xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo-rle";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 				u32 index, int offset, struct bio *bio);
57 
58 
59 static int zram_slot_trylock(struct zram *zram, u32 index)
60 {
61 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
62 }
63 
64 static void zram_slot_lock(struct zram *zram, u32 index)
65 {
66 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68 
69 static void zram_slot_unlock(struct zram *zram, u32 index)
70 {
71 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73 
74 static inline bool init_done(struct zram *zram)
75 {
76 	return zram->disksize;
77 }
78 
79 static inline struct zram *dev_to_zram(struct device *dev)
80 {
81 	return (struct zram *)dev_to_disk(dev)->private_data;
82 }
83 
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 {
86 	return zram->table[index].handle;
87 }
88 
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 {
91 	zram->table[index].handle = handle;
92 }
93 
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 			enum zram_pageflags flag)
97 {
98 	return zram->table[index].flags & BIT(flag);
99 }
100 
101 static void zram_set_flag(struct zram *zram, u32 index,
102 			enum zram_pageflags flag)
103 {
104 	zram->table[index].flags |= BIT(flag);
105 }
106 
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 			enum zram_pageflags flag)
109 {
110 	zram->table[index].flags &= ~BIT(flag);
111 }
112 
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 			unsigned long element)
115 {
116 	zram->table[index].element = element;
117 }
118 
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 {
121 	return zram->table[index].element;
122 }
123 
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 {
126 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
127 }
128 
129 static void zram_set_obj_size(struct zram *zram,
130 					u32 index, size_t size)
131 {
132 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
133 
134 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
135 }
136 
137 static inline bool zram_allocated(struct zram *zram, u32 index)
138 {
139 	return zram_get_obj_size(zram, index) ||
140 			zram_test_flag(zram, index, ZRAM_SAME) ||
141 			zram_test_flag(zram, index, ZRAM_WB);
142 }
143 
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
146 {
147 	return bvec->bv_len != PAGE_SIZE;
148 }
149 #else
150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 	return false;
153 }
154 #endif
155 
156 /*
157  * Check if request is within bounds and aligned on zram logical blocks.
158  */
159 static inline bool valid_io_request(struct zram *zram,
160 		sector_t start, unsigned int size)
161 {
162 	u64 end, bound;
163 
164 	/* unaligned request */
165 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 		return false;
167 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 		return false;
169 
170 	end = start + (size >> SECTOR_SHIFT);
171 	bound = zram->disksize >> SECTOR_SHIFT;
172 	/* out of range range */
173 	if (unlikely(start >= bound || end > bound || start > end))
174 		return false;
175 
176 	/* I/O request is valid */
177 	return true;
178 }
179 
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
181 {
182 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
183 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
184 }
185 
186 static inline void update_used_max(struct zram *zram,
187 					const unsigned long pages)
188 {
189 	unsigned long old_max, cur_max;
190 
191 	old_max = atomic_long_read(&zram->stats.max_used_pages);
192 
193 	do {
194 		cur_max = old_max;
195 		if (pages > cur_max)
196 			old_max = atomic_long_cmpxchg(
197 				&zram->stats.max_used_pages, cur_max, pages);
198 	} while (old_max != cur_max);
199 }
200 
201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 					unsigned long value)
203 {
204 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 	memset_l(ptr, value, len / sizeof(unsigned long));
206 }
207 
208 static bool page_same_filled(void *ptr, unsigned long *element)
209 {
210 	unsigned long *page;
211 	unsigned long val;
212 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
213 
214 	page = (unsigned long *)ptr;
215 	val = page[0];
216 
217 	if (val != page[last_pos])
218 		return false;
219 
220 	for (pos = 1; pos < last_pos; pos++) {
221 		if (val != page[pos])
222 			return false;
223 	}
224 
225 	*element = val;
226 
227 	return true;
228 }
229 
230 static ssize_t initstate_show(struct device *dev,
231 		struct device_attribute *attr, char *buf)
232 {
233 	u32 val;
234 	struct zram *zram = dev_to_zram(dev);
235 
236 	down_read(&zram->init_lock);
237 	val = init_done(zram);
238 	up_read(&zram->init_lock);
239 
240 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
241 }
242 
243 static ssize_t disksize_show(struct device *dev,
244 		struct device_attribute *attr, char *buf)
245 {
246 	struct zram *zram = dev_to_zram(dev);
247 
248 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
249 }
250 
251 static ssize_t mem_limit_store(struct device *dev,
252 		struct device_attribute *attr, const char *buf, size_t len)
253 {
254 	u64 limit;
255 	char *tmp;
256 	struct zram *zram = dev_to_zram(dev);
257 
258 	limit = memparse(buf, &tmp);
259 	if (buf == tmp) /* no chars parsed, invalid input */
260 		return -EINVAL;
261 
262 	down_write(&zram->init_lock);
263 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
264 	up_write(&zram->init_lock);
265 
266 	return len;
267 }
268 
269 static ssize_t mem_used_max_store(struct device *dev,
270 		struct device_attribute *attr, const char *buf, size_t len)
271 {
272 	int err;
273 	unsigned long val;
274 	struct zram *zram = dev_to_zram(dev);
275 
276 	err = kstrtoul(buf, 10, &val);
277 	if (err || val != 0)
278 		return -EINVAL;
279 
280 	down_read(&zram->init_lock);
281 	if (init_done(zram)) {
282 		atomic_long_set(&zram->stats.max_used_pages,
283 				zs_get_total_pages(zram->mem_pool));
284 	}
285 	up_read(&zram->init_lock);
286 
287 	return len;
288 }
289 
290 static ssize_t idle_store(struct device *dev,
291 		struct device_attribute *attr, const char *buf, size_t len)
292 {
293 	struct zram *zram = dev_to_zram(dev);
294 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
295 	int index;
296 
297 	if (!sysfs_streq(buf, "all"))
298 		return -EINVAL;
299 
300 	down_read(&zram->init_lock);
301 	if (!init_done(zram)) {
302 		up_read(&zram->init_lock);
303 		return -EINVAL;
304 	}
305 
306 	for (index = 0; index < nr_pages; index++) {
307 		/*
308 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
309 		 * See the comment in writeback_store.
