pages_compacted, 1077 (u64)atomic64_read(&zram->stats.huge_pages)); 1078 up_read(&zram->init_lock); 1079 1080 return ret; 1081 } 1082 1083 #ifdef CONFIG_ZRAM_WRITEBACK 1084 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1085 static ssize_t bd_stat_show(struct device *dev, 1086 struct device_attribute *attr, char *buf) 1087 { 1088 struct zram *zram = dev_to_zram(dev); 1089 ssize_t ret; 1090 1091 down_read(&zram->init_lock); 1092 ret = scnprintf(buf, PAGE_SIZE, 1093 "%8llu %8llu %8llu\n", 1094 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1095 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1096 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1097 up_read(&zram->init_lock); 1098 1099 return ret; 1100 } 1101 #endif 1102 1103 static ssize_t debug_stat_show(struct device *dev, 1104 struct device_attribute *attr, char *buf) 1105 { 1106 int version = 1; 1107 struct zram *zram = dev_to_zram(dev); 1108 ssize_t ret; 1109 1110 down_read(&zram->init_lock); 1111 ret = scnprintf(buf, PAGE_SIZE, 1112 "version: %d\n%8llu %8llu\n", 1113 version, 1114 (u64)atomic64_read(&zram->stats.writestall), 1115 (u64)atomic64_read(&zram->stats.miss_free)); 1116 up_read(&zram->init_lock); 1117 1118 return ret; 1119 } 1120 1121 static DEVICE_ATTR_RO(io_stat); 1122 static DEVICE_ATTR_RO(mm_stat); 1123 #ifdef CONFIG_ZRAM_WRITEBACK 1124 static DEVICE_ATTR_RO(bd_stat); 1125 #endif 1126 static DEVICE_ATTR_RO(debug_stat); 1127 1128 static void zram_meta_free(struct zram *zram, u64 disksize) 1129 { 1130 size_t num_pages = disksize >> PAGE_SHIFT; 1131 size_t index; 1132 1133 /* Free all pages that are still in this zram device */ 1134 for (index = 0; index < num_pages; index++) 1135 zram_free_page(zram, index); 1136 1137 zs_destroy_pool(zram->mem_pool); 1138 vfree(zram->table); 1139 } 1140 1141 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1142 { 1143 size_t num_pages; 1144 1145 num_pages = disksize >> PAGE_SHIFT; 1146 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1147 if (!zram->table) 1148 return false; 1149 1150 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1151 if (!zram->mem_pool) { 1152 vfree(zram->table); 1153 return false; 1154 } 1155 1156 if (!huge_class_size) 1157 huge_class_size = zs_huge_class_size(zram->mem_pool); 1158 return true; 1159 } 1160 1161 /* 1162 * To protect concurrent access to the same index entry, 1163 * caller should hold this table index entry's bit_spinlock to 1164 * indicate this index entry is accessing. 1165 */ 1166 static void zram_free_page(struct zram *zram, size_t index) 1167 { 1168 unsigned long handle; 1169 1170 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1171 zram->table[index].ac_time = 0; 1172 #endif 1173 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1174 zram_clear_flag(zram, index, ZRAM_IDLE); 1175 1176 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1177 zram_clear_flag(zram, index, ZRAM_HUGE); 1178 atomic64_dec(&zram->stats.huge_pages); 1179 } 1180 1181 if (zram_test_flag(zram, index, ZRAM_WB)) { 1182 zram_clear_flag(zram, index, ZRAM_WB); 1183 free_block_bdev(zram, zram_get_element(zram, index)); 1184 goto out; 1185 } 1186 1187 /* 1188 * No memory is allocated for same element filled pages. 