xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision a8a28aff)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 #define ZRAM_ATTR_RO(name)						\
47 static ssize_t zram_attr_##name##_show(struct device *d,		\
48 				struct device_attribute *attr, char *b)	\
49 {									\
50 	struct zram *zram = dev_to_zram(d);				\
51 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
52 		(u64)atomic64_read(&zram->stats.name));			\
53 }									\
54 static struct device_attribute dev_attr_##name =			\
55 	__ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56 
57 static inline int init_done(struct zram *zram)
58 {
59 	return zram->meta != NULL;
60 }
61 
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64 	return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66 
67 static ssize_t disksize_show(struct device *dev,
68 		struct device_attribute *attr, char *buf)
69 {
70 	struct zram *zram = dev_to_zram(dev);
71 
72 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74 
75 static ssize_t initstate_show(struct device *dev,
76 		struct device_attribute *attr, char *buf)
77 {
78 	u32 val;
79 	struct zram *zram = dev_to_zram(dev);
80 
81 	down_read(&zram->init_lock);
82 	val = init_done(zram);
83 	up_read(&zram->init_lock);
84 
85 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87 
88 static ssize_t orig_data_size_show(struct device *dev,
89 		struct device_attribute *attr, char *buf)
90 {
91 	struct zram *zram = dev_to_zram(dev);
92 
93 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
94 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96 
97 static ssize_t mem_used_total_show(struct device *dev,
98 		struct device_attribute *attr, char *buf)
99 {
100 	u64 val = 0;
101 	struct zram *zram = dev_to_zram(dev);
102 	struct zram_meta *meta = zram->meta;
103 
104 	down_read(&zram->init_lock);
105 	if (init_done(zram))
106 		val = zs_get_total_size_bytes(meta->mem_pool);
107 	up_read(&zram->init_lock);
108 
109 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
110 }
111 
112 static ssize_t max_comp_streams_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	int val;
116 	struct zram *zram = dev_to_zram(dev);
117 
118 	down_read(&zram->init_lock);
119 	val = zram->max_comp_streams;
120 	up_read(&zram->init_lock);
121 
122 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124 
125 static ssize_t max_comp_streams_store(struct device *dev,
126 		struct device_attribute *attr, const char *buf, size_t len)
127 {
128 	int num;
129 	struct zram *zram = dev_to_zram(dev);
130 	int ret;
131 
132 	ret = kstrtoint(buf, 0, &num);
133 	if (ret < 0)
134 		return ret;
135 	if (num < 1)
136 		return -EINVAL;
137 
138 	down_write(&zram->init_lock);
139 	if (init_done(zram)) {
140 		if (!zcomp_set_max_streams(zram->comp, num)) {
141 			pr_info("Cannot change max compression streams\n");
142 			ret = -EINVAL;
143 			goto out;
144 		}
145 	}
146 
147 	zram->max_comp_streams = num;
148 	ret = len;
149 out:
150 	up_write(&zram->init_lock);
151 	return ret;
152 }
153 
154 static ssize_t comp_algorithm_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	size_t sz;
158 	struct zram *zram = dev_to_zram(dev);
159 
160 	down_read(&zram->init_lock);
161 	sz = zcomp_available_show(zram->compressor, buf);
162 	up_read(&zram->init_lock);
163 
164 	return sz;
165 }
166 
167 static ssize_t comp_algorithm_store(struct device *dev,
168 		struct device_attribute *attr, const char *buf, size_t len)
169 {
170 	struct zram *zram = dev_to_zram(dev);
171 	down_write(&zram->init_lock);
172 	if (init_done(zram)) {
173 		up_write(&zram->init_lock);
174 		pr_info("Can't change algorithm for initialized device\n");
175 		return -EBUSY;
176 	}
177 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
178 	up_write(&zram->init_lock);
179 	return len;
180 }
181 
182 /* flag operations needs meta->tb_lock */
183 static int zram_test_flag(struct zram_meta *meta, u32 index,
184 			enum zram_pageflags flag)
185 {
186 	return meta->table[index].flags & BIT(flag);
187 }
188 
189 static void zram_set_flag(struct zram_meta *meta, u32 index,
190 			enum zram_pageflags flag)
191 {
192 	meta->table[index].flags |= BIT(flag);
193 }
194 
195 static void zram_clear_flag(struct zram_meta *meta, u32 index,
196 			enum zram_pageflags flag)
197 {
198 	meta->table[index].flags &= ~BIT(flag);
199 }
200 
201 static inline int is_partial_io(struct bio_vec *bvec)
202 {
203 	return bvec->bv_len != PAGE_SIZE;
204 }
205 
206 /*
207  * Check if request is within bounds and aligned on zram logical blocks.