310 		 */
311 		zram_slot_lock(zram, index);
312 		if (zram_allocated(zram, index) &&
313 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
314 			zram_set_flag(zram, index, ZRAM_IDLE);
315 		zram_slot_unlock(zram, index);
316 	}
317 
318 	up_read(&zram->init_lock);
319 
320 	return len;
321 }
322 
323 #ifdef CONFIG_ZRAM_WRITEBACK
324 static ssize_t writeback_limit_enable_store(struct device *dev,
325 		struct device_attribute *attr, const char *buf, size_t len)
326 {
327 	struct zram *zram = dev_to_zram(dev);
328 	u64 val;
329 	ssize_t ret = -EINVAL;
330 
331 	if (kstrtoull(buf, 10, &val))
332 		return ret;
333 
334 	down_read(&zram->init_lock);
335 	spin_lock(&zram->wb_limit_lock);
336 	zram->wb_limit_enable = val;
337 	spin_unlock(&zram->wb_limit_lock);
338 	up_read(&zram->init_lock);
339 	ret = len;
340 
341 	return ret;
342 }
343 
344 static ssize_t writeback_limit_enable_show(struct device *dev,
345 		struct device_attribute *attr, char *buf)
346 {
347 	bool val;
348 	struct zram *zram = dev_to_zram(dev);
349 
350 	down_read(&zram->init_lock);
351 	spin_lock(&zram->wb_limit_lock);
352 	val = zram->wb_limit_enable;
353 	spin_unlock(&zram->wb_limit_lock);
354 	up_read(&zram->init_lock);
355 
356 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
357 }
358 
359 static ssize_t writeback_limit_store(struct device *dev,
360 		struct device_attribute *attr, const char *buf, size_t len)
361 {
362 	struct zram *zram = dev_to_zram(dev);
363 	u64 val;
364 	ssize_t ret = -EINVAL;
365 
366 	if (kstrtoull(buf, 10, &val))
367 		return ret;
368 
369 	down_read(&zram->init_lock);
370 	spin_lock(&zram->wb_limit_lock);
371 	zram->bd_wb_limit = val;
372 	spin_unlock(&zram->wb_limit_lock);
373 	up_read(&zram->init_lock);
374 	ret = len;
375 
376 	return ret;
377 }
378 
379 static ssize_t writeback_limit_show(struct device *dev,
380 		struct device_attribute *attr, char *buf)
381 {
382 	u64 val;
383 	struct zram *zram = dev_to_zram(dev);
384 
385 	down_read(&zram->init_lock);
386 	spin_lock(&zram->wb_limit_lock);
387 	val = zram->bd_wb_limit;
388 	spin_unlock(&zram->wb_limit_lock);
389 	up_read(&zram->init_lock);
390 
391 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
392 }
393 
394 static void reset_bdev(struct zram *zram)
395 {
396 	struct block_device *bdev;
397 
398 	if (!zram->backing_dev)
399 		return;
400 
401 	bdev = zram->bdev;
402 	if (zram->old_block_size)
403 		set_blocksize(bdev, zram->old_block_size);
404 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
405 	/* hope filp_close flush all of IO */
406 	filp_close(zram->backing_dev, NULL);
407 	zram->backing_dev = NULL;
408 	zram->old_block_size = 0;
409 	zram->bdev = NULL;
410 	zram->disk->queue->backing_dev_info->capabilities |=
411 				BDI_CAP_SYNCHRONOUS_IO;
412 	kvfree(zram->bitmap);
413 	zram->bitmap = NULL;
414 }
415 
416 static ssize_t backing_dev_show(struct device *dev,
417 		struct device_attribute *attr, char *buf)
418 {
419 	struct file *file;
420 	struct zram *zram = dev_to_zram(dev);
421 	char *p;
422 	ssize_t ret;
423 
424 	down_read(&zram->init_lock);
425 	file = zram->backing_dev;
426 	if (!file) {
427 		memcpy(buf, "none\n", 5);
428 		up_read(&zram->init_lock);
429 		return 5;
430 	}
431 
432 	p = file_path(file, buf, PAGE_SIZE - 1);
433 	if (IS_ERR(p)) {
434 		ret = PTR_ERR(p);
435 		goto out;
436 	}
437 
438 	ret = strlen(p);
439 	memmove(buf, p, ret);
440 	buf[ret++] = '\n';
441 out:
442 	up_read(&zram->init_lock);
443 	return ret;
444 }
445 
446 static ssize_t backing_dev_store(struct device *dev,
447 		struct device_attribute *attr, const char *buf, size_t len)
448 {
449 	char *file_name;
450 	size_t sz;
451 	struct file *backing_dev = NULL;
452 	struct inode *inode;
453 	struct address_space *mapping;
454 	unsigned int bitmap_sz, old_block_size = 0;
455 	unsigned long nr_pages, *bitmap = NULL;
456 	struct block_device *bdev = NULL;
457 	int err;
458 	struct zram *zram = dev_to_zram(dev);
459 
460 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
461 	if (!file_name)
462 		return -ENOMEM;
463 
464 	down_write(&zram->init_lock);
465 	if (init_done(zram)) {
466 		pr_info("Can't setup backing device for initialized device\n");
467 		err = -EBUSY;
468 		goto out;
469 	}
470 
471 	strlcpy(file_name, buf, PATH_MAX);
472 	/* ignore trailing newline */
473 	sz = strlen(file_name);
474 	if (sz > 0 && file_name[sz - 1] == '\n')
475 		file_name[sz - 1] = 0x00;
476 
477 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
478 	if (IS_ERR(backing_dev)) {
479 		err = PTR_ERR(backing_dev);
480 		backing_dev = NULL;
481 		goto out;
482 	}
483 
484 	mapping = backing_dev->f_mapping;
485 	inode = mapping->host;
486 
487 	/* Support only block device in this moment */
488 	if (!S_ISBLK(inode->i_mode)) {
489 		err = -ENOTBLK;
490 		goto out;
491 	}
492 
493 	bdev = bdgrab(I_BDEV(inode));
494 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
495 	if (err < 0) {
496 		bdev = NULL;
497 		goto out;
498 	}
499 
500 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
501 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
502 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
503 	if (!bitmap) {
504 		err = -ENOMEM;
505 		goto out;
506 	}
507 
508 	old_block_size = block_size(bdev);
509 	err = set_blocksize(bdev, PAGE_SIZE);
510 	if (err)
511 		goto out;
512 
513 	reset_bdev(zram);
514 
515 	zram->old_block_size = old_block_size;
516 	zram->bdev = bdev;
517 	zram->backing_dev = backing_dev;
518 	zram->bitmap = bitmap;
519 	zram->nr_pages = nr_pages;
520 	/*
521 	 * With writeback feature, zram does asynchronous IO so it's no longer
522 	 * synchronous device so let's remove synchronous io flag. Othewise,
523 	 * upper layer(e.g., swap) could wait IO completion rather than
524 	 * (submit and return), which will cause system sluggish.
525 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
526 	 * upper layer expects IO was done so it could deallocate the page
527 	 * freely but in fact, IO is going on so finally could cause
528 	 * use-after-free when the IO is really done.
529 	 */
530 	zram->disk->queue->backing_dev_info->capabilities &=
531 			~BDI_CAP_SYNCHRONOUS_IO;
532 	up_write(&zram->init_lock);
533 
534 	pr_info("setup backing device %s\n", file_name);
535 	kfree(file_name);
536 
537 	return len;
538 out:
539 	if (bitmap)
540 		kvfree(bitmap);
541 
542 	if (bdev)
543 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
544 
545 	if (backing_dev)
546 		filp_close(backing_dev, NULL);
547 
548 	up_write(&zram->init_lock);
549 
550 	kfree(file_name);
551 
552 	return err;
553 }
554 
555 static unsigned long alloc_block_bdev(struct zram *zram)
556 {
557 	unsigned long blk_idx = 1;
558 retry:
559 	/* skip 0 bit to confuse zram.handle = 0 */
560 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
561 	if (blk_idx == zram->nr_pages)
562 		return 0;
563 
564 	if (test_and_set_bit(blk_idx, zram->bitmap))
565 		goto retry;
566 
567 	atomic64_inc(&zram->stats.bd_count);
568 	return blk_idx;
569 }
570 
571 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
572 {
573 	int was_set;
574 
575 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
576 	WARN_ON_ONCE(!was_set);
577 	atomic64_dec(&zram->stats.bd_count);
578 }
579 
580 static void zram_page_end_io(struct bio *bio)
581 {
582 	struct page *page = bio_first_page_all(bio);
583 
584 	page_endio(page, op_is_write(bio_op(bio)),
585 			blk_status_to_errno(bio->bi_status));
586 	bio_put(bio);
587 }
588 
589 /*
590  * Returns 1 if the submission is successful.
