1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/cpuhotplug.h> 35 36 #include "zram_drv.h" 37 38 static DEFINE_IDR(zram_index_idr); 39 /* idr index must be protected */ 40 static DEFINE_MUTEX(zram_index_mutex); 41 42 static int zram_major; 43 static const char *default_compressor = "lzo"; 44 45 /* Module params (documentation at end) */ 46 static unsigned int num_devices = 1; 47 48 static inline bool init_done(struct zram *zram) 49 { 50 return zram->disksize; 51 } 52 53 static inline struct zram *dev_to_zram(struct device *dev) 54 { 55 return (struct zram *)dev_to_disk(dev)->private_data; 56 } 57 58 /* flag operations require table entry bit_spin_lock() being held */ 59 static int zram_test_flag(struct zram_meta *meta, u32 index, 60 enum zram_pageflags flag) 61 { 62 return meta->table[index].value & BIT(flag); 63 } 64 65 static void zram_set_flag(struct zram_meta *meta, u32 index, 66 enum zram_pageflags flag) 67 { 68 meta->table[index].value |= BIT(flag); 69 } 70 71 static void zram_clear_flag(struct zram_meta *meta, u32 index, 72 enum zram_pageflags flag) 73 { 74 meta->table[index].value &= ~BIT(flag); 75 } 76 77 static inline void zram_set_element(struct zram_meta *meta, u32 index, 78 unsigned long element) 79 { 80 meta->table[index].element = element; 81 } 82 83 static inline void zram_clear_element(struct zram_meta *meta, u32 index) 84 { 85 meta->table[index].element = 0; 86 } 87 88 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 89 { 90 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 91 } 92 93 static void zram_set_obj_size(struct zram_meta *meta, 94 u32 index, size_t size) 95 { 96 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 97 98 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 99 } 100 101 static inline bool is_partial_io(struct bio_vec *bvec) 102 { 103 return bvec->bv_len != PAGE_SIZE; 104 } 105 106 static void zram_revalidate_disk(struct zram *zram) 107 { 108 revalidate_disk(zram->disk); 109 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */ 110 zram->disk->queue->backing_dev_info->capabilities |= 111 BDI_CAP_STABLE_WRITES; 112 } 113 114 /* 115 * Check if request is within bounds and aligned on zram logical blocks. 116 */ 117 static inline bool valid_io_request(struct zram *zram, 118 sector_t start, unsigned int size) 119 { 120 u64 end, bound; 121 122 /* unaligned request */ 123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 124 return false; 125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 126 return false; 127 128 end = start + (size >> SECTOR_SHIFT); 129 bound = zram->disksize >> SECTOR_SHIFT; 130 /* out of range range */ 131 if (unlikely(start >= bound || end > bound || start > end)) 132 return false; 133 134 /* I/O request is valid */ 135 return true; 136 } 137 138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 139 { 140 if (*offset + bvec->bv_len >= PAGE_SIZE) 141 (*index)++; 142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 143 } 144 145 static inline void update_used_max(struct zram *zram, 146 const unsigned long pages) 147 { 148 unsigned long old_max, cur_max; 149 150 old_max = atomic_long_read(&zram->stats.max_used_pages); 151 152 do { 153 cur_max = old_max; 154 if (pages > cur_max) 155 old_max = atomic_long_cmpxchg( 156 &zram->stats.max_used_pages, cur_max, pages); 157 } while (old_max != cur_max); 158 } 159 160 static inline void zram_fill_page(char *ptr, unsigned long len, 161 unsigned long value) 162 { 163 int i; 164 unsigned long *page = (unsigned long *)ptr; 165 166 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 167 168 if (likely(value == 0)) { 169 memset(ptr, 0, len); 170 } else { 171 for (i = 0; i < len / sizeof(*page); i++) 172 page[i] = value; 173 } 174 } 175 176 static bool page_same_filled(void *ptr, unsigned long *element) 177 { 178 unsigned int pos; 179 unsigned long *page; 180 181 page = (unsigned long *)ptr; 182 183 for (pos = 0; pos < PAGE_SIZE / sizeof(*page) - 1; pos++) { 184 if (page[pos] != page[pos + 1]) 185 return false; 186 } 187 188 *element = page[pos]; 189 190 return true; 191 } 192 193 static void handle_same_page(struct bio_vec *bvec, unsigned long element) 194 { 195 struct page *page = bvec->bv_page; 196 void *user_mem; 197 198 user_mem = kmap_atomic(page); 199 zram_fill_page(user_mem + bvec->bv_offset, bvec->bv_len, element); 200 kunmap_atomic(user_mem); 201 202 flush_dcache_page(page); 203 } 204 205 static ssize_t initstate_show(struct device *dev, 206 struct device_attribute *attr, char *buf) 207 { 208 u32 val; 209 struct zram *zram = dev_to_zram(dev); 210 211 down_read(&zram->init_lock); 212 val = init_done(zram); 213 up_read(&zram->init_lock); 