1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #ifdef CONFIG_ZRAM_DEBUG 19 #define DEBUG 20 #endif 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/bio.h> 25 #include <linux/bitops.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> 28 #include <linux/device.h> 29 #include <linux/genhd.h> 30 #include <linux/highmem.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/vmalloc.h> 34 #include <linux/err.h> 35 36 #include "zram_drv.h" 37 38 /* Globals */ 39 static int zram_major; 40 static struct zram *zram_devices; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 #define ZRAM_ATTR_RO(name) \ 47 static ssize_t zram_attr_##name##_show(struct device *d, \ 48 struct device_attribute *attr, char *b) \ 49 { \ 50 struct zram *zram = dev_to_zram(d); \ 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 52 (u64)atomic64_read(&zram->stats.name)); \ 53 } \ 54 static struct device_attribute dev_attr_##name = \ 55 __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL); 56 57 static inline int init_done(struct zram *zram) 58 { 59 return zram->meta != NULL; 60 } 61 62 static inline struct zram *dev_to_zram(struct device *dev) 63 { 64 return (struct zram *)dev_to_disk(dev)->private_data; 65 } 66 67 static ssize_t disksize_show(struct device *dev, 68 struct device_attribute *attr, char *buf) 69 { 70 struct zram *zram = dev_to_zram(dev); 71 72 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 73 } 74 75 static ssize_t initstate_show(struct device *dev, 76 struct device_attribute *attr, char *buf) 77 { 78 u32 val; 79 struct zram *zram = dev_to_zram(dev); 80 81 down_read(&zram->init_lock); 82 val = init_done(zram); 83 up_read(&zram->init_lock); 84 85 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 86 } 87 88 static ssize_t orig_data_size_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct zram *zram = dev_to_zram(dev); 92 93 return scnprintf(buf, PAGE_SIZE, "%llu\n", 94 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 95 } 96 97 static ssize_t mem_used_total_show(struct device *dev, 98 struct device_attribute *attr, char *buf) 99 { 100 u64 val = 0; 101 struct zram *zram = dev_to_zram(dev); 102 struct zram_meta *meta = zram->meta; 103 104 down_read(&zram->init_lock); 105 if (init_done(zram)) 106 val = zs_get_total_size_bytes(meta->mem_pool); 107 up_read(&zram->init_lock); 108 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 110 } 111 112 static ssize_t max_comp_streams_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 int val; 116 struct zram *zram = dev_to_zram(dev); 117 118 down_read(&zram->init_lock); 119 val = zram->max_comp_streams; 120 up_read(&zram->init_lock); 121 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 123 } 124 125 static ssize_t max_comp_streams_store(struct device *dev, 126 struct device_attribute *attr, const char *buf, size_t len) 127 { 128 int num; 129 struct zram *zram = dev_to_zram(dev); 130 int ret; 131 132 ret = kstrtoint(buf, 0, &num); 133 if (ret < 0) 134 return ret; 135 if (num < 1) 136 return -EINVAL; 137 138 down_write(&zram->init_lock); 139 if (init_done(zram)) { 140 if (!zcomp_set_max_streams(zram->comp, num)) { 141 pr_info("Cannot change max compression streams\n"); 142 ret = -EINVAL; 143 goto out; 144 } 145 } 146 147 zram->max_comp_streams = num; 148 ret = len; 149 out: 150 up_write(&zram->init_lock); 151 return ret; 152 } 153 154 static ssize_t comp_algorithm_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 size_t sz; 158 struct zram *zram = dev_to_zram(dev); 159 160 down_read(&zram->init_lock); 161 sz = zcomp_available_show(zram->compressor, buf); 162 up_read(&zram->init_lock); 163 164 return sz; 165 } 166 167 static ssize_t comp_algorithm_store(struct device *dev, 168 struct device_attribute *attr, const char *buf, size_t len) 169 { 170 struct zram *zram = dev_to_zram(dev); 171 down_write(&zram->init_lock); 172 if (init_done(zram)) { 173 up_write(&zram->init_lock); 174 pr_info("Can't change algorithm for initialized device\n"); 175 return -EBUSY; 176 } 177 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 178 up_write(&zram->init_lock); 179 return len; 180 } 181 182 /* flag operations needs meta->tb_lock */ 183 static int zram_test_flag(struct zram_meta *meta, u32 index, 184 enum zram_pageflags flag) 185 { 186 return meta->table[index].flags & BIT(flag); 187 } 188 189 static void zram_set_flag(struct zram_meta *meta, u32 index, 190 enum zram_pageflags flag) 191 { 192 meta->table[index].flags |= BIT(flag); 193 } 194 195 static void zram_clear_flag(struct zram_meta *meta, u32 index, 196 enum zram_pageflags flag) 197 { 198 meta->table[index].flags &= ~BIT(flag); 199 } 200 201 static inline int is_partial_io(struct bio_vec *bvec) 202 { 203 return bvec->bv_len != PAGE_SIZE; 204 } 205 206 /* 207 * Check if request is within bounds and aligned on zram logical blocks. 208 */ 209 static inline int valid_io_request(struct zram *zram, struct bio *bio) 210 { 211 u64 start, end, bound; 212 213 /* unaligned request */ 214 if (unlikely(bio->bi_iter.bi_sector & 215 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 216 return 0; 217 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 218 return 0; 219 220 start = bio->bi_iter.bi_sector; 221 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 222 bound = zram->disksize >> SECTOR_SHIFT; 223 /* out of range range */ 224 if (unlikely(start >= bound || end > bound || start > end)) 225 return 0; 226 227 /* I/O request is valid */ 228 return 1; 229 } 230 231 static void zram_meta_free(struct zram_meta *meta) 232 { 233 zs_destroy_pool(meta->mem_pool); 234 vfree(meta->table); 235 kfree(meta); 236 } 237 238 static struct zram_meta *zram_meta_alloc(u64 disksize) 239 { 240 size_t num_pages; 241 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 242 if (!meta) 243 goto out; 244 245 num_pages = disksize >> PAGE_SHIFT; 246 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 247 if (!meta->table) { 248 pr_err("Error allocating zram address table\n"); 249 goto free_meta; 250 } 251 252 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM); 253 if (!meta->mem_pool) { 254 pr_err("Error creating memory pool\n"); 255 goto free_table; 256 } 257 258 rwlock_init(&meta->tb_lock); 259 return meta; 260 261 free_table: 262 vfree(meta->table); 263 free_meta: 264 kfree(meta); 265 meta = NULL; 266 out: 267 return meta; 268 } 269 270 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 271 { 272 if (*offset + bvec->bv_len >= PAGE_SIZE) 273 (*index)++; 274 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 275 } 276 277 static int page_zero_filled(void *ptr) 278 { 279 unsigned int pos; 280 unsigned long *page; 281 282 page = (unsigned long *)ptr; 283 284 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 285 if (page[pos]) 286 return 0; 287 } 288 289 return 1; 290 } 291 292 static void handle_zero_page(struct bio_vec *bvec) 293 { 294 struct page *page = bvec->bv_page; 295 void *user_mem; 296 297 user_mem = kmap_atomic(page); 298 if (is_partial_io(bvec)) 299 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 300 else 301 clear_page(user_mem); 302 kunmap_atomic(user_mem); 303 304 flush_dcache_page(page); 305 } 306 307 /* NOTE: caller should hold meta->tb_lock with write-side */ 308 static void zram_free_page(struct zram *zram, size_t index) 309 { 310 struct zram_meta *meta = zram->meta; 311 unsigned long handle = meta->table[index].handle; 312 313 if (unlikely(!handle)) { 314 /* 315 * No memory is allocated for zero filled pages. 