591  */
592 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
593 			unsigned long entry, struct bio *parent)
594 {
595 	struct bio *bio;
596 
597 	bio = bio_alloc(GFP_ATOMIC, 1);
598 	if (!bio)
599 		return -ENOMEM;
600 
601 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
602 	bio_set_dev(bio, zram->bdev);
603 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
604 		bio_put(bio);
605 		return -EIO;
606 	}
607 
608 	if (!parent) {
609 		bio->bi_opf = REQ_OP_READ;
610 		bio->bi_end_io = zram_page_end_io;
611 	} else {
612 		bio->bi_opf = parent->bi_opf;
613 		bio_chain(bio, parent);
614 	}
615 
616 	submit_bio(bio);
617 	return 1;
618 }
619 
620 #define HUGE_WRITEBACK 1
621 #define IDLE_WRITEBACK 2
622 
623 static ssize_t writeback_store(struct device *dev,
624 		struct device_attribute *attr, const char *buf, size_t len)
625 {
626 	struct zram *zram = dev_to_zram(dev);
627 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
628 	unsigned long index;
629 	struct bio bio;
630 	struct bio_vec bio_vec;
631 	struct page *page;
632 	ssize_t ret = len;
633 	int mode;
634 	unsigned long blk_idx = 0;
635 
636 	if (sysfs_streq(buf, "idle"))
637 		mode = IDLE_WRITEBACK;
638 	else if (sysfs_streq(buf, "huge"))
639 		mode = HUGE_WRITEBACK;
640 	else
641 		return -EINVAL;
642 
643 	down_read(&zram->init_lock);
644 	if (!init_done(zram)) {
645 		ret = -EINVAL;
646 		goto release_init_lock;
647 	}
648 
649 	if (!zram->backing_dev) {
650 		ret = -ENODEV;
651 		goto release_init_lock;
652 	}
653 
654 	page = alloc_page(GFP_KERNEL);
655 	if (!page) {
656 		ret = -ENOMEM;
657 		goto release_init_lock;
658 	}
659 
660 	for (index = 0; index < nr_pages; index++) {
661 		struct bio_vec bvec;
662 
663 		bvec.bv_page = page;
664 		bvec.bv_len = PAGE_SIZE;
665 		bvec.bv_offset = 0;
666 
667 		spin_lock(&zram->wb_limit_lock);
668 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
669 			spin_unlock(&zram->wb_limit_lock);
670 			ret = -EIO;
671 			break;
672 		}
673 		spin_unlock(&zram->wb_limit_lock);
674 
675 		if (!blk_idx) {
676 			blk_idx = alloc_block_bdev(zram);
677 			if (!blk_idx) {
678 				ret = -ENOSPC;
679 				break;
680 			}
681 		}
682 
683 		zram_slot_lock(zram, index);
684 		if (!zram_allocated(zram, index))
685 			goto next;
686 
687 		if (zram_test_flag(zram, index, ZRAM_WB) ||
688 				zram_test_flag(zram, index, ZRAM_SAME) ||
689 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
690 			goto next;
691 
692 		if (mode == IDLE_WRITEBACK &&
693 			  !zram_test_flag(zram, index, ZRAM_IDLE))
694 			goto next;
695 		if (mode == HUGE_WRITEBACK &&
696 			  !zram_test_flag(zram, index, ZRAM_HUGE))
697 			goto next;
698 		/*
699 		 * Clearing ZRAM_UNDER_WB is duty of caller.
700 		 * IOW, zram_free_page never clear it.
701 		 */
702 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
703 		/* Need for hugepage writeback racing */
704 		zram_set_flag(zram, index, ZRAM_IDLE);
705 		zram_slot_unlock(zram, index);
706 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
707 			zram_slot_lock(zram, index);
708 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
709 			zram_clear_flag(zram, index, ZRAM_IDLE);
710 			zram_slot_unlock(zram, index);
711 			continue;
712 		}
713 
714 		bio_init(&bio, &bio_vec, 1);
715 		bio_set_dev(&bio, zram->bdev);
716 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
717 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
718 
719 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
720 				bvec.bv_offset);
721 		/*
722 		 * XXX: A single page IO would be inefficient for write
723 		 * but it would be not bad as starter.
724 		 */
725 		ret = submit_bio_wait(&bio);
726 		if (ret) {
727 			zram_slot_lock(zram, index);
728 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
729 			zram_clear_flag(zram, index, ZRAM_IDLE);
730 			zram_slot_unlock(zram, index);
731 			continue;
732 		}
733 
734 		atomic64_inc(&zram->stats.bd_writes);
735 		/*
736 		 * We released zram_slot_lock so need to check if the slot was
737 		 * changed. If there is freeing for the slot, we can catch it
738 		 * easily by zram_allocated.
739 		 * A subtle case is the slot is freed/reallocated/marked as
740 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
741 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
742 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
743 		 */
744 		zram_slot_lock(zram, index);
745 		if (!zram_allocated(zram, index) ||
746 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
747 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
748 			zram_clear_flag(zram, index, ZRAM_IDLE);
749 			goto next;
750 		}
751 
752 		zram_free_page(zram, index);
753 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
754 		zram_set_flag(zram, index, ZRAM_WB);
755 		zram_set_element(zram, index, blk_idx);
756 		blk_idx = 0;
757 		atomic64_inc(&zram->stats.pages_stored);
758 		spin_lock(&zram->wb_limit_lock);
759 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
760 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
761 		spin_unlock(&zram->wb_limit_lock);
762 next:
763 		zram_slot_unlock(zram, index);
764 	}
765 
766 	if (blk_idx)
767 		free_block_bdev(zram, blk_idx);
768 	__free_page(page);
769 release_init_lock:
770 	up_read(&zram->init_lock);
771 
772 	return ret;
773 }
774 
775 struct zram_work {
776 	struct work_struct work;
777 	struct zram *zram;
778 	unsigned long entry;
779 	struct bio *bio;
780 	struct bio_vec bvec;
781 };
782 
783 #if PAGE_SIZE != 4096
784 static void zram_sync_read(struct work_struct *work)
785 {
786 	struct zram_work *zw = container_of(work, struct zram_work, work);
787 	struct zram *zram = zw->zram;
788 	unsigned long entry = zw->entry;
789 	struct bio *bio = zw->bio;
790 
791 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
792 }
793 
794 /*
795  * Block layer want one ->make_request_fn to be active at a time
796  * so if we use chained IO with parent IO in same context,
797  * it's a deadlock. To avoid, it, it uses worker thread context.
798  */
799 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
800 				unsigned long entry, struct bio *bio)
801 {
802 	struct zram_work work;
803 
804 	work.bvec = *bvec;
805 	work.zram = zram;
806 	work.entry = entry;
807 	work.bio = bio;
808 
809 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
810 	queue_work(system_unbound_wq, &work.work);
811 	flush_work(&work.work);
812 	destroy_work_on_stack(&work.work);
813 
814 	return 1;
815 }
816 #else
817 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
818 				unsigned long entry, struct bio *bio)
819 {
820 	WARN_ON(1);
821 	return -EIO;
822 }
823 #endif
824 
825 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
826 			unsigned long entry, struct bio *parent, bool sync)
827 {
828 	atomic64_inc(&zram->stats.bd_reads);
829 	if (sync)
830 		return read_from_bdev_sync(zram, bvec, entry, parent);
831 	else
832 		return read_from_bdev_async(zram, bvec, entry, parent);
833 }
834 #else
835 static inline void reset_bdev(struct zram *zram) {};
836 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
837 			unsigned long entry, struct bio *parent, bool sync)
838 {
839 	return -EIO;
840 }
841 
842 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
843 #endif
844 
845 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
846 
847 static struct dentry *zram_debugfs_root;
848 
849 static void zram_debugfs_create(void)
850 {
851 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
852 }
853 
854 static void zram_debugfs_destroy(void)
855 {
856 	debugfs_remove_recursive(zram_debugfs_root);
857 }
858 
859 static void zram_accessed(struct zram *zram, u32 index)
860 {
861 	zram_clear_flag(zram, index, ZRAM_IDLE);
862 	zram->table[index].ac_time = ktime_get_boottime();
863 }
864 
865 static ssize_t read_block_state(struct file *file, char __user *buf,
866 				size_t count, loff_t *ppos)
867 {
868 	char *kbuf;
869 	ssize_t index, written = 0;
870 	struct zram *zram = file->private_data;
871 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
872 	struct timespec64 ts;
873 
874 	kbuf = kvmalloc(count, GFP_KERNEL);
875 	if (!kbuf)
876 		return -ENOMEM;
877 
878 	down_read(&zram->init_lock);
879 	if (!init_done(zram)) {
880 		up_read(&zram->init_lock);
881 		kvfree(kbuf);
882 		return -EINVAL;
883 	}
884 
885 	for (index = *ppos; index < nr_pages; index++) {
886 		int copied;
887 
888 		zram_slot_lock(zram, index);
889 		if (!zram_allocated(zram, index))
890 			goto next;
891 
892 		ts = ktime_to_timespec64(zram->table[index].ac_time);
893 		copied = snprintf(kbuf + written, count,
894 			"%12zd %12lld.%06lu %c%c%c%c\n",
895 			index, (s64)ts.tv_sec,
896 			ts.tv_nsec / NSEC_PER_USEC,
897 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
898 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
899 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
900 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
901 
902 		if (count < copied) {
903 			zram_slot_unlock(zram, index);
904 			break;
905 		}
906 		written += copied;
907 		count -= copied;
908 next:
909 		zram_slot_unlock(zram, index);
910 		*ppos += 1;
911 	}
912 
913 	up_read(&zram->init_lock);
914 	if (copy_to_user(buf, kbuf, written))
915 		written = -EFAULT;
916 	kvfree(kbuf);
917 
918 	return written;
919 }
920 
921 static const struct file_operations proc_zram_block_state_op = {
922 	.open = simple_open,
923 	.read = read_block_state,
924 	.llseek = default_llseek,
925 };
926 
927 static void zram_debugfs_register(struct zram *zram)
928 {
929 	if (!zram_debugfs_root)
930 		return;
931 
932 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
933 						zram_debugfs_root);
934 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
935 				zram, &proc_zram_block_state_op);
936 }
937 
938 static void zram_debugfs_unregister(struct zram *zram)
939 {
940 	debugfs_remove_recursive(zram->debugfs_dir);
941 }
942 #else
943 static void zram_debugfs_create(void) {};
944 static void zram_debugfs_destroy(void) {};
945 static void zram_accessed(struct zram *zram, u32 index)
946 {
947 	zram_clear_flag(zram, index, ZRAM_IDLE);
948 };
949 static void zram_debugfs_register(struct zram *zram) {};
950 static void zram_debugfs_unregister(struct zram *zram) {};
951 #endif
952 
953 /*
954  * We switched to per-cpu streams and this attr is not needed anymore.