214 215 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 216 } 217 218 static ssize_t disksize_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct zram *zram = dev_to_zram(dev); 222 223 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 224 } 225 226 static ssize_t mem_limit_store(struct device *dev, 227 struct device_attribute *attr, const char *buf, size_t len) 228 { 229 u64 limit; 230 char *tmp; 231 struct zram *zram = dev_to_zram(dev); 232 233 limit = memparse(buf, &tmp); 234 if (buf == tmp) /* no chars parsed, invalid input */ 235 return -EINVAL; 236 237 down_write(&zram->init_lock); 238 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 239 up_write(&zram->init_lock); 240 241 return len; 242 } 243 244 static ssize_t mem_used_max_store(struct device *dev, 245 struct device_attribute *attr, const char *buf, size_t len) 246 { 247 int err; 248 unsigned long val; 249 struct zram *zram = dev_to_zram(dev); 250 251 err = kstrtoul(buf, 10, &val); 252 if (err || val != 0) 253 return -EINVAL; 254 255 down_read(&zram->init_lock); 256 if (init_done(zram)) { 257 struct zram_meta *meta = zram->meta; 258 atomic_long_set(&zram->stats.max_used_pages, 259 zs_get_total_pages(meta->mem_pool)); 260 } 261 up_read(&zram->init_lock); 262 263 return len; 264 } 265 266 /* 267 * We switched to per-cpu streams and this attr is not needed anymore. 268 * However, we will keep it around for some time, because: 269 * a) we may revert per-cpu streams in the future 270 * b) it's visible to user space and we need to follow our 2 years 271 * retirement rule; but we already have a number of 'soon to be 272 * altered' attrs, so max_comp_streams need to wait for the next 273 * layoff cycle. 274 */ 275 static ssize_t max_comp_streams_show(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 279 } 280 281 static ssize_t max_comp_streams_store(struct device *dev, 282 struct device_attribute *attr, const char *buf, size_t len) 283 { 284 return len; 285 } 286 287 static ssize_t comp_algorithm_show(struct device *dev, 288 struct device_attribute *attr, char *buf) 289 { 290 size_t sz; 291 struct zram *zram = dev_to_zram(dev); 292 293 down_read(&zram->init_lock); 294 sz = zcomp_available_show(zram->compressor, buf); 295 up_read(&zram->init_lock); 296 297 return sz; 298 } 299 300 static ssize_t comp_algorithm_store(struct device *dev, 301 struct device_attribute *attr, const char *buf, size_t len) 302 { 303 struct zram *zram = dev_to_zram(dev); 304 char compressor[CRYPTO_MAX_ALG_NAME]; 305 size_t sz; 306 307 strlcpy(compressor, buf, sizeof(compressor)); 308 /* ignore trailing newline */ 309 sz = strlen(compressor); 310 if (sz > 0 && compressor[sz - 1] == '\n') 311 compressor[sz - 1] = 0x00; 312 313 if (!zcomp_available_algorithm(compressor)) 314 return -EINVAL; 315 316 down_write(&zram->init_lock); 317 if (init_done(zram)) { 318 up_write(&zram->init_lock); 319 pr_info("Can't change algorithm for initialized device\n"); 320 return -EBUSY; 321 } 322 323 strlcpy(zram->compressor, compressor, sizeof(compressor)); 324 up_write(&zram->init_lock); 325 return len; 326 } 327 328 static ssize_t compact_store(struct device *dev, 329 struct device_attribute *attr, const char *buf, size_t len) 330 { 331 struct zram *zram = dev_to_zram(dev); 332 struct zram_meta *meta; 333 334 down_read(&zram->init_lock); 335 if (!init_done(zram)) { 336 up_read(&zram->init_lock); 337 return -EINVAL; 338 } 339 340 meta = zram->meta; 341 zs_compact(meta->mem_pool); 342 up_read(&zram->init_lock); 343 344 return len; 345 } 346 347 static ssize_t io_stat_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 struct zram *zram = dev_to_zram(dev); 351 ssize_t ret; 352 353 down_read(&zram->init_lock); 354 ret = scnprintf(buf, PAGE_SIZE, 355 "%8llu %8llu %8llu %8llu\n", 356 (u64)atomic64_read(&zram->stats.failed_reads), 357 (u64)atomic64_read(&zram->stats.failed_writes), 358 (u64)atomic64_read(&zram->stats.invalid_io), 359 (u64)atomic64_read(&zram->stats.notify_free)); 360 up_read(&zram->init_lock); 361 362 return ret; 363 } 364 365 static ssize_t mm_stat_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 struct zram *zram = dev_to_zram(dev); 369 struct zs_pool_stats pool_stats; 370 u64 orig_size, mem_used = 0; 371 long max_used; 372 ssize_t ret; 373 374 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 375 376 down_read(&zram->init_lock); 377 if (init_done(zram)) { 378 mem_used = zs_get_total_pages(zram->meta->mem_pool); 379 zs_pool_stats(zram->meta->mem_pool, &pool_stats); 380 } 381 382 orig_size = atomic64_read(&zram->stats.pages_stored); 383 max_used = atomic_long_read(&zram->stats.max_used_pages); 384 385 ret = scnprintf(buf, PAGE_SIZE, 386 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n", 387 orig_size << PAGE_SHIFT, 388 (u64)atomic64_read(&zram->stats.compr_data_size), 389 mem_used << PAGE_SHIFT, 390 zram->limit_pages << PAGE_SHIFT, 391 max_used << PAGE_SHIFT, 392 (u64)atomic64_read(&zram->stats.same_pages), 393 pool_stats.pages_compacted); 394 up_read(&zram->init_lock); 395 396 return ret; 397 } 398 399 static ssize_t debug_stat_show(struct device *dev, 400 struct device_attribute *attr, char *buf) 401 { 402 int version = 1; 403 struct zram *zram = dev_to_zram(dev); 404 ssize_t ret; 405 406 down_read(&zram->init_lock); 407 ret = scnprintf(buf, PAGE_SIZE, 408 "version: %d\n%8llu\n", 409 version, 410 (u64)atomic64_read(&zram->stats.writestall)); 411 up_read(&zram->init_lock); 412 413 return ret; 414 } 415 416 static DEVICE_ATTR_RO(io_stat); 417 static DEVICE_ATTR_RO(mm_stat); 418 static DEVICE_ATTR_RO(debug_stat); 419 420 static void zram_meta_free(struct zram_meta *meta, u64 disksize) 421 { 422 size_t num_pages = disksize >> PAGE_SHIFT; 423 size_t index; 424 425 /* Free all pages that are still in this zram device */ 426 for (index = 0; index < num_pages; index++) { 427 unsigned long handle = meta->table[index].handle; 428 /* 429 * No memory is allocated for same element filled pages. 430 * Simply clear same page flag. 431 */ 432 if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) 433 continue; 434 435 zs_free(meta->mem_pool, handle); 436 } 437 438 zs_destroy_pool(meta->mem_pool); 439 vfree(meta->table); 440 kfree(meta); 441 } 442 443 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize) 444 { 445 size_t num_pages; 446 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 447 448 if (!meta) 449 return NULL; 450 451 num_pages = disksize >> PAGE_SHIFT; 452 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 453 if (!meta->table) { 454 pr_err("Error allocating zram address table\n"); 455 goto out_error; 456 } 457 458 meta->mem_pool = zs_create_pool(pool_name); 459 if (!meta->mem_pool) { 460 pr_err("Error creating memory pool\n"); 461 goto out_error; 462 } 463 464 return meta; 465 466 out_error: 467 vfree(meta->table); 468 kfree(meta); 469 return NULL; 470 } 471 472 /* 473 * To protect concurrent access to the same index entry, 474 * caller should hold this table index entry's bit_spinlock to 475 * indicate this index entry is accessing. 476 */ 477 static void zram_free_page(struct zram *zram, size_t index) 478 { 479 struct zram_meta *meta = zram->meta; 480 unsigned long handle = meta->table[index].handle; 481 482 /* 483 * No memory is allocated for same element filled pages. 484 * Simply clear same page flag. 485 */ 486 if (zram_test_flag(meta, index, ZRAM_SAME)) { 487 zram_clear_flag(meta, index, ZRAM_SAME); 488 zram_clear_element(meta, index); 489 atomic64_dec(&zram->stats.same_pages); 490 return; 491 } 492 493 if (!handle) 494 return; 495 496 zs_free(meta->mem_pool, handle); 497 498 atomic64_sub(zram_get_obj_size(meta, index), 499 &zram->stats.compr_data_size); 500 atomic64_dec(&zram->stats.pages_stored); 501 502 meta->table[index].handle = 0; 503 zram_set_obj_size(meta, index, 0); 504 } 505 506 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 507 { 508 int ret = 0; 509 unsigned char *cmem; 510 struct zram_meta *meta = zram->meta; 511 unsigned long handle; 512 unsigned int size; 513 514 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 515 handle = meta->table[index].handle; 516 size = zram_get_obj_size(meta, index); 517 518 if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) { 519 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 520 zram_fill_page(mem, PAGE_SIZE, meta->table[index].element); 521 return 0; 522 } 523 524 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 525 if (size == PAGE_SIZE) { 526 copy_page(mem, cmem); 527 } else { 528 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); 529 530 ret = zcomp_decompress(zstrm, cmem, size, mem); 531 zcomp_stream_put(zram->comp); 532 } 533 zs_unmap_object(meta->mem_pool, handle); 534 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 535 536 /* Should NEVER happen. Return bio error if it does. */ 537 if (unlikely(ret)) { 538 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 539 return ret; 540 } 541 542 return 0; 543 } 544 545 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 546 u32 index, int offset) 547 { 548 int ret; 549 struct page *page; 550 unsigned char *user_mem, *uncmem = NULL; 551 struct zram_meta *meta = zram->meta; 552 page = bvec->bv_page; 553 554 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 555 if (unlikely(!meta->table[index].handle) || 556 