xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision a2818ee4)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 				u32 index, int offset, struct bio *bio);
57 
58 
59 static int zram_slot_trylock(struct zram *zram, u32 index)
60 {
61 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
62 }
63 
64 static void zram_slot_lock(struct zram *zram, u32 index)
65 {
66 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68 
69 static void zram_slot_unlock(struct zram *zram, u32 index)
70 {
71 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73 
74 static inline bool init_done(struct zram *zram)
75 {
76 	return zram->disksize;
77 }
78 
79 static inline struct zram *dev_to_zram(struct device *dev)
80 {
81 	return (struct zram *)dev_to_disk(dev)->private_data;
82 }
83 
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 {
86 	return zram->table[index].handle;
87 }
88 
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 {
91 	zram->table[index].handle = handle;
92 }
93 
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 			enum zram_pageflags flag)
97 {
98 	return zram->table[index].flags & BIT(flag);
99 }
100 
101 static void zram_set_flag(struct zram *zram, u32 index,
102 			enum zram_pageflags flag)
103 {
104 	zram->table[index].flags |= BIT(flag);
105 }
106 
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 			enum zram_pageflags flag)
109 {
110 	zram->table[index].flags &= ~BIT(flag);
111 }
112 
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 			unsigned long element)
115 {
116 	zram->table[index].element = element;
117 }
118 
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 {
121 	return zram->table[index].element;
122 }
123 
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 {
126 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
127 }
128 
129 static void zram_set_obj_size(struct zram *zram,
130 					u32 index, size_t size)
131 {
132 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
133 
134 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
135 }
136 
137 static inline bool zram_allocated(struct zram *zram, u32 index)
138 {
139 	return zram_get_obj_size(zram, index) ||
140 			zram_test_flag(zram, index, ZRAM_SAME) ||
141 			zram_test_flag(zram, index, ZRAM_WB);
142 }
143 
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
146 {
147 	return bvec->bv_len != PAGE_SIZE;
148 }
149 #else
150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 	return false;
153 }
154 #endif
155 
156 /*
157  * Check if request is within bounds and aligned on zram logical blocks.
158  */
159 static inline bool valid_io_request(struct zram *zram,
160 		sector_t start, unsigned int size)
161 {
162 	u64 end, bound;
163 
164 	/* unaligned request */
165 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 		return false;
167 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 		return false;
169 
170 	end = start + (size >> SECTOR_SHIFT);
171 	bound = zram->disksize >> SECTOR_SHIFT;
172 	/* out of range range */
173 	if (unlikely(start >= bound || end > bound || start > end))
174 		return false;
175 
176 	/* I/O request is valid */
177 	return true;
178 }
179 
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
181 {
182 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
183 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
184 }
185 
186 static inline void update_used_max(struct zram *zram,
187 					const unsigned long pages)
188 {
189 	unsigned long old_max, cur_max;
190 
191 	old_max = atomic_long_read(&zram->stats.max_used_pages);
192 
193 	do {
194 		cur_max = old_max;
195 		if (pages > cur_max)
196 			old_max = atomic_long_cmpxchg(
197 				&zram->stats.max_used_pages, cur_max, pages);
198 	} while (old_max != cur_max);
199 }
200 
201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 					unsigned long value)
203 {
204 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 	memset_l(ptr, value, len / sizeof(unsigned long));
206 }
207 
208 static bool page_same_filled(void *ptr, unsigned long *element)
209 {
210 	unsigned int pos;
211 	unsigned long *page;
212 	unsigned long val;
213 
214 	page = (unsigned long *)ptr;
215 	val = page[0];
216 
217 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
218 		if (val != page[pos])
219 			return false;
220 	}
221 
222 	*element = val;
223 
224 	return true;
225 }
226 
227 static ssize_t initstate_show(struct device *dev,
228 		struct device_attribute *attr, char *buf)
229 {
230 	u32 val;
231 	struct zram *zram = dev_to_zram(dev);
232 
233 	down_read(&zram->init_lock);
234 	val = init_done(zram);
235 	up_read(&zram->init_lock);
236 
237 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
238 }
239 
240 static ssize_t disksize_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct zram *zram = dev_to_zram(dev);
244 
245 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
246 }
247 
248 static ssize_t mem_limit_store(struct device *dev,
249 		struct device_attribute *attr, const char *buf, size_t len)
250 {
251 	u64 limit;
252 	char *tmp;
253 	struct zram *zram = dev_to_zram(dev);
254 
255 	limit = memparse(buf, &tmp);
256 	if (buf == tmp) /* no chars parsed, invalid input */
257 		return -EINVAL;
258 
259 	down_write(&zram->init_lock);
260 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 	up_write(&zram->init_lock);
262 
263 	return len;
264 }
265 
266 static ssize_t mem_used_max_store(struct device *dev,
267 		struct device_attribute *attr, const char *buf, size_t len)
268 {
269 	int err;
270 	unsigned long val;
271 	struct zram *zram = dev_to_zram(dev);
272 
273 	err = kstrtoul(buf, 10, &val);
274 	if (err || val != 0)
275 		return -EINVAL;
276 
277 	down_read(&zram->init_lock);
278 	if (init_done(zram)) {
279 		atomic_long_set(&zram->stats.max_used_pages,
280 				zs_get_total_pages(zram->mem_pool));
281 	}
282 	up_read(&zram->init_lock);
283 
284 	return len;
285 }
286 
287 static ssize_t idle_store(struct device *dev,
288 		struct device_attribute *attr, const char *buf, size_t len)
289 {
290 	struct zram *zram = dev_to_zram(dev);
291 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
292 	int index;
293 	char mode_buf[8];
294 	ssize_t sz;
295 
296 	sz = strscpy(mode_buf, buf, sizeof(mode_buf));
297 	if (sz <= 0)
298 		return -EINVAL;
299 
300 	/* ignore trailing new line */
301 	if (mode_buf[sz - 1] == '\n')
302 		mode_buf[sz - 1] = 0x00;
303 
304 	if (strcmp(mode_buf, "all"))
305 		return -EINVAL;
306 
307 	down_read(&zram->init_lock);
308 	if (!init_done(zram)) {
309 		up_read(&zram->init_lock);
310 		return -EINVAL;
311 	}
312 
313 	for (index = 0; index < nr_pages; index++) {
314 		/*
315 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
316 		 * See the comment in writeback_store.