208  */
209 static inline int valid_io_request(struct zram *zram, struct bio *bio)
210 {
211 	u64 start, end, bound;
212 
213 	/* unaligned request */
214 	if (unlikely(bio->bi_iter.bi_sector &
215 		     (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
216 		return 0;
217 	if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
218 		return 0;
219 
220 	start = bio->bi_iter.bi_sector;
221 	end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
222 	bound = zram->disksize >> SECTOR_SHIFT;
223 	/* out of range range */
224 	if (unlikely(start >= bound || end > bound || start > end))
225 		return 0;
226 
227 	/* I/O request is valid */
228 	return 1;
229 }
230 
231 static void zram_meta_free(struct zram_meta *meta)
232 {
233 	zs_destroy_pool(meta->mem_pool);
234 	vfree(meta->table);
235 	kfree(meta);
236 }
237 
238 static struct zram_meta *zram_meta_alloc(u64 disksize)
239 {
240 	size_t num_pages;
241 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
242 	if (!meta)
243 		goto out;
244 
245 	num_pages = disksize >> PAGE_SHIFT;
246 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
247 	if (!meta->table) {
248 		pr_err("Error allocating zram address table\n");
249 		goto free_meta;
250 	}
251 
252 	meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
253 	if (!meta->mem_pool) {
254 		pr_err("Error creating memory pool\n");
255 		goto free_table;
256 	}
257 
258 	rwlock_init(&meta->tb_lock);
259 	return meta;
260 
261 free_table:
262 	vfree(meta->table);
263 free_meta:
264 	kfree(meta);
265 	meta = NULL;
266 out:
267 	return meta;
268 }
269 
270 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
271 {
272 	if (*offset + bvec->bv_len >= PAGE_SIZE)
273 		(*index)++;
274 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
275 }
276 
277 static int page_zero_filled(void *ptr)
278 {
279 	unsigned int pos;
280 	unsigned long *page;
281 
282 	page = (unsigned long *)ptr;
283 
284 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
285 		if (page[pos])
286 			return 0;
287 	}
288 
289 	return 1;
290 }
291 
292 static void handle_zero_page(struct bio_vec *bvec)
293 {
294 	struct page *page = bvec->bv_page;
295 	void *user_mem;
296 
297 	user_mem = kmap_atomic(page);
298 	if (is_partial_io(bvec))
299 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
300 	else
301 		clear_page(user_mem);
302 	kunmap_atomic(user_mem);
303 
304 	flush_dcache_page(page);
305 }
306 
307 /* NOTE: caller should hold meta->tb_lock with write-side */
308 static void zram_free_page(struct zram *zram, size_t index)
309 {
310 	struct zram_meta *meta = zram->meta;
311 	unsigned long handle = meta->table[index].handle;
312 
313 	if (unlikely(!handle)) {
314 		/*
315 		 * No memory is allocated for zero filled pages.
316 		 * Simply clear zero page flag.