zram_test_flag(meta, index, ZRAM_SAME)) { 557 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 558 handle_same_page(bvec, meta->table[index].element); 559 return 0; 560 } 561 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 562 563 if (is_partial_io(bvec)) 564 /* Use a temporary buffer to decompress the page */ 565 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 566 567 user_mem = kmap_atomic(page); 568 if (!is_partial_io(bvec)) 569 uncmem = user_mem; 570 571 if (!uncmem) { 572 pr_err("Unable to allocate temp memory\n"); 573 ret = -ENOMEM; 574 goto out_cleanup; 575 } 576 577 ret = zram_decompress_page(zram, uncmem, index); 578 /* Should NEVER happen. Return bio error if it does. */ 579 if (unlikely(ret)) 580 goto out_cleanup; 581 582 if (is_partial_io(bvec)) 583 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 584 bvec->bv_len); 585 586 flush_dcache_page(page); 587 ret = 0; 588 out_cleanup: 589 kunmap_atomic(user_mem); 590 if (is_partial_io(bvec)) 591 kfree(uncmem); 592 return ret; 593 } 594 595 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 596 int offset) 597 { 598 int ret = 0; 599 unsigned int clen; 600 unsigned long handle = 0; 601 struct page *page; 602 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 603 struct zram_meta *meta = zram->meta; 604 struct zcomp_strm *zstrm = NULL; 605 unsigned long alloced_pages; 606 unsigned long element; 607 608 page = bvec->bv_page; 609 if (is_partial_io(bvec)) { 610 /* 611 * This is a partial IO. We need to read the full page 612 * before to write the changes. 613 */ 614 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 615 if (!uncmem) { 616 ret = -ENOMEM; 617 goto out; 618 } 619 ret = zram_decompress_page(zram, uncmem, index); 620 if (ret) 621 goto out; 622 } 623 624 compress_again: 625 user_mem = kmap_atomic(page); 626 if (is_partial_io(bvec)) { 627 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 628 bvec->bv_len); 629 kunmap_atomic(user_mem); 630 user_mem = NULL; 631 } else { 632 uncmem = user_mem; 633 } 634 635 if (page_same_filled(uncmem, &element)) { 636 if (user_mem) 637 kunmap_atomic(user_mem); 638 /* Free memory associated with this sector now. */ 639 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 640 zram_free_page(zram, index); 641 zram_set_flag(meta, index, ZRAM_SAME); 642 zram_set_element(meta, index, element); 643 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 644 645 atomic64_inc(&zram->stats.same_pages); 646 ret = 0; 647 goto out; 648 } 649 650 zstrm = zcomp_stream_get(zram->comp); 651 ret = zcomp_compress(zstrm, uncmem, &clen); 652 if (!is_partial_io(bvec)) { 653 kunmap_atomic(user_mem); 654 user_mem = NULL; 655 uncmem = NULL; 656 } 657 658 if (unlikely(ret)) { 659 pr_err("Compression failed! err=%d\n", ret); 660 goto out; 661 } 662 663 src = zstrm->buffer; 664 if (unlikely(clen > max_zpage_size)) { 665 clen = PAGE_SIZE; 666 if (is_partial_io(bvec)) 667 src = uncmem; 668 } 669 670 /* 671 * handle allocation has 2 paths: 672 * a) fast path is executed with preemption disabled (for 673 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 674 * since we can't sleep; 675 * b) slow path enables preemption and attempts to allocate 676 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 677 * put per-cpu compression stream and, thus, to re-do 678 * the compression once handle is allocated. 679 * 680 * if we have a 'non-null' handle here then we are coming 681 * from the slow path and handle has already been allocated. 682 */ 683 if (!handle) 684 handle = zs_malloc(meta->mem_pool, clen, 685 __GFP_KSWAPD_RECLAIM | 686 __GFP_NOWARN | 687 __GFP_HIGHMEM | 688 __GFP_MOVABLE); 689 if (!handle) { 690 zcomp_stream_put(zram->comp); 691 zstrm = NULL; 692 693 atomic64_inc(&zram->stats.writestall); 694 695 handle = zs_malloc(meta->mem_pool, clen, 696 GFP_NOIO | __GFP_HIGHMEM | 697 __GFP_MOVABLE); 698 if (handle) 699 goto compress_again; 700 701 pr_err("Error allocating memory for compressed page: %u, size=%u\n", 702 index, clen); 703 ret = -ENOMEM; 704 goto out; 705 } 706 707 alloced_pages = zs_get_total_pages(meta->mem_pool); 708 update_used_max(zram, alloced_pages); 709 710 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 711 zs_free(meta->mem_pool, handle); 712 ret = -ENOMEM; 713 goto out; 714 } 715 716 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 717 718 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 719 src = kmap_atomic(page); 720 copy_page(cmem, src); 721 kunmap_atomic(src); 722 } else { 723 memcpy(cmem, src, clen); 724 } 725 726 zcomp_stream_put(zram->comp); 727 zstrm = NULL; 728 zs_unmap_object(meta->mem_pool, handle); 729 730 /* 731 * Free memory associated with this sector 732 * before overwriting unused sectors. 