317 		 */
318 		zram_slot_lock(zram, index);
319 		if (!zram_allocated(zram, index) ||
320 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
321 			goto next;
322 		zram_set_flag(zram, index, ZRAM_IDLE);
323 next:
324 		zram_slot_unlock(zram, index);
325 	}
326 
327 	up_read(&zram->init_lock);
328 
329 	return len;
330 }
331 
332 #ifdef CONFIG_ZRAM_WRITEBACK
333 static ssize_t writeback_limit_store(struct device *dev,
334 		struct device_attribute *attr, const char *buf, size_t len)
335 {
336 	struct zram *zram = dev_to_zram(dev);
337 	u64 val;
338 	ssize_t ret = -EINVAL;
339 
340 	if (kstrtoull(buf, 10, &val))
341 		return ret;
342 
343 	down_read(&zram->init_lock);
344 	atomic64_set(&zram->stats.bd_wb_limit, val);
345 	if (val == 0)
346 		zram->stop_writeback = false;
347 	up_read(&zram->init_lock);
348 	ret = len;
349 
350 	return ret;
351 }
352 
353 static ssize_t writeback_limit_show(struct device *dev,
354 		struct device_attribute *attr, char *buf)
355 {
356 	u64 val;
357 	struct zram *zram = dev_to_zram(dev);
358 
359 	down_read(&zram->init_lock);
360 	val = atomic64_read(&zram->stats.bd_wb_limit);
361 	up_read(&zram->init_lock);
362 
363 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
364 }
365 
366 static void reset_bdev(struct zram *zram)
367 {
368 	struct block_device *bdev;
369 
370 	if (!zram->backing_dev)
371 		return;
372 
373 	bdev = zram->bdev;
374 	if (zram->old_block_size)
375 		set_blocksize(bdev, zram->old_block_size);
376 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
377 	/* hope filp_close flush all of IO */
378 	filp_close(zram->backing_dev, NULL);
379 	zram->backing_dev = NULL;
380 	zram->old_block_size = 0;
381 	zram->bdev = NULL;
382 	zram->disk->queue->backing_dev_info->capabilities |=
383 				BDI_CAP_SYNCHRONOUS_IO;
384 	kvfree(zram->bitmap);
385 	zram->bitmap = NULL;
386 }
387 
388 static ssize_t backing_dev_show(struct device *dev,
389 		struct device_attribute *attr, char *buf)
390 {
391 	struct zram *zram = dev_to_zram(dev);
392 	struct file *file = zram->backing_dev;
393 	char *p;
394 	ssize_t ret;
395 
396 	down_read(&zram->init_lock);
397 	if (!zram->backing_dev) {
398 		memcpy(buf, "none\n", 5);
399 		up_read(&zram->init_lock);
400 		return 5;
401 	}
402 
403 	p = file_path(file, buf, PAGE_SIZE - 1);
404 	if (IS_ERR(p)) {
405 		ret = PTR_ERR(p);
406 		goto out;
407 	}
408 
409 	ret = strlen(p);
410 	memmove(buf, p, ret);
411 	buf[ret++] = '\n';
412 out:
413 	up_read(&zram->init_lock);
414 	return ret;
415 }
416 
417 static ssize_t backing_dev_store(struct device *dev,
418 		struct device_attribute *attr, const char *buf, size_t len)
419 {
420 	char *file_name;
421 	size_t sz;
422 	struct file *backing_dev = NULL;
423 	struct inode *inode;
424 	struct address_space *mapping;
425 	unsigned int bitmap_sz, old_block_size = 0;
426 	unsigned long nr_pages, *bitmap = NULL;
427 	struct block_device *bdev = NULL;
428 	int err;
429 	struct zram *zram = dev_to_zram(dev);
430 
431 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
432 	if (!file_name)
433 		return -ENOMEM;
434 
435 	down_write(&zram->init_lock);
436 	if (init_done(zram)) {
437 		pr_info("Can't setup backing device for initialized device\n");
438 		err = -EBUSY;
439 		goto out;
440 	}
441 
442 	strlcpy(file_name, buf, PATH_MAX);
443 	/* ignore trailing newline */
444 	sz = strlen(file_name);
445 	if (sz > 0 && file_name[sz - 1] == '\n')
446 		file_name[sz - 1] = 0x00;
447 
448 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
449 	if (IS_ERR(backing_dev)) {
450 		err = PTR_ERR(backing_dev);
451 		backing_dev = NULL;
452 		goto out;
453 	}
454 
455 	mapping = backing_dev->f_mapping;
456 	inode = mapping->host;
457 
458 	/* Support only block device in this moment */
459 	if (!S_ISBLK(inode->i_mode)) {
460 		err = -ENOTBLK;
461 		goto out;
462 	}
463 
464 	bdev = bdgrab(I_BDEV(inode));
465 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
466 	if (err < 0) {
467 		bdev = NULL;
468 		goto out;
469 	}
470 
471 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
472 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
473 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
474 	if (!bitmap) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	old_block_size = block_size(bdev);
480 	err = set_blocksize(bdev, PAGE_SIZE);
481 	if (err)
482 		goto out;
483 
484 	reset_bdev(zram);
485 
486 	zram->old_block_size = old_block_size;
487 	zram->bdev = bdev;
488 	zram->backing_dev = backing_dev;
489 	zram->bitmap = bitmap;
490 	zram->nr_pages = nr_pages;
491 	/*
492 	 * With writeback feature, zram does asynchronous IO so it's no longer
493 	 * synchronous device so let's remove synchronous io flag. Othewise,
494 	 * upper layer(e.g., swap) could wait IO completion rather than
495 	 * (submit and return), which will cause system sluggish.
496 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
497 	 * upper layer expects IO was done so it could deallocate the page
498 	 * freely but in fact, IO is going on so finally could cause
499 	 * use-after-free when the IO is really done.
500 	 */
501 	zram->disk->queue->backing_dev_info->capabilities &=
502 			~BDI_CAP_SYNCHRONOUS_IO;
503 	up_write(&zram->init_lock);
504 
505 	pr_info("setup backing device %s\n", file_name);
506 	kfree(file_name);
507 
508 	return len;
509 out:
510 	if (bitmap)
511 		kvfree(bitmap);
512 
513 	if (bdev)
514 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
515 
516 	if (backing_dev)
517 		filp_close(backing_dev, NULL);
518 
519 	up_write(&zram->init_lock);
520 
521 	kfree(file_name);
522 
523 	return err;
524 }
525 
526 static unsigned long alloc_block_bdev(struct zram *zram)
527 {
528 	unsigned long blk_idx = 1;
529 retry:
530 	/* skip 0 bit to confuse zram.handle = 0 */
531 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
532 	if (blk_idx == zram->nr_pages)
533 		return 0;
534 
535 	if (test_and_set_bit(blk_idx, zram->bitmap))
536 		goto retry;
537 
538 	atomic64_inc(&zram->stats.bd_count);
539 	return blk_idx;
540 }
541 
542 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
543 {
544 	int was_set;
545 
546 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
547 	WARN_ON_ONCE(!was_set);
548 	atomic64_dec(&zram->stats.bd_count);
549 }
550 
551 static void zram_page_end_io(struct bio *bio)
552 {
553 	struct page *page = bio_first_page_all(bio);
554 
555 	page_endio(page, op_is_write(bio_op(bio)),
556 			blk_status_to_errno(bio->bi_status));
557 	bio_put(bio);
558 }
559 
560 /*
561  * Returns 1 if the submission is successful.
562  */
563 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
564 			unsigned long entry, struct bio *parent)
565 {
566 	struct bio *bio;
567 
568 	bio = bio_alloc(GFP_ATOMIC, 1);
569 	if (!bio)
570 		return -ENOMEM;
571 
572 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
573 	bio_set_dev(bio, zram->bdev);
574 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
575 		bio_put(bio);
576 		return -EIO;
577 	}
578 
579 	if (!parent) {
580 		bio->bi_opf = REQ_OP_READ;
581 		bio->bi_end_io = zram_page_end_io;
582 	} else {
583 		bio->bi_opf = parent->bi_opf;
584 		bio_chain(bio, parent);
585 	}
586 
587 	submit_bio(bio);
588 	return 1;
589 }
590 
591 #define HUGE_WRITEBACK 0x1
592 #define IDLE_WRITEBACK 0x2
593 
594 static ssize_t writeback_store(struct device *dev,
595 		struct device_attribute *attr, const char *buf, size_t len)
596 {
597 	struct zram *zram = dev_to_zram(dev);
598 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
599 	unsigned long index;
600 	struct bio bio;
601 	struct bio_vec bio_vec;
602 	struct page *page;
603 	ssize_t ret, sz;
604 	char mode_buf[8];
605 	unsigned long mode = -1UL;
606 	unsigned long blk_idx = 0;
607 
608 	sz = strscpy(mode_buf, buf, sizeof(mode_buf));
609 	if (sz <= 0)
610 		return -EINVAL;
611 
612 	/* ignore trailing newline */
613 	if (mode_buf[sz - 1] == '\n')
614 		mode_buf[sz - 1] = 0x00;
615 
616 	if (!strcmp(mode_buf, "idle"))
617 		mode = IDLE_WRITEBACK;
618 	else if (!strcmp(mode_buf, "huge"))
619 		mode = HUGE_WRITEBACK;
620 
621 	if (mode == -1UL)
622 		return -EINVAL;
623 
624 	down_read(&zram->init_lock);
625 	if (!init_done(zram)) {
626 		ret = -EINVAL;
627 		goto release_init_lock;
628 	}
629 
630 	if (!zram->backing_dev) {
631 		ret = -ENODEV;
632 		goto release_init_lock;
633 	}
634 
635 	page = alloc_page(GFP_KERNEL);
636 	if (!page) {
637 		ret = -ENOMEM;
638 		goto release_init_lock;
639 	}
640 
641 	for (index = 0; index < nr_pages; index++) {
642 		struct bio_vec bvec;
643 
644 		bvec.bv_page = page;
645 		bvec.bv_len = PAGE_SIZE;
646 		bvec.bv_offset = 0;
647 
648 		if (zram->stop_writeback) {
649 			ret = -EIO;
650 			break;
651 		}
652 
653 		if (!blk_idx) {
654 			blk_idx = alloc_block_bdev(zram);
655 			if (!blk_idx) {
656 				ret = -ENOSPC;
657 				break;
658 			}
659 		}
660 
661 		zram_slot_lock(zram, index);
662 		if (!zram_allocated(zram, index))
663 			goto next;
664 
665 		if (zram_test_flag(zram, index, ZRAM_WB) ||
666 				zram_test_flag(zram, index, ZRAM_SAME) ||
667 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
668 			goto next;
669 
670 		if ((mode & IDLE_WRITEBACK &&
671 			  !zram_test_flag(zram, index, ZRAM_IDLE)) &&
672 		    (mode & HUGE_WRITEBACK &&
673 			  !zram_test_flag(zram, index, ZRAM_HUGE)))
674 			goto next;
675 		/*
676 		 * Clearing ZRAM_UNDER_WB is duty of caller.