317 		 */
318 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
319 			zram_clear_flag(meta, index, ZRAM_ZERO);
320 			atomic64_dec(&zram->stats.zero_pages);
321 		}
322 		return;
323 	}
324 
325 	zs_free(meta->mem_pool, handle);
326 
327 	atomic64_sub(meta->table[index].size, &zram->stats.compr_data_size);
328 	atomic64_dec(&zram->stats.pages_stored);
329 
330 	meta->table[index].handle = 0;
331 	meta->table[index].size = 0;
332 }
333 
334 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
335 {
336 	int ret = 0;
337 	unsigned char *cmem;
338 	struct zram_meta *meta = zram->meta;
339 	unsigned long handle;
340 	u16 size;
341 
342 	read_lock(&meta->tb_lock);
343 	handle = meta->table[index].handle;
344 	size = meta->table[index].size;
345 
346 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
347 		read_unlock(&meta->tb_lock);
348 		clear_page(mem);
349 		return 0;
350 	}
351 
352 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
353 	if (size == PAGE_SIZE)
354 		copy_page(mem, cmem);
355 	else
356 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
357 	zs_unmap_object(meta->mem_pool, handle);
358 	read_unlock(&meta->tb_lock);
359 
360 	/* Should NEVER happen. Return bio error if it does. */
361 	if (unlikely(ret)) {
362 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
363 		atomic64_inc(&zram->stats.failed_reads);
364 		return ret;
365 	}
366 
367 	return 0;
368 }
369 
370 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
371 			  u32 index, int offset, struct bio *bio)
372 {
373 	int ret;
374 	struct page *page;
375 	unsigned char *user_mem, *uncmem = NULL;
376 	struct zram_meta *meta = zram->meta;
377 	page = bvec->bv_page;
378 
379 	read_lock(&meta->tb_lock);
380 	if (unlikely(!meta->table[index].handle) ||
381 			zram_test_flag(meta, index, ZRAM_ZERO)) {
382 		read_unlock(&meta->tb_lock);
383 		handle_zero_page(bvec);
384 		return 0;
385 	}
386 	read_unlock(&meta->tb_lock);
387 
388 	if (is_partial_io(bvec))
389 		/* Use  a temporary buffer to decompress the page */
390 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
391 
392 	user_mem = kmap_atomic(page);
393 	if (!is_partial_io(bvec))
394 		uncmem = user_mem;
395 
396 	if (!uncmem) {
397 		pr_info("Unable to allocate temp memory\n");
398 		ret = -ENOMEM;
399 		goto out_cleanup;
400 	}
401 
402 	ret = zram_decompress_page(zram, uncmem, index);
403 	/* Should NEVER happen. Return bio error if it does. */
404 	if (unlikely(ret))
405 		goto out_cleanup;
406 
407 	if (is_partial_io(bvec))
408 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
409 				bvec->bv_len);
410 
411 	flush_dcache_page(page);
412 	ret = 0;
413 out_cleanup:
414 	kunmap_atomic(user_mem);
415 	if (is_partial_io(bvec))
416 		kfree(uncmem);
417 	return ret;
418 }
419 
420 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
421 			   int offset)
422 {
423 	int ret = 0;
424 	size_t clen;
425 	unsigned long handle;
426 	struct page *page;
427 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
428 	struct zram_meta *meta = zram->meta;
429 	struct zcomp_strm *zstrm;
430 	bool locked = false;
431 
432 	page = bvec->bv_page;
433 	if (is_partial_io(bvec)) {
434 		/*
435 		 * This is a partial IO. We need to read the full page
436 		 * before to write the changes.
437 		 */
438 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
439 		if (!uncmem) {
440 			ret = -ENOMEM;
441 			goto out;
442 		}
443 		ret = zram_decompress_page(zram, uncmem, index);
444 		if (ret)
445 			goto out;
446 	}
447 
448 	zstrm = zcomp_strm_find(zram->comp);
449 	locked = true;
450 	user_mem = kmap_atomic(page);
451 
452 	if (is_partial_io(bvec)) {
453 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
454 		       bvec->bv_len);
455 		kunmap_atomic(user_mem);
456 		user_mem = NULL;
457 	} else {
458 		uncmem = user_mem;
459 	}
460 
461 	if (page_zero_filled(uncmem)) {
462 		kunmap_atomic(user_mem);
463 		/* Free memory associated with this sector now. */
464 		write_lock(&zram->meta->tb_lock);
465 		zram_free_page(zram, index);
466 		zram_set_flag(meta, index, ZRAM_ZERO);
467 		write_unlock(&zram->meta->tb_lock);
468 
469 		atomic64_inc(&zram->stats.zero_pages);
470 		ret = 0;
471 		goto out;
472 	}
473 
474 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
475 	if (!is_partial_io(bvec)) {
476 		kunmap_atomic(user_mem);
477 		user_mem = NULL;
478 		uncmem = NULL;
479 	}
480 
481 	if (unlikely(ret)) {
482 		pr_err("Compression failed! err=%d\n", ret);
483 		goto out;
484 	}
485 	src = zstrm->buffer;
486 	if (unlikely(clen > max_zpage_size)) {
487 		clen = PAGE_SIZE;
488 		if (is_partial_io(bvec))
489 			src = uncmem;
490 	}
491 
492 	handle = zs_malloc(meta->mem_pool, clen);
493 	if (!handle) {
494 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
495 			index, clen);
496 		ret = -ENOMEM;
497 		goto out;
498 	}
499 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
500 
501 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
502 		src = kmap_atomic(page);
503 		copy_page(cmem, src);
504 		kunmap_atomic(src);
505 	} else {
506 		memcpy(cmem, src, clen);
507 	}
508 
509 	zcomp_strm_release(zram->comp, zstrm);
510 	locked = false;
511 	zs_unmap_object(meta->mem_pool, handle);
512 
513 	/*
514 	 * Free memory associated with this sector
515 	 * before overwriting unused sectors.