955  * However, we will keep it around for some time, because:
956  * a) we may revert per-cpu streams in the future
957  * b) it's visible to user space and we need to follow our 2 years
958  *    retirement rule; but we already have a number of 'soon to be
959  *    altered' attrs, so max_comp_streams need to wait for the next
960  *    layoff cycle.
961  */
962 static ssize_t max_comp_streams_show(struct device *dev,
963 		struct device_attribute *attr, char *buf)
964 {
965 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
966 }
967 
968 static ssize_t max_comp_streams_store(struct device *dev,
969 		struct device_attribute *attr, const char *buf, size_t len)
970 {
971 	return len;
972 }
973 
974 static ssize_t comp_algorithm_show(struct device *dev,
975 		struct device_attribute *attr, char *buf)
976 {
977 	size_t sz;
978 	struct zram *zram = dev_to_zram(dev);
979 
980 	down_read(&zram->init_lock);
981 	sz = zcomp_available_show(zram->compressor, buf);
982 	up_read(&zram->init_lock);
983 
984 	return sz;
985 }
986 
987 static ssize_t comp_algorithm_store(struct device *dev,
988 		struct device_attribute *attr, const char *buf, size_t len)
989 {
990 	struct zram *zram = dev_to_zram(dev);
991 	char compressor[ARRAY_SIZE(zram->compressor)];
992 	size_t sz;
993 
994 	strlcpy(compressor, buf, sizeof(compressor));
995 	/* ignore trailing newline */
996 	sz = strlen(compressor);
997 	if (sz > 0 && compressor[sz - 1] == '\n')
998 		compressor[sz - 1] = 0x00;
999 
1000 	if (!zcomp_available_algorithm(compressor))
1001 		return -EINVAL;
1002 
1003 	down_write(&zram->init_lock);
1004 	if (init_done(zram)) {
1005 		up_write(&zram->init_lock);
1006 		pr_info("Can't change algorithm for initialized device\n");
1007 		return -EBUSY;
1008 	}
1009 
1010 	strcpy(zram->compressor, compressor);
1011 	up_write(&zram->init_lock);
1012 	return len;
1013 }
1014 
1015 static ssize_t compact_store(struct device *dev,
1016 		struct device_attribute *attr, const char *buf, size_t len)
1017 {
1018 	struct zram *zram = dev_to_zram(dev);
1019 
1020 	down_read(&zram->init_lock);
1021 	if (!init_done(zram)) {
1022 		up_read(&zram->init_lock);
1023 		return -EINVAL;
1024 	}
1025 
1026 	zs_compact(zram->mem_pool);
1027 	up_read(&zram->init_lock);
1028 
1029 	return len;
1030 }
1031 
1032 static ssize_t io_stat_show(struct device *dev,
1033 		struct device_attribute *attr, char *buf)
1034 {
1035 	struct zram *zram = dev_to_zram(dev);
1036 	ssize_t ret;
1037 
1038 	down_read(&zram->init_lock);
1039 	ret = scnprintf(buf, PAGE_SIZE,
1040 			"%8llu %8llu %8llu %8llu\n",
1041 			(u64)atomic64_read(&zram->stats.failed_reads),
1042 			(u64)atomic64_read(&zram->stats.failed_writes),
1043 			(u64)atomic64_read(&zram->stats.invalid_io),
1044 			(u64)atomic64_read(&zram->stats.notify_free));
1045 	up_read(&zram->init_lock);
1046 
1047 	return ret;
1048 }
1049 
1050 static ssize_t mm_stat_show(struct device *dev,
1051 		struct device_attribute *attr, char *buf)
1052 {
1053 	struct zram *zram = dev_to_zram(dev);
1054 	struct zs_pool_stats pool_stats;
1055 	u64 orig_size, mem_used = 0;
1056 	long max_used;
1057 	ssize_t ret;
1058 
1059 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1060 
1061 	down_read(&zram->init_lock);
1062 	if (init_done(zram)) {
1063 		mem_used = zs_get_total_pages(zram->mem_pool);
1064 		zs_pool_stats(zram->mem_pool, &pool_stats);
1065 	}
1066 
1067 	orig_size = atomic64_read(&zram->stats.pages_stored);
1068 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1069 
1070 	ret = scnprintf(buf, PAGE_SIZE,
1071 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1072 			orig_size << PAGE_SHIFT,
1073 			(u64)atomic64_read(&zram->stats.compr_data_size),
1074 			mem_used << PAGE_SHIFT,
1075 			zram->limit_pages << PAGE_SHIFT,
1076 			max_used << PAGE_SHIFT,
1077 			(u64)atomic64_read(&zram->stats.same_pages),
1078 			pool_stats.pages_compacted,
1079 			(u64)atomic64_read(&zram->stats.huge_pages));
1080 	up_read(&zram->init_lock);
1081 
1082 	return ret;
1083 }
1084 
1085 #ifdef CONFIG_ZRAM_WRITEBACK
1086 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1087 static ssize_t bd_stat_show(struct device *dev,
1088 		struct device_attribute *attr, char *buf)
1089 {
1090 	struct zram *zram = dev_to_zram(dev);
1091 	ssize_t ret;
1092 
1093 	down_read(&zram->init_lock);
1094 	ret = scnprintf(buf, PAGE_SIZE,
1095 		"%8llu %8llu %8llu\n",
1096 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1097 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1098 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1099 	up_read(&zram->init_lock);
1100 
1101 	return ret;
1102 }
1103 #endif
1104 
1105 static ssize_t debug_stat_show(struct device *dev,
1106 		struct device_attribute *attr, char *buf)
1107 {
1108 	int version = 1;
1109 	struct zram *zram = dev_to_zram(dev);
1110 	ssize_t ret;
1111 
1112 	down_read(&zram->init_lock);
1113 	ret = scnprintf(buf, PAGE_SIZE,
1114 			"version: %d\n%8llu %8llu\n",
1115 			version,
1116 			(u64)atomic64_read(&zram->stats.writestall),
1117 			(u64)atomic64_read(&zram->stats.miss_free));
1118 	up_read(&zram->init_lock);
1119 
1120 	return ret;
1121 }
1122 
1123 static DEVICE_ATTR_RO(io_stat);
1124 static DEVICE_ATTR_RO(mm_stat);
1125 #ifdef CONFIG_ZRAM_WRITEBACK
1126 static DEVICE_ATTR_RO(bd_stat);
1127 #endif
1128 static DEVICE_ATTR_RO(debug_stat);
1129 
1130 static void zram_meta_free(struct zram *zram, u64 disksize)
1131 {
1132 	size_t num_pages = disksize >> PAGE_SHIFT;
1133 	size_t index;
1134 
1135 	/* Free all pages that are still in this zram device */
1136 	for (index = 0; index < num_pages; index++)
1137 		zram_free_page(zram, index);
1138 
1139 	zs_destroy_pool(zram->mem_pool);
1140 	vfree(zram->table);
1141 }
1142 
1143 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1144 {
1145 	size_t num_pages;
1146 
1147 	num_pages = disksize >> PAGE_SHIFT;
1148 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1149 	if (!zram->table)
1150 		return false;
1151 
1152 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1153 	if (!zram->mem_pool) {
1154 		vfree(zram->table);
1155 		return false;
1156 	}
1157 
1158 	if (!huge_class_size)
1159 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1160 	return true;
1161 }
1162 
1163 /*
1164  * To protect concurrent access to the same index entry,
1165  * caller should hold this table index entry's bit_spinlock to
1166  * indicate this index entry is accessing.