733 */ 734 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 735 zram_free_page(zram, index); 736 737 meta->table[index].handle = handle; 738 zram_set_obj_size(meta, index, clen); 739 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 740 741 /* Update stats */ 742 atomic64_add(clen, &zram->stats.compr_data_size); 743 atomic64_inc(&zram->stats.pages_stored); 744 out: 745 if (zstrm) 746 zcomp_stream_put(zram->comp); 747 if (is_partial_io(bvec)) 748 kfree(uncmem); 749 return ret; 750 } 751 752 /* 753 * zram_bio_discard - handler on discard request 754 * @index: physical block index in PAGE_SIZE units 755 * @offset: byte offset within physical block 756 */ 757 static void zram_bio_discard(struct zram *zram, u32 index, 758 int offset, struct bio *bio) 759 { 760 size_t n = bio->bi_iter.bi_size; 761 struct zram_meta *meta = zram->meta; 762 763 /* 764 * zram manages data in physical block size units. Because logical block 765 * size isn't identical with physical block size on some arch, we 766 * could get a discard request pointing to a specific offset within a 767 * certain physical block. Although we can handle this request by 768 * reading that physiclal block and decompressing and partially zeroing 769 * and re-compressing and then re-storing it, this isn't reasonable 770 * because our intent with a discard request is to save memory. So 771 * skipping this logical block is appropriate here. 772 */ 773 if (offset) { 774 if (n <= (PAGE_SIZE - offset)) 775 return; 776 777 n -= (PAGE_SIZE - offset); 778 index++; 779 } 780 781 while (n >= PAGE_SIZE) { 782 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 783 zram_free_page(zram, index); 784 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 785 atomic64_inc(&zram->stats.notify_free); 786 index++; 787 n -= PAGE_SIZE; 788 } 789 } 790 791 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 792 int offset, bool is_write) 793 { 794 unsigned long start_time = jiffies; 795 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ; 796 int ret; 797 798 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT, 799 &zram->disk->part0); 800 801 if (!is_write) { 802 atomic64_inc(&zram->stats.num_reads); 803 ret = zram_bvec_read(zram, bvec, index, offset); 804 } else { 805 atomic64_inc(&zram->stats.num_writes); 806 ret = zram_bvec_write(zram, bvec, index, offset); 807 } 808 809 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time); 810 811 if (unlikely(ret)) { 812 if (!is_write) 813 atomic64_inc(&zram->stats.failed_reads); 814 else 815 atomic64_inc(&zram->stats.failed_writes); 816 } 817 818 return ret; 819 } 820 821 static void __zram_make_request(struct zram *zram, struct bio *bio) 822 { 823 int offset; 824 u32 index; 825 struct bio_vec bvec; 826 struct bvec_iter iter; 827 828 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 829 offset = (bio->bi_iter.bi_sector & 830 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 831 832 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 833 zram_bio_discard(zram, index, offset, bio); 834 bio_endio(bio); 835 return; 836 } 837 838 bio_for_each_segment(bvec, bio, iter) { 839 int max_transfer_size = PAGE_SIZE - offset; 840 841 if (bvec.bv_len > max_transfer_size) { 842 /* 843 * zram_bvec_rw() can only make operation on a single 844 * zram page. Split the bio vector. 845 */ 846 struct bio_vec bv; 847 848 bv.bv_page = bvec.bv_page; 849 bv.bv_len = max_transfer_size; 850 bv.bv_offset = bvec.bv_offset; 851 852 if (zram_bvec_rw(zram, &bv, index, offset, 853 op_is_write(bio_op(bio))) < 0) 854 goto out; 855 856 bv.bv_len = bvec.bv_len - max_transfer_size; 857 bv.bv_offset += max_transfer_size; 858 if (zram_bvec_rw(zram, &bv, index + 1, 0, 859 op_is_write(bio_op(bio))) < 0) 860 goto out; 861 } else 862 if (zram_bvec_rw(zram, &bvec, index, offset, 863 op_is_write(bio_op(bio))) < 0) 864 goto out; 865 866 update_position(&index, &offset, &bvec); 867 } 868 869 bio_endio(bio); 870 return; 871 872 out: 873 bio_io_error(bio); 874 } 875 876 /* 877 * Handler function for all zram I/O requests. 