516 	 */
517 	write_lock(&zram->meta->tb_lock);
518 	zram_free_page(zram, index);
519 
520 	meta->table[index].handle = handle;
521 	meta->table[index].size = clen;
522 	write_unlock(&zram->meta->tb_lock);
523 
524 	/* Update stats */
525 	atomic64_add(clen, &zram->stats.compr_data_size);
526 	atomic64_inc(&zram->stats.pages_stored);
527 out:
528 	if (locked)
529 		zcomp_strm_release(zram->comp, zstrm);
530 	if (is_partial_io(bvec))
531 		kfree(uncmem);
532 	if (ret)
533 		atomic64_inc(&zram->stats.failed_writes);
534 	return ret;
535 }
536 
537 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
538 			int offset, struct bio *bio)
539 {
540 	int ret;
541 	int rw = bio_data_dir(bio);
542 
543 	if (rw == READ) {
544 		atomic64_inc(&zram->stats.num_reads);
545 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
546 	} else {
547 		atomic64_inc(&zram->stats.num_writes);
548 		ret = zram_bvec_write(zram, bvec, index, offset);
549 	}
550 
551 	return ret;
552 }
553 
554 /*
555  * zram_bio_discard - handler on discard request
556  * @index: physical block index in PAGE_SIZE units
557  * @offset: byte offset within physical block
558  */
559 static void zram_bio_discard(struct zram *zram, u32 index,
560 			     int offset, struct bio *bio)
561 {
562 	size_t n = bio->bi_iter.bi_size;
563 
564 	/*
565 	 * zram manages data in physical block size units. Because logical block
566 	 * size isn't identical with physical block size on some arch, we
567 	 * could get a discard request pointing to a specific offset within a
568 	 * certain physical block.  Although we can handle this request by
569 	 * reading that physiclal block and decompressing and partially zeroing
570 	 * and re-compressing and then re-storing it, this isn't reasonable
571 	 * because our intent with a discard request is to save memory.  So
572 	 * skipping this logical block is appropriate here.
573 	 */
574 	if (offset) {
575 		if (n <= (PAGE_SIZE - offset))
576 			return;
577 
578 		n -= (PAGE_SIZE - offset);
579 		index++;
580 	}
581 
582 	while (n >= PAGE_SIZE) {
583 		/*
584 		 * Discard request can be large so the lock hold times could be
585 		 * lengthy.  So take the lock once per page.