1167  */
1168 static void zram_free_page(struct zram *zram, size_t index)
1169 {
1170 	unsigned long handle;
1171 
1172 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1173 	zram->table[index].ac_time = 0;
1174 #endif
1175 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1176 		zram_clear_flag(zram, index, ZRAM_IDLE);
1177 
1178 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1179 		zram_clear_flag(zram, index, ZRAM_HUGE);
1180 		atomic64_dec(&zram->stats.huge_pages);
1181 	}
1182 
1183 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1184 		zram_clear_flag(zram, index, ZRAM_WB);
1185 		free_block_bdev(zram, zram_get_element(zram, index));
1186 		goto out;
1187 	}
1188 
1189 	/*
1190 	 * No memory is allocated for same element filled pages.
1191 	 * Simply clear same page flag.
1192 	 */
1193 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1194 		zram_clear_flag(zram, index, ZRAM_SAME);
1195 		atomic64_dec(&zram->stats.same_pages);
1196 		goto out;
1197 	}
1198 
1199 	handle = zram_get_handle(zram, index);
1200 	if (!handle)
1201 		return;
1202 
1203 	zs_free(zram->mem_pool, handle);
1204 
1205 	atomic64_sub(zram_get_obj_size(zram, index),
1206 			&zram->stats.compr_data_size);
1207 out:
1208 	atomic64_dec(&zram->stats.pages_stored);
1209 	zram_set_handle(zram, index, 0);
1210 	zram_set_obj_size(zram, index, 0);
1211 	WARN_ON_ONCE(zram->table[index].flags &
1212 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1213 }
1214 
1215 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1216 				struct bio *bio, bool partial_io)
1217 {
1218 	int ret;
1219 	unsigned long handle;
1220 	unsigned int size;
1221 	void *src, *dst;
1222 
1223 	zram_slot_lock(zram, index);
1224 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1225 		struct bio_vec bvec;
1226 
1227 		zram_slot_unlock(zram, index);
1228 
1229 		bvec.bv_page = page;
1230 		bvec.bv_len = PAGE_SIZE;
1231 		bvec.bv_offset = 0;
1232 		return read_from_bdev(zram, &bvec,
1233 				zram_get_element(zram, index),
1234 				bio, partial_io);
1235 	}
1236 
1237 	handle = zram_get_handle(zram, index);
1238 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1239 		unsigned long value;
1240 		void *mem;
1241 
1242 		value = handle ? zram_get_element(zram, index) : 0;
1243 		mem = kmap_atomic(page);
1244 		zram_fill_page(mem, PAGE_SIZE, value);
1245 		kunmap_atomic(mem);
1246 		zram_slot_unlock(zram, index);
1247 		return 0;
1248 	}
1249 
1250 	size = zram_get_obj_size(zram, index);
1251 
1252 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1253 	if (size == PAGE_SIZE) {
1254 		dst = kmap_atomic(page);
1255 		memcpy(dst, src, PAGE_SIZE);
1256 		kunmap_atomic(dst);
1257 		ret = 0;
1258 	} else {
1259 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1260 
1261 		dst = kmap_atomic(page);
1262 		ret = zcomp_decompress(zstrm, src, size, dst);
1263 		kunmap_atomic(dst);
1264 		zcomp_stream_put(zram->comp);
1265 	}
1266 	zs_unmap_object(zram->mem_pool, handle);
1267 	zram_slot_unlock(zram, index);
1268 
1269 	/* Should NEVER happen. Return bio error if it does. */
1270 	if (unlikely(ret))
1271 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1272 
1273 	return ret;
1274 }
1275 
1276 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1277 				u32 index, int offset, struct bio *bio)
1278 {
1279 	int ret;
1280 	struct page *page;
1281 
1282 	page = bvec->bv_page;
1283 	if (is_partial_io(bvec)) {
1284 		/* Use a temporary buffer to decompress the page */
1285 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1286 		if (!page)
1287 			return -ENOMEM;
1288 	}
1289 
1290 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1291 	if (unlikely(ret))
1292 		goto out;
1293 
1294 	if (is_partial_io(bvec)) {
1295 		void *dst = kmap_atomic(bvec->bv_page);
1296 		void *src = kmap_atomic(page);
1297 
1298 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1299 		kunmap_atomic(src);
1300 		kunmap_atomic(dst);
1301 	}
1302 out:
1303 	if (is_partial_io(bvec))
1304 		__free_page(page);
1305 
1306 	return ret;
1307 }
1308 
1309 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1310 				u32 index, struct bio *bio)
1311 {
1312 	int ret = 0;
1313 	unsigned long alloced_pages;
1314 	unsigned long handle = 0;
1315 	unsigned int comp_len = 0;
1316 	void *src, *dst, *mem;
1317 	struct zcomp_strm *zstrm;
1318 	struct page *page = bvec->bv_page;
1319 	unsigned long element = 0;
1320 	enum zram_pageflags flags = 0;
1321 
1322 	mem = kmap_atomic(page);
1323 	if (page_same_filled(mem, &element)) {
1324 		kunmap_atomic(mem);
1325 		/* Free memory associated with this sector now. */
1326 		flags = ZRAM_SAME;
1327 		atomic64_inc(&zram->stats.same_pages);
1328 		goto out;
1329 	}
1330 	kunmap_atomic(mem);
1331 
1332 compress_again:
1333 	zstrm = zcomp_stream_get(zram->comp);
1334 	src = kmap_atomic(page);
1335 	ret = zcomp_compress(zstrm, src, &comp_len);
1336 	kunmap_atomic(src);
1337 
1338 	if (unlikely(ret)) {
1339 		zcomp_stream_put(zram->comp);
1340 		pr_err("Compression failed! err=%d\n", ret);
1341 		zs_free(zram->mem_pool, handle);
1342 		return ret;
1343 	}
1344 
1345 	if (comp_len >= huge_class_size)
1346 		comp_len = PAGE_SIZE;
1347 	/*
1348 	 * handle allocation has 2 paths:
1349 	 * a) fast path is executed with preemption disabled (for
1350 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1351 	 *  since we can't sleep;
1352 	 * b) slow path enables preemption and attempts to allocate
1353 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1354 	 *  put per-cpu compression stream and, thus, to re-do
1355 	 *  the compression once handle is allocated.
1356 	 *
1357 	 * if we have a 'non-null' handle here then we are coming
1358 	 * from the slow path and handle has already been allocated.
1359 	 */
1360 	if (!handle)
1361 		handle = zs_malloc(zram->mem_pool, comp_len,
1362 				__GFP_KSWAPD_RECLAIM |
1363 				__GFP_NOWARN |
1364 				__GFP_HIGHMEM |
1365 				__GFP_MOVABLE);
1366 	if (!handle) {
1367 		zcomp_stream_put(zram->comp);
1368 		atomic64_inc(&zram->stats.writestall);
1369 		handle = zs_malloc(zram->mem_pool, comp_len,
1370 				GFP_NOIO | __GFP_HIGHMEM |
1371 				__GFP_MOVABLE);
1372 		if (handle)
1373 			goto compress_again;
1374 		return -ENOMEM;
1375 	}
1376 
1377 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1378 	update_used_max(zram, alloced_pages);
1379 
1380 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1381 		zcomp_stream_put(zram->comp);
1382 		zs_free(zram->mem_pool, handle);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1387 
1388 	src = zstrm->buffer;
1389 	if (comp_len == PAGE_SIZE)
1390 		src = kmap_atomic(page);
1391 	memcpy(dst, src, comp_len);
1392 	if (comp_len == PAGE_SIZE)
1393 		kunmap_atomic(src);
1394 
1395 	zcomp_stream_put(zram->comp);
1396 	zs_unmap_object(zram->mem_pool, handle);
1397 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1398 out:
1399 	/*
1400 	 * Free memory associated with this sector
1401 	 * before overwriting unused sectors.