677 		 * IOW, zram_free_page never clear it.
678 		 */
679 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
680 		/* Need for hugepage writeback racing */
681 		zram_set_flag(zram, index, ZRAM_IDLE);
682 		zram_slot_unlock(zram, index);
683 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
684 			zram_slot_lock(zram, index);
685 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
686 			zram_clear_flag(zram, index, ZRAM_IDLE);
687 			zram_slot_unlock(zram, index);
688 			continue;
689 		}
690 
691 		bio_init(&bio, &bio_vec, 1);
692 		bio_set_dev(&bio, zram->bdev);
693 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
694 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
695 
696 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
697 				bvec.bv_offset);
698 		/*
699 		 * XXX: A single page IO would be inefficient for write
700 		 * but it would be not bad as starter.
701 		 */
702 		ret = submit_bio_wait(&bio);
703 		if (ret) {
704 			zram_slot_lock(zram, index);
705 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
706 			zram_clear_flag(zram, index, ZRAM_IDLE);
707 			zram_slot_unlock(zram, index);
708 			continue;
709 		}
710 
711 		atomic64_inc(&zram->stats.bd_writes);
712 		/*
713 		 * We released zram_slot_lock so need to check if the slot was
714 		 * changed. If there is freeing for the slot, we can catch it
715 		 * easily by zram_allocated.
716 		 * A subtle case is the slot is freed/reallocated/marked as
717 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
718 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
719 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
720 		 */
721 		zram_slot_lock(zram, index);
722 		if (!zram_allocated(zram, index) ||
723 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
724 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
725 			zram_clear_flag(zram, index, ZRAM_IDLE);
726 			goto next;
727 		}
728 
729 		zram_free_page(zram, index);
730 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
731 		zram_set_flag(zram, index, ZRAM_WB);
732 		zram_set_element(zram, index, blk_idx);
733 		blk_idx = 0;
734 		atomic64_inc(&zram->stats.pages_stored);
735 		if (atomic64_add_unless(&zram->stats.bd_wb_limit,
736 					-1 << (PAGE_SHIFT - 12), 0)) {
737 			if (atomic64_read(&zram->stats.bd_wb_limit) == 0)
738 				zram->stop_writeback = true;
739 		}
740 next:
741 		zram_slot_unlock(zram, index);
742 	}
743 
744 	if (blk_idx)
745 		free_block_bdev(zram, blk_idx);
746 	ret = len;
747 	__free_page(page);
748 release_init_lock:
749 	up_read(&zram->init_lock);
750 
751 	return ret;
752 }
753 
754 struct zram_work {
755 	struct work_struct work;
756 	struct zram *zram;
757 	unsigned long entry;
758 	struct bio *bio;
759 };
760 
761 #if PAGE_SIZE != 4096
762 static void zram_sync_read(struct work_struct *work)
763 {
764 	struct bio_vec bvec;
765 	struct zram_work *zw = container_of(work, struct zram_work, work);
766 	struct zram *zram = zw->zram;
767 	unsigned long entry = zw->entry;
768 	struct bio *bio = zw->bio;
769 
770 	read_from_bdev_async(zram, &bvec, entry, bio);
771 }
772 
773 /*
774  * Block layer want one ->make_request_fn to be active at a time
775  * so if we use chained IO with parent IO in same context,
776  * it's a deadlock. To avoid, it, it uses worker thread context.
777  */
778 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
779 				unsigned long entry, struct bio *bio)
780 {
781 	struct zram_work work;
782 
783 	work.zram = zram;
784 	work.entry = entry;
785 	work.bio = bio;
786 
787 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
788 	queue_work(system_unbound_wq, &work.work);
789 	flush_work(&work.work);
790 	destroy_work_on_stack(&work.work);
791 
792 	return 1;
793 }
794 #else
795 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
796 				unsigned long entry, struct bio *bio)
797 {
798 	WARN_ON(1);
799 	return -EIO;
800 }
801 #endif
802 
803 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
804 			unsigned long entry, struct bio *parent, bool sync)
805 {
806 	atomic64_inc(&zram->stats.bd_reads);
807 	if (sync)
808 		return read_from_bdev_sync(zram, bvec, entry, parent);
809 	else
810 		return read_from_bdev_async(zram, bvec, entry, parent);
811 }
812 #else
813 static inline void reset_bdev(struct zram *zram) {};
814 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
815 			unsigned long entry, struct bio *parent, bool sync)
816 {
817 	return -EIO;
818 }
819 
820 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
821 #endif
822 
823 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
824 
825 static struct dentry *zram_debugfs_root;
826 
827 static void zram_debugfs_create(void)
828 {
829 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
830 }
831 
832 static void zram_debugfs_destroy(void)
833 {
834 	debugfs_remove_recursive(zram_debugfs_root);
835 }
836 
837 static void zram_accessed(struct zram *zram, u32 index)
838 {
839 	zram_clear_flag(zram, index, ZRAM_IDLE);
840 	zram->table[index].ac_time = ktime_get_boottime();
841 }
842 
843 static ssize_t read_block_state(struct file *file, char __user *buf,
844 				size_t count, loff_t *ppos)
845 {
846 	char *kbuf;
847 	ssize_t index, written = 0;
848 	struct zram *zram = file->private_data;
849 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
850 	struct timespec64 ts;
851 
852 	kbuf = kvmalloc(count, GFP_KERNEL);
853 	if (!kbuf)
854 		return -ENOMEM;
855 
856 	down_read(&zram->init_lock);
857 	if (!init_done(zram)) {
858 		up_read(&zram->init_lock);
859 		kvfree(kbuf);
860 		return -EINVAL;
861 	}
862 
863 	for (index = *ppos; index < nr_pages; index++) {
864 		int copied;
865 
866 		zram_slot_lock(zram, index);
867 		if (!zram_allocated(zram, index))
868 			goto next;
869 
870 		ts = ktime_to_timespec64(zram->table[index].ac_time);
871 		copied = snprintf(kbuf + written, count,
872 			"%12zd %12lld.%06lu %c%c%c%c\n",
873 			index, (s64)ts.tv_sec,
874 			ts.tv_nsec / NSEC_PER_USEC,
875 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
876 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
877 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
878 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
879 
880 		if (count < copied) {
881 			zram_slot_unlock(zram, index);
882 			break;
883 		}
884 		written += copied;
885 		count -= copied;
886 next:
887 		zram_slot_unlock(zram, index);
888 		*ppos += 1;
889 	}
890 
891 	up_read(&zram->init_lock);
892 	if (copy_to_user(buf, kbuf, written))
893 		written = -EFAULT;
894 	kvfree(kbuf);
895 
896 	return written;
897 }
898 
899 static const struct file_operations proc_zram_block_state_op = {
900 	.open = simple_open,
901 	.read = read_block_state,
902 	.llseek = default_llseek,
903 };
904 
905 static void zram_debugfs_register(struct zram *zram)
906 {
907 	if (!zram_debugfs_root)
908 		return;
909 
910 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
911 						zram_debugfs_root);
912 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
913 				zram, &proc_zram_block_state_op);
914 }
915 
916 static void zram_debugfs_unregister(struct zram *zram)
917 {
918 	debugfs_remove_recursive(zram->debugfs_dir);
919 }
920 #else
921 static void zram_debugfs_create(void) {};
922 static void zram_debugfs_destroy(void) {};
923 static void zram_accessed(struct zram *zram, u32 index)
924 {
925 	zram_clear_flag(zram, index, ZRAM_IDLE);
926 };
927 static void zram_debugfs_register(struct zram *zram) {};
928 static void zram_debugfs_unregister(struct zram *zram) {};
929 #endif
930 
931 /*
932  * We switched to per-cpu streams and this attr is not needed anymore.