1189 * Simply clear same page flag. 1190 */ 1191 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1192 zram_clear_flag(zram, index, ZRAM_SAME); 1193 atomic64_dec(&zram->stats.same_pages); 1194 goto out; 1195 } 1196 1197 handle = zram_get_handle(zram, index); 1198 if (!handle) 1199 return; 1200 1201 zs_free(zram->mem_pool, handle); 1202 1203 atomic64_sub(zram_get_obj_size(zram, index), 1204 &zram->stats.compr_data_size); 1205 out: 1206 atomic64_dec(&zram->stats.pages_stored); 1207 zram_set_handle(zram, index, 0); 1208 zram_set_obj_size(zram, index, 0); 1209 WARN_ON_ONCE(zram->table[index].flags & 1210 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1211 } 1212 1213 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1214 struct bio *bio, bool partial_io) 1215 { 1216 int ret; 1217 unsigned long handle; 1218 unsigned int size; 1219 void *src, *dst; 1220 1221 zram_slot_lock(zram, index); 1222 if (zram_test_flag(zram, index, ZRAM_WB)) { 1223 struct bio_vec bvec; 1224 1225 zram_slot_unlock(zram, index); 1226 1227 bvec.bv_page = page; 1228 bvec.bv_len = PAGE_SIZE; 1229 bvec.bv_offset = 0; 1230 return read_from_bdev(zram, &bvec, 1231 zram_get_element(zram, index), 1232 bio, partial_io); 1233 } 1234 1235 handle = zram_get_handle(zram, index); 1236 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1237 unsigned long value; 1238 void *mem; 1239 1240 value = handle ? zram_get_element(zram, index) : 0; 1241 mem = kmap_atomic(page); 1242 zram_fill_page(mem, PAGE_SIZE, value); 1243 kunmap_atomic(mem); 1244 zram_slot_unlock(zram, index); 1245 return 0; 1246 } 1247 1248 size = zram_get_obj_size(zram, index); 1249 1250 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1251 if (size == PAGE_SIZE) { 1252 dst = kmap_atomic(page); 1253 memcpy(dst, src, PAGE_SIZE); 1254 kunmap_atomic(dst); 1255 ret = 0; 1256 } else { 1257 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); 1258 1259 dst = kmap_atomic(page); 1260 ret = zcomp_decompress(zstrm, src, size, dst); 1261 kunmap_atomic(dst); 1262 zcomp_stream_put(zram->comp); 1263 } 1264 zs_unmap_object(zram->mem_pool, handle); 1265 zram_slot_unlock(zram, index); 1266 1267 /* Should NEVER happen. Return bio error if it does. */ 1268 if (unlikely(ret)) 1269 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1270 1271 return ret; 1272 } 1273 1274 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1275 u32 index, int offset, struct bio *bio) 1276 { 1277 int ret; 1278 struct page *page; 1279 1280 page = bvec->bv_page; 1281 if (is_partial_io(bvec)) { 1282 /* Use a temporary buffer to decompress the page */ 1283 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1284 if (!page) 1285 return -ENOMEM; 1286 } 1287 1288 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1289 if (unlikely(ret)) 1290 goto out; 1291 1292 if (is_partial_io(bvec)) { 1293 void *dst = kmap_atomic(bvec->bv_page); 1294 void *src = kmap_atomic(page); 1295 1296 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 1297 kunmap_atomic(src); 1298 kunmap_atomic(dst); 1299 } 1300 out: 1301 if (is_partial_io(bvec)) 1302 __free_page(page); 1303 1304 return ret; 1305 } 1306 1307 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1308 u32 index, struct bio *bio) 1309 { 1310 int ret = 0; 1311 unsigned long alloced_pages; 1312 unsigned long handle = 0; 1313 unsigned int comp_len = 0; 1314 void *src, *dst, *mem; 1315 struct zcomp_strm *zstrm; 1316 struct page *page = bvec->bv_page; 1317 unsigned long element = 0; 1318 enum zram_pageflags flags = 0; 1319 1320 mem = kmap_atomic(page); 1321 if (page_same_filled(mem, &element)) { 1322 kunmap_atomic(mem); 1323 /* Free memory associated with this sector now. */ 1324 flags = ZRAM_SAME; 1325 atomic64_inc(&zram->stats.same_pages); 1326 goto out; 1327 } 1328 kunmap_atomic(mem); 1329 1330 compress_again: 1331 zstrm = zcomp_stream_get(zram->comp); 1332 src = kmap_atomic(page); 1333 ret = zcomp_compress(zstrm, src, &comp_len); 1334 kunmap_atomic(src); 1335 1336 if (unlikely(ret)) { 1337 zcomp_stream_put(zram->comp); 1338 pr_err("Compression failed! err=%d\n", ret); 1339 zs_free(zram->mem_pool, handle); 1340 return ret; 1341 } 1342 1343 if (comp_len >= huge_class_size) 1344 comp_len = PAGE_SIZE; 1345 /* 1346 * handle allocation has 2 paths: 1347 * a) fast path is executed with preemption disabled (for 1348 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1349 * since we can't sleep; 1350 * b) slow path enables preemption and attempts to allocate 1351 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1352 * put per-cpu compression stream and, thus, to re-do 1353 * the compression once handle is allocated. 