1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/debugfs.h> 35 #include <linux/cpuhotplug.h> 36 #include <linux/part_stat.h> 37 38 #include "zram_drv.h" 39 40 static DEFINE_IDR(zram_index_idr); 41 /* idr index must be protected */ 42 static DEFINE_MUTEX(zram_index_mutex); 43 44 static int zram_major; 45 static const char *default_compressor = "lzo-rle"; 46 47 /* Module params (documentation at end) */ 48 static unsigned int num_devices = 1; 49 /* 50 * Pages that compress to sizes equals or greater than this are stored 51 * uncompressed in memory. 52 */ 53 static size_t huge_class_size; 54 55 static const struct block_device_operations zram_devops; 56 static const struct block_device_operations zram_wb_devops; 57 58 static void zram_free_page(struct zram *zram, size_t index); 59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 60 u32 index, int offset, struct bio *bio); 61 62 63 static int zram_slot_trylock(struct zram *zram, u32 index) 64 { 65 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 66 } 67 68 static void zram_slot_lock(struct zram *zram, u32 index) 69 { 70 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 71 } 72 73 static void zram_slot_unlock(struct zram *zram, u32 index) 74 { 75 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 76 } 77 78 static inline bool init_done(struct zram *zram) 79 { 80 return zram->disksize; 81 } 82 83 static inline struct zram *dev_to_zram(struct device *dev) 84 { 85 return (struct zram *)dev_to_disk(dev)->private_data; 86 } 87 88 static unsigned long zram_get_handle(struct zram *zram, u32 index) 89 { 90 return zram->table[index].handle; 91 } 92 93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 94 { 95 zram->table[index].handle = handle; 96 } 97 98 /* flag operations require table entry bit_spin_lock() being held */ 99 static bool zram_test_flag(struct zram *zram, u32 index, 100 enum zram_pageflags flag) 101 { 102 return zram->table[index].flags & BIT(flag); 103 } 104 105 static void zram_set_flag(struct zram *zram, u32 index, 106 enum zram_pageflags flag) 107 { 108 zram->table[index].flags |= BIT(flag); 109 } 110 111 static void zram_clear_flag(struct zram *zram, u32 index, 112 enum zram_pageflags flag) 113 { 114 zram->table[index].flags &= ~BIT(flag); 115 } 116 117 static inline void zram_set_element(struct zram *zram, u32 index, 118 unsigned long element) 119 { 120 zram->table[index].element = element; 121 } 122 123 static unsigned long zram_get_element(struct zram *zram, u32 index) 124 { 125 return zram->table[index].element; 126 } 127 128 static size_t zram_get_obj_size(struct zram *zram, u32 index) 129 { 130 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 131 } 132 133 static void zram_set_obj_size(struct zram *zram, 134 u32 index, size_t size) 135 { 136 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 137 138 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 139 } 140 141 static inline bool zram_allocated(struct zram *zram, u32 index) 142 { 143 return zram_get_obj_size(zram, index) || 144 zram_test_flag(zram, index, ZRAM_SAME) || 145 zram_test_flag(zram, index, ZRAM_WB); 146 } 147 148 #if PAGE_SIZE != 4096 149 static inline bool is_partial_io(struct bio_vec *bvec) 150 { 151 return bvec->bv_len != PAGE_SIZE; 152 } 153 #else 154 static inline bool is_partial_io(struct bio_vec *bvec) 155 { 156 return false; 157 } 158 #endif 159 160 /* 161 * Check if request is within bounds and aligned on zram logical blocks. 162 */ 163 static inline bool valid_io_request(struct zram *zram, 164 sector_t start, unsigned int size) 165 { 166 u64 end, bound; 167 168 /* unaligned request */ 169 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 170 return false; 171 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 172 return false; 173 174 end = start + (size >> SECTOR_SHIFT); 175 bound = zram->disksize >> SECTOR_SHIFT; 176 /* out of range range */ 177 if (unlikely(start >= bound || end > bound || start > end)) 178 return false; 179 180 /* I/O request is valid */ 181 return true; 182 } 183 184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 185 { 186 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 187 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 188 } 189 190 static inline void update_used_max(struct zram *zram, 191 const unsigned long pages) 192 { 193 unsigned long old_max, cur_max; 194 195 old_max = atomic_long_read(&zram->stats.max_used_pages); 196 197 do { 198 cur_max = old_max; 199 if (pages > cur_max) 200 old_max = atomic_long_cmpxchg( 201 &zram->stats.max_used_pages, cur_max, pages); 202 } while (old_max != cur_max); 203 } 204 205 static inline void zram_fill_page(void *ptr, unsigned long len, 206 unsigned long value) 207 { 208 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 209 memset_l(ptr, value, len / sizeof(unsigned long)); 210 } 211 212 static bool page_same_filled(void *ptr, unsigned long *element) 213 { 214 unsigned long *page; 215 unsigned long val; 216 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 217 218 page = (unsigned long *)ptr; 219 val = page[0]; 220 221 if (val != page[last_pos]) 222 return false; 223 224 for (pos = 1; pos < last_pos; pos++) { 225 if (val != page[pos]) 226 return false; 227 } 228 229 *element = val; 230 231 return true; 232 } 233 234 static ssize_t initstate_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 u32 val; 238 struct zram *zram = dev_to_zram(dev); 239 240 down_read(&zram->init_lock); 241 val = init_done(zram); 242 up_read(&zram->init_lock); 243 244 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 245 } 246 247 static ssize_t disksize_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct zram *zram = dev_to_zram(dev); 251 252 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 253 } 254 255 static ssize_t mem_limit_store(struct device *dev, 256 struct device_attribute *attr, const char *buf, size_t len) 257 { 258 u64 limit; 259 char *tmp; 260 struct zram *zram = dev_to_zram(dev); 261 262 limit = memparse(buf, &tmp); 263 if (buf == tmp) /* no chars parsed, invalid input */ 264 return -EINVAL; 265 266 down_write(&zram->init_lock); 267 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 268 up_write(&zram->init_lock); 269 270 return len; 271 } 272 273 static ssize_t mem_used_max_store(struct device *dev, 274 struct device_attribute *attr, const char *buf, size_t len) 275 { 276 int err; 277 unsigned long val; 278 struct zram *zram = dev_to_zram(dev); 279 280 err = kstrtoul(buf, 10, &val); 281 if (err || val != 0) 282 return -EINVAL; 283 284 down_read(&zram->init_lock); 285 if (init_done(zram)) { 286 atomic_long_set(&zram->stats.max_used_pages, 287 zs_get_total_pages(zram->mem_pool)); 288 } 289 up_read(&zram->init_lock); 290 291 return len; 292 } 293 294 static ssize_t idle_store(struct device *dev, 295 struct device_attribute *attr, const char *buf, size_t len) 296 { 297 struct zram *zram = dev_to_zram(dev); 298 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 299 int index; 300 301 if (!sysfs_streq(buf, "all")) 302 return -EINVAL; 303 304 down_read(&zram->init_lock); 305 if (!init_done(zram)) { 306 up_read(&zram->init_lock); 307 return -EINVAL; 308 } 309 310 for (index = 0; index < nr_pages; index++) { 311 /* 312 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 313 * See the comment in writeback_store. 