586 		 */
587 		write_lock(&zram->meta->tb_lock);
588 		zram_free_page(zram, index);
589 		write_unlock(&zram->meta->tb_lock);
590 		index++;
591 		n -= PAGE_SIZE;
592 	}
593 }
594 
595 static void zram_reset_device(struct zram *zram, bool reset_capacity)
596 {
597 	size_t index;
598 	struct zram_meta *meta;
599 
600 	down_write(&zram->init_lock);
601 	if (!init_done(zram)) {
602 		up_write(&zram->init_lock);
603 		return;
604 	}
605 
606 	meta = zram->meta;
607 	/* Free all pages that are still in this zram device */
608 	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
609 		unsigned long handle = meta->table[index].handle;
610 		if (!handle)
611 			continue;
612 
613 		zs_free(meta->mem_pool, handle);
614 	}
615 
616 	zcomp_destroy(zram->comp);
617 	zram->max_comp_streams = 1;
618 
619 	zram_meta_free(zram->meta);
620 	zram->meta = NULL;
621 	/* Reset stats */
622 	memset(&zram->stats, 0, sizeof(zram->stats));
623 
624 	zram->disksize = 0;
625 	if (reset_capacity)
626 		set_capacity(zram->disk, 0);
627 	up_write(&zram->init_lock);
628 }
629 
630 static ssize_t disksize_store(struct device *dev,
631 		struct device_attribute *attr, const char *buf, size_t len)
632 {
633 	u64 disksize;
634 	struct zcomp *comp;
635 	struct zram_meta *meta;
636 	struct zram *zram = dev_to_zram(dev);
637 	int err;
638 
639 	disksize = memparse(buf, NULL);
640 	if (!disksize)
641 		return -EINVAL;
642 
643 	disksize = PAGE_ALIGN(disksize);
644 	meta = zram_meta_alloc(disksize);
645 	if (!meta)
646 		return -ENOMEM;
647 
648 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
649 	if (IS_ERR(comp)) {
650 		pr_info("Cannot initialise %s compressing backend\n",
651 				zram->compressor);
652 		err = PTR_ERR(comp);
653 		goto out_free_meta;
654 	}
655 
656 	down_write(&zram->init_lock);
657 	if (init_done(zram)) {
658 		pr_info("Cannot change disksize for initialized device\n");
659 		err = -EBUSY;
660 		goto out_destroy_comp;
661 	}
662 
663 	zram->meta = meta;
664 	zram->comp = comp;
665 	zram->disksize = disksize;
666 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
667 	up_write(&zram->init_lock);
668 	return len;
669 
670 out_destroy_comp:
671 	up_write(&zram->init_lock);
672 	zcomp_destroy(comp);
673 out_free_meta:
674 	zram_meta_free(meta);
675 	return err;
676 }
677 
678 static ssize_t reset_store(struct device *dev,
679 		struct device_attribute *attr, const char *buf, size_t len)
680 {
681 	int ret;
682 	unsigned short do_reset;
683 	struct zram *zram;
684 	struct block_device *bdev;
685 
686 	zram = dev_to_zram(dev);
687 	bdev = bdget_disk(zram->disk, 0);
688 
689 	if (!bdev)
690 		return -ENOMEM;
691 
692 	/* Do not reset an active device! */
693 	if (bdev->bd_holders) {
694 		ret = -EBUSY;
695 		goto out;
696 	}
697 
698 	ret = kstrtou16(buf, 10, &do_reset);
699 	if (ret)
700 		goto out;
701 
702 	if (!do_reset) {
703 		ret = -EINVAL;
704 		goto out;
705 	}
706 
707 	/* Make sure all pending I/O is finished */
708 	fsync_bdev(bdev);
709 	bdput(bdev);
710 
711 	zram_reset_device(zram, true);
712 	return len;
713 
714 out:
715 	bdput(bdev);
716 	return ret;
717 }
718 
719 static void __zram_make_request(struct zram *zram, struct bio *bio)
720 {
721 	int offset;
722 	u32 index;
723 	struct bio_vec bvec;
724 	struct bvec_iter iter;
725 
726 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
727 	offset = (bio->bi_iter.bi_sector &
728 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
729 
730 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
731 		zram_bio_discard(zram, index, offset, bio);
732 		bio_endio(bio, 0);
733 		return;
734 	}
735 
736 	bio_for_each_segment(bvec, bio, iter) {
737 		int max_transfer_size = PAGE_SIZE - offset;
738 
739 		if (bvec.bv_len > max_transfer_size) {
740 			/*
741 			 * zram_bvec_rw() can only make operation on a single
742 			 * zram page. Split the bio vector.
743 			 */
744 			struct bio_vec bv;
745 
746 			bv.bv_page = bvec.bv_page;
747 			bv.bv_len = max_transfer_size;
748 			bv.bv_offset = bvec.bv_offset;
749 
750 			if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
751 				goto out;
752 
753 			bv.bv_len = bvec.bv_len - max_transfer_size;
754 			bv.bv_offset += max_transfer_size;
755 			if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
756 				goto out;
757 		} else
758 			if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
759 				goto out;
760 
761 		update_position(&index, &offset, &bvec);
762 	}
763 
764 	set_bit(BIO_UPTODATE, &bio->bi_flags);
765 	bio_endio(bio, 0);
766 	return;
767 
768 out:
769 	bio_io_error(bio);
770 }
771 
772 /*
773  * Handler function for all zram I/O requests.