1354 * 1355 * if we have a 'non-null' handle here then we are coming 1356 * from the slow path and handle has already been allocated. 1357 */ 1358 if (!handle) 1359 handle = zs_malloc(zram->mem_pool, comp_len, 1360 __GFP_KSWAPD_RECLAIM | 1361 __GFP_NOWARN | 1362 __GFP_HIGHMEM | 1363 __GFP_MOVABLE); 1364 if (!handle) { 1365 zcomp_stream_put(zram->comp); 1366 atomic64_inc(&zram->stats.writestall); 1367 handle = zs_malloc(zram->mem_pool, comp_len, 1368 GFP_NOIO | __GFP_HIGHMEM | 1369 __GFP_MOVABLE); 1370 if (handle) 1371 goto compress_again; 1372 return -ENOMEM; 1373 } 1374 1375 alloced_pages = zs_get_total_pages(zram->mem_pool); 1376 update_used_max(zram, alloced_pages); 1377 1378 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1379 zcomp_stream_put(zram->comp); 1380 zs_free(zram->mem_pool, handle); 1381 return -ENOMEM; 1382 } 1383 1384 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1385 1386 src = zstrm->buffer; 1387 if (comp_len == PAGE_SIZE) 1388 src = kmap_atomic(page); 1389 memcpy(dst, src, comp_len); 1390 if (comp_len == PAGE_SIZE) 1391 kunmap_atomic(src); 1392 1393 zcomp_stream_put(zram->comp); 1394 zs_unmap_object(zram->mem_pool, handle); 1395 atomic64_add(comp_len, &zram->stats.compr_data_size); 1396 out: 1397 /* 1398 * Free memory associated with this sector 1399 * before overwriting unused sectors. 1400 */ 1401 zram_slot_lock(zram, index); 1402 zram_free_page(zram, index); 1403 1404 if (comp_len == PAGE_SIZE) { 1405 zram_set_flag(zram, index, ZRAM_HUGE); 1406 atomic64_inc(&zram->stats.huge_pages); 1407 } 1408 1409 if (flags) { 1410 zram_set_flag(zram, index, flags); 1411 zram_set_element(zram, index, element); 1412 } else { 1413 zram_set_handle(zram, index, handle); 1414 zram_set_obj_size(zram, index, comp_len); 1415 } 1416 zram_slot_unlock(zram, index); 1417 1418 /* Update stats */ 1419 atomic64_inc(&zram->stats.pages_stored); 1420 return ret; 1421 } 1422 1423 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1424 u32 index, int offset, struct bio *bio) 1425 { 1426 int ret; 1427 struct page *page = NULL; 1428 void *src; 1429 struct bio_vec vec; 1430 1431 vec = *bvec; 1432 if (is_partial_io(bvec)) { 1433 void *dst; 1434 /* 1435 * This is a partial IO. We need to read the full page 1436 * before to write the changes. 1437 */ 1438 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1439 if (!page) 1440 return -ENOMEM; 1441 1442 ret = __zram_bvec_read(zram, page, index, bio, true); 1443 if (ret) 1444 goto out; 1445 1446 src = kmap_atomic(bvec->bv_page); 1447 dst = kmap_atomic(page); 1448 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 1449 kunmap_atomic(dst); 1450 kunmap_atomic(src); 1451 1452 vec.bv_page = page; 1453 vec.bv_len = PAGE_SIZE; 1454 vec.bv_offset = 0; 1455 } 1456 1457 ret = __zram_bvec_write(zram, &vec, index, bio); 1458 out: 1459 if (is_partial_io(bvec)) 1460 __free_page(page); 1461 return ret; 1462 } 1463 1464 /* 1465 * zram_bio_discard - handler on discard request 1466 * @index: physical block index in PAGE_SIZE units 1467 * @offset: byte offset within physical block 1468 */ 1469 static void zram_bio_discard(struct zram *zram, u32 index, 1470 