878 */ 879 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 880 { 881 struct zram *zram = queue->queuedata; 882 883 blk_queue_split(queue, &bio, queue->bio_split); 884 885 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 886 bio->bi_iter.bi_size)) { 887 atomic64_inc(&zram->stats.invalid_io); 888 goto error; 889 } 890 891 __zram_make_request(zram, bio); 892 return BLK_QC_T_NONE; 893 894 error: 895 bio_io_error(bio); 896 return BLK_QC_T_NONE; 897 } 898 899 static void zram_slot_free_notify(struct block_device *bdev, 900 unsigned long index) 901 { 902 struct zram *zram; 903 struct zram_meta *meta; 904 905 zram = bdev->bd_disk->private_data; 906 meta = zram->meta; 907 908 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 909 zram_free_page(zram, index); 910 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 911 atomic64_inc(&zram->stats.notify_free); 912 } 913 914 static int zram_rw_page(struct block_device *bdev, sector_t sector, 915 struct page *page, bool is_write) 916 { 917 int offset, err = -EIO; 918 u32 index; 919 struct zram *zram; 920 struct bio_vec bv; 921 922 zram = bdev->bd_disk->private_data; 923 924 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 925 atomic64_inc(&zram->stats.invalid_io); 926 err = -EINVAL; 927 goto out; 928 } 929 930 index = sector >> SECTORS_PER_PAGE_SHIFT; 931 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; 932 933 bv.bv_page = page; 934 bv.bv_len = PAGE_SIZE; 935 bv.bv_offset = 0; 936 937 err = zram_bvec_rw(zram, &bv, index, offset, is_write); 938 out: 939 /* 940 * If I/O fails, just return error(ie, non-zero) without 941 * calling page_endio. 942 * It causes resubmit the I/O with bio request by upper functions 943 * of rw_page(e.g., swap_readpage, __swap_writepage) and 944 * bio->bi_end_io does things to handle the error 945 * (e.g., SetPageError, set_page_dirty and extra works). 946 */ 947 if (err == 0) 948 page_endio(page, is_write, 0); 949 return err; 950 } 951 952 static void zram_reset_device(struct zram *zram) 953 { 954 struct zram_meta *meta; 955 struct zcomp *comp; 956 u64 disksize; 957 958 down_write(&zram->init_lock); 959 960 zram->limit_pages = 0; 961 962 if (!init_done(zram)) { 963 up_write(&zram->init_lock); 964 return; 965 } 966 967 meta = zram->meta; 968 comp = zram->comp; 969 disksize = zram->disksize; 970 971 /* Reset stats */ 972 memset(&zram->stats, 0, sizeof(zram->stats)); 973 zram->disksize = 0; 974 975 set_capacity(zram->disk, 0); 976 part_stat_set_all(&zram->disk->part0, 0); 977 978 up_write(&zram->init_lock); 979 /* I/O operation under all of CPU are done so let's free */ 980 zram_meta_free(meta, disksize); 981 zcomp_destroy(comp); 982 } 983 984 static ssize_t disksize_store(struct device *dev, 985 struct device_attribute *attr, const char *buf, size_t len) 986 { 987 u64 disksize; 988 struct zcomp *comp; 989 struct zram_meta *meta; 990 struct zram *zram = dev_to_zram(dev); 991 int err; 992 993 disksize = memparse(buf, NULL); 994 if (!disksize) 995 return -EINVAL; 996 997 disksize = PAGE_ALIGN(disksize); 998 meta = zram_meta_alloc(zram->disk->disk_name, disksize); 999 if (!meta) 1000 return -ENOMEM; 1001 1002 comp = zcomp_create(zram->compressor); 1003 if (IS_ERR(comp)) { 1004 pr_err("Cannot initialise %s compressing backend\n", 1005 zram->compressor); 1006 err = PTR_ERR(comp); 1007 goto out_free_meta; 1008 } 1009 1010 down_write(&zram->init_lock); 1011 if (init_done(zram)) { 1012 pr_info("Cannot change disksize for initialized device\n"); 1013 err = -EBUSY; 1014 goto out_destroy_comp; 1015 } 1016 1017 zram->meta = meta; 1018 zram->comp = comp; 1019 zram->disksize = disksize; 1020 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1021 zram_revalidate_disk(zram); 1022 up_write(&zram->init_lock); 1023 1024 return len; 1025 1026 out_destroy_comp: 1027 up_write(&zram->init_lock); 1028 zcomp_destroy(comp); 1029 out_free_meta: 1030 zram_meta_free(meta, disksize); 1031 return err; 1032 } 1033 1034 static ssize_t reset_store(struct device *dev, 1035 struct device_attribute *attr, const char *buf, size_t len) 1036 { 1037 int ret; 1038 unsigned short do_reset; 1039 struct zram *zram; 1040 struct block_device *bdev; 1041 1042 ret = kstrtou16(buf, 10, &do_reset); 1043 if (ret) 1044 return ret; 1045 1046 if (!do_reset) 1047 return -EINVAL; 1048 1049 zram = dev_to_zram(dev); 1050 bdev = bdget_disk(zram->disk, 0); 1051 if (!bdev) 1052 return -ENOMEM; 1053 1054 mutex_lock(&bdev->bd_mutex); 1055 /* Do not reset an active device or claimed device */ 1056 if (bdev->bd_openers || zram->claim) { 1057 mutex_unlock(&bdev->bd_mutex); 1058 bdput(bdev); 1059 return -EBUSY; 1060 } 1061 1062 /* From now on, anyone can't open /dev/zram[0-9] */ 1063 zram->claim = true; 1064 mutex_unlock(&bdev->bd_mutex); 1065 1066 /* Make sure all the pending I/O are finished */ 1067 fsync_bdev(bdev); 1068 zram_reset_device(zram); 1069 zram_revalidate_disk(zram); 1070 bdput(bdev); 1071 1072 mutex_lock(&bdev->bd_mutex); 1073 zram->claim = false; 1074 mutex_unlock(&bdev->bd_mutex); 1075 1076 return len; 1077 } 1078 1079 static int zram_open(struct block_device *bdev, fmode_t mode) 1080 { 1081 int ret = 0; 1082 struct zram *zram; 1083 1084 