314 */ 315 zram_slot_lock(zram, index); 316 if (zram_allocated(zram, index) && 317 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) 318 zram_set_flag(zram, index, ZRAM_IDLE); 319 zram_slot_unlock(zram, index); 320 } 321 322 up_read(&zram->init_lock); 323 324 return len; 325 } 326 327 #ifdef CONFIG_ZRAM_WRITEBACK 328 static ssize_t writeback_limit_enable_store(struct device *dev, 329 struct device_attribute *attr, const char *buf, size_t len) 330 { 331 struct zram *zram = dev_to_zram(dev); 332 u64 val; 333 ssize_t ret = -EINVAL; 334 335 if (kstrtoull(buf, 10, &val)) 336 return ret; 337 338 down_read(&zram->init_lock); 339 spin_lock(&zram->wb_limit_lock); 340 zram->wb_limit_enable = val; 341 spin_unlock(&zram->wb_limit_lock); 342 up_read(&zram->init_lock); 343 ret = len; 344 345 return ret; 346 } 347 348 static ssize_t writeback_limit_enable_show(struct device *dev, 349 struct device_attribute *attr, char *buf) 350 { 351 bool val; 352 struct zram *zram = dev_to_zram(dev); 353 354 down_read(&zram->init_lock); 355 spin_lock(&zram->wb_limit_lock); 356 val = zram->wb_limit_enable; 357 spin_unlock(&zram->wb_limit_lock); 358 up_read(&zram->init_lock); 359 360 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 361 } 362 363 static ssize_t writeback_limit_store(struct device *dev, 364 struct device_attribute *attr, const char *buf, size_t len) 365 { 366 struct zram *zram = dev_to_zram(dev); 367 u64 val; 368 ssize_t ret = -EINVAL; 369 370 if (kstrtoull(buf, 10, &val)) 371 return ret; 372 373 down_read(&zram->init_lock); 374 spin_lock(&zram->wb_limit_lock); 375 zram->bd_wb_limit = val; 376 spin_unlock(&zram->wb_limit_lock); 377 up_read(&zram->init_lock); 378 ret = len; 379 380 return ret; 381 } 382 383 static ssize_t writeback_limit_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 u64 val; 387 struct zram *zram = dev_to_zram(dev); 388 389 down_read(&zram->init_lock); 390 spin_lock(&zram->wb_limit_lock); 391 val = zram->bd_wb_limit; 392 spin_unlock(&zram->wb_limit_lock); 393 up_read(&zram->init_lock); 394 395 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 396 } 397 398 static void reset_bdev(struct zram *zram) 399 { 400 struct block_device *bdev; 401 402 if (!zram->backing_dev) 403 return; 404 405 bdev = zram->bdev; 406 if (zram->old_block_size) 407 set_blocksize(bdev, zram->old_block_size); 408 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 409 /* hope filp_close flush all of IO */ 410 filp_close(zram->backing_dev, NULL); 411 zram->backing_dev = NULL; 412 zram->old_block_size = 0; 413 zram->bdev = NULL; 414 zram->disk->fops = &zram_devops; 415 kvfree(zram->bitmap); 416 zram->bitmap = NULL; 417 } 418 419 static ssize_t backing_dev_show(struct device *dev, 420 struct device_attribute *attr, char *buf) 421 { 422 struct file *file; 423 struct zram *zram = dev_to_zram(dev); 424 char *p; 425 ssize_t ret; 426 427 down_read(&zram->init_lock); 428 file = zram->backing_dev; 429 if (!file) { 430 memcpy(buf, "none\n", 5); 431 up_read(&zram->init_lock); 432 return 5; 433 } 434 435 p = file_path(file, buf, PAGE_SIZE - 1); 436 if (IS_ERR(p)) { 437 ret = PTR_ERR(p); 438 goto out; 439 } 440 441 ret = strlen(p); 442 memmove(buf, p, ret); 443 buf[ret++] = '\n'; 444 out: 445 up_read(&zram->init_lock); 446 return ret; 447 } 448 449 static ssize_t backing_dev_store(struct device *dev, 450 struct device_attribute *attr, const char *buf, size_t len) 451 { 452 char *file_name; 453 size_t sz; 454 struct file *backing_dev = NULL; 455 struct inode *inode; 456 struct address_space *mapping; 457 unsigned int bitmap_sz, old_block_size = 0; 458 unsigned long nr_pages, *bitmap = NULL; 459 struct block_device *bdev = NULL; 460 int err; 461 struct zram *zram = dev_to_zram(dev); 462 463 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 464 if (!file_name) 465 return -ENOMEM; 466 467 down_write(&zram->init_lock); 468 if (init_done(zram)) { 469 pr_info("Can't setup backing device for initialized device\n"); 470 err = -EBUSY; 471 goto out; 472 } 473 474 strlcpy(file_name, buf, PATH_MAX); 475 /* ignore trailing newline */ 476 sz = strlen(file_name); 477 if (sz > 0 && file_name[sz - 1] == '\n') 478 file_name[sz - 1] = 0x00; 479 480 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 481 if (IS_ERR(backing_dev)) { 482 err = PTR_ERR(backing_dev); 483 backing_dev = NULL; 484 goto out; 485 } 486 487 mapping = backing_dev->f_mapping; 488 inode = mapping->host; 489 490 /* Support only block device in this moment */ 491 if (!S_ISBLK(inode->i_mode)) { 492 err = -ENOTBLK; 493 goto out; 494 } 495 496 bdev = blkdev_get_by_dev(inode->i_rdev, 497 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 498 if (IS_ERR(bdev)) { 499 err = PTR_ERR(bdev); 500 bdev = NULL; 501 goto out; 502 } 503 504 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 505 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 506 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 507 if (!bitmap) { 508 err = -ENOMEM; 509 goto out; 510 } 511 512 old_block_size = block_size(bdev); 513 err = set_blocksize(bdev, PAGE_SIZE); 514 if (err) 515 goto out; 516 517 reset_bdev(zram); 518 519 zram->old_block_size = old_block_size; 520 zram->bdev = bdev; 521 zram->backing_dev = backing_dev; 522 zram->bitmap = bitmap; 523 zram->nr_pages = nr_pages; 524 /* 525 * With writeback feature, zram does asynchronous IO so it's no longer 526 * synchronous device so let's remove synchronous io flag. Othewise, 527 * upper layer(e.g., swap) could wait IO completion rather than 528 * (submit and return), which will cause system sluggish. 529 * Furthermore, when the IO function returns(e.g., swap_readpage), 530 * upper layer expects IO was done so it could deallocate the page 531 * freely but in fact, IO is going on so finally could cause 532 * use-after-free when the IO is really done. 533 */ 534 zram->disk->fops = &zram_wb_devops; 535 up_write(&zram->init_lock); 536 537 pr_info("setup backing device %s\n", file_name); 538 kfree(file_name); 539 540 return len; 541 out: 542 if (bitmap) 543 kvfree(bitmap); 544 545 if (bdev) 546 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 547 548 if (backing_dev) 549 filp_close(backing_dev, NULL); 550 551 up_write(&zram->init_lock); 552 553 kfree(file_name); 554 555 return err; 556 } 557 558 static unsigned long alloc_block_bdev(struct zram *zram) 559 { 560 unsigned long blk_idx = 1; 561 retry: 562 /* skip 0 bit to confuse zram.handle = 0 */ 563 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 564 if (blk_idx == zram->nr_pages) 565 return 0; 566 567 if (test_and_set_bit(blk_idx, zram->bitmap)) 568 goto retry; 569 570 atomic64_inc(&zram->stats.bd_count); 571 return blk_idx; 572 } 573 574 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 575 { 576 int was_set; 577 578 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 579 WARN_ON_ONCE(!was_set); 580 atomic64_dec(&zram->stats.bd_count); 581 } 582 583 static void zram_page_end_io(struct bio *bio) 584 { 585 struct page *page = bio_first_page_all(bio); 586 587 page_endio(page, op_is_write(bio_op(bio)), 588 blk_status_to_errno(bio->bi_status)); 589 bio_put(bio); 590 } 591 592 /* 593 * Returns 1 if the submission is successful. 