int offset, struct bio *bio) 1471 { 1472 size_t n = bio->bi_iter.bi_size; 1473 1474 /* 1475 * zram manages data in physical block size units. Because logical block 1476 * size isn't identical with physical block size on some arch, we 1477 * could get a discard request pointing to a specific offset within a 1478 * certain physical block. Although we can handle this request by 1479 * reading that physiclal block and decompressing and partially zeroing 1480 * and re-compressing and then re-storing it, this isn't reasonable 1481 * because our intent with a discard request is to save memory. So 1482 * skipping this logical block is appropriate here. 1483 */ 1484 if (offset) { 1485 if (n <= (PAGE_SIZE - offset)) 1486 return; 1487 1488 n -= (PAGE_SIZE - offset); 1489 index++; 1490 } 1491 1492 while (n >= PAGE_SIZE) { 1493 zram_slot_lock(zram, index); 1494 zram_free_page(zram, index); 1495 zram_slot_unlock(zram, index); 1496 atomic64_inc(&zram->stats.notify_free); 1497 index++; 1498 n -= PAGE_SIZE; 1499 } 1500 } 1501 1502 /* 1503 * Returns errno if it has some problem. Otherwise return 0 or 1. 1504 * Returns 0 if IO request was done synchronously 1505 * Returns 1 if IO request was successfully submitted. 1506 */ 1507 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1508 int offset, unsigned int op, struct bio *bio) 1509 { 1510 unsigned long start_time = jiffies; 1511 struct request_queue *q = zram->disk->queue; 1512 int ret; 1513 1514 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT, 1515 &zram->disk->part0); 1516 1517 if (!op_is_write(op)) { 1518 atomic64_inc(&zram->stats.num_reads); 1519 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1520 flush_dcache_page(bvec->bv_page); 1521 } else { 1522 atomic64_inc(&zram->stats.num_writes); 1523 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1524 } 1525 1526 generic_end_io_acct(q, op, &zram->disk->part0, start_time); 1527 1528 zram_slot_lock(zram, index); 1529 zram_accessed(zram, index); 1530 zram_slot_unlock(zram, index); 1531 1532 if (unlikely(ret < 0)) { 1533 if (!op_is_write(op)) 1534 atomic64_inc(&zram->stats.failed_reads); 1535 else 1536 atomic64_inc(&zram->stats.failed_writes); 1537 } 1538 1539 return ret; 1540 } 1541 1542 static void __zram_make_request(struct zram *zram, struct bio *bio) 1543 { 1544 int offset; 1545 u32 index; 1546 struct bio_vec bvec; 1547 struct bvec_iter iter; 1548 1549 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1550 offset = (bio->bi_iter.bi_sector & 1551 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1552 1553 switch (bio_op(bio)) { 1554 case REQ_OP_DISCARD: 1555 case REQ_OP_WRITE_ZEROES: 1556 zram_bio_discard(zram, index, offset, bio); 1557 bio_endio(bio); 1558 return; 1559 default: 1560 break; 1561 } 1562 1563 bio_for_each_segment(bvec, bio, iter) { 1564 struct bio_vec bv = bvec; 1565 unsigned int unwritten = bvec.bv_len; 1566 1567 do { 1568 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1569 unwritten); 1570 if (zram_bvec_rw(zram, &bv, index, offset, 1571 bio_op(bio), bio) < 0) 1572 goto out; 1573 1574 bv.bv_offset += bv.bv_len; 1575 unwritten -= bv.bv_len; 1576 1577 update_position(&index, &offset, &bv); 1578 } while (unwritten); 1579 } 1580 1581 bio_endio(bio); 1582 return; 1583 1584 out: 1585 bio_io_error(bio); 1586 } 1587 1588 /* 1589 * Handler function for all zram I/O requests. 