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1085 1086 zram = bdev->bd_disk->private_data; 1087 /* zram was claimed to reset so open request fails */ 1088 if (zram->claim) 1089 ret = -EBUSY; 1090 1091 return ret; 1092 } 1093 1094 static const struct block_device_operations zram_devops = { 1095 .open = zram_open, 1096 .swap_slot_free_notify = zram_slot_free_notify, 1097 .rw_page = zram_rw_page, 1098 .owner = THIS_MODULE 1099 }; 1100 1101 static DEVICE_ATTR_WO(compact); 1102 static DEVICE_ATTR_RW(disksize); 1103 static DEVICE_ATTR_RO(initstate); 1104 static DEVICE_ATTR_WO(reset); 1105 static DEVICE_ATTR_WO(mem_limit); 1106 static DEVICE_ATTR_WO(mem_used_max); 1107 static DEVICE_ATTR_RW(max_comp_streams); 1108 static DEVICE_ATTR_RW(comp_algorithm); 1109 1110 static struct attribute *zram_disk_attrs[] = { 1111 &dev_attr_disksize.attr, 1112 &dev_attr_initstate.attr, 1113 &dev_attr_reset.attr, 1114 &dev_attr_compact.attr, 1115 &dev_attr_mem_limit.attr, 1116 &dev_attr_mem_used_max.attr, 1117 &dev_attr_max_comp_streams.attr, 1118 &dev_attr_comp_algorithm.attr, 1119 &dev_attr_io_stat.attr, 1120 &dev_attr_mm_stat.attr, 1121 &dev_attr_debug_stat.attr, 1122 NULL, 1123 }; 1124 1125 static struct attribute_group zram_disk_attr_group = { 1126 .attrs = zram_disk_attrs, 1127 }; 1128 1129 /* 1130 * Allocate and initialize new zram device. the function returns 1131 * '>= 0' device_id upon success, and negative value otherwise. 1132 */ 1133 static int zram_add(void) 1134 { 1135 struct zram *zram; 1136 struct request_queue *queue; 1137 int ret, device_id; 1138 1139 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1140 if (!zram) 1141 return -ENOMEM; 1142 1143 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1144 if (ret < 0) 1145 goto out_free_dev; 1146 device_id = ret; 1147 1148 init_rwsem(&zram->init_lock); 1149 1150 queue = blk_alloc_queue(GFP_KERNEL); 1151 if (!queue) { 1152 pr_err("Error allocating disk queue for device %d\n", 1153 device_id); 1154 ret = -ENOMEM; 1155 goto out_free_idr; 1156 } 1157 1158 blk_queue_make_request(queue, zram_make_request); 1159 1160 /* gendisk structure */ 1161 zram->disk = alloc_disk(1); 1162 if (!zram->disk) { 1163 pr_err("Error allocating disk structure for device %d\n", 1164 device_id); 1165 ret = -ENOMEM; 1166 goto out_free_queue; 1167 } 1168 1169 zram->disk->major = zram_major; 1170 zram->disk->first_minor = device_id; 1171 zram->disk->fops = &zram_devops; 1172 zram->disk->queue = queue; 1173 zram->disk->queue->queuedata = zram; 1174 zram->disk->private_data = zram; 1175 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1176 1177 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1178 set_capacity(zram->disk, 0); 1179 /* zram devices sort of resembles non-rotational disks */ 1180 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1181 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1182 /* 1183 * To ensure that we always get PAGE_SIZE aligned 1184 * and n*PAGE_SIZED sized I/O requests. 1185 */ 1186 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1187 blk_queue_logical_block_size(zram->disk->queue, 1188 ZRAM_LOGICAL_BLOCK_SIZE); 1189 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1190 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1191 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1192 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1193 /* 1194 * zram_bio_discard() will clear all logical blocks if logical block 1195 * size is identical with physical block size(PAGE_SIZE). But if it is 1196 * different, we will skip discarding some parts of logical blocks in 1197 * the part of the request range which isn't aligned to physical block 1198 * size. So we can't ensure that all discarded logical blocks are 1199 * zeroed. 1200 */ 1201 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1202 zram->disk->queue->limits.discard_zeroes_data = 1; 1203 else 1204 zram->disk->queue->limits.discard_zeroes_data = 0; 1205 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1206 1207 add_disk(zram->disk); 1208 1209 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1210 &zram_disk_attr_group); 1211 if (ret < 0) { 1212 pr_err("Error creating sysfs group for device %d\n", 1213 device_id); 1214 goto out_free_disk; 1215 } 1216 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1217 zram->meta = NULL; 1218 1219 pr_info("Added device: %s\n", zram->disk->disk_name); 1220 return device_id; 1221 1222 out_free_disk: 1223 del_gendisk(zram->disk); 1224 put_disk(zram->disk); 1225 out_free_queue: 1226 blk_cleanup_queue(queue); 1227 out_free_idr: 1228 idr_remove(&zram_index_idr, device_id); 1229 out_free_dev: 1230 kfree(zram); 1231 return ret; 