594 */ 595 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 596 unsigned long entry, struct bio *parent) 597 { 598 struct bio *bio; 599 600 bio = bio_alloc(GFP_ATOMIC, 1); 601 if (!bio) 602 return -ENOMEM; 603 604 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 605 bio_set_dev(bio, zram->bdev); 606 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 607 bio_put(bio); 608 return -EIO; 609 } 610 611 if (!parent) { 612 bio->bi_opf = REQ_OP_READ; 613 bio->bi_end_io = zram_page_end_io; 614 } else { 615 bio->bi_opf = parent->bi_opf; 616 bio_chain(bio, parent); 617 } 618 619 submit_bio(bio); 620 return 1; 621 } 622 623 #define HUGE_WRITEBACK 1 624 #define IDLE_WRITEBACK 2 625 626 static ssize_t writeback_store(struct device *dev, 627 struct device_attribute *attr, const char *buf, size_t len) 628 { 629 struct zram *zram = dev_to_zram(dev); 630 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 631 unsigned long index; 632 struct bio bio; 633 struct bio_vec bio_vec; 634 struct page *page; 635 ssize_t ret = len; 636 int mode; 637 unsigned long blk_idx = 0; 638 639 if (sysfs_streq(buf, "idle")) 640 mode = IDLE_WRITEBACK; 641 else if (sysfs_streq(buf, "huge")) 642 mode = HUGE_WRITEBACK; 643 else 644 return -EINVAL; 645 646 down_read(&zram->init_lock); 647 if (!init_done(zram)) { 648 ret = -EINVAL; 649 goto release_init_lock; 650 } 651 652 if (!zram->backing_dev) { 653 ret = -ENODEV; 654 goto release_init_lock; 655 } 656 657 page = alloc_page(GFP_KERNEL); 658 if (!page) { 659 ret = -ENOMEM; 660 goto release_init_lock; 661 } 662 663 for (index = 0; index < nr_pages; index++) { 664 struct bio_vec bvec; 665 666 bvec.bv_page = page; 667 bvec.bv_len = PAGE_SIZE; 668 bvec.bv_offset = 0; 669 670 spin_lock(&zram->wb_limit_lock); 671 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 672 spin_unlock(&zram->wb_limit_lock); 673 ret = -EIO; 674 break; 675 } 676 spin_unlock(&zram->wb_limit_lock); 677 678 if (!blk_idx) { 679 blk_idx = alloc_block_bdev(zram); 680 if (!blk_idx) { 681 ret = -ENOSPC; 682 break; 683 } 684 } 685 686 zram_slot_lock(zram, index); 687 if (!zram_allocated(zram, index)) 688 goto next; 689 690 if (zram_test_flag(zram, index, ZRAM_WB) || 691 zram_test_flag(zram, index, ZRAM_SAME) || 692 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 693 goto next; 694 695 if (mode == IDLE_WRITEBACK && 696 !zram_test_flag(zram, index, ZRAM_IDLE)) 697 goto next; 698 if (mode == HUGE_WRITEBACK && 699 !zram_test_flag(zram, index, ZRAM_HUGE)) 700 goto next; 701 /* 702 * Clearing ZRAM_UNDER_WB is duty of caller. 703 * IOW, zram_free_page never clear it. 704 */ 705 zram_set_flag(zram, index, ZRAM_UNDER_WB); 706 /* Need for hugepage writeback racing */ 707 zram_set_flag(zram, index, ZRAM_IDLE); 708 zram_slot_unlock(zram, index); 709 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 710 zram_slot_lock(zram, index); 711 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 712 zram_clear_flag(zram, index, ZRAM_IDLE); 713 zram_slot_unlock(zram, index); 714 continue; 715 } 716 717 bio_init(&bio, &bio_vec, 1); 718 bio_set_dev(&bio, zram->bdev); 719 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 720 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC; 721 722 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 723 bvec.bv_offset); 724 /* 725 * XXX: A single page IO would be inefficient for write 726 * but it would be not bad as starter. 727 */ 728 ret = submit_bio_wait(&bio); 729 if (ret) { 730 zram_slot_lock(zram, index); 731 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 732 zram_clear_flag(zram, index, ZRAM_IDLE); 733 zram_slot_unlock(zram, index); 734 continue; 735 } 736 737 atomic64_inc(&zram->stats.bd_writes); 738 /* 739 * We released zram_slot_lock so need to check if the slot was 740 * changed. If there is freeing for the slot, we can catch it 741 * easily by zram_allocated. 742 * A subtle case is the slot is freed/reallocated/marked as 743 * ZRAM_IDLE again. To close the race, idle_store doesn't 744 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 745 * Thus, we could close the race by checking ZRAM_IDLE bit. 746 */ 747 zram_slot_lock(zram, index); 748 if (!zram_allocated(zram, index) || 749 !zram_test_flag(zram, index, ZRAM_IDLE)) { 750 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 751 zram_clear_flag(zram, index, ZRAM_IDLE); 752 goto next; 753 } 754 755 zram_free_page(zram, index); 756 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 757 zram_set_flag(zram, index, ZRAM_WB); 758 zram_set_element(zram, index, blk_idx); 759 blk_idx = 0; 760 atomic64_inc(&zram->stats.pages_stored); 761 spin_lock(&zram->wb_limit_lock); 762 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 763 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 764 spin_unlock(&zram->wb_limit_lock); 765 next: 766 zram_slot_unlock(zram, index); 767 } 768 769 if (blk_idx) 770 free_block_bdev(zram, blk_idx); 771 __free_page(page); 772 release_init_lock: 773 up_read(&zram->init_lock); 774 775 return ret; 776 } 777 778 struct zram_work { 779 struct work_struct work; 780 struct zram *zram; 781 unsigned long entry; 782 struct bio *bio; 783 struct bio_vec bvec; 784 }; 785 786 #if PAGE_SIZE != 4096 787 static void zram_sync_read(struct work_struct *work) 788 { 789 struct zram_work *zw = container_of(work, struct zram_work, work); 790 struct zram *zram = zw->zram; 791 unsigned long entry = zw->entry; 792 struct bio *bio = zw->bio; 793 794 read_from_bdev_async(zram, &zw->bvec, entry, bio); 795 } 796 797 /* 798 * Block layer want one ->submit_bio to be active at a time, so if we use 799 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 800 * use a worker thread context. 801 */ 802 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 803 unsigned long entry, struct bio *bio) 804 { 805 struct zram_work work; 806 807 work.bvec = *bvec; 808 work.zram = zram; 809 work.entry = entry; 810 work.bio = bio; 811 812 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 813 queue_work(system_unbound_wq, &work.work); 814 flush_work(&work.work); 815 destroy_work_on_stack(&work.work); 816 817 return 1; 818 } 819 #else 820 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 821 unsigned long entry, struct bio *bio) 822 { 823 WARN_ON(1); 824 return -EIO; 825 } 826 #endif 827 828 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 829 unsigned long entry, struct bio *parent, bool sync) 830 { 831 atomic64_inc(&zram->stats.bd_reads); 832 if (sync) 833 return read_from_bdev_sync(zram, bvec, entry, parent); 834 else 835 return read_from_bdev_async(zram, bvec, entry, parent); 836 } 837 #else 838 static inline void reset_bdev(struct zram *zram) {}; 839 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 840 unsigned long entry, struct bio *parent, bool sync) 841 { 842 return -EIO; 843 } 844 845 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 846 #endif 847 848 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 849 850 static struct dentry *zram_debugfs_root; 851 852 static void zram_debugfs_create(void) 853 { 854 zram_debugfs_root = debugfs_create_dir("zram", NULL); 855 } 856 857 static void zram_debugfs_destroy(void) 858 { 859 debugfs_remove_recursive(zram_debugfs_root); 860 } 861 862 static void zram_accessed(struct zram *zram, u32 index) 863 { 864 zram_clear_flag(zram, index, ZRAM_IDLE); 865 zram->table[index].ac_time = ktime_get_boottime(); 866 } 867 868 static ssize_t read_block_state(struct file *file, char __user *buf, 869 size_t count, loff_t *ppos) 870 { 871 char *kbuf; 872 ssize_t index, written = 0; 873 struct zram *zram = file->private_data; 874 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 875 struct timespec64 ts; 876 877 kbuf = kvmalloc(count, GFP_KERNEL); 878 if (!kbuf) 879 return -ENOMEM; 880 881 down_read(&zram->init_lock); 882 if (!init_done(zram)) { 883 up_read(&zram->init_lock); 884 kvfree(kbuf); 885 return -EINVAL; 886 } 887 888 for (index = *ppos; index < nr_pages; index++) { 889 int copied; 890 891 zram_slot_lock(zram, index); 892 if (!zram_allocated(zram, index)) 893 goto next; 894 895 ts = ktime_to_timespec64(zram->table[index].ac_time); 896 copied = snprintf(kbuf + written, count, 897 "%12zd %12lld.