1590 */ 1591 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 1592 { 1593 struct zram *zram = queue->queuedata; 1594 1595 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1596 bio->bi_iter.bi_size)) { 1597 atomic64_inc(&zram->stats.invalid_io); 1598 goto error; 1599 } 1600 1601 __zram_make_request(zram, bio); 1602 return BLK_QC_T_NONE; 1603 1604 error: 1605 bio_io_error(bio); 1606 return BLK_QC_T_NONE; 1607 } 1608 1609 static void zram_slot_free_notify(struct block_device *bdev, 1610 unsigned long index) 1611 { 1612 struct zram *zram; 1613 1614 zram = bdev->bd_disk->private_data; 1615 1616 atomic64_inc(&zram->stats.notify_free); 1617 if (!zram_slot_trylock(zram, index)) { 1618 atomic64_inc(&zram->stats.miss_free); 1619 return; 1620 } 1621 1622 zram_free_page(zram, index); 1623 zram_slot_unlock(zram, index); 1624 } 1625 1626 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1627 struct page *page, unsigned int op) 1628 { 1629 int offset, ret; 1630 u32 index; 1631 struct zram *zram; 1632 struct bio_vec bv; 1633 1634 if (PageTransHuge(page)) 1635 return -ENOTSUPP; 1636 zram = bdev->bd_disk->private_data; 1637 1638 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1639 atomic64_inc(&zram->stats.invalid_io); 1640 ret = -EINVAL; 1641 goto out; 1642 } 1643 1644 index = sector >> SECTORS_PER_PAGE_SHIFT; 1645 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1646 1647 bv.bv_page = page; 1648 bv.bv_len = PAGE_SIZE; 1649 bv.bv_offset = 0; 1650 1651 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1652 out: 1653 /* 1654 * If I/O fails, just return error(ie, non-zero) without 1655 * calling page_endio. 1656 * It causes resubmit the I/O with bio request by upper functions 1657 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1658 * bio->bi_end_io does things to handle the error 1659 * (e.g., SetPageError, set_page_dirty and extra works). 1660 */ 1661 if (unlikely(ret < 0)) 1662 return ret; 1663 1664 switch (ret) { 1665 case 0: 1666 page_endio(page, op_is_write(op), 0); 1667 break; 1668 case 1: 1669 ret = 0; 1670 break; 1671 default: 1672 WARN_ON(1); 1673 } 1674 return ret; 1675 } 1676 1677 static void zram_reset_device(struct zram *zram) 1678 { 1679 struct zcomp *comp; 1680 u64 disksize; 1681 1682 down_write(&zram->init_lock); 1683 1684 zram->limit_pages = 0; 1685 1686 if (!init_done(zram)) { 1687 up_write(&zram->init_lock); 1688 return; 1689 } 1690 1691 comp = zram->comp; 1692 disksize = zram->disksize; 1693 zram->disksize = 0; 1694 1695 set_capacity(zram->disk, 0); 1696 part_stat_set_all(&zram->disk->part0, 0); 1697 1698 up_write(&zram->init_lock); 1699 /* I/O operation under all of CPU are done so let's free */ 1700 zram_meta_free(zram, disksize); 1701 memset(&zram->stats, 0, sizeof(zram->stats)); 1702 zcomp_destroy(comp); 1703 reset_bdev(zram); 1704 } 1705 1706 static ssize_t disksize_store(struct device *dev, 1707 struct device_attribute *attr, const char *buf, size_t len) 1708 { 1709 u64 disksize; 1710 struct zcomp *comp; 1711 struct zram *zram = dev_to_zram(dev); 1712 int err; 1713 1714 disksize = memparse(buf, NULL); 1715 if (!disksize) 1716 return -EINVAL; 1717 1718 down_write(&zram->init_lock); 1719 if (init_done(zram)) { 1720 pr_info("Cannot change disksize for initialized device\n"); 1721 err = -EBUSY; 1722 goto out_unlock; 1723 } 1724 1725 disksize = PAGE_ALIGN(disksize); 1726 if (!zram_meta_alloc(zram, disksize)) { 1727 err = -ENOMEM; 1728 goto out_unlock; 1729 } 1730 1731 comp = zcomp_create(zram->compressor); 1732 if (IS_ERR(comp)) { 1733 pr_err("Cannot initialise %s compressing backend\n", 1734 zram->compressor); 1735 err = PTR_ERR(comp); 1736 goto out_free_meta; 1737 } 1738 1739 zram->comp = comp; 1740 zram->disksize = disksize; 1741 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1742 1743 revalidate_disk(zram->disk); 1744 up_write(&zram->init_lock); 1745 1746 return len; 1747 1748 out_free_meta: 1749 zram_meta_free(zram, disksize); 1750 out_unlock: 1751 