1402 	 */
1403 	zram_slot_lock(zram, index);
1404 	zram_free_page(zram, index);
1405 
1406 	if (comp_len == PAGE_SIZE) {
1407 		zram_set_flag(zram, index, ZRAM_HUGE);
1408 		atomic64_inc(&zram->stats.huge_pages);
1409 	}
1410 
1411 	if (flags) {
1412 		zram_set_flag(zram, index, flags);
1413 		zram_set_element(zram, index, element);
1414 	}  else {
1415 		zram_set_handle(zram, index, handle);
1416 		zram_set_obj_size(zram, index, comp_len);
1417 	}
1418 	zram_slot_unlock(zram, index);
1419 
1420 	/* Update stats */
1421 	atomic64_inc(&zram->stats.pages_stored);
1422 	return ret;
1423 }
1424 
1425 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1426 				u32 index, int offset, struct bio *bio)
1427 {
1428 	int ret;
1429 	struct page *page = NULL;
1430 	void *src;
1431 	struct bio_vec vec;
1432 
1433 	vec = *bvec;
1434 	if (is_partial_io(bvec)) {
1435 		void *dst;
1436 		/*
1437 		 * This is a partial IO. We need to read the full page
1438 		 * before to write the changes.
1439 		 */
1440 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1441 		if (!page)
1442 			return -ENOMEM;
1443 
1444 		ret = __zram_bvec_read(zram, page, index, bio, true);
1445 		if (ret)
1446 			goto out;
1447 
1448 		src = kmap_atomic(bvec->bv_page);
1449 		dst = kmap_atomic(page);
1450 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1451 		kunmap_atomic(dst);
1452 		kunmap_atomic(src);
1453 
1454 		vec.bv_page = page;
1455 		vec.bv_len = PAGE_SIZE;
1456 		vec.bv_offset = 0;
1457 	}
1458 
1459 	ret = __zram_bvec_write(zram, &vec, index, bio);
1460 out:
1461 	if (is_partial_io(bvec))
1462 		__free_page(page);
1463 	return ret;
1464 }
1465 
1466 /*
1467  * zram_bio_discard - handler on discard request
1468  * @index: physical block index in PAGE_SIZE units
1469  * @offset: byte offset within physical block
1470  */
1471 static void zram_bio_discard(struct zram *zram, u32 index,
1472 			     int offset, struct bio *bio)
1473 {
1474 	size_t n = bio->bi_iter.bi_size;
1475 
1476 	/*
1477 	 * zram manages data in physical block size units. Because logical block
1478 	 * size isn't identical with physical block size on some arch, we
1479 	 * could get a discard request pointing to a specific offset within a
1480 	 * certain physical block.  Although we can handle this request by
1481 	 * reading that physiclal block and decompressing and partially zeroing
1482 	 * and re-compressing and then re-storing it, this isn't reasonable
1483 	 * because our intent with a discard request is to save memory.  So
1484 	 * skipping this logical block is appropriate here.
1485 	 */
1486 	if (offset) {
1487 		if (n <= (PAGE_SIZE - offset))
1488 			return;
1489 
1490 		n -= (PAGE_SIZE - offset);
1491 		index++;
1492 	}
1493 
1494 	while (n >= PAGE_SIZE) {
1495 		zram_slot_lock(zram, index);
1496 		zram_free_page(zram, index);
1497 		zram_slot_unlock(zram, index);
1498 		atomic64_inc(&zram->stats.notify_free);
1499 		index++;
1500 		n -= PAGE_SIZE;
1501 	}
1502 }
1503 
1504 /*
1505  * Returns errno if it has some problem. Otherwise return 0 or 1.
1506  * Returns 0 if IO request was done synchronously
1507  * Returns 1 if IO request was successfully submitted.
1508  */
1509 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1510 			int offset, unsigned int op, struct bio *bio)
1511 {
1512 	unsigned long start_time = jiffies;
1513 	struct request_queue *q = zram->disk->queue;
1514 	int ret;
1515 
1516 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1517 			&zram->disk->part0);
1518 
1519 	if (!op_is_write(op)) {
1520 		atomic64_inc(&zram->stats.num_reads);
1521 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1522 		flush_dcache_page(bvec->bv_page);
1523 	} else {
1524 		atomic64_inc(&zram->stats.num_writes);
1525 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1526 	}
1527 
1528 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1529 
1530 	zram_slot_lock(zram, index);
1531 	zram_accessed(zram, index);
1532 	zram_slot_unlock(zram, index);
1533 
1534 	if (unlikely(ret < 0)) {
1535 		if (!op_is_write(op))
1536 			atomic64_inc(&zram->stats.failed_reads);
1537 		else
1538 			atomic64_inc(&zram->stats.failed_writes);
1539 	}
1540 
1541 	return ret;
1542 }
1543 
1544 static void __zram_make_request(struct zram *zram, struct bio *bio)
1545 {
1546 	int offset;
1547 	u32 index;
1548 	struct bio_vec bvec;
1549 	struct bvec_iter iter;
1550 
1551 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1552 	offset = (bio->bi_iter.bi_sector &
1553 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1554 
1555 	switch (bio_op(bio)) {
1556 	case REQ_OP_DISCARD:
1557 	case REQ_OP_WRITE_ZEROES:
1558 		zram_bio_discard(zram, index, offset, bio);
1559 		bio_endio(bio);
1560 		return;
1561 	default:
1562 		break;
1563 	}
1564 
1565 	bio_for_each_segment(bvec, bio, iter) {
1566 		struct bio_vec bv = bvec;
1567 		unsigned int unwritten = bvec.bv_len;
1568 
1569 		do {
1570 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1571 							unwritten);
1572 			if (zram_bvec_rw(zram, &bv, index, offset,
1573 					 bio_op(bio), bio) < 0)
1574 				goto out;
1575 
1576 			bv.bv_offset += bv.bv_len;
1577 			unwritten -= bv.bv_len;
1578 
1579 			update_position(&index, &offset, &bv);
1580 		} while (unwritten);
1581 	}
1582 
1583 	bio_endio(bio);
1584 	return;
1585 
1586 out:
1587 	bio_io_error(bio);
1588 }
1589 
1590 /*
1591  * Handler function for all zram I/O requests.
1592  */
1593 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1594 {
1595 	struct zram *zram = queue->queuedata;
1596 
1597 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1598 					bio->bi_iter.bi_size)) {
1599 		atomic64_inc(&zram->stats.invalid_io);
1600 		goto error;
1601 	}
1602 
1603 	__zram_make_request(zram, bio);
1604 	return BLK_QC_T_NONE;
1605 
1606 error:
1607 	bio_io_error(bio);
1608 	return BLK_QC_T_NONE;
1609 }
1610 
1611 static void zram_slot_free_notify(struct block_device *bdev,
1612 				unsigned long index)
1613 {
1614 	struct zram *zram;
1615 
1616 	zram = bdev->bd_disk->private_data;
1617 
1618 	atomic64_inc(&zram->stats.notify_free);
1619 	if (!zram_slot_trylock(zram, index)) {
1620 		atomic64_inc(&zram->stats.miss_free);
1621 		return;
1622 	}
1623 
1624 	zram_free_page(zram, index);
1625 	zram_slot_unlock(zram, index);
1626 }
1627 
1628 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1629 		       struct page *page, unsigned int op)
1630 {
1631 	int offset, ret;
1632 	u32 index;
1633 	struct zram *zram;
1634 	struct bio_vec bv;
1635 
1636 	if (PageTransHuge(page))
1637 		return -ENOTSUPP;
1638 	zram = bdev->bd_disk->private_data;
1639 
1640 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1641 		atomic64_inc(&zram->stats.invalid_io);
1642 		ret = -EINVAL;
1643 		goto out;
1644 	}
1645 
1646 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1647 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1648 
1649 	bv.bv_page = page;
1650 	bv.bv_len = PAGE_SIZE;
1651 	bv.bv_offset = 0;
1652 
1653 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1654 out:
1655 	/*
1656 	 * If I/O fails, just return error(ie, non-zero) without
1657 	 * calling page_endio.