316 * Simply clear zero page flag. 317 */ 318 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 319 zram_clear_flag(meta, index, ZRAM_ZERO); 320 atomic64_dec(&zram->stats.zero_pages); 321 } 322 return; 323 } 324 325 zs_free(meta->mem_pool, handle); 326 327 atomic64_sub(meta->table[index].size, &zram->stats.compr_data_size); 328 atomic64_dec(&zram->stats.pages_stored); 329 330 meta->table[index].handle = 0; 331 meta->table[index].size = 0; 332 } 333 334 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 335 { 336 int ret = 0; 337 unsigned char *cmem; 338 struct zram_meta *meta = zram->meta; 339 unsigned long handle; 340 u16 size; 341 342 read_lock(&meta->tb_lock); 343 handle = meta->table[index].handle; 344 size = meta->table[index].size; 345 346 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 347 read_unlock(&meta->tb_lock); 348 clear_page(mem); 349 return 0; 350 } 351 352 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 353 if (size == PAGE_SIZE) 354 copy_page(mem, cmem); 355 else 356 ret = zcomp_decompress(zram->comp, cmem, size, mem); 357 zs_unmap_object(meta->mem_pool, handle); 358 read_unlock(&meta->tb_lock); 359 360 /* Should NEVER happen. Return bio error if it does. */ 361 if (unlikely(ret)) { 362 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 363 atomic64_inc(&zram->stats.failed_reads); 364 return ret; 365 } 366 367 return 0; 368 } 369 370 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 371 u32 index, int offset, struct bio *bio) 372 { 373 int ret; 374 struct page *page; 375 unsigned char *user_mem, *uncmem = NULL; 376 struct zram_meta *meta = zram->meta; 377 page = bvec->bv_page; 378 379 read_lock(&meta->tb_lock); 380 if (unlikely(!meta->table[index].handle) || 381 zram_test_flag(meta, index, ZRAM_ZERO)) { 382 read_unlock(&meta->tb_lock); 383 handle_zero_page(bvec); 384 return 0; 385 } 386 read_unlock(&meta->tb_lock); 387 388 if (is_partial_io(bvec)) 389 /* Use a temporary buffer to decompress the page */ 390 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 391 392 user_mem = kmap_atomic(page); 393 if (!is_partial_io(bvec)) 394 uncmem = user_mem; 395 396 if (!uncmem) { 397 pr_info("Unable to allocate temp memory\n"); 398 ret = -ENOMEM; 399 goto out_cleanup; 400 } 401 402 ret = zram_decompress_page(zram, uncmem, index); 403 /* Should NEVER happen. Return bio error if it does. */ 404 if (unlikely(ret)) 405 goto out_cleanup; 406 407 if (is_partial_io(bvec)) 408 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 409 bvec->bv_len); 410 411 flush_dcache_page(page); 412 ret = 0; 413 out_cleanup: 414 kunmap_atomic(user_mem); 415 if (is_partial_io(bvec)) 416 kfree(uncmem); 417 return ret; 418 } 419 420 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 421 int offset) 422 { 423 int ret = 0; 424 size_t clen; 425 unsigned long handle; 426 struct page *page; 427 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 428 struct zram_meta *meta = zram->meta; 429 struct zcomp_strm *zstrm; 430 bool locked = false; 431 432 page = bvec->bv_page; 433 if (is_partial_io(bvec)) { 434 /* 435 * This is a partial IO. We need to read the full page 436 * before to write the changes. 437 */ 438 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 439 if (!uncmem) { 440 ret = -ENOMEM; 441 goto out; 442 } 443 ret = zram_decompress_page(zram, uncmem, index); 444 if (ret) 445 goto out; 446 } 447 448 zstrm = zcomp_strm_find(zram->comp); 449 locked = true; 450 user_mem = kmap_atomic(page); 451 452 if (is_partial_io(bvec)) { 453 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 454 bvec->bv_len); 455 kunmap_atomic(user_mem); 456 user_mem = NULL; 457 } else { 458 uncmem = user_mem; 459 } 460 461 if (page_zero_filled(uncmem)) { 462 kunmap_atomic(user_mem); 463 /* Free memory associated with this sector now. */ 464 