up_write(&zram->init_lock); 1752 return err; 1753 } 1754 1755 static ssize_t reset_store(struct device *dev, 1756 struct device_attribute *attr, const char *buf, size_t len) 1757 { 1758 int ret; 1759 unsigned short do_reset; 1760 struct zram *zram; 1761 struct block_device *bdev; 1762 1763 ret = kstrtou16(buf, 10, &do_reset); 1764 if (ret) 1765 return ret; 1766 1767 if (!do_reset) 1768 return -EINVAL; 1769 1770 zram = dev_to_zram(dev); 1771 bdev = bdget_disk(zram->disk, 0); 1772 if (!bdev) 1773 return -ENOMEM; 1774 1775 mutex_lock(&bdev->bd_mutex); 1776 /* Do not reset an active device or claimed device */ 1777 if (bdev->bd_openers || zram->claim) { 1778 mutex_unlock(&bdev->bd_mutex); 1779 bdput(bdev); 1780 return -EBUSY; 1781 } 1782 1783 /* From now on, anyone can't open /dev/zram[0-9] */ 1784 zram->claim = true; 1785 mutex_unlock(&bdev->bd_mutex); 1786 1787 /* Make sure all the pending I/O are finished */ 1788 fsync_bdev(bdev); 1789 zram_reset_device(zram); 1790 revalidate_disk(zram->disk); 1791 bdput(bdev); 1792 1793 mutex_lock(&bdev->bd_mutex); 1794 zram->claim = false; 1795 mutex_unlock(&bdev->bd_mutex); 1796 1797 return len; 1798 } 1799 1800 static int zram_open(struct block_device *bdev, fmode_t mode) 1801 { 1802 int ret = 0; 1803 struct zram *zram; 1804 1805 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1806 1807 zram = bdev->bd_disk->private_data; 1808 /* zram was claimed to reset so open request fails */ 1809 if (zram->claim) 1810 ret = -EBUSY; 1811 1812 return ret; 1813 } 1814 1815 static const struct block_device_operations zram_devops = { 1816 .open = zram_open, 1817 .swap_slot_free_notify = zram_slot_free_notify, 1818 .rw_page = zram_rw_page, 1819 .owner = THIS_MODULE 1820 }; 1821 1822 static DEVICE_ATTR_WO(compact); 1823 static DEVICE_ATTR_RW(disksize); 1824 static DEVICE_ATTR_RO(initstate); 1825 static DEVICE_ATTR_WO(reset); 1826 static DEVICE_ATTR_WO(mem_limit); 1827 static DEVICE_ATTR_WO(mem_used_max); 1828 static DEVICE_ATTR_WO(idle); 1829 static DEVICE_ATTR_RW(max_comp_streams); 1830 static DEVICE_ATTR_RW(comp_algorithm); 1831 #ifdef CONFIG_ZRAM_WRITEBACK 1832 static DEVICE_ATTR_RW(backing_dev); 1833 static DEVICE_ATTR_WO(writeback); 1834 static DEVICE_ATTR_RW(writeback_limit); 1835 static DEVICE_ATTR_RW(writeback_limit_enable); 1836 #endif 1837 1838 static struct attribute *zram_disk_attrs[] = { 1839 &dev_attr_disksize.attr, 1840 &dev_attr_initstate.attr, 1841 &dev_attr_reset.attr, 1842 &dev_attr_compact.attr, 1843 &dev_attr_mem_limit.attr, 1844 &dev_attr_mem_used_max.attr, 1845 &dev_attr_idle.attr, 1846 &dev_attr_max_comp_streams.attr, 1847 &dev_attr_comp_algorithm.attr, 1848 #ifdef CONFIG_ZRAM_WRITEBACK 1849 &dev_attr_backing_dev.attr, 1850 &dev_attr_writeback.attr, 1851 &dev_attr_writeback_limit.attr, 1852 &dev_attr_writeback_limit_enable.attr, 1853 #endif 1854 &dev_attr_io_stat.attr, 1855 &dev_attr_mm_stat.attr, 1856 #ifdef CONFIG_ZRAM_WRITEBACK 1857 &dev_attr_bd_stat.attr, 1858 #endif 1859 &dev_attr_debug_stat.attr, 1860 NULL, 1861 }; 1862 1863 static const struct attribute_group zram_disk_attr_group = { 1864 .attrs = zram_disk_attrs, 1865 }; 1866 1867 static const struct attribute_group *zram_disk_attr_groups[] = { 1868 &zram_disk_attr_group, 1869 NULL, 1870 }; 1871 1872 /* 1873 * Allocate and initialize new zram device. the function returns 1874 * '>= 0' device_id upon success, and negative value otherwise. 