1232 } 1233 1234 static int zram_remove(struct zram *zram) 1235 { 1236 struct block_device *bdev; 1237 1238 bdev = bdget_disk(zram->disk, 0); 1239 if (!bdev) 1240 return -ENOMEM; 1241 1242 mutex_lock(&bdev->bd_mutex); 1243 if (bdev->bd_openers || zram->claim) { 1244 mutex_unlock(&bdev->bd_mutex); 1245 bdput(bdev); 1246 return -EBUSY; 1247 } 1248 1249 zram->claim = true; 1250 mutex_unlock(&bdev->bd_mutex); 1251 1252 /* 1253 * Remove sysfs first, so no one will perform a disksize 1254 * store while we destroy the devices. This also helps during 1255 * hot_remove -- zram_reset_device() is the last holder of 1256 * ->init_lock, no later/concurrent disksize_store() or any 1257 * other sysfs handlers are possible. 1258 */ 1259 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1260 &zram_disk_attr_group); 1261 1262 /* Make sure all the pending I/O are finished */ 1263 fsync_bdev(bdev); 1264 zram_reset_device(zram); 1265 bdput(bdev); 1266 1267 pr_info("Removed device: %s\n", zram->disk->disk_name); 1268 1269 blk_cleanup_queue(zram->disk->queue); 1270 del_gendisk(zram->disk); 1271 put_disk(zram->disk); 1272 kfree(zram); 1273 return 0; 1274 } 1275 1276 /* zram-control sysfs attributes */ 1277 static ssize_t hot_add_show(struct class *class, 1278 struct class_attribute *attr, 1279 char *buf) 1280 { 1281 int ret; 1282 1283 mutex_lock(&zram_index_mutex); 1284 ret = zram_add(); 1285 mutex_unlock(&zram_index_mutex); 1286 1287 if (ret < 0) 1288 return ret; 1289 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 1290 } 1291 1292 static ssize_t hot_remove_store(struct class *class, 1293 struct class_attribute *attr, 1294 const char *buf, 1295 size_t count) 1296 { 1297 struct zram *zram; 1298 int ret, dev_id; 1299 1300 /* dev_id is gendisk->first_minor, which is `int' */ 1301 ret = kstrtoint(buf, 10, &dev_id); 1302 if (ret) 1303 return ret; 1304 if (dev_id < 0) 1305 return -EINVAL; 1306 1307 mutex_lock(&zram_index_mutex); 1308 1309 zram = idr_find(&zram_index_idr, dev_id); 1310 if (zram) { 1311 ret = zram_remove(zram); 1312 if (!ret) 1313 idr_remove(&zram_index_idr, dev_id); 1314 } else { 1315 ret = -ENODEV; 1316 } 1317 1318 mutex_unlock(&zram_index_mutex); 1319 return ret ? ret : count; 1320 } 1321 1322 /* 1323 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 1324 * sense that reading from this file does alter the state of your system -- it 1325 * creates a new un-initialized zram device and returns back this device's 1326 * device_id (or an error code if it fails to create a new device). 1327 */ 1328 static struct class_attribute zram_control_class_attrs[] = { 1329 __ATTR(hot_add, 0400, hot_add_show, NULL), 1330 __ATTR_WO(hot_remove), 1331 __ATTR_NULL, 1332 }; 1333 1334 static struct class zram_control_class = { 1335 .name = "zram-control", 1336 .owner = THIS_MODULE, 1337 .class_attrs = zram_control_class_attrs, 1338 }; 1339 1340 static int zram_remove_cb(int id, void *ptr, void *data) 1341 { 1342 zram_remove(ptr); 1343 return 0; 1344 } 1345 1346 static void destroy_devices(void) 1347 { 1348 class_unregister(&zram_control_class); 1349 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 1350 idr_destroy(&zram_index_idr); 1351 unregister_blkdev(zram_major, "zram"); 1352 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1353 } 1354 1355 static int __init zram_init(void) 1356 { 1357 int ret; 1358 1359 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 1360 zcomp_cpu_up_prepare, zcomp_cpu_dead); 1361 if (ret < 0) 1362 return ret; 1363 1364 ret = class_register(&zram_control_class); 1365 if (ret) { 1366 pr_err("Unable to register zram-control class\n"); 1367 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1368 return ret; 1369 } 1370 1371 zram_major = register_blkdev(0, "zram"); 1372 if (zram_major <= 0) { 1373 pr_err("Unable to get major number\n"); 1374 class_unregister(&zram_control_class); 1375 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1376 return -EBUSY; 1377 } 1378 1379 while (num_devices != 0) { 1380 mutex_lock(&zram_index_mutex); 1381 ret = zram_add(); 1382 mutex_unlock(&zram_index_mutex); 1383 if (ret < 0) 1384 goto out_error; 1385 num_devices--; 1386 } 1387 1388 return 0; 1389 1390 out_error: 1391 destroy_devices(); 1392 return ret; 1393 } 1394 1395 static void __exit zram_exit(void) 1396 { 1397 destroy_devices(); 1398 } 1399 1400 module_init(zram_init); 1401 module_exit(zram_exit); 1402 1403 module_param(num_devices, uint, 0); 1404 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 1405 1406 MODULE_LICENSE("Dual BSD/GPL"); 1407 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1408 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1409