933  * However, we will keep it around for some time, because:
934  * a) we may revert per-cpu streams in the future
935  * b) it's visible to user space and we need to follow our 2 years
936  *    retirement rule; but we already have a number of 'soon to be
937  *    altered' attrs, so max_comp_streams need to wait for the next
938  *    layoff cycle.
939  */
940 static ssize_t max_comp_streams_show(struct device *dev,
941 		struct device_attribute *attr, char *buf)
942 {
943 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
944 }
945 
946 static ssize_t max_comp_streams_store(struct device *dev,
947 		struct device_attribute *attr, const char *buf, size_t len)
948 {
949 	return len;
950 }
951 
952 static ssize_t comp_algorithm_show(struct device *dev,
953 		struct device_attribute *attr, char *buf)
954 {
955 	size_t sz;
956 	struct zram *zram = dev_to_zram(dev);
957 
958 	down_read(&zram->init_lock);
959 	sz = zcomp_available_show(zram->compressor, buf);
960 	up_read(&zram->init_lock);
961 
962 	return sz;
963 }
964 
965 static ssize_t comp_algorithm_store(struct device *dev,
966 		struct device_attribute *attr, const char *buf, size_t len)
967 {
968 	struct zram *zram = dev_to_zram(dev);
969 	char compressor[ARRAY_SIZE(zram->compressor)];
970 	size_t sz;
971 
972 	strlcpy(compressor, buf, sizeof(compressor));
973 	/* ignore trailing newline */
974 	sz = strlen(compressor);
975 	if (sz > 0 && compressor[sz - 1] == '\n')
976 		compressor[sz - 1] = 0x00;
977 
978 	if (!zcomp_available_algorithm(compressor))
979 		return -EINVAL;
980 
981 	down_write(&zram->init_lock);
982 	if (init_done(zram)) {
983 		up_write(&zram->init_lock);
984 		pr_info("Can't change algorithm for initialized device\n");
985 		return -EBUSY;
986 	}
987 
988 	strcpy(zram->compressor, compressor);
989 	up_write(&zram->init_lock);
990 	return len;
991 }
992 
993 static ssize_t compact_store(struct device *dev,
994 		struct device_attribute *attr, const char *buf, size_t len)
995 {
996 	struct zram *zram = dev_to_zram(dev);
997 
998 	down_read(&zram->init_lock);
999 	if (!init_done(zram)) {
1000 		up_read(&zram->init_lock);
1001 		return -EINVAL;
1002 	}
1003 
1004 	zs_compact(zram->mem_pool);
1005 	up_read(&zram->init_lock);
1006 
1007 	return len;
1008 }
1009 
1010 static ssize_t io_stat_show(struct device *dev,
1011 		struct device_attribute *attr, char *buf)
1012 {
1013 	struct zram *zram = dev_to_zram(dev);
1014 	ssize_t ret;
1015 
1016 	down_read(&zram->init_lock);
1017 	ret = scnprintf(buf, PAGE_SIZE,
1018 			"%8llu %8llu %8llu %8llu\n",
1019 			(u64)atomic64_read(&zram->stats.failed_reads),
1020 			(u64)atomic64_read(&zram->stats.failed_writes),
1021 			(u64)atomic64_read(&zram->stats.invalid_io),
1022 			(u64)atomic64_read(&zram->stats.notify_free));
1023 	up_read(&zram->init_lock);
1024 
1025 	return ret;
1026 }
1027 
1028 static ssize_t mm_stat_show(struct device *dev,
1029 		struct device_attribute *attr, char *buf)
1030 {
1031 	struct zram *zram = dev_to_zram(dev);
1032 	struct zs_pool_stats pool_stats;
1033 	u64 orig_size, mem_used = 0;
1034 	long max_used;
1035 	ssize_t ret;
1036 
1037 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1038 
1039 	down_read(&zram->init_lock);
1040 	if (init_done(zram)) {
1041 		mem_used = zs_get_total_pages(zram->mem_pool);
1042 		zs_pool_stats(zram->mem_pool, &pool_stats);
1043 	}
1044 
1045 	orig_size = atomic64_read(&zram->stats.pages_stored);
1046 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1047 
1048 	ret = scnprintf(buf, PAGE_SIZE,
1049 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1050 			orig_size << PAGE_SHIFT,
1051 			(u64)atomic64_read(&zram->stats.compr_data_size),
1052 			mem_used << PAGE_SHIFT,
1053 			zram->limit_pages << PAGE_SHIFT,
1054 			max_used << PAGE_SHIFT,
1055 			(u64)atomic64_read(&zram->stats.same_pages),
1056 			pool_stats.pages_compacted,
1057 			(u64)atomic64_read(&zram->stats.huge_pages));
1058 	up_read(&zram->init_lock);
1059 
1060 	return ret;
1061 }
1062 
1063 #ifdef CONFIG_ZRAM_WRITEBACK
1064 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1065 static ssize_t bd_stat_show(struct device *dev,
1066 		struct device_attribute *attr, char *buf)
1067 {
1068 	struct zram *zram = dev_to_zram(dev);
1069 	ssize_t ret;
1070 
1071 	down_read(&zram->init_lock);
1072 	ret = scnprintf(buf, PAGE_SIZE,
1073 		"%8llu %8llu %8llu\n",
1074 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1075 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1076 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1077 	up_read(&zram->init_lock);
1078 
1079 	return ret;
1080 }
1081 #endif
1082 
1083 static ssize_t debug_stat_show(struct device *dev,
1084 		struct device_attribute *attr, char *buf)
1085 {
1086 	int version = 1;
1087 	struct zram *zram = dev_to_zram(dev);
1088 	ssize_t ret;
1089 
1090 	down_read(&zram->init_lock);
1091 	ret = scnprintf(buf, PAGE_SIZE,
1092 			"version: %d\n%8llu %8llu\n",
1093 			version,
1094 			(u64)atomic64_read(&zram->stats.writestall),
1095 			(u64)atomic64_read(&zram->stats.miss_free));
1096 	up_read(&zram->init_lock);
1097 
1098 	return ret;
1099 }
1100 
1101 static DEVICE_ATTR_RO(io_stat);
1102 static DEVICE_ATTR_RO(mm_stat);
1103 #ifdef CONFIG_ZRAM_WRITEBACK
1104 static DEVICE_ATTR_RO(bd_stat);
1105 #endif
1106 static DEVICE_ATTR_RO(debug_stat);
1107 
1108 static void zram_meta_free(struct zram *zram, u64 disksize)
1109 {
1110 	size_t num_pages = disksize >> PAGE_SHIFT;
1111 	size_t index;
1112 
1113 	/* Free all pages that are still in this zram device */
1114 	for (index = 0; index < num_pages; index++)
1115 		zram_free_page(zram, index);
1116 
1117 	zs_destroy_pool(zram->mem_pool);
1118 	vfree(zram->table);
1119 }
1120 
1121 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1122 {
1123 	size_t num_pages;
1124 
1125 	num_pages = disksize >> PAGE_SHIFT;
1126 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1127 	if (!zram->table)
1128 		return false;
1129 
1130 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1131 	if (!zram->mem_pool) {
1132 		vfree(zram->table);
1133 		return false;
1134 	}
1135 
1136 	if (!huge_class_size)
1137 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1138 	return true;
1139 }
1140 
1141 /*
1142  * To protect concurrent access to the same index entry,
1143  * caller should hold this table index entry's bit_spinlock to
1144  * indicate this index entry is accessing.