%06lu %c%c%c%c\n", 898 index, (s64)ts.tv_sec, 899 ts.tv_nsec / NSEC_PER_USEC, 900 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 901 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 902 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 903 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); 904 905 if (count < copied) { 906 zram_slot_unlock(zram, index); 907 break; 908 } 909 written += copied; 910 count -= copied; 911 next: 912 zram_slot_unlock(zram, index); 913 *ppos += 1; 914 } 915 916 up_read(&zram->init_lock); 917 if (copy_to_user(buf, kbuf, written)) 918 written = -EFAULT; 919 kvfree(kbuf); 920 921 return written; 922 } 923 924 static const struct file_operations proc_zram_block_state_op = { 925 .open = simple_open, 926 .read = read_block_state, 927 .llseek = default_llseek, 928 }; 929 930 static void zram_debugfs_register(struct zram *zram) 931 { 932 if (!zram_debugfs_root) 933 return; 934 935 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 936 zram_debugfs_root); 937 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 938 zram, &proc_zram_block_state_op); 939 } 940 941 static void zram_debugfs_unregister(struct zram *zram) 942 { 943 debugfs_remove_recursive(zram->debugfs_dir); 944 } 945 #else 946 static void zram_debugfs_create(void) {}; 947 static void zram_debugfs_destroy(void) {}; 948 static void zram_accessed(struct zram *zram, u32 index) 949 { 950 zram_clear_flag(zram, index, ZRAM_IDLE); 951 }; 952 static void zram_debugfs_register(struct zram *zram) {}; 953 static void zram_debugfs_unregister(struct zram *zram) {}; 954 #endif 955 956 /* 957 * We switched to per-cpu streams and this attr is not needed anymore. 958 * However, we will keep it around for some time, because: 959 * a) we may revert per-cpu streams in the future 960 * b) it's visible to user space and we need to follow our 2 years 961 * retirement rule; but we already have a number of 'soon to be 962 * altered' attrs, so max_comp_streams need to wait for the next 963 * layoff cycle. 964 */ 965 static ssize_t max_comp_streams_show(struct device *dev, 966 struct device_attribute *attr, char *buf) 967 { 968 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 969 } 970 971 static ssize_t max_comp_streams_store(struct device *dev, 972 struct device_attribute *attr, const char *buf, size_t len) 973 { 974 return len; 975 } 976 977 static ssize_t comp_algorithm_show(struct device *dev, 978 struct device_attribute *attr, char *buf) 979 { 980 size_t sz; 981 struct zram *zram = dev_to_zram(dev); 982 983 down_read(&zram->init_lock); 984 sz = zcomp_available_show(zram->compressor, buf); 985 up_read(&zram->init_lock); 986 987 return sz; 988 } 989 990 static ssize_t comp_algorithm_store(struct device *dev, 991 struct device_attribute *attr, const char *buf, size_t len) 992 { 993 struct zram *zram = dev_to_zram(dev); 994 char compressor[ARRAY_SIZE(zram->compressor)]; 995 size_t sz; 996 997 strlcpy(compressor, buf, sizeof(compressor)); 998 /* ignore trailing newline */ 999 sz = strlen(compressor); 1000 if (sz > 0 && compressor[sz - 1] == '\n') 1001 compressor[sz - 1] = 0x00; 1002 1003 if (!zcomp_available_algorithm(compressor)) 1004 return -EINVAL; 1005 1006 down_write(&zram->init_lock); 1007 if (init_done(zram)) { 1008 up_write(&zram->init_lock); 1009 pr_info("Can't change algorithm for initialized device\n"); 1010 return -EBUSY; 1011 } 1012 1013 strcpy(zram->compressor, compressor); 1014 up_write(&zram->init_lock); 1015 return len; 1016 } 1017 1018 static ssize_t compact_store(struct device *dev, 1019 struct device_attribute *attr, const char *buf, size_t len) 1020 { 1021 struct zram *zram = dev_to_zram(dev); 1022 1023 down_read(&zram->init_lock); 1024 if (!init_done(zram)) { 1025 up_read(&zram->init_lock); 1026 return -EINVAL; 1027 } 1028 1029 zs_compact(zram->mem_pool); 1030 up_read(&zram->init_lock); 1031 1032 return len; 1033 } 1034 1035 static ssize_t io_stat_show(struct device *dev, 1036 struct device_attribute *attr, char *buf) 1037 { 1038 struct zram *zram = dev_to_zram(dev); 1039 ssize_t ret; 1040 1041 down_read(&zram->init_lock); 1042 ret = scnprintf(buf, PAGE_SIZE, 1043 "%8llu %8llu %8llu %8llu\n", 1044 (u64)atomic64_read(&zram->stats.failed_reads), 1045 (u64)atomic64_read(&zram->stats.failed_writes), 1046 (u64)atomic64_read(&zram->stats.invalid_io), 1047 (u64)atomic64_read(&zram->stats.notify_free)); 1048 up_read(&zram->init_lock); 1049 1050 return ret; 1051 } 1052 1053 static ssize_t mm_stat_show(struct device *dev, 1054 struct device_attribute *attr, char *buf) 1055 { 1056 struct zram *zram = dev_to_zram(dev); 1057 struct zs_pool_stats pool_stats; 1058 u64 orig_size, mem_used = 0; 1059 long max_used; 1060 ssize_t ret; 1061 1062 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1063 1064 down_read(&zram->init_lock); 1065 if (init_done(zram)) { 1066 mem_used = zs_get_total_pages(zram->mem_pool); 1067 zs_pool_stats(zram->mem_pool, &pool_stats); 1068 } 1069 1070 orig_size = atomic64_read(&zram->stats.pages_stored); 1071 max_used = atomic_long_read(&zram->stats.max_used_pages); 1072 1073 ret = scnprintf(buf, PAGE_SIZE, 1074 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n", 1075 orig_size << PAGE_SHIFT, 1076 (u64)atomic64_read(&zram->stats.compr_data_size), 1077 mem_used << PAGE_SHIFT, 1078 zram->limit_pages << PAGE_SHIFT, 1079 max_used << PAGE_SHIFT, 1080 (u64)atomic64_read(&zram->stats.same_pages), 1081 pool_stats.pages_compacted, 1082 (u64)atomic64_read(&zram->stats.huge_pages)); 1083 up_read(&zram->init_lock); 1084 1085 return ret; 1086 } 1087 1088 #ifdef CONFIG_ZRAM_WRITEBACK 1089 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1090 static ssize_t bd_stat_show(struct device *dev, 1091 struct device_attribute *attr, char *buf) 1092 { 1093 struct zram *zram = dev_to_zram(dev); 1094 ssize_t ret; 1095 1096 down_read(&zram->init_lock); 1097 ret = scnprintf(buf, PAGE_SIZE, 1098 "%8llu %8llu %8llu\n", 1099 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1100 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1101 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1102 up_read(&zram->init_lock); 1103 1104 return ret; 