write_lock(&zram->meta->tb_lock); 465 zram_free_page(zram, index); 466 zram_set_flag(meta, index, ZRAM_ZERO); 467 write_unlock(&zram->meta->tb_lock); 468 469 atomic64_inc(&zram->stats.zero_pages); 470 ret = 0; 471 goto out; 472 } 473 474 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 475 if (!is_partial_io(bvec)) { 476 kunmap_atomic(user_mem); 477 user_mem = NULL; 478 uncmem = NULL; 479 } 480 481 if (unlikely(ret)) { 482 pr_err("Compression failed! err=%d\n", ret); 483 goto out; 484 } 485 src = zstrm->buffer; 486 if (unlikely(clen > max_zpage_size)) { 487 clen = PAGE_SIZE; 488 if (is_partial_io(bvec)) 489 src = uncmem; 490 } 491 492 handle = zs_malloc(meta->mem_pool, clen); 493 if (!handle) { 494 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 495 index, clen); 496 ret = -ENOMEM; 497 goto out; 498 } 499 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 500 501 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 502 src = kmap_atomic(page); 503 copy_page(cmem, src); 504 kunmap_atomic(src); 505 } else { 506 memcpy(cmem, src, clen); 507 } 508 509 zcomp_strm_release(zram->comp, zstrm); 510 locked = false; 511 zs_unmap_object(meta->mem_pool, handle); 512 513 /* 514 * Free memory associated with this sector 515 * before overwriting unused sectors. 516 */ 517 write_lock(&zram->meta->tb_lock); 518 zram_free_page(zram, index); 519 520 meta->table[index].handle = handle; 521 meta->table[index].size = clen; 522 write_unlock(&zram->meta->tb_lock); 523 524 /* Update stats */ 525 atomic64_add(clen, &zram->stats.compr_data_size); 526 atomic64_inc(&zram->stats.pages_stored); 527 out: 528 if (locked) 529 zcomp_strm_release(zram->comp, zstrm); 530 if (is_partial_io(bvec)) 531 kfree(uncmem); 532 if (ret) 533 atomic64_inc(&zram->stats.failed_writes); 534 return ret; 535 } 536 537 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 538 int offset, struct bio *bio) 539 { 540 int ret; 541 int rw = bio_data_dir(bio); 542 543 if (rw == READ) { 544 atomic64_inc(&zram->stats.num_reads); 545 ret = zram_bvec_read(zram, bvec, index, offset, bio); 546 } else { 547 atomic64_inc(&zram->stats.num_writes); 548 ret = zram_bvec_write(zram, bvec, index, offset); 549 } 550 551 return ret; 552 } 553 554 /* 555 * zram_bio_discard - handler on discard request 556 * @index: physical block index in PAGE_SIZE units 557 * @offset: byte offset within physical block 558 */ 559 static void zram_bio_discard(struct zram *zram, u32 index, 560 int offset, struct bio *bio) 561 { 562 size_t n = bio->bi_iter.bi_size; 563 564 /* 565 * zram manages data in physical block size units. Because logical block 566 * size isn't identical with physical block size on some arch, we 567 * could get a discard request pointing to a specific offset within a 568 * certain physical block. Although we can handle this request by 569 * reading that physiclal block and decompressing and partially zeroing 570 * and re-compressing and then re-storing it, this isn't reasonable 571 * because our intent with a discard request is to save memory. So 572 * skipping this logical block is appropriate here. 573 */ 574 if (offset) { 575 if (n <= (PAGE_SIZE - offset)) 576 return; 577 578 n -= (PAGE_SIZE - offset); 579 index++; 580 } 581 582 while (n >= PAGE_SIZE) { 583 /* 584 * Discard request can be large so the lock hold times could be 585 * lengthy. So take the lock once per page. 586 */ 587 write_lock(&zram->meta->tb_lock); 588 zram_free_page(zram, index); 589 write_unlock(&zram->meta->tb_lock); 590 index++; 591 n -= PAGE_SIZE; 592 } 593 } 594 595 static void zram_reset_device(struct zram *zram, bool reset_capacity) 596 { 597 size_t index; 598 struct zram_meta *meta; 599 600 down_write(&zram->init_lock); 601 if (!init_done(zram)) { 602 up_write(&zram->init_lock); 