1145  */
1146 static void zram_free_page(struct zram *zram, size_t index)
1147 {
1148 	unsigned long handle;
1149 
1150 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1151 	zram->table[index].ac_time = 0;
1152 #endif
1153 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1154 		zram_clear_flag(zram, index, ZRAM_IDLE);
1155 
1156 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1157 		zram_clear_flag(zram, index, ZRAM_HUGE);
1158 		atomic64_dec(&zram->stats.huge_pages);
1159 	}
1160 
1161 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1162 		zram_clear_flag(zram, index, ZRAM_WB);
1163 		free_block_bdev(zram, zram_get_element(zram, index));
1164 		goto out;
1165 	}
1166 
1167 	/*
1168 	 * No memory is allocated for same element filled pages.
1169 	 * Simply clear same page flag.
1170 	 */
1171 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1172 		zram_clear_flag(zram, index, ZRAM_SAME);
1173 		atomic64_dec(&zram->stats.same_pages);
1174 		goto out;
1175 	}
1176 
1177 	handle = zram_get_handle(zram, index);
1178 	if (!handle)
1179 		return;
1180 
1181 	zs_free(zram->mem_pool, handle);
1182 
1183 	atomic64_sub(zram_get_obj_size(zram, index),
1184 			&zram->stats.compr_data_size);
1185 out:
1186 	atomic64_dec(&zram->stats.pages_stored);
1187 	zram_set_handle(zram, index, 0);
1188 	zram_set_obj_size(zram, index, 0);
1189 	WARN_ON_ONCE(zram->table[index].flags &
1190 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1191 }
1192 
1193 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1194 				struct bio *bio, bool partial_io)
1195 {
1196 	int ret;
1197 	unsigned long handle;
1198 	unsigned int size;
1199 	void *src, *dst;
1200 
1201 	zram_slot_lock(zram, index);
1202 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1203 		struct bio_vec bvec;
1204 
1205 		zram_slot_unlock(zram, index);
1206 
1207 		bvec.bv_page = page;
1208 		bvec.bv_len = PAGE_SIZE;
1209 		bvec.bv_offset = 0;
1210 		return read_from_bdev(zram, &bvec,
1211 				zram_get_element(zram, index),
1212 				bio, partial_io);
1213 	}
1214 
1215 	handle = zram_get_handle(zram, index);
1216 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1217 		unsigned long value;
1218 		void *mem;
1219 
1220 		value = handle ? zram_get_element(zram, index) : 0;
1221 		mem = kmap_atomic(page);
1222 		zram_fill_page(mem, PAGE_SIZE, value);
1223 		kunmap_atomic(mem);
1224 		zram_slot_unlock(zram, index);
1225 		return 0;
1226 	}
1227 
1228 	size = zram_get_obj_size(zram, index);
1229 
1230 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1231 	if (size == PAGE_SIZE) {
1232 		dst = kmap_atomic(page);
1233 		memcpy(dst, src, PAGE_SIZE);
1234 		kunmap_atomic(dst);
1235 		ret = 0;
1236 	} else {
1237 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1238 
1239 		dst = kmap_atomic(page);
1240 		ret = zcomp_decompress(zstrm, src, size, dst);
1241 		kunmap_atomic(dst);
1242 		zcomp_stream_put(zram->comp);
1243 	}
1244 	zs_unmap_object(zram->mem_pool, handle);
1245 	zram_slot_unlock(zram, index);
1246 
1247 	/* Should NEVER happen. Return bio error if it does. */
1248 	if (unlikely(ret))
1249 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1250 
1251 	return ret;
1252 }
1253 
1254 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1255 				u32 index, int offset, struct bio *bio)
1256 {
1257 	int ret;
1258 	struct page *page;
1259 
1260 	page = bvec->bv_page;
1261 	if (is_partial_io(bvec)) {
1262 		/* Use a temporary buffer to decompress the page */
1263 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1264 		if (!page)
1265 			return -ENOMEM;
1266 	}
1267 
1268 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1269 	if (unlikely(ret))
1270 		goto out;
1271 
1272 	if (is_partial_io(bvec)) {
1273 		void *dst = kmap_atomic(bvec->bv_page);
1274 		void *src = kmap_atomic(page);
1275 
1276 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1277 		kunmap_atomic(src);
1278 		kunmap_atomic(dst);
1279 	}
1280 out:
1281 	if (is_partial_io(bvec))
1282 		__free_page(page);
1283 
1284 	return ret;
1285 }
1286 
1287 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1288 				u32 index, struct bio *bio)
1289 {
1290 	int ret = 0;
1291 	unsigned long alloced_pages;
1292 	unsigned long handle = 0;
1293 	unsigned int comp_len = 0;
1294 	void *src, *dst, *mem;
1295 	struct zcomp_strm *zstrm;
1296 	struct page *page = bvec->bv_page;
1297 	unsigned long element = 0;
1298 	enum zram_pageflags flags = 0;
1299 
1300 	mem = kmap_atomic(page);
1301 	if (page_same_filled(mem, &element)) {
1302 		kunmap_atomic(mem);
1303 		/* Free memory associated with this sector now. */
1304 		flags = ZRAM_SAME;
1305 		atomic64_inc(&zram->stats.same_pages);
1306 		goto out;
1307 	}
1308 	kunmap_atomic(mem);
1309 
1310 compress_again:
1311 	zstrm = zcomp_stream_get(zram->comp);
1312 	src = kmap_atomic(page);
1313 	ret = zcomp_compress(zstrm, src, &comp_len);
1314 	kunmap_atomic(src);
1315 
1316 	if (unlikely(ret)) {
1317 		zcomp_stream_put(zram->comp);
1318 		pr_err("Compression failed! err=%d\n", ret);
1319 		zs_free(zram->mem_pool, handle);
1320 		return ret;
1321 	}
1322 
1323 	if (comp_len >= huge_class_size)
1324 		comp_len = PAGE_SIZE;
1325 	/*
1326 	 * handle allocation has 2 paths:
1327 	 * a) fast path is executed with preemption disabled (for
1328 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1329 	 *  since we can't sleep;
1330 	 * b) slow path enables preemption and attempts to allocate
1331 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1332 	 *  put per-cpu compression stream and, thus, to re-do
1333 	 *  the compression once handle is allocated.
1334 	 *
1335 	 * if we have a 'non-null' handle here then we are coming
1336 	 * from the slow path and handle has already been allocated.
1337 	 */
1338 	if (!handle)
1339 		handle = zs_malloc(zram->mem_pool, comp_len,
1340 				__GFP_KSWAPD_RECLAIM |
1341 				__GFP_NOWARN |
1342 				__GFP_HIGHMEM |
1343 				__GFP_MOVABLE);
1344 	if (!handle) {
1345 		zcomp_stream_put(zram->comp);
1346 		atomic64_inc(&zram->stats.writestall);
1347 		handle = zs_malloc(zram->mem_pool, comp_len,
1348 				GFP_NOIO | __GFP_HIGHMEM |
1349 				__GFP_MOVABLE);
1350 		if (handle)
1351 			goto compress_again;
1352 		return -ENOMEM;
1353 	}
1354 
1355 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1356 	update_used_max(zram, alloced_pages);
1357 
1358 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1359 		zcomp_stream_put(zram->comp);
1360 		zs_free(zram->mem_pool, handle);
1361 		return -ENOMEM;
1362 	}
1363 
1364 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1365 
1366 	src = zstrm->buffer;
1367 	if (comp_len == PAGE_SIZE)
1368 		src = kmap_atomic(page);
1369 	memcpy(dst, src, comp_len);
1370 	if (comp_len == PAGE_SIZE)
1371 		kunmap_atomic(src);
1372 
1373 	zcomp_stream_put(zram->comp);
1374 	zs_unmap_object(zram->mem_pool, handle);
1375 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1376 out:
1377 	/*
1378 	 * Free memory associated with this sector
1379 	 * before overwriting unused sectors.