1658 	 * It causes resubmit the I/O with bio request by upper functions
1659 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1660 	 * bio->bi_end_io does things to handle the error
1661 	 * (e.g., SetPageError, set_page_dirty and extra works).
1662 	 */
1663 	if (unlikely(ret < 0))
1664 		return ret;
1665 
1666 	switch (ret) {
1667 	case 0:
1668 		page_endio(page, op_is_write(op), 0);
1669 		break;
1670 	case 1:
1671 		ret = 0;
1672 		break;
1673 	default:
1674 		WARN_ON(1);
1675 	}
1676 	return ret;
1677 }
1678 
1679 static void zram_reset_device(struct zram *zram)
1680 {
1681 	struct zcomp *comp;
1682 	u64 disksize;
1683 
1684 	down_write(&zram->init_lock);
1685 
1686 	zram->limit_pages = 0;
1687 
1688 	if (!init_done(zram)) {
1689 		up_write(&zram->init_lock);
1690 		return;
1691 	}
1692 
1693 	comp = zram->comp;
1694 	disksize = zram->disksize;
1695 	zram->disksize = 0;
1696 
1697 	set_capacity(zram->disk, 0);
1698 	part_stat_set_all(&zram->disk->part0, 0);
1699 
1700 	up_write(&zram->init_lock);
1701 	/* I/O operation under all of CPU are done so let's free */
1702 	zram_meta_free(zram, disksize);
1703 	memset(&zram->stats, 0, sizeof(zram->stats));
1704 	zcomp_destroy(comp);
1705 	reset_bdev(zram);
1706 }
1707 
1708 static ssize_t disksize_store(struct device *dev,
1709 		struct device_attribute *attr, const char *buf, size_t len)
1710 {
1711 	u64 disksize;
1712 	struct zcomp *comp;
1713 	struct zram *zram = dev_to_zram(dev);
1714 	int err;
1715 
1716 	disksize = memparse(buf, NULL);
1717 	if (!disksize)
1718 		return -EINVAL;
1719 
1720 	down_write(&zram->init_lock);
1721 	if (init_done(zram)) {
1722 		pr_info("Cannot change disksize for initialized device\n");
1723 		err = -EBUSY;
1724 		goto out_unlock;
1725 	}
1726 
1727 	disksize = PAGE_ALIGN(disksize);
1728 	if (!zram_meta_alloc(zram, disksize)) {
1729 		err = -ENOMEM;
1730 		goto out_unlock;
1731 	}
1732 
1733 	comp = zcomp_create(zram->compressor);
1734 	if (IS_ERR(comp)) {
1735 		pr_err("Cannot initialise %s compressing backend\n",
1736 				zram->compressor);
1737 		err = PTR_ERR(comp);
1738 		goto out_free_meta;
1739 	}
1740 
1741 	zram->comp = comp;
1742 	zram->disksize = disksize;
1743 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1744 
1745 	revalidate_disk(zram->disk);
1746 	up_write(&zram->init_lock);
1747 
1748 	return len;
1749 
1750 out_free_meta:
1751 	zram_meta_free(zram, disksize);
1752 out_unlock:
1753 	up_write(&zram->init_lock);
1754 	return err;
1755 }
1756 
1757 static ssize_t reset_store(struct device *dev,
1758 		struct device_attribute *attr, const char *buf, size_t len)
1759 {
1760 	int ret;
1761 	unsigned short do_reset;
1762 	struct zram *zram;
1763 	struct block_device *bdev;
1764 
1765 	ret = kstrtou16(buf, 10, &do_reset);
1766 	if (ret)
1767 		return ret;
1768 
1769 	if (!do_reset)
1770 		return -EINVAL;
1771 
1772 	zram = dev_to_zram(dev);
1773 	bdev = bdget_disk(zram->disk, 0);
1774 	if (!bdev)
1775 		return -ENOMEM;
1776 
1777 	mutex_lock(&bdev->bd_mutex);
1778 	/* Do not reset an active device or claimed device */
1779 	if (bdev->bd_openers || zram->claim) {
1780 		mutex_unlock(&bdev->bd_mutex);
1781 		bdput(bdev);
1782 		return -EBUSY;
1783 	}
1784 
1785 	/* From now on, anyone can't open /dev/zram[0-9] */
1786 	zram->claim = true;
1787 	mutex_unlock(&bdev->bd_mutex);
1788 
1789 	/* Make sure all the pending I/O are finished */
1790 	fsync_bdev(bdev);
1791 	zram_reset_device(zram);
1792 	revalidate_disk(zram->disk);
1793 	bdput(bdev);
1794 
1795 	mutex_lock(&bdev->bd_mutex);
1796 	zram->claim = false;
1797 	mutex_unlock(&bdev->bd_mutex);
1798 
1799 	return len;
1800 }
1801 
1802 static int zram_open(struct block_device *bdev, fmode_t mode)
1803 {
1804 	int ret = 0;
1805 	struct zram *zram;
1806 
1807 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1808 
1809 	zram = bdev->bd_disk->private_data;
1810 	/* zram was claimed to reset so open request fails */
1811 	if (zram->claim)
1812 		ret = -EBUSY;
1813 
1814 	return ret;
1815 }
1816 
1817 static const struct block_device_operations zram_devops = {
1818 	.open = zram_open,
1819 	.swap_slot_free_notify = zram_slot_free_notify,
1820 	.rw_page = zram_rw_page,
1821 	.owner = THIS_MODULE
1822 };
1823 
1824 static DEVICE_ATTR_WO(compact);
1825 static DEVICE_ATTR_RW(disksize);
1826 static DEVICE_ATTR_RO(initstate);
1827 static DEVICE_ATTR_WO(reset);
1828 static DEVICE_ATTR_WO(mem_limit);
1829 static DEVICE_ATTR_WO(mem_used_max);
1830 static DEVICE_ATTR_WO(idle);
1831 static DEVICE_ATTR_RW(max_comp_streams);
1832 static DEVICE_ATTR_RW(comp_algorithm);
1833 #ifdef CONFIG_ZRAM_WRITEBACK
1834 static DEVICE_ATTR_RW(backing_dev);
1835 static DEVICE_ATTR_WO(writeback);
1836 static DEVICE_ATTR_RW(writeback_limit);
1837 static DEVICE_ATTR_RW(writeback_limit_enable);
1838 #endif
1839 
1840 static struct attribute *zram_disk_attrs[] = {
1841 	&dev_attr_disksize.attr,
1842 	&dev_attr_initstate.attr,
1843 	&dev_attr_reset.attr,
1844 	&dev_attr_compact.attr,
1845 	&dev_attr_mem_limit.attr,
1846 	&dev_attr_mem_used_max.attr,
1847 	&dev_attr_idle.attr,
1848 	&dev_attr_max_comp_streams.attr,
1849 	&dev_attr_comp_algorithm.attr,
1850 #ifdef CONFIG_ZRAM_WRITEBACK
1851 	&dev_attr_backing_dev.attr,
1852 	&dev_attr_writeback.attr,
1853 	&dev_attr_writeback_limit.attr,
1854 	&dev_attr_writeback_limit_enable.attr,
1855 #endif
1856 	&dev_attr_io_stat.attr,
1857 	&dev_attr_mm_stat.attr,
1858 #ifdef CONFIG_ZRAM_WRITEBACK
1859 	&dev_attr_bd_stat.attr,
1860 #endif
1861 	&dev_attr_debug_stat.attr,
1862 	NULL,
1863 };
1864 
1865 static const struct attribute_group zram_disk_attr_group = {
1866 	.attrs = zram_disk_attrs,
1867 };
1868 
1869 static const struct attribute_group *zram_disk_attr_groups[] = {
1870 	&zram_disk_attr_group,
1871 	NULL,
1872 };
1873 
1874 /*
1875  * Allocate and initialize new zram device. the function returns
1876  * '>= 0' device_id upon success, and negative value otherwise.