1105 } 1106 #endif 1107 1108 static ssize_t debug_stat_show(struct device *dev, 1109 struct device_attribute *attr, char *buf) 1110 { 1111 int version = 1; 1112 struct zram *zram = dev_to_zram(dev); 1113 ssize_t ret; 1114 1115 down_read(&zram->init_lock); 1116 ret = scnprintf(buf, PAGE_SIZE, 1117 "version: %d\n%8llu %8llu\n", 1118 version, 1119 (u64)atomic64_read(&zram->stats.writestall), 1120 (u64)atomic64_read(&zram->stats.miss_free)); 1121 up_read(&zram->init_lock); 1122 1123 return ret; 1124 } 1125 1126 static DEVICE_ATTR_RO(io_stat); 1127 static DEVICE_ATTR_RO(mm_stat); 1128 #ifdef CONFIG_ZRAM_WRITEBACK 1129 static DEVICE_ATTR_RO(bd_stat); 1130 #endif 1131 static DEVICE_ATTR_RO(debug_stat); 1132 1133 static void zram_meta_free(struct zram *zram, u64 disksize) 1134 { 1135 size_t num_pages = disksize >> PAGE_SHIFT; 1136 size_t index; 1137 1138 /* Free all pages that are still in this zram device */ 1139 for (index = 0; index < num_pages; index++) 1140 zram_free_page(zram, index); 1141 1142 zs_destroy_pool(zram->mem_pool); 1143 vfree(zram->table); 1144 } 1145 1146 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1147 { 1148 size_t num_pages; 1149 1150 num_pages = disksize >> PAGE_SHIFT; 1151 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1152 if (!zram->table) 1153 return false; 1154 1155 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1156 if (!zram->mem_pool) { 1157 vfree(zram->table); 1158 return false; 1159 } 1160 1161 if (!huge_class_size) 1162 huge_class_size = zs_huge_class_size(zram->mem_pool); 1163 return true; 1164 } 1165 1166 /* 1167 * To protect concurrent access to the same index entry, 1168 * caller should hold this table index entry's bit_spinlock to 1169 * indicate this index entry is accessing. 1170 */ 1171 static void zram_free_page(struct zram *zram, size_t index) 1172 { 1173 unsigned long handle; 1174 1175 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1176 zram->table[index].ac_time = 0; 1177 #endif 1178 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1179 zram_clear_flag(zram, index, ZRAM_IDLE); 1180 1181 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1182 zram_clear_flag(zram, index, ZRAM_HUGE); 1183 atomic64_dec(&zram->stats.huge_pages); 1184 } 1185 1186 if (zram_test_flag(zram, index, ZRAM_WB)) { 1187 zram_clear_flag(zram, index, ZRAM_WB); 1188 free_block_bdev(zram, zram_get_element(zram, index)); 1189 goto out; 1190 } 1191 1192 /* 1193 * No memory is allocated for same element filled pages. 1194 * Simply clear same page flag. 1195 */ 1196 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1197 zram_clear_flag(zram, index, ZRAM_SAME); 1198 atomic64_dec(&zram->stats.same_pages); 1199 goto out; 1200 } 1201 1202 handle = zram_get_handle(zram, index); 1203 if (!handle) 1204 return; 1205 1206 zs_free(zram->mem_pool, handle); 1207 1208 atomic64_sub(zram_get_obj_size(zram, index), 1209 &zram->stats.compr_data_size); 1210 out: 1211 atomic64_dec(&zram->stats.pages_stored); 1212 zram_set_handle(zram, index, 0); 1213 zram_set_obj_size(zram, index, 0); 1214 WARN_ON_ONCE(zram->table[index].flags & 1215 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1216 } 1217 1218 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1219 struct bio *bio, bool partial_io) 1220 { 1221 struct zcomp_strm *zstrm; 1222 unsigned long handle; 1223 unsigned int size; 1224 void *src, *dst; 1225 int ret; 1226 1227 zram_slot_lock(zram, index); 1228 if (zram_test_flag(zram, index, ZRAM_WB)) { 1229 struct bio_vec bvec; 1230 1231 zram_slot_unlock(zram, index); 1232 1233 bvec.bv_page = page; 1234 bvec.bv_len = PAGE_SIZE; 1235 bvec.bv_offset = 0; 1236 return read_from_bdev(zram, &bvec, 1237 zram_get_element(zram, index), 1238 bio, partial_io); 1239 } 1240 1241 handle = zram_get_handle(zram, index); 1242 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1243 unsigned long value; 1244 void *mem; 1245 1246 value = handle ? zram_get_element(zram, index) : 0; 1247 mem = kmap_atomic(page); 1248 zram_fill_page(mem, PAGE_SIZE, value); 1249 kunmap_atomic(mem); 1250 zram_slot_unlock(zram, index); 1251 return 0; 1252 } 1253 1254 size = zram_get_obj_size(zram, index); 1255 1256 if (size != PAGE_SIZE) 1257 zstrm = zcomp_stream_get(zram->comp); 1258 1259 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1260 if (size == PAGE_SIZE) { 1261 dst = kmap_atomic(page); 1262 memcpy(dst, src, PAGE_SIZE); 1263 kunmap_atomic(dst); 1264 ret = 0; 1265 } else { 1266 dst = kmap_atomic(page); 1267 ret = zcomp_decompress(zstrm, src, size, dst); 1268 kunmap_atomic(dst); 1269 zcomp_stream_put(zram->comp); 1270 } 1271 zs_unmap_object(zram->mem_pool, handle); 1272 zram_slot_unlock(zram, index); 1273 1274 /* Should NEVER happen. Return bio error if it does. */ 1275 if (WARN_ON(ret)) 1276 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1277 1278 return ret; 1279 } 1280 1281 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1282 u32 index, int offset, struct bio *bio) 1283 { 1284 int ret; 1285 struct page *page; 1286 1287 page = bvec->bv_page; 1288 if (is_partial_io(bvec)) { 1289 /* Use a temporary buffer to decompress the page */ 1290 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1291 if (!page) 1292 return -ENOMEM; 1293 } 1294 1295 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1296 if (unlikely(ret)) 1297 goto out; 1298 1299 if (is_partial_io(bvec)) { 1300 void *dst = kmap_atomic(bvec->bv_page); 1301 void *src = kmap_atomic(page); 1302 1303 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 1304 kunmap_atomic(src); 1305 kunmap_atomic(dst); 1306 } 1307 out: 1308 if (is_partial_io(bvec)) 1309 __free_page(page); 1310 1311 return ret; 1312 } 1313 1314 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1315 u32 index, struct bio *bio) 1316 { 1317 int ret = 0; 1318 unsigned long alloced_pages; 1319 unsigned long handle = 0; 1320 unsigned int comp_len = 0; 1321 void *src, *dst, *mem; 1322 struct zcomp_strm *zstrm; 1323 struct page *page = bvec->bv_page; 1324 unsigned long element = 0; 1325 enum zram_pageflags flags = 0; 1326 1327 mem = kmap_atomic(page); 1328 if (page_same_filled(mem, &element)) { 1329 kunmap_atomic(mem); 1330 /* Free memory associated with this sector now. */ 1331 flags = ZRAM_SAME; 1332 atomic64_inc(&zram->stats.same_pages); 1333 goto out; 1334 } 1335 kunmap_atomic(mem); 1336 1337 compress_again: 1338 zstrm = zcomp_stream_get(zram->comp); 1339 src = kmap_atomic(page); 1340 ret = zcomp_compress(zstrm, src, &comp_len); 1341 kunmap_atomic(src); 1342 1343 if (unlikely(ret)) { 1344 zcomp_stream_put(zram->comp); 1345 pr_err("Compression failed! err=%d\n", ret); 1346 zs_free(zram->mem_pool, handle); 1347 return ret; 1348 } 1349 1350 if (comp_len >= huge_class_size) 1351 comp_len = PAGE_SIZE; 1352 /* 1353 * handle allocation has 2 paths: 1354 * a) fast path is executed with preemption disabled (for 1355 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1356 * since we can't sleep; 1357 * b) slow path enables preemption and attempts to allocate 1358 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1359 * put per-cpu compression stream and, thus, to re-do 1360 * the compression once handle is allocated. 