603 return; 604 } 605 606 meta = zram->meta; 607 /* Free all pages that are still in this zram device */ 608 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) { 609 unsigned long handle = meta->table[index].handle; 610 if (!handle) 611 continue; 612 613 zs_free(meta->mem_pool, handle); 614 } 615 616 zcomp_destroy(zram->comp); 617 zram->max_comp_streams = 1; 618 619 zram_meta_free(zram->meta); 620 zram->meta = NULL; 621 /* Reset stats */ 622 memset(&zram->stats, 0, sizeof(zram->stats)); 623 624 zram->disksize = 0; 625 if (reset_capacity) 626 set_capacity(zram->disk, 0); 627 up_write(&zram->init_lock); 628 } 629 630 static ssize_t disksize_store(struct device *dev, 631 struct device_attribute *attr, const char *buf, size_t len) 632 { 633 u64 disksize; 634 struct zcomp *comp; 635 struct zram_meta *meta; 636 struct zram *zram = dev_to_zram(dev); 637 int err; 638 639 disksize = memparse(buf, NULL); 640 if (!disksize) 641 return -EINVAL; 642 643 disksize = PAGE_ALIGN(disksize); 644 meta = zram_meta_alloc(disksize); 645 if (!meta) 646 return -ENOMEM; 647 648 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 649 if (IS_ERR(comp)) { 650 pr_info("Cannot initialise %s compressing backend\n", 651 zram->compressor); 652 err = PTR_ERR(comp); 653 goto out_free_meta; 654 } 655 656 down_write(&zram->init_lock); 657 if (init_done(zram)) { 658 pr_info("Cannot change disksize for initialized device\n"); 659 err = -EBUSY; 660 goto out_destroy_comp; 661 } 662 663 zram->meta = meta; 664 zram->comp = comp; 665 zram->disksize = disksize; 666 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 667 up_write(&zram->init_lock); 668 return len; 669 670 out_destroy_comp: 671 up_write(&zram->init_lock); 672 zcomp_destroy(comp); 673 out_free_meta: 674 zram_meta_free(meta); 675 return err; 676 } 677 678 static ssize_t reset_store(struct device *dev, 679 struct device_attribute *attr, const char *buf, size_t len) 680 { 681 int ret; 682 unsigned short do_reset; 683 struct zram *zram; 684 struct block_device *bdev; 685 686 zram = dev_to_zram(dev); 687 bdev = bdget_disk(zram->disk, 0); 688 689 if (!bdev) 690 return -ENOMEM; 691 692 /* Do not reset an active device! */ 693 if (bdev->bd_holders) { 694 ret = -EBUSY; 695 goto out; 696 } 697 698 ret = kstrtou16(buf, 10, &do_reset); 699 if (ret) 700 goto out; 701 702 if (!do_reset) { 703 ret = -EINVAL; 704 goto out; 705 } 706 707 /* Make sure all pending I/O is finished */ 708 fsync_bdev(bdev); 709 bdput(bdev); 710 711 zram_reset_device(zram, true); 712 return len; 713 714 out: 715 bdput(bdev); 716 return ret; 717 } 718 719 static void __zram_make_request(struct zram *zram, struct bio *bio) 720 { 721 int offset; 722 u32 index; 723 struct bio_vec bvec; 724 struct bvec_iter iter; 725 726 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 727 offset = (bio->bi_iter.bi_sector & 728 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 729 730 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 731 zram_bio_discard(zram, index, offset, bio); 732 bio_endio(bio, 0); 733 return; 734 } 735 736 bio_for_each_segment(bvec, bio, iter) { 737 int max_transfer_size = PAGE_SIZE - offset; 738 739 if (bvec.bv_len > max_transfer_size) { 740 /* 741 * zram_bvec_rw() can only make operation on a single 742 * zram page. Split the bio vector. 743 */ 744 struct bio_vec bv; 745 746 bv.bv_page = bvec.bv_page; 747 bv.bv_len = max_transfer_size; 748 bv.bv_offset = bvec.bv_offset; 749 750 if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0) 751 goto out; 752 753 bv.bv_len = bvec.bv_len - max_transfer_size; 754 bv.bv_offset += max_transfer_size; 755 if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0) 756 goto out; 757 } else 758 if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0) 759 goto out; 760 761 update_position(&index, &offset, &bvec); 762 } 763 764 set_bit(BIO_UPTODATE, &bio->bi_flags); 765 bio_endio(bio, 0); 766 return; 767 768 out: 769 bio_io_error(bio); 770 } 771 772 /* 773 * Handler function for all zram I/O requests. 