774  */
775 static void zram_make_request(struct request_queue *queue, struct bio *bio)
776 {
777 	struct zram *zram = queue->queuedata;
778 
779 	down_read(&zram->init_lock);
780 	if (unlikely(!init_done(zram)))
781 		goto error;
782 
783 	if (!valid_io_request(zram, bio)) {
784 		atomic64_inc(&zram->stats.invalid_io);
785 		goto error;
786 	}
787 
788 	__zram_make_request(zram, bio);
789 	up_read(&zram->init_lock);
790 
791 	return;
792 
793 error:
794 	up_read(&zram->init_lock);
795 	bio_io_error(bio);
796 }
797 
798 static void zram_slot_free_notify(struct block_device *bdev,
799 				unsigned long index)
800 {
801 	struct zram *zram;
802 	struct zram_meta *meta;
803 
804 	zram = bdev->bd_disk->private_data;
805 	meta = zram->meta;
806 
807 	write_lock(&meta->tb_lock);
808 	zram_free_page(zram, index);
809 	write_unlock(&meta->tb_lock);
810 	atomic64_inc(&zram->stats.notify_free);
811 }
812 
813 static const struct block_device_operations zram_devops = {
814 	.swap_slot_free_notify = zram_slot_free_notify,
815 	.owner = THIS_MODULE
816 };
817 
818 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
819 		disksize_show, disksize_store);
820 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
821 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
822 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
823 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
824 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
825 		max_comp_streams_show, max_comp_streams_store);
826 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
827 		comp_algorithm_show, comp_algorithm_store);
828 
829 ZRAM_ATTR_RO(num_reads);
830 ZRAM_ATTR_RO(num_writes);
831 ZRAM_ATTR_RO(failed_reads);
832 ZRAM_ATTR_RO(failed_writes);
833 ZRAM_ATTR_RO(invalid_io);
834 ZRAM_ATTR_RO(notify_free);
835 ZRAM_ATTR_RO(zero_pages);
836 ZRAM_ATTR_RO(compr_data_size);
837 
838 static struct attribute *zram_disk_attrs[] = {
839 	&dev_attr_disksize.attr,
840 	&dev_attr_initstate.attr,
841 	&dev_attr_reset.attr,
842 	&dev_attr_num_reads.attr,
843 	&dev_attr_num_writes.attr,
844 	&dev_attr_failed_reads.attr,
845 	&dev_attr_failed_writes.attr,
846 	&dev_attr_invalid_io.attr,
847 	&dev_attr_notify_free.attr,
848 	&dev_attr_zero_pages.attr,
849 	&dev_attr_orig_data_size.attr,
850 	&dev_attr_compr_data_size.attr,
851 	&dev_attr_mem_used_total.attr,
852 	&dev_attr_max_comp_streams.attr,
853 	&dev_attr_comp_algorithm.attr,
854 	NULL,
855 };
856 
857 static struct attribute_group zram_disk_attr_group = {
858 	.attrs = zram_disk_attrs,
859 };
860 
861 static int create_device(struct zram *zram, int device_id)
862 {
863 	int ret = -ENOMEM;
864 
865 	init_rwsem(&zram->init_lock);
866 
867 	zram->queue = blk_alloc_queue(GFP_KERNEL);
868 	if (!zram->queue) {
869 		pr_err("Error allocating disk queue for device %d\n",
870 			device_id);
871 		goto out;
872 	}
873 
874 	blk_queue_make_request(zram->queue, zram_make_request);
875 	zram->queue->queuedata = zram;
876 
877 	 /* gendisk structure */
878 	zram->disk = alloc_disk(1);
879 	if (!zram->disk) {
880 		pr_warn("Error allocating disk structure for device %d\n",
881 			device_id);
882 		goto out_free_queue;
883 	}
884 
885 	zram->disk->major = zram_major;
886 	zram->disk->first_minor = device_id;
887 	zram->disk->fops = &zram_devops;
888 	zram->disk->queue = zram->queue;
889 	zram->disk->private_data = zram;
890 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
891 
892 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
893 	set_capacity(zram->disk, 0);
894 	/* zram devices sort of resembles non-rotational disks */
895 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
896 	/*
897 	 * To ensure that we always get PAGE_SIZE aligned
898 	 * and n*PAGE_SIZED sized I/O requests.