1361 * 1362 * if we have a 'non-null' handle here then we are coming 1363 * from the slow path and handle has already been allocated. 1364 */ 1365 if (!handle) 1366 handle = zs_malloc(zram->mem_pool, comp_len, 1367 __GFP_KSWAPD_RECLAIM | 1368 __GFP_NOWARN | 1369 __GFP_HIGHMEM | 1370 __GFP_MOVABLE); 1371 if (!handle) { 1372 zcomp_stream_put(zram->comp); 1373 atomic64_inc(&zram->stats.writestall); 1374 handle = zs_malloc(zram->mem_pool, comp_len, 1375 GFP_NOIO | __GFP_HIGHMEM | 1376 __GFP_MOVABLE); 1377 if (handle) 1378 goto compress_again; 1379 return -ENOMEM; 1380 } 1381 1382 alloced_pages = zs_get_total_pages(zram->mem_pool); 1383 update_used_max(zram, alloced_pages); 1384 1385 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1386 zcomp_stream_put(zram->comp); 1387 zs_free(zram->mem_pool, handle); 1388 return -ENOMEM; 1389 } 1390 1391 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1392 1393 src = zstrm->buffer; 1394 if (comp_len == PAGE_SIZE) 1395 src = kmap_atomic(page); 1396 memcpy(dst, src, comp_len); 1397 if (comp_len == PAGE_SIZE) 1398 kunmap_atomic(src); 1399 1400 zcomp_stream_put(zram->comp); 1401 zs_unmap_object(zram->mem_pool, handle); 1402 atomic64_add(comp_len, &zram->stats.compr_data_size); 1403 out: 1404 /* 1405 * Free memory associated with this sector 1406 * before overwriting unused sectors. 1407 */ 1408 zram_slot_lock(zram, index); 1409 zram_free_page(zram, index); 1410 1411 if (comp_len == PAGE_SIZE) { 1412 zram_set_flag(zram, index, ZRAM_HUGE); 1413 atomic64_inc(&zram->stats.huge_pages); 1414 } 1415 1416 if (flags) { 1417 zram_set_flag(zram, index, flags); 1418 zram_set_element(zram, index, element); 1419 } else { 1420 zram_set_handle(zram, index, handle); 1421 zram_set_obj_size(zram, index, comp_len); 1422 } 1423 zram_slot_unlock(zram, index); 1424 1425 /* Update stats */ 1426 atomic64_inc(&zram->stats.pages_stored); 1427 return ret; 1428 } 1429 1430 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1431 u32 index, int offset, struct bio *bio) 1432 { 1433 int ret; 1434 struct page *page = NULL; 1435 void *src; 1436 struct bio_vec vec; 1437 1438 vec = *bvec; 1439 if (is_partial_io(bvec)) { 1440 void *dst; 1441 /* 1442 * This is a partial IO. We need to read the full page 1443 * before to write the changes. 1444 */ 1445 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1446 if (!page) 1447 return -ENOMEM; 1448 1449 ret = __zram_bvec_read(zram, page, index, bio, true); 1450 if (ret) 1451 goto out; 1452 1453 src = kmap_atomic(bvec->bv_page); 1454 dst = kmap_atomic(page); 1455 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 1456 kunmap_atomic(dst); 1457 kunmap_atomic(src); 1458 1459 vec.bv_page = page; 1460 vec.bv_len = PAGE_SIZE; 1461 vec.bv_offset = 0; 1462 } 1463 1464 ret = __zram_bvec_write(zram, &vec, index, bio); 1465 out: 1466 if (is_partial_io(bvec)) 1467 __free_page(page); 1468 return ret; 1469 } 1470 1471 /* 1472 * zram_bio_discard - handler on discard request 1473 * @index: physical block index in PAGE_SIZE units 1474 * @offset: byte offset within physical block 1475 */ 1476 static void zram_bio_discard(struct zram *zram, u32 index, 1477 int offset, struct bio *bio) 1478 { 1479 size_t n = bio->bi_iter.bi_size; 1480 1481 /* 1482 * zram manages data in physical block size units. Because logical block 1483 * size isn't identical with physical block size on some arch, we 1484 * could get a discard request pointing to a specific offset within a 1485 * certain physical block. Although we can handle this request by 1486 * reading that physiclal block and decompressing and partially zeroing 1487 * and re-compressing and then re-storing it, this isn't reasonable 1488 * because our intent with a discard request is to save memory. So 1489 * skipping this logical block is appropriate here. 1490 */ 1491 if (offset) { 1492 if (n <= (PAGE_SIZE - offset)) 1493 return; 1494 1495 n -= (PAGE_SIZE - offset); 1496 index++; 1497 } 1498 1499 while (n >= PAGE_SIZE) { 1500 zram_slot_lock(zram, index); 1501 zram_free_page(zram, index); 1502 zram_slot_unlock(zram, index); 1503 atomic64_inc(&zram->stats.notify_free); 1504 index++; 1505 n -= PAGE_SIZE; 1506 } 1507 } 1508 1509 /* 1510 * Returns errno if it has some problem. Otherwise return 0 or 1. 1511 * Returns 0 if IO request was done synchronously 1512 * Returns 1 if IO request was successfully submitted. 1513 */ 1514 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1515 int offset, unsigned int op, struct bio *bio) 1516 { 1517 int ret; 1518 1519 if (!op_is_write(op)) { 1520 atomic64_inc(&zram->stats.num_reads); 1521 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1522 flush_dcache_page(bvec->bv_page); 1523 } else { 1524 atomic64_inc(&zram->stats.num_writes); 1525 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1526 } 1527 1528 zram_slot_lock(zram, index); 1529 zram_accessed(zram, index); 1530 zram_slot_unlock(zram, index); 1531 1532 if (unlikely(ret < 0)) { 1533 if (!op_is_write(op)) 1534 atomic64_inc(&zram->stats.failed_reads); 1535 else 1536 atomic64_inc(&zram->stats.failed_writes); 1537 } 1538 1539 return ret; 1540 } 1541 1542 static void __zram_make_request(struct zram *zram, struct bio *bio) 1543 { 1544 int offset; 1545 u32 index; 1546 struct bio_vec bvec; 1547 struct bvec_iter iter; 1548 unsigned long start_time; 1549 1550 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1551 offset = (bio->bi_iter.bi_sector & 1552 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1553 1554 switch (bio_op(bio)) { 1555 case REQ_OP_DISCARD: 1556 case REQ_OP_WRITE_ZEROES: 1557 zram_bio_discard(zram, index, offset, bio); 1558 bio_endio(bio); 1559 return; 1560 default: 1561 break; 1562 } 1563 1564 start_time = bio_start_io_acct(bio); 1565 bio_for_each_segment(bvec, bio, iter) { 1566 struct bio_vec bv = bvec; 1567 unsigned int unwritten = bvec.bv_len; 1568 1569 do { 1570 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1571 unwritten); 1572 if (zram_bvec_rw(zram, &bv, index, offset, 1573 bio_op(bio), bio) < 0) { 1574 bio->bi_status = BLK_STS_IOERR; 1575 break; 1576 } 1577 1578 bv.bv_offset += bv.bv_len; 1579 unwritten -= bv.bv_len; 1580 1581 update_position(&index, &offset, &bv); 1582 } while (unwritten); 1583 } 1584 bio_end_io_acct(bio, start_time); 1585 bio_endio(bio); 1586 } 1587 1588 /* 1589 * Handler function for all zram I/O requests. 1590 */ 1591 static blk_qc_t zram_submit_bio(struct bio *bio) 1592 { 1593 struct zram *zram = bio->bi_disk->private_data; 1594 1595 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1596 bio->bi_iter.bi_size)) { 1597 atomic64_inc(&zram->stats.invalid_io); 1598 goto error; 1599 } 1600 1601 __zram_make_request(zram, bio); 1602 return BLK_QC_T_NONE; 1603 1604 error: 1605 bio_io_error(bio); 1606 return BLK_QC_T_NONE; 1607 } 1608 1609 static void zram_slot_free_notify(struct block_device *bdev, 1610 unsigned long index) 1611 { 1612 struct zram *zram; 1613 1614 zram = bdev->bd_disk->private_data; 1615 1616 atomic64_inc(&zram->stats.notify_free); 1617 if (!zram_slot_trylock(zram, index)) { 1618 atomic64_inc(&zram->stats.miss_free); 1619 return; 1620 } 1621 1622 zram_free_page(zram, index); 1623 zram_slot_unlock(zram, index); 1624 } 1625 1626 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1627 struct page *page, unsigned int op) 1628 { 1629 int offset, ret; 1630 u32 index; 1631 struct zram *zram; 1632 struct bio_vec bv; 1633 unsigned long start_time; 1634 1635 if (PageTransHuge(page)) 1636 return -ENOTSUPP; 1637 zram = bdev->bd_disk->private_data; 1638 1639 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1640 atomic64_inc(&zram->stats.invalid_io); 1641 ret = -EINVAL; 1642 goto out; 1643 } 1644 1645 index = sector >> SECTORS_PER_PAGE_SHIFT; 1646 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1647 1648 bv.bv_page = page; 1649 bv.bv_len = PAGE_SIZE; 1650 bv.bv_offset = 0; 1651 1652 start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op); 1653 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1654 disk_end_io_acct(bdev->bd_disk, op, start_time); 1655 out: 1656 /* 1657 * If I/O fails, just return error(ie, non-zero) without 1658 * calling page_endio. 