774 */ 775 static void zram_make_request(struct request_queue *queue, struct bio *bio) 776 { 777 struct zram *zram = queue->queuedata; 778 779 down_read(&zram->init_lock); 780 if (unlikely(!init_done(zram))) 781 goto error; 782 783 if (!valid_io_request(zram, bio)) { 784 atomic64_inc(&zram->stats.invalid_io); 785 goto error; 786 } 787 788 __zram_make_request(zram, bio); 789 up_read(&zram->init_lock); 790 791 return; 792 793 error: 794 up_read(&zram->init_lock); 795 bio_io_error(bio); 796 } 797 798 static void zram_slot_free_notify(struct block_device *bdev, 799 unsigned long index) 800 { 801 struct zram *zram; 802 struct zram_meta *meta; 803 804 zram = bdev->bd_disk->private_data; 805 meta = zram->meta; 806 807 write_lock(&meta->tb_lock); 808 zram_free_page(zram, index); 809 write_unlock(&meta->tb_lock); 810 atomic64_inc(&zram->stats.notify_free); 811 } 812 813 static const struct block_device_operations zram_devops = { 814 .swap_slot_free_notify = zram_slot_free_notify, 815 .owner = THIS_MODULE 816 }; 817 818 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR, 819 disksize_show, disksize_store); 820 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL); 821 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store); 822 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL); 823 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL); 824 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR, 825 max_comp_streams_show, max_comp_streams_store); 826 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR, 827 comp_algorithm_show, comp_algorithm_store); 828 829 ZRAM_ATTR_RO(num_reads); 830 ZRAM_ATTR_RO(num_writes); 831 ZRAM_ATTR_RO(failed_reads); 832 ZRAM_ATTR_RO(failed_writes); 833 ZRAM_ATTR_RO(invalid_io); 834 ZRAM_ATTR_RO(notify_free); 835 ZRAM_ATTR_RO(zero_pages); 836 ZRAM_ATTR_RO(compr_data_size); 837 838 static struct attribute *zram_disk_attrs[] = { 839 &dev_attr_disksize.attr, 840 &dev_attr_initstate.attr, 841 &dev_attr_reset.attr, 842 &dev_attr_num_reads.attr, 843 &dev_attr_num_writes.attr, 844 &dev_attr_failed_reads.attr, 845 &dev_attr_failed_writes.attr, 846 &dev_attr_invalid_io.attr, 847 &dev_attr_notify_free.attr, 848 &dev_attr_zero_pages.attr, 849 &dev_attr_orig_data_size.attr, 850 &dev_attr_compr_data_size.attr, 851 &dev_attr_mem_used_total.attr, 852 &dev_attr_max_comp_streams.attr, 853 &dev_attr_comp_algorithm.attr, 854 NULL, 855 }; 856 857 static struct attribute_group zram_disk_attr_group = { 858 .attrs = zram_disk_attrs, 859 }; 860 861 static int create_device(struct zram *zram, int device_id) 862 { 863 int ret = -ENOMEM; 864 865 init_rwsem(&zram->init_lock); 866 867 zram->queue = blk_alloc_queue(GFP_KERNEL); 868 if (!zram->queue) { 869 pr_err("Error allocating disk queue for device %d\n", 870 device_id); 871 goto out; 872 } 873 874 blk_queue_make_request(zram->queue, zram_make_request); 875 zram->queue->queuedata = zram; 876 877 /* gendisk structure */ 878 zram->disk = alloc_disk(1); 879 if (!zram->disk) { 880 pr_warn("Error allocating disk structure for device %d\n", 881 device_id); 882 goto out_free_queue; 883 } 884 885 zram->disk->major = zram_major; 886 zram->disk->first_minor = device_id; 887 zram->disk->fops = &zram_devops; 888 zram->disk->queue = zram->queue; 889 zram->disk->private_data = zram; 890 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 891 892 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 893 set_capacity(zram->disk, 0); 894 /* zram devices sort of resembles non-rotational disks */ 895 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 896 /* 897 * To ensure that we always get PAGE_SIZE aligned 898 * and n*PAGE_SIZED sized I/O requests. 