899 	 */
900 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
901 	blk_queue_logical_block_size(zram->disk->queue,
902 					ZRAM_LOGICAL_BLOCK_SIZE);
903 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
904 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
905 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
906 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
907 	/*
908 	 * zram_bio_discard() will clear all logical blocks if logical block
909 	 * size is identical with physical block size(PAGE_SIZE). But if it is
910 	 * different, we will skip discarding some parts of logical blocks in
911 	 * the part of the request range which isn't aligned to physical block
912 	 * size.  So we can't ensure that all discarded logical blocks are
913 	 * zeroed.
914 	 */
915 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
916 		zram->disk->queue->limits.discard_zeroes_data = 1;
917 	else
918 		zram->disk->queue->limits.discard_zeroes_data = 0;
919 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
920 
921 	add_disk(zram->disk);
922 
923 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
924 				&zram_disk_attr_group);
925 	if (ret < 0) {
926 		pr_warn("Error creating sysfs group");
927 		goto out_free_disk;
928 	}
929 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
930 	zram->meta = NULL;
931 	zram->max_comp_streams = 1;
932 	return 0;
933 
934 out_free_disk:
935 	del_gendisk(zram->disk);
936 	put_disk(zram->disk);
937 out_free_queue:
938 	blk_cleanup_queue(zram->queue);
939 out:
940 	return ret;
941 }
942 
943 static void destroy_device(struct zram *zram)
944 {
945 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
946 			&zram_disk_attr_group);
947 
948 	del_gendisk(zram->disk);
949 	put_disk(zram->disk);
950 
951 	blk_cleanup_queue(zram->queue);
952 }
953 
954 static int __init zram_init(void)
955 {
956 	int ret, dev_id;
957 
958 	if (num_devices > max_num_devices) {
959 		pr_warn("Invalid value for num_devices: %u\n",
960 				num_devices);
961 		ret = -EINVAL;
962 		goto out;
963 	}
964 
965 	zram_major = register_blkdev(0, "zram");
966 	if (zram_major <= 0) {
967 		pr_warn("Unable to get major number\n");
968 		ret = -EBUSY;
969 		goto out;
970 	}
971 
972 	/* Allocate the device array and initialize each one */
973 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
974 	if (!zram_devices) {
975 		ret = -ENOMEM;
976 		goto unregister;
977 	}
978 
979 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
980 		ret = create_device(&zram_devices[dev_id], dev_id);
981 		if (ret)
982 			goto free_devices;
983 	}
984 
985 	pr_info("Created %u device(s) ...\n", num_devices);
986 
987 	return 0;
988 
989 free_devices:
990 	while (dev_id)
991 		destroy_device(&zram_devices[--dev_id]);
992 	kfree(zram_devices);
993 unregister:
994 	unregister_blkdev(zram_major, "zram");
995 out:
996 	return ret;
997 }
998 
999 static void __exit zram_exit(void)
1000 {
1001 	int i;
1002 	struct zram *zram;
1003 
1004 	for (i = 0; i < num_devices; i++) {
1005 		zram = &zram_devices[i];
1006 
1007 		destroy_device(zram);
1008 		/*
1009 		 * Shouldn't access zram->disk after destroy_device
1010 		 * because destroy_device already released zram->disk.
1011 		 */
1012 		zram_reset_device(zram, false);
1013 	}
1014 
1015 	unregister_blkdev(zram_major, "zram");
1016 
1017 	kfree(zram_devices);
1018 	pr_debug("Cleanup done!\n");
1019 }
1020 
1021 module_init(zram_init);
1022 module_exit(zram_exit);
1023 
1024 module_param(num_devices, uint, 0);
1025 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1026 
1027 MODULE_LICENSE("Dual BSD/GPL");
1028 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1029 MODULE_DESCRIPTION("Compressed RAM Block Device");
1030