1659 * It causes resubmit the I/O with bio request by upper functions 1660 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1661 * bio->bi_end_io does things to handle the error 1662 * (e.g., SetPageError, set_page_dirty and extra works). 1663 */ 1664 if (unlikely(ret < 0)) 1665 return ret; 1666 1667 switch (ret) { 1668 case 0: 1669 page_endio(page, op_is_write(op), 0); 1670 break; 1671 case 1: 1672 ret = 0; 1673 break; 1674 default: 1675 WARN_ON(1); 1676 } 1677 return ret; 1678 } 1679 1680 static void zram_reset_device(struct zram *zram) 1681 { 1682 struct zcomp *comp; 1683 u64 disksize; 1684 1685 down_write(&zram->init_lock); 1686 1687 zram->limit_pages = 0; 1688 1689 if (!init_done(zram)) { 1690 up_write(&zram->init_lock); 1691 return; 1692 } 1693 1694 comp = zram->comp; 1695 disksize = zram->disksize; 1696 zram->disksize = 0; 1697 1698 set_capacity(zram->disk, 0); 1699 part_stat_set_all(&zram->disk->part0, 0); 1700 1701 up_write(&zram->init_lock); 1702 /* I/O operation under all of CPU are done so let's free */ 1703 zram_meta_free(zram, disksize); 1704 memset(&zram->stats, 0, sizeof(zram->stats)); 1705 zcomp_destroy(comp); 1706 reset_bdev(zram); 1707 } 1708 1709 static ssize_t disksize_store(struct device *dev, 1710 struct device_attribute *attr, const char *buf, size_t len) 1711 { 1712 u64 disksize; 1713 struct zcomp *comp; 1714 struct zram *zram = dev_to_zram(dev); 1715 int err; 1716 1717 disksize = memparse(buf, NULL); 1718 if (!disksize) 1719 return -EINVAL; 1720 1721 down_write(&zram->init_lock); 1722 if (init_done(zram)) { 1723 pr_info("Cannot change disksize for initialized device\n"); 1724 err = -EBUSY; 1725 goto out_unlock; 1726 } 1727 1728 disksize = PAGE_ALIGN(disksize); 1729 if (!zram_meta_alloc(zram, disksize)) { 1730 err = -ENOMEM; 1731 goto out_unlock; 1732 } 1733 1734 comp = zcomp_create(zram->compressor); 1735 if (IS_ERR(comp)) { 1736 pr_err("Cannot initialise %s compressing backend\n", 1737 zram->compressor); 1738 err = PTR_ERR(comp); 1739 goto out_free_meta; 1740 } 1741 1742 zram->comp = comp; 1743 zram->disksize = disksize; 1744 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1745 1746 revalidate_disk_size(zram->disk, true); 1747 up_write(&zram->init_lock); 1748 1749 return len; 1750 1751 out_free_meta: 1752 zram_meta_free(zram, disksize); 1753 out_unlock: 1754 up_write(&zram->init_lock); 1755 return err; 1756 } 1757 1758 static ssize_t reset_store(struct device *dev, 1759 struct device_attribute *attr, const char *buf, size_t len) 1760 { 1761 int ret; 1762 unsigned short do_reset; 1763 struct zram *zram; 1764 struct block_device *bdev; 1765 1766 ret = kstrtou16(buf, 10, &do_reset); 1767 if (ret) 1768 return ret; 1769 1770 if (!do_reset) 1771 return -EINVAL; 1772 1773 zram = dev_to_zram(dev); 1774 bdev = bdget_disk(zram->disk, 0); 1775 if (!bdev) 1776 return -ENOMEM; 1777 1778 mutex_lock(&bdev->bd_mutex); 1779 /* Do not reset an active device or claimed device */ 1780 if (bdev->bd_openers || zram->claim) { 1781 mutex_unlock(&bdev->bd_mutex); 1782 bdput(bdev); 1783 return -EBUSY; 1784 } 1785 1786 /* From now on, anyone can't open /dev/zram[0-9] */ 1787 zram->claim = true; 1788 mutex_unlock(&bdev->bd_mutex); 1789 1790 /* Make sure all the pending I/O are finished */ 1791 fsync_bdev(bdev); 1792 zram_reset_device(zram); 1793 revalidate_disk_size(zram->disk, true); 1794 bdput(bdev); 1795 1796 mutex_lock(&bdev->bd_mutex); 1797 zram->claim = false; 1798 mutex_unlock(&bdev->bd_mutex); 1799 1800 return len; 1801 } 1802 1803 static int zram_open(struct block_device *bdev, fmode_t mode) 1804 { 1805 int ret = 0; 1806 struct zram *zram; 1807 1808 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1809 1810 zram = bdev->bd_disk->private_data; 1811 /* zram was claimed to reset so open request fails */ 1812 if (zram->claim) 1813 ret = -EBUSY; 1814 1815 return ret; 1816 } 1817 1818 static const struct block_device_operations zram_devops = { 1819 .open = zram_open, 1820 .submit_bio = zram_submit_bio, 1821 .swap_slot_free_notify = zram_slot_free_notify, 1822 .rw_page = zram_rw_page, 1823 .owner = THIS_MODULE 1824 }; 1825 1826 static const struct block_device_operations zram_wb_devops = { 1827 .open = zram_open, 1828 .submit_bio = zram_submit_bio, 1829 .swap_slot_free_notify = zram_slot_free_notify, 1830 .owner = THIS_MODULE 1831 }; 1832 1833 static DEVICE_ATTR_WO(compact); 1834 static DEVICE_ATTR_RW(disksize); 1835 static DEVICE_ATTR_RO(initstate); 1836 static DEVICE_ATTR_WO(reset); 1837 static DEVICE_ATTR_WO(mem_limit); 1838 static DEVICE_ATTR_WO(mem_used_max); 1839 static DEVICE_ATTR_WO(idle); 1840 static DEVICE_ATTR_RW(max_comp_streams); 1841 static DEVICE_ATTR_RW(comp_algorithm); 1842 #ifdef CONFIG_ZRAM_WRITEBACK 1843 static DEVICE_ATTR_RW(backing_dev); 1844 static DEVICE_ATTR_WO(writeback); 1845 static DEVICE_ATTR_RW(writeback_limit); 1846 static DEVICE_ATTR_RW(writeback_limit_enable); 1847 #endif 1848 1849 static struct attribute *zram_disk_attrs[] = { 1850 &dev_attr_disksize.attr, 1851 &dev_attr_initstate.attr, 1852 &dev_attr_reset.attr, 1853 &dev_attr_compact.attr, 1854 &dev_attr_mem_limit.attr, 1855 &dev_attr_mem_used_max.attr, 1856 &dev_attr_idle.attr, 1857 &dev_attr_max_comp_streams.attr, 1858 &dev_attr_comp_algorithm.attr, 1859 #ifdef CONFIG_ZRAM_WRITEBACK 1860 &dev_attr_backing_dev.attr, 1861 &dev_attr_writeback.attr, 1862 &dev_attr_writeback_limit.attr, 1863 &dev_attr_writeback_limit_enable.attr, 1864 #endif 1865 &dev_attr_io_stat.attr, 1866 &dev_attr_mm_stat.attr, 1867 #ifdef CONFIG_ZRAM_WRITEBACK 1868 &dev_attr_bd_stat.attr, 1869 #endif 1870 &dev_attr_debug_stat.attr, 1871 NULL, 1872 }; 1873 1874 static const struct attribute_group zram_disk_attr_group = { 1875 .attrs = zram_disk_attrs, 1876 }; 1877 1878 static const struct attribute_group *zram_disk_attr_groups[] = { 1879 &zram_disk_attr_group, 1880 NULL, 1881 }; 1882 1883 /* 1884 * Allocate and initialize new zram device. the function returns 1885 * '>= 0' device_id upon success, and negative value otherwise. 