899 */ 900 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 901 blk_queue_logical_block_size(zram->disk->queue, 902 ZRAM_LOGICAL_BLOCK_SIZE); 903 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 904 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 905 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 906 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 907 /* 908 * zram_bio_discard() will clear all logical blocks if logical block 909 * size is identical with physical block size(PAGE_SIZE). But if it is 910 * different, we will skip discarding some parts of logical blocks in 911 * the part of the request range which isn't aligned to physical block 912 * size. So we can't ensure that all discarded logical blocks are 913 * zeroed. 914 */ 915 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 916 zram->disk->queue->limits.discard_zeroes_data = 1; 917 else 918 zram->disk->queue->limits.discard_zeroes_data = 0; 919 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 920 921 add_disk(zram->disk); 922 923 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 924 &zram_disk_attr_group); 925 if (ret < 0) { 926 pr_warn("Error creating sysfs group"); 927 goto out_free_disk; 928 } 929 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 930 zram->meta = NULL; 931 zram->max_comp_streams = 1; 932 return 0; 933 934 out_free_disk: 935 del_gendisk(zram->disk); 936 put_disk(zram->disk); 937 out_free_queue: 938 blk_cleanup_queue(zram->queue); 939 out: 940 return ret; 941 } 942 943 static void destroy_device(struct zram *zram) 944 { 945 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 946 &zram_disk_attr_group); 947 948 del_gendisk(zram->disk); 949 put_disk(zram->disk); 950 951 blk_cleanup_queue(zram->queue); 952 } 953 954 static int __init zram_init(void) 955 { 956 int ret, dev_id; 957 958 if (num_devices > max_num_devices) { 959 pr_warn("Invalid value for num_devices: %u\n", 960 num_devices); 961 ret = -EINVAL; 962 goto out; 963 } 964 965 zram_major = register_blkdev(0, "zram"); 966 if (zram_major <= 0) { 967 pr_warn("Unable to get major number\n"); 968 ret = -EBUSY; 969 goto out; 970 } 971 972 /* Allocate the device array and initialize each one */ 973 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL); 974 if (!zram_devices) { 975 ret = -ENOMEM; 976 goto unregister; 977 } 978 979 for (dev_id = 0; dev_id < num_devices; dev_id++) { 980 ret = create_device(&zram_devices[dev_id], dev_id); 981 if (ret) 982 goto free_devices; 983 } 984 985 pr_info("Created %u device(s) ...\n", num_devices); 986 987 return 0; 988 989 free_devices: 990 while (dev_id) 991 destroy_device(&zram_devices[--dev_id]); 992 kfree(zram_devices); 993 unregister: 994 unregister_blkdev(zram_major, "zram"); 995 out: 996 return ret; 997 } 998 999 static void __exit zram_exit(void) 1000 { 1001 int i; 1002 struct zram *zram; 1003 1004 for (i = 0; i < num_devices; i++) { 1005 zram = &zram_devices[i]; 1006 1007 destroy_device(zram); 1008 /* 1009 * Shouldn't access zram->disk after destroy_device 1010 * because destroy_device already released zram->disk. 1011 */ 1012 zram_reset_device(zram, false); 1013 } 1014 1015 unregister_blkdev(zram_major, "zram"); 1016 1017 kfree(zram_devices); 1018 pr_debug("Cleanup done!\n"); 1019 } 1020 1021 module_init(zram_init); 1022 module_exit(zram_exit); 1023 1024 module_param(num_devices, uint, 0); 1025 MODULE_PARM_DESC(num_devices, "Number of zram devices"); 1026 1027 MODULE_LICENSE("Dual BSD/GPL"); 1028 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1029 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1030