1380 	 */
1381 	zram_slot_lock(zram, index);
1382 	zram_free_page(zram, index);
1383 
1384 	if (comp_len == PAGE_SIZE) {
1385 		zram_set_flag(zram, index, ZRAM_HUGE);
1386 		atomic64_inc(&zram->stats.huge_pages);
1387 	}
1388 
1389 	if (flags) {
1390 		zram_set_flag(zram, index, flags);
1391 		zram_set_element(zram, index, element);
1392 	}  else {
1393 		zram_set_handle(zram, index, handle);
1394 		zram_set_obj_size(zram, index, comp_len);
1395 	}
1396 	zram_slot_unlock(zram, index);
1397 
1398 	/* Update stats */
1399 	atomic64_inc(&zram->stats.pages_stored);
1400 	return ret;
1401 }
1402 
1403 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1404 				u32 index, int offset, struct bio *bio)
1405 {
1406 	int ret;
1407 	struct page *page = NULL;
1408 	void *src;
1409 	struct bio_vec vec;
1410 
1411 	vec = *bvec;
1412 	if (is_partial_io(bvec)) {
1413 		void *dst;
1414 		/*
1415 		 * This is a partial IO. We need to read the full page
1416 		 * before to write the changes.
1417 		 */
1418 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1419 		if (!page)
1420 			return -ENOMEM;
1421 
1422 		ret = __zram_bvec_read(zram, page, index, bio, true);
1423 		if (ret)
1424 			goto out;
1425 
1426 		src = kmap_atomic(bvec->bv_page);
1427 		dst = kmap_atomic(page);
1428 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1429 		kunmap_atomic(dst);
1430 		kunmap_atomic(src);
1431 
1432 		vec.bv_page = page;
1433 		vec.bv_len = PAGE_SIZE;
1434 		vec.bv_offset = 0;
1435 	}
1436 
1437 	ret = __zram_bvec_write(zram, &vec, index, bio);
1438 out:
1439 	if (is_partial_io(bvec))
1440 		__free_page(page);
1441 	return ret;
1442 }
1443 
1444 /*
1445  * zram_bio_discard - handler on discard request
1446  * @index: physical block index in PAGE_SIZE units
1447  * @offset: byte offset within physical block
1448  */
1449 static void zram_bio_discard(struct zram *zram, u32 index,
1450 			     int offset, struct bio *bio)
1451 {
1452 	size_t n = bio->bi_iter.bi_size;
1453 
1454 	/*
1455 	 * zram manages data in physical block size units. Because logical block
1456 	 * size isn't identical with physical block size on some arch, we
1457 	 * could get a discard request pointing to a specific offset within a
1458 	 * certain physical block.  Although we can handle this request by
1459 	 * reading that physiclal block and decompressing and partially zeroing
1460 	 * and re-compressing and then re-storing it, this isn't reasonable
1461 	 * because our intent with a discard request is to save memory.  So
1462 	 * skipping this logical block is appropriate here.
1463 	 */
1464 	if (offset) {
1465 		if (n <= (PAGE_SIZE - offset))
1466 			return;
1467 
1468 		n -= (PAGE_SIZE - offset);
1469 		index++;
1470 	}
1471 
1472 	while (n >= PAGE_SIZE) {
1473 		zram_slot_lock(zram, index);
1474 		zram_free_page(zram, index);
1475 		zram_slot_unlock(zram, index);
1476 		atomic64_inc(&zram->stats.notify_free);
1477 		index++;
1478 		n -= PAGE_SIZE;
1479 	}
1480 }
1481 
1482 /*
1483  * Returns errno if it has some problem. Otherwise return 0 or 1.
1484  * Returns 0 if IO request was done synchronously
1485  * Returns 1 if IO request was successfully submitted.
1486  */
1487 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1488 			int offset, unsigned int op, struct bio *bio)
1489 {
1490 	unsigned long start_time = jiffies;
1491 	struct request_queue *q = zram->disk->queue;
1492 	int ret;
1493 
1494 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1495 			&zram->disk->part0);
1496 
1497 	if (!op_is_write(op)) {
1498 		atomic64_inc(&zram->stats.num_reads);
1499 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1500 		flush_dcache_page(bvec->bv_page);
1501 	} else {
1502 		atomic64_inc(&zram->stats.num_writes);
1503 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1504 	}
1505 
1506 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1507 
1508 	zram_slot_lock(zram, index);
1509 	zram_accessed(zram, index);
1510 	zram_slot_unlock(zram, index);
1511 
1512 	if (unlikely(ret < 0)) {
1513 		if (!op_is_write(op))
1514 			atomic64_inc(&zram->stats.failed_reads);
1515 		else
1516 			atomic64_inc(&zram->stats.failed_writes);
1517 	}
1518 
1519 	return ret;
1520 }
1521 
1522 static void __zram_make_request(struct zram *zram, struct bio *bio)
1523 {
1524 	int offset;
1525 	u32 index;
1526 	struct bio_vec bvec;
1527 	struct bvec_iter iter;
1528 
1529 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1530 	offset = (bio->bi_iter.bi_sector &
1531 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1532 
1533 	switch (bio_op(bio)) {
1534 	case REQ_OP_DISCARD:
1535 	case REQ_OP_WRITE_ZEROES:
1536 		zram_bio_discard(zram, index, offset, bio);
1537 		bio_endio(bio);
1538 		return;
1539 	default:
1540 		break;
1541 	}
1542 
1543 	bio_for_each_segment(bvec, bio, iter) {
1544 		struct bio_vec bv = bvec;
1545 		unsigned int unwritten = bvec.bv_len;
1546 
1547 		do {
1548 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1549 							unwritten);
1550 			if (zram_bvec_rw(zram, &bv, index, offset,
1551 					 bio_op(bio), bio) < 0)
1552 				goto out;
1553 
1554 			bv.bv_offset += bv.bv_len;
1555 			unwritten -= bv.bv_len;
1556 
1557 			update_position(&index, &offset, &bv);
1558 		} while (unwritten);
1559 	}
1560 
1561 	bio_endio(bio);
1562 	return;
1563 
1564 out:
1565 	bio_io_error(bio);
1566 }
1567 
1568 /*
1569  * Handler function for all zram I/O requests.
1570  */
1571 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1572 {
1573 	struct zram *zram = queue->queuedata;
1574 
1575 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1576 					bio->bi_iter.bi_size)) {
1577 		atomic64_inc(&zram->stats.invalid_io);
1578 		goto error;
1579 	}
1580 
1581 	__zram_make_request(zram, bio);
1582 	return BLK_QC_T_NONE;
1583 
1584 error:
1585 	bio_io_error(bio);
1586 	return BLK_QC_T_NONE;
1587 }
1588 
1589 static void zram_slot_free_notify(struct block_device *bdev,
1590 				unsigned long index)
1591 {
1592 	struct zram *zram;
1593 
1594 	zram = bdev->bd_disk->private_data;
1595 
1596 	atomic64_inc(&zram->stats.notify_free);
1597 	if (!zram_slot_trylock(zram, index)) {
1598 		atomic64_inc(&zram->stats.miss_free);
1599 		return;
1600 	}
1601 
1602 	zram_free_page(zram, index);
1603 	zram_slot_unlock(zram, index);
1604 }
1605 
1606 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1607 		       struct page *page, unsigned int op)
1608 {
1609 	int offset, ret;
1610 	u32 index;
1611 	struct zram *zram;
1612 	struct bio_vec bv;
1613 
1614 	if (PageTransHuge(page))
1615 		return -ENOTSUPP;
1616 	zram = bdev->bd_disk->private_data;
1617 
1618 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1619 		atomic64_inc(&zram->stats.invalid_io);
1620 		ret = -EINVAL;
1621 		goto out;
1622 	}
1623 
1624 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1625 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1626 
1627 	bv.bv_page = page;
1628 	bv.bv_len = PAGE_SIZE;
1629 	bv.bv_offset = 0;
1630 
1631 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1632 out:
1633 	/*
1634 	 * If I/O fails, just return error(ie, non-zero) without
1635 	 * calling page_endio.