1886 */ 1887 static int zram_add(void) 1888 { 1889 struct zram *zram; 1890 struct request_queue *queue; 1891 int ret, device_id; 1892 1893 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1894 if (!zram) 1895 return -ENOMEM; 1896 1897 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1898 if (ret < 0) 1899 goto out_free_dev; 1900 device_id = ret; 1901 1902 init_rwsem(&zram->init_lock); 1903 #ifdef CONFIG_ZRAM_WRITEBACK 1904 spin_lock_init(&zram->wb_limit_lock); 1905 #endif 1906 queue = blk_alloc_queue(NUMA_NO_NODE); 1907 if (!queue) { 1908 pr_err("Error allocating disk queue for device %d\n", 1909 device_id); 1910 ret = -ENOMEM; 1911 goto out_free_idr; 1912 } 1913 1914 /* gendisk structure */ 1915 zram->disk = alloc_disk(1); 1916 if (!zram->disk) { 1917 pr_err("Error allocating disk structure for device %d\n", 1918 device_id); 1919 ret = -ENOMEM; 1920 goto out_free_queue; 1921 } 1922 1923 zram->disk->major = zram_major; 1924 zram->disk->first_minor = device_id; 1925 zram->disk->fops = &zram_devops; 1926 zram->disk->queue = queue; 1927 zram->disk->private_data = zram; 1928 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1929 1930 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1931 set_capacity(zram->disk, 0); 1932 /* zram devices sort of resembles non-rotational disks */ 1933 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1934 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1935 1936 /* 1937 * To ensure that we always get PAGE_SIZE aligned 1938 * and n*PAGE_SIZED sized I/O requests. 1939 */ 1940 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1941 blk_queue_logical_block_size(zram->disk->queue, 1942 ZRAM_LOGICAL_BLOCK_SIZE); 1943 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1944 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1945 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1946 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1947 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue); 1948 1949 /* 1950 * zram_bio_discard() will clear all logical blocks if logical block 1951 * size is identical with physical block size(PAGE_SIZE). But if it is 1952 * different, we will skip discarding some parts of logical blocks in 1953 * the part of the request range which isn't aligned to physical block 1954 * size. So we can't ensure that all discarded logical blocks are 1955 * zeroed. 1956 */ 1957 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1958 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1959 1960 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 1961 device_add_disk(NULL, zram->disk, zram_disk_attr_groups); 1962 1963 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1964 1965 zram_debugfs_register(zram); 1966 pr_info("Added device: %s\n", zram->disk->disk_name); 1967 return device_id; 1968 1969 out_free_queue: 1970 blk_cleanup_queue(queue); 1971 out_free_idr: 1972 idr_remove(&zram_index_idr, device_id); 1973 out_free_dev: 1974 kfree(zram); 1975 return ret; 1976 } 1977 1978 static int zram_remove(struct zram *zram) 1979 { 1980 struct block_device *bdev; 1981 1982 bdev = bdget_disk(zram->disk, 0); 1983 if (!bdev) 1984 return -ENOMEM; 1985 1986 mutex_lock(&bdev->bd_mutex); 1987 if (bdev->bd_openers || zram->claim) { 1988 mutex_unlock(&bdev->bd_mutex); 1989 bdput(bdev); 1990 return -EBUSY; 1991 } 1992 1993 zram->claim = true; 1994 mutex_unlock(&bdev->bd_mutex); 1995 1996 zram_debugfs_unregister(zram); 1997 1998 /* Make sure all the pending I/O are finished */ 1999 fsync_bdev(bdev); 2000 zram_reset_device(zram); 2001 bdput(bdev); 2002 2003 pr_info("Removed device: %s\n", zram->disk->disk_name); 2004 2005 del_gendisk(zram->disk); 2006 blk_cleanup_queue(zram->disk->queue); 2007 put_disk(zram->disk); 2008 kfree(zram); 2009 return 0; 2010 } 2011 2012 /* zram-control sysfs attributes */ 2013 2014 /* 2015 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2016 * sense that reading from this file does alter the state of your system -- it 2017 * creates a new un-initialized zram device and returns back this device's 2018 * device_id (or an error code if it fails to create a new device). 2019 */ 2020 static ssize_t hot_add_show(struct class *class, 2021 struct class_attribute *attr, 2022 char *buf) 2023 { 2024 int ret; 2025 2026 mutex_lock(&zram_index_mutex); 2027 ret = zram_add(); 2028 mutex_unlock(&zram_index_mutex); 2029 2030 if (ret < 0) 2031 return ret; 2032 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2033 } 2034 static struct class_attribute class_attr_hot_add = 2035 __ATTR(hot_add, 0400, hot_add_show, NULL); 2036 2037 static ssize_t hot_remove_store(struct class *class, 2038 struct class_attribute *attr, 2039 const char *buf, 2040 size_t count) 2041 { 2042 struct zram *zram; 2043 int ret, dev_id; 2044 2045 /* dev_id is gendisk->first_minor, which is `int' */ 2046 ret = kstrtoint(buf, 10, &dev_id); 2047 if (ret) 2048 return ret; 2049 if (dev_id < 0) 2050 return -EINVAL; 2051 2052 mutex_lock(&zram_index_mutex); 2053 2054 zram = idr_find(&zram_index_idr, dev_id); 2055 if (zram) { 2056 ret = zram_remove(zram); 2057 if (!ret) 2058 idr_remove(&zram_index_idr, dev_id); 2059 } else { 2060 ret = -ENODEV; 2061 } 2062 2063 mutex_unlock(&zram_index_mutex); 2064 return ret ? ret : count; 2065 } 2066 static CLASS_ATTR_WO(hot_remove); 2067 2068 static struct attribute *zram_control_class_attrs[] = { 2069 &class_attr_hot_add.attr, 2070 &class_attr_hot_remove.attr, 2071 NULL, 2072 }; 2073 ATTRIBUTE_GROUPS(zram_control_class); 2074 2075 static struct class zram_control_class = { 2076 .name = "zram-control", 2077 .owner = THIS_MODULE, 2078 .class_groups = zram_control_class_groups, 2079 }; 2080 2081 static int zram_remove_cb(int id, void *ptr, void *data) 2082 { 2083 zram_remove(ptr); 2084 return 0; 2085 } 2086 2087 static void destroy_devices(void) 2088 { 2089 class_unregister(&zram_control_class); 2090 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2091 zram_debugfs_destroy(); 2092 idr_destroy(&zram_index_idr); 2093 unregister_blkdev(zram_major, "zram"); 2094 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2095 } 2096 2097 static int __init zram_init(void) 2098 { 2099 int ret; 2100 2101 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2102 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2103 if (ret < 0) 2104 return ret; 2105 2106 ret = class_register(&zram_control_class); 2107 if (ret) { 2108 pr_err("Unable to register zram-control class\n"); 2109 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2110 return ret; 2111 } 2112 2113 zram_debugfs_create(); 2114 zram_major = register_blkdev(0, "zram"); 2115 if (zram_major <= 0) { 2116 pr_err("Unable to get major number\n"); 2117 class_unregister(&zram_control_class); 2118 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2119 return -EBUSY; 2120 } 2121 2122 while (num_devices != 0) { 2123 mutex_lock(&zram_index_mutex); 2124 ret = zram_add(); 2125 mutex_unlock(&zram_index_mutex); 2126 if (ret < 0) 2127 goto out_error; 2128 num_devices--; 2129 } 2130 2131 return 0; 2132 2133 out_error: 2134 destroy_devices(); 2135 return ret; 2136 } 2137 2138 static void __exit zram_exit(void) 2139 { 2140 destroy_devices(); 2141 } 2142 2143 module_init(zram_init); 2144 module_exit(zram_exit); 2145 2146 module_param(num_devices, uint, 0); 2147 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2148 2149 MODULE_LICENSE("Dual BSD/GPL"); 2150 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2151 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2152