1875 */ 1876 static int zram_add(void) 1877 { 1878 struct zram *zram; 1879 struct request_queue *queue; 1880 int ret, device_id; 1881 1882 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1883 if (!zram) 1884 return -ENOMEM; 1885 1886 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1887 if (ret < 0) 1888 goto out_free_dev; 1889 device_id = ret; 1890 1891 init_rwsem(&zram->init_lock); 1892 #ifdef CONFIG_ZRAM_WRITEBACK 1893 spin_lock_init(&zram->wb_limit_lock); 1894 #endif 1895 queue = blk_alloc_queue(GFP_KERNEL); 1896 if (!queue) { 1897 pr_err("Error allocating disk queue for device %d\n", 1898 device_id); 1899 ret = -ENOMEM; 1900 goto out_free_idr; 1901 } 1902 1903 blk_queue_make_request(queue, zram_make_request); 1904 1905 /* gendisk structure */ 1906 zram->disk = alloc_disk(1); 1907 if (!zram->disk) { 1908 pr_err("Error allocating disk structure for device %d\n", 1909 device_id); 1910 ret = -ENOMEM; 1911 goto out_free_queue; 1912 } 1913 1914 zram->disk->major = zram_major; 1915 zram->disk->first_minor = device_id; 1916 zram->disk->fops = &zram_devops; 1917 zram->disk->queue = queue; 1918 zram->disk->queue->queuedata = zram; 1919 zram->disk->private_data = zram; 1920 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1921 1922 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1923 set_capacity(zram->disk, 0); 1924 /* zram devices sort of resembles non-rotational disks */ 1925 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1926 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1927 1928 /* 1929 * To ensure that we always get PAGE_SIZE aligned 1930 * and n*PAGE_SIZED sized I/O requests. 1931 */ 1932 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1933 blk_queue_logical_block_size(zram->disk->queue, 1934 ZRAM_LOGICAL_BLOCK_SIZE); 1935 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1936 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1937 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1938 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1939 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue); 1940 1941 /* 1942 * zram_bio_discard() will clear all logical blocks if logical block 1943 * size is identical with physical block size(PAGE_SIZE). But if it is 1944 * different, we will skip discarding some parts of logical blocks in 1945 * the part of the request range which isn't aligned to physical block 1946 * size. So we can't ensure that all discarded logical blocks are 1947 * zeroed. 1948 */ 1949 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1950 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1951 1952 zram->disk->queue->backing_dev_info->capabilities |= 1953 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO); 1954 device_add_disk(NULL, zram->disk, zram_disk_attr_groups); 1955 1956 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1957 1958 zram_debugfs_register(zram); 1959 pr_info("Added device: %s\n", zram->disk->disk_name); 1960 return device_id; 1961 1962 out_free_queue: 1963 blk_cleanup_queue(queue); 1964 out_free_idr: 1965 idr_remove(&zram_index_idr, device_id); 1966 out_free_dev: 1967 kfree(zram); 1968 return ret; 1969 } 1970 1971 static int zram_remove(struct zram *zram) 1972 { 1973 struct block_device *bdev; 1974 1975 bdev = bdget_disk(zram->disk, 0); 1976 if (!bdev) 1977 return -ENOMEM; 1978 1979 mutex_lock(&bdev->bd_mutex); 1980 if (bdev->bd_openers || zram->claim) { 1981 mutex_unlock(&bdev->bd_mutex); 1982 bdput(bdev); 1983 return -EBUSY; 1984 } 1985 1986 zram->claim = true; 1987 mutex_unlock(&bdev->bd_mutex); 1988 1989 zram_debugfs_unregister(zram); 1990 1991 /* Make sure all the pending I/O are finished */ 1992 fsync_bdev(bdev); 1993 zram_reset_device(zram); 1994 bdput(bdev); 1995 1996 pr_info("Removed device: %s\n", zram->disk->disk_name); 1997 1998 del_gendisk(zram->disk); 1999 blk_cleanup_queue(zram->disk->queue); 2000 put_disk(zram->disk); 2001 kfree(zram); 2002 return 0; 2003 } 2004 2005 /* zram-control sysfs attributes */ 2006 2007 /* 2008 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2009 * sense that reading from this file does alter the state of your system -- it 2010 * creates a new un-initialized zram device and returns back this device's 2011 * device_id (or an error code if it fails to create a new device). 