1636 	 * It causes resubmit the I/O with bio request by upper functions
1637 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1638 	 * bio->bi_end_io does things to handle the error
1639 	 * (e.g., SetPageError, set_page_dirty and extra works).
1640 	 */
1641 	if (unlikely(ret < 0))
1642 		return ret;
1643 
1644 	switch (ret) {
1645 	case 0:
1646 		page_endio(page, op_is_write(op), 0);
1647 		break;
1648 	case 1:
1649 		ret = 0;
1650 		break;
1651 	default:
1652 		WARN_ON(1);
1653 	}
1654 	return ret;
1655 }
1656 
1657 static void zram_reset_device(struct zram *zram)
1658 {
1659 	struct zcomp *comp;
1660 	u64 disksize;
1661 
1662 	down_write(&zram->init_lock);
1663 
1664 	zram->limit_pages = 0;
1665 
1666 	if (!init_done(zram)) {
1667 		up_write(&zram->init_lock);
1668 		return;
1669 	}
1670 
1671 	comp = zram->comp;
1672 	disksize = zram->disksize;
1673 	zram->disksize = 0;
1674 
1675 	set_capacity(zram->disk, 0);
1676 	part_stat_set_all(&zram->disk->part0, 0);
1677 
1678 	up_write(&zram->init_lock);
1679 	/* I/O operation under all of CPU are done so let's free */
1680 	zram_meta_free(zram, disksize);
1681 	memset(&zram->stats, 0, sizeof(zram->stats));
1682 	zcomp_destroy(comp);
1683 	reset_bdev(zram);
1684 }
1685 
1686 static ssize_t disksize_store(struct device *dev,
1687 		struct device_attribute *attr, const char *buf, size_t len)
1688 {
1689 	u64 disksize;
1690 	struct zcomp *comp;
1691 	struct zram *zram = dev_to_zram(dev);
1692 	int err;
1693 
1694 	disksize = memparse(buf, NULL);
1695 	if (!disksize)
1696 		return -EINVAL;
1697 
1698 	down_write(&zram->init_lock);
1699 	if (init_done(zram)) {
1700 		pr_info("Cannot change disksize for initialized device\n");
1701 		err = -EBUSY;
1702 		goto out_unlock;
1703 	}
1704 
1705 	disksize = PAGE_ALIGN(disksize);
1706 	if (!zram_meta_alloc(zram, disksize)) {
1707 		err = -ENOMEM;
1708 		goto out_unlock;
1709 	}
1710 
1711 	comp = zcomp_create(zram->compressor);
1712 	if (IS_ERR(comp)) {
1713 		pr_err("Cannot initialise %s compressing backend\n",
1714 				zram->compressor);
1715 		err = PTR_ERR(comp);
1716 		goto out_free_meta;
1717 	}
1718 
1719 	zram->comp = comp;
1720 	zram->disksize = disksize;
1721 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1722 
1723 	revalidate_disk(zram->disk);
1724 	up_write(&zram->init_lock);
1725 
1726 	return len;
1727 
1728 out_free_meta:
1729 	zram_meta_free(zram, disksize);
1730 out_unlock:
1731 	up_write(&zram->init_lock);
1732 	return err;
1733 }
1734 
1735 static ssize_t reset_store(struct device *dev,
1736 		struct device_attribute *attr, const char *buf, size_t len)
1737 {
1738 	int ret;
1739 	unsigned short do_reset;
1740 	struct zram *zram;
1741 	struct block_device *bdev;
1742 
1743 	ret = kstrtou16(buf, 10, &do_reset);
1744 	if (ret)
1745 		return ret;
1746 
1747 	if (!do_reset)
1748 		return -EINVAL;
1749 
1750 	zram = dev_to_zram(dev);
1751 	bdev = bdget_disk(zram->disk, 0);
1752 	if (!bdev)
1753 		return -ENOMEM;
1754 
1755 	mutex_lock(&bdev->bd_mutex);
1756 	/* Do not reset an active device or claimed device */
1757 	if (bdev->bd_openers || zram->claim) {
1758 		mutex_unlock(&bdev->bd_mutex);
1759 		bdput(bdev);
1760 		return -EBUSY;
1761 	}
1762 
1763 	/* From now on, anyone can't open /dev/zram[0-9] */
1764 	zram->claim = true;
1765 	mutex_unlock(&bdev->bd_mutex);
1766 
1767 	/* Make sure all the pending I/O are finished */
1768 	fsync_bdev(bdev);
1769 	zram_reset_device(zram);
1770 	revalidate_disk(zram->disk);
1771 	bdput(bdev);
1772 
1773 	mutex_lock(&bdev->bd_mutex);
1774 	zram->claim = false;
1775 	mutex_unlock(&bdev->bd_mutex);
1776 
1777 	return len;
1778 }
1779 
1780 static int zram_open(struct block_device *bdev, fmode_t mode)
1781 {
1782 	int ret = 0;
1783 	struct zram *zram;
1784 
1785 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1786 
1787 	zram = bdev->bd_disk->private_data;
1788 	/* zram was claimed to reset so open request fails */
1789 	if (zram->claim)
1790 		ret = -EBUSY;
1791 
1792 	return ret;
1793 }
1794 
1795 static const struct block_device_operations zram_devops = {
1796 	.open = zram_open,
1797 	.swap_slot_free_notify = zram_slot_free_notify,
1798 	.rw_page = zram_rw_page,
1799 	.owner = THIS_MODULE
1800 };
1801 
1802 static DEVICE_ATTR_WO(compact);
1803 static DEVICE_ATTR_RW(disksize);
1804 static DEVICE_ATTR_RO(initstate);
1805 static DEVICE_ATTR_WO(reset);
1806 static DEVICE_ATTR_WO(mem_limit);
1807 static DEVICE_ATTR_WO(mem_used_max);
1808 static DEVICE_ATTR_WO(idle);
1809 static DEVICE_ATTR_RW(max_comp_streams);
1810 static DEVICE_ATTR_RW(comp_algorithm);
1811 #ifdef CONFIG_ZRAM_WRITEBACK
1812 static DEVICE_ATTR_RW(backing_dev);
1813 static DEVICE_ATTR_WO(writeback);
1814 static DEVICE_ATTR_RW(writeback_limit);
1815 #endif
1816 
1817 static struct attribute *zram_disk_attrs[] = {
1818 	&dev_attr_disksize.attr,
1819 	&dev_attr_initstate.attr,
1820 	&dev_attr_reset.attr,
1821 	&dev_attr_compact.attr,
1822 	&dev_attr_mem_limit.attr,
1823 	&dev_attr_mem_used_max.attr,
1824 	&dev_attr_idle.attr,
1825 	&dev_attr_max_comp_streams.attr,
1826 	&dev_attr_comp_algorithm.attr,
1827 #ifdef CONFIG_ZRAM_WRITEBACK
1828 	&dev_attr_backing_dev.attr,
1829 	&dev_attr_writeback.attr,
1830 	&dev_attr_writeback_limit.attr,
1831 #endif
1832 	&dev_attr_io_stat.attr,
1833 	&dev_attr_mm_stat.attr,
1834 #ifdef CONFIG_ZRAM_WRITEBACK
1835 	&dev_attr_bd_stat.attr,
1836 #endif
1837 	&dev_attr_debug_stat.attr,
1838 	NULL,
1839 };
1840 
1841 static const struct attribute_group zram_disk_attr_group = {
1842 	.attrs = zram_disk_attrs,
1843 };
1844 
1845 static const struct attribute_group *zram_disk_attr_groups[] = {
1846 	&zram_disk_attr_group,
1847 	NULL,
1848 };
1849 
1850 /*
1851  * Allocate and initialize new zram device. the function returns
1852  * '>= 0' device_id upon success, and negative value otherwise.