2012 */ 2013 static ssize_t hot_add_show(struct class *class, 2014 struct class_attribute *attr, 2015 char *buf) 2016 { 2017 int ret; 2018 2019 mutex_lock(&zram_index_mutex); 2020 ret = zram_add(); 2021 mutex_unlock(&zram_index_mutex); 2022 2023 if (ret < 0) 2024 return ret; 2025 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2026 } 2027 static CLASS_ATTR_RO(hot_add); 2028 2029 static ssize_t hot_remove_store(struct class *class, 2030 struct class_attribute *attr, 2031 const char *buf, 2032 size_t count) 2033 { 2034 struct zram *zram; 2035 int ret, dev_id; 2036 2037 /* dev_id is gendisk->first_minor, which is `int' */ 2038 ret = kstrtoint(buf, 10, &dev_id); 2039 if (ret) 2040 return ret; 2041 if (dev_id < 0) 2042 return -EINVAL; 2043 2044 mutex_lock(&zram_index_mutex); 2045 2046 zram = idr_find(&zram_index_idr, dev_id); 2047 if (zram) { 2048 ret = zram_remove(zram); 2049 if (!ret) 2050 idr_remove(&zram_index_idr, dev_id); 2051 } else { 2052 ret = -ENODEV; 2053 } 2054 2055 mutex_unlock(&zram_index_mutex); 2056 return ret ? ret : count; 2057 } 2058 static CLASS_ATTR_WO(hot_remove); 2059 2060 static struct attribute *zram_control_class_attrs[] = { 2061 &class_attr_hot_add.attr, 2062 &class_attr_hot_remove.attr, 2063 NULL, 2064 }; 2065 ATTRIBUTE_GROUPS(zram_control_class); 2066 2067 static struct class zram_control_class = { 2068 .name = "zram-control", 2069 .owner = THIS_MODULE, 2070 .class_groups = zram_control_class_groups, 2071 }; 2072 2073 static int zram_remove_cb(int id, void *ptr, void *data) 2074 { 2075 zram_remove(ptr); 2076 return 0; 2077 } 2078 2079 static void destroy_devices(void) 2080 { 2081 class_unregister(&zram_control_class); 2082 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2083 zram_debugfs_destroy(); 2084 idr_destroy(&zram_index_idr); 2085 unregister_blkdev(zram_major, "zram"); 2086 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2087 } 2088 2089 static int __init zram_init(void) 2090 { 2091 int ret; 2092 2093 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2094 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2095 if (ret < 0) 2096 return ret; 2097 2098 ret = class_register(&zram_control_class); 2099 if (ret) { 2100 pr_err("Unable to register zram-control class\n"); 2101 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2102 return ret; 2103 } 2104 2105 zram_debugfs_create(); 2106 zram_major = register_blkdev(0, "zram"); 2107 if (zram_major <= 0) { 2108 pr_err("Unable to get major number\n"); 2109 class_unregister(&zram_control_class); 2110 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2111 return -EBUSY; 2112 } 2113 2114 while (num_devices != 0) { 2115 mutex_lock(&zram_index_mutex); 2116 ret = zram_add(); 2117 mutex_unlock(&zram_index_mutex); 2118 if (ret < 0) 2119 goto out_error; 2120 num_devices--; 2121 } 2122 2123 return 0; 2124 2125 out_error: 2126 destroy_devices(); 2127 return ret; 2128 } 2129 2130 static void __exit zram_exit(void) 2131 { 2132 destroy_devices(); 2133 } 2134 2135 module_init(zram_init); 2136 module_exit(zram_exit); 2137 2138 module_param(num_devices, uint, 0); 2139 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2140 2141 MODULE_LICENSE("Dual BSD/GPL"); 2142 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2143 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2144