1853  */
1854 static int zram_add(void)
1855 {
1856 	struct zram *zram;
1857 	struct request_queue *queue;
1858 	int ret, device_id;
1859 
1860 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1861 	if (!zram)
1862 		return -ENOMEM;
1863 
1864 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1865 	if (ret < 0)
1866 		goto out_free_dev;
1867 	device_id = ret;
1868 
1869 	init_rwsem(&zram->init_lock);
1870 
1871 	queue = blk_alloc_queue(GFP_KERNEL);
1872 	if (!queue) {
1873 		pr_err("Error allocating disk queue for device %d\n",
1874 			device_id);
1875 		ret = -ENOMEM;
1876 		goto out_free_idr;
1877 	}
1878 
1879 	blk_queue_make_request(queue, zram_make_request);
1880 
1881 	/* gendisk structure */
1882 	zram->disk = alloc_disk(1);
1883 	if (!zram->disk) {
1884 		pr_err("Error allocating disk structure for device %d\n",
1885 			device_id);
1886 		ret = -ENOMEM;
1887 		goto out_free_queue;
1888 	}
1889 
1890 	zram->disk->major = zram_major;
1891 	zram->disk->first_minor = device_id;
1892 	zram->disk->fops = &zram_devops;
1893 	zram->disk->queue = queue;
1894 	zram->disk->queue->queuedata = zram;
1895 	zram->disk->private_data = zram;
1896 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1897 
1898 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1899 	set_capacity(zram->disk, 0);
1900 	/* zram devices sort of resembles non-rotational disks */
1901 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1902 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1903 
1904 	/*
1905 	 * To ensure that we always get PAGE_SIZE aligned
1906 	 * and n*PAGE_SIZED sized I/O requests.
1907 	 */
1908 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1909 	blk_queue_logical_block_size(zram->disk->queue,
1910 					ZRAM_LOGICAL_BLOCK_SIZE);
1911 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1912 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1913 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1914 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1915 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1916 
1917 	/*
1918 	 * zram_bio_discard() will clear all logical blocks if logical block
1919 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1920 	 * different, we will skip discarding some parts of logical blocks in
1921 	 * the part of the request range which isn't aligned to physical block
1922 	 * size.  So we can't ensure that all discarded logical blocks are
1923 	 * zeroed.
1924 	 */
1925 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1926 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1927 
1928 	zram->disk->queue->backing_dev_info->capabilities |=
1929 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1930 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1931 
1932 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1933 
1934 	zram_debugfs_register(zram);
1935 	pr_info("Added device: %s\n", zram->disk->disk_name);
1936 	return device_id;
1937 
1938 out_free_queue:
1939 	blk_cleanup_queue(queue);
1940 out_free_idr:
1941 	idr_remove(&zram_index_idr, device_id);
1942 out_free_dev:
1943 	kfree(zram);
1944 	return ret;
1945 }
1946 
1947 static int zram_remove(struct zram *zram)
1948 {
1949 	struct block_device *bdev;
1950 
1951 	bdev = bdget_disk(zram->disk, 0);
1952 	if (!bdev)
1953 		return -ENOMEM;
1954 
1955 	mutex_lock(&bdev->bd_mutex);
1956 	if (bdev->bd_openers || zram->claim) {
1957 		mutex_unlock(&bdev->bd_mutex);
1958 		bdput(bdev);
1959 		return -EBUSY;
1960 	}
1961 
1962 	zram->claim = true;
1963 	mutex_unlock(&bdev->bd_mutex);
1964 
1965 	zram_debugfs_unregister(zram);
1966 
1967 	/* Make sure all the pending I/O are finished */
1968 	fsync_bdev(bdev);
1969 	zram_reset_device(zram);
1970 	bdput(bdev);
1971 
1972 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1973 
1974 	del_gendisk(zram->disk);
1975 	blk_cleanup_queue(zram->disk->queue);
1976 	put_disk(zram->disk);
1977 	kfree(zram);
1978 	return 0;
1979 }
1980 
1981 /* zram-control sysfs attributes */
1982 
1983 /*
1984  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1985  * sense that reading from this file does alter the state of your system -- it
1986  * creates a new un-initialized zram device and returns back this device's
1987  * device_id (or an error code if it fails to create a new device).
1988  */
1989 static ssize_t hot_add_show(struct class *class,
1990 			struct class_attribute *attr,
1991 			char *buf)
1992 {
1993 	int ret;
1994 
1995 	mutex_lock(&zram_index_mutex);
1996 	ret = zram_add();
1997 	mutex_unlock(&zram_index_mutex);
1998 
1999 	if (ret < 0)
2000 		return ret;
2001 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2002 }
2003 static CLASS_ATTR_RO(hot_add);
2004 
2005 static ssize_t hot_remove_store(struct class *class,
2006 			struct class_attribute *attr,
2007 			const char *buf,
2008 			size_t count)
2009 {
2010 	struct zram *zram;
2011 	int ret, dev_id;
2012 
2013 	/* dev_id is gendisk->first_minor, which is `int' */
2014 	ret = kstrtoint(buf, 10, &dev_id);
2015 	if (ret)
2016 		return ret;
2017 	if (dev_id < 0)
2018 		return -EINVAL;
2019 
2020 	mutex_lock(&zram_index_mutex);
2021 
2022 	zram = idr_find(&zram_index_idr, dev_id);
2023 	if (zram) {
2024 		ret = zram_remove(zram);
2025 		if (!ret)
2026 			idr_remove(&zram_index_idr, dev_id);
2027 	} else {
2028 		ret = -ENODEV;
2029 	}
2030 
2031 	mutex_unlock(&zram_index_mutex);
2032 	return ret ? ret : count;
2033 }
2034 static CLASS_ATTR_WO(hot_remove);
2035 
2036 static struct attribute *zram_control_class_attrs[] = {
2037 	&class_attr_hot_add.attr,
2038 	&class_attr_hot_remove.attr,
2039 	NULL,
2040 };
2041 ATTRIBUTE_GROUPS(zram_control_class);
2042 
2043 static struct class zram_control_class = {
2044 	.name		= "zram-control",
2045 	.owner		= THIS_MODULE,
2046 	.class_groups	= zram_control_class_groups,
2047 };
2048 
2049 static int zram_remove_cb(int id, void *ptr, void *data)
2050 {
2051 	zram_remove(ptr);
2052 	return 0;
2053 }
2054 
2055 static void destroy_devices(void)
2056 {
2057 	class_unregister(&zram_control_class);
2058 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2059 	zram_debugfs_destroy();
2060 	idr_destroy(&zram_index_idr);
2061 	unregister_blkdev(zram_major, "zram");
2062 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2063 }
2064 
2065 static int __init zram_init(void)
2066 {
2067 	int ret;
2068 
2069 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2070 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2071 	if (ret < 0)
2072 		return ret;
2073 
2074 	ret = class_register(&zram_control_class);
2075 	if (ret) {
2076 		pr_err("Unable to register zram-control class\n");
2077 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2078 		return ret;
2079 	}
2080 
2081 	zram_debugfs_create();
2082 	zram_major = register_blkdev(0, "zram");
2083 	if (zram_major <= 0) {
2084 		pr_err("Unable to get major number\n");
2085 		class_unregister(&zram_control_class);
2086 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2087 		return -EBUSY;
2088 	}
2089 
2090 	while (num_devices != 0) {
2091 		mutex_lock(&zram_index_mutex);
2092 		ret = zram_add();
2093 		mutex_unlock(&zram_index_mutex);
2094 		if (ret < 0)
2095 			goto out_error;
2096 		num_devices--;
2097 	}
2098 
2099 	return 0;
2100 
2101 out_error:
2102 	destroy_devices();
2103 	return ret;
2104 }
2105 
2106 static void __exit zram_exit(void)
2107 {
2108 	destroy_devices();
2109 }
2110 
2111 module_init(zram_init);
2112 module_exit(zram_exit);
2113 
2114 module_param(num_devices, uint, 0);
2115 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2116 
2117 MODULE_LICENSE("Dual BSD/GPL");
2118 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2119 MODULE_DESCRIPTION("Compressed RAM Block Device");
2120