1877  */
1878 static int zram_add(void)
1879 {
1880 	struct zram *zram;
1881 	struct request_queue *queue;
1882 	int ret, device_id;
1883 
1884 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1885 	if (!zram)
1886 		return -ENOMEM;
1887 
1888 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1889 	if (ret < 0)
1890 		goto out_free_dev;
1891 	device_id = ret;
1892 
1893 	init_rwsem(&zram->init_lock);
1894 #ifdef CONFIG_ZRAM_WRITEBACK
1895 	spin_lock_init(&zram->wb_limit_lock);
1896 #endif
1897 	queue = blk_alloc_queue(GFP_KERNEL);
1898 	if (!queue) {
1899 		pr_err("Error allocating disk queue for device %d\n",
1900 			device_id);
1901 		ret = -ENOMEM;
1902 		goto out_free_idr;
1903 	}
1904 
1905 	blk_queue_make_request(queue, zram_make_request);
1906 
1907 	/* gendisk structure */
1908 	zram->disk = alloc_disk(1);
1909 	if (!zram->disk) {
1910 		pr_err("Error allocating disk structure for device %d\n",
1911 			device_id);
1912 		ret = -ENOMEM;
1913 		goto out_free_queue;
1914 	}
1915 
1916 	zram->disk->major = zram_major;
1917 	zram->disk->first_minor = device_id;
1918 	zram->disk->fops = &zram_devops;
1919 	zram->disk->queue = queue;
1920 	zram->disk->queue->queuedata = zram;
1921 	zram->disk->private_data = zram;
1922 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1923 
1924 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1925 	set_capacity(zram->disk, 0);
1926 	/* zram devices sort of resembles non-rotational disks */
1927 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1928 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1929 
1930 	/*
1931 	 * To ensure that we always get PAGE_SIZE aligned
1932 	 * and n*PAGE_SIZED sized I/O requests.
1933 	 */
1934 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1935 	blk_queue_logical_block_size(zram->disk->queue,
1936 					ZRAM_LOGICAL_BLOCK_SIZE);
1937 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1938 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1939 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1940 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1941 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1942 
1943 	/*
1944 	 * zram_bio_discard() will clear all logical blocks if logical block
1945 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1946 	 * different, we will skip discarding some parts of logical blocks in
1947 	 * the part of the request range which isn't aligned to physical block
1948 	 * size.  So we can't ensure that all discarded logical blocks are
1949 	 * zeroed.
1950 	 */
1951 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1952 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1953 
1954 	zram->disk->queue->backing_dev_info->capabilities |=
1955 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1956 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1957 
1958 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1959 
1960 	zram_debugfs_register(zram);
1961 	pr_info("Added device: %s\n", zram->disk->disk_name);
1962 	return device_id;
1963 
1964 out_free_queue:
1965 	blk_cleanup_queue(queue);
1966 out_free_idr:
1967 	idr_remove(&zram_index_idr, device_id);
1968 out_free_dev:
1969 	kfree(zram);
1970 	return ret;
1971 }
1972 
1973 static int zram_remove(struct zram *zram)
1974 {
1975 	struct block_device *bdev;
1976 
1977 	bdev = bdget_disk(zram->disk, 0);
1978 	if (!bdev)
1979 		return -ENOMEM;
1980 
1981 	mutex_lock(&bdev->bd_mutex);
1982 	if (bdev->bd_openers || zram->claim) {
1983 		mutex_unlock(&bdev->bd_mutex);
1984 		bdput(bdev);
1985 		return -EBUSY;
1986 	}
1987 
1988 	zram->claim = true;
1989 	mutex_unlock(&bdev->bd_mutex);
1990 
1991 	zram_debugfs_unregister(zram);
1992 
1993 	/* Make sure all the pending I/O are finished */
1994 	fsync_bdev(bdev);
1995 	zram_reset_device(zram);
1996 	bdput(bdev);
1997 
1998 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1999 
2000 	del_gendisk(zram->disk);
2001 	blk_cleanup_queue(zram->disk->queue);
2002 	put_disk(zram->disk);
2003 	kfree(zram);
2004 	return 0;
2005 }
2006 
2007 /* zram-control sysfs attributes */
2008 
2009 /*
2010  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2011  * sense that reading from this file does alter the state of your system -- it
2012  * creates a new un-initialized zram device and returns back this device's
2013  * device_id (or an error code if it fails to create a new device).
2014  */
2015 static ssize_t hot_add_show(struct class *class,
2016 			struct class_attribute *attr,
2017 			char *buf)
2018 {
2019 	int ret;
2020 
2021 	mutex_lock(&zram_index_mutex);
2022 	ret = zram_add();
2023 	mutex_unlock(&zram_index_mutex);
2024 
2025 	if (ret < 0)
2026 		return ret;
2027 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2028 }
2029 static CLASS_ATTR_RO(hot_add);
2030 
2031 static ssize_t hot_remove_store(struct class *class,
2032 			struct class_attribute *attr,
2033 			const char *buf,
2034 			size_t count)
2035 {
2036 	struct zram *zram;
2037 	int ret, dev_id;
2038 
2039 	/* dev_id is gendisk->first_minor, which is `int' */
2040 	ret = kstrtoint(buf, 10, &dev_id);
2041 	if (ret)
2042 		return ret;
2043 	if (dev_id < 0)
2044 		return -EINVAL;
2045 
2046 	mutex_lock(&zram_index_mutex);
2047 
2048 	zram = idr_find(&zram_index_idr, dev_id);
2049 	if (zram) {
2050 		ret = zram_remove(zram);
2051 		if (!ret)
2052 			idr_remove(&zram_index_idr, dev_id);
2053 	} else {
2054 		ret = -ENODEV;
2055 	}
2056 
2057 	mutex_unlock(&zram_index_mutex);
2058 	return ret ? ret : count;
2059 }
2060 static CLASS_ATTR_WO(hot_remove);
2061 
2062 static struct attribute *zram_control_class_attrs[] = {
2063 	&class_attr_hot_add.attr,
2064 	&class_attr_hot_remove.attr,
2065 	NULL,
2066 };
2067 ATTRIBUTE_GROUPS(zram_control_class);
2068 
2069 static struct class zram_control_class = {
2070 	.name		= "zram-control",
2071 	.owner		= THIS_MODULE,
2072 	.class_groups	= zram_control_class_groups,
2073 };
2074 
2075 static int zram_remove_cb(int id, void *ptr, void *data)
2076 {
2077 	zram_remove(ptr);
2078 	return 0;
2079 }
2080 
2081 static void destroy_devices(void)
2082 {
2083 	class_unregister(&zram_control_class);
2084 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2085 	zram_debugfs_destroy();
2086 	idr_destroy(&zram_index_idr);
2087 	unregister_blkdev(zram_major, "zram");
2088 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2089 }
2090 
2091 static int __init zram_init(void)
2092 {
2093 	int ret;
2094 
2095 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2096 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2097 	if (ret < 0)
2098 		return ret;
2099 
2100 	ret = class_register(&zram_control_class);
2101 	if (ret) {
2102 		pr_err("Unable to register zram-control class\n");
2103 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2104 		return ret;
2105 	}
2106 
2107 	zram_debugfs_create();
2108 	zram_major = register_blkdev(0, "zram");
2109 	if (zram_major <= 0) {
2110 		pr_err("Unable to get major number\n");
2111 		class_unregister(&zram_control_class);
2112 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2113 		return -EBUSY;
2114 	}
2115 
2116 	while (num_devices != 0) {
2117 		mutex_lock(&zram_index_mutex);
2118 		ret = zram_add();
2119 		mutex_unlock(&zram_index_mutex);
2120 		if (ret < 0)
2121 			goto out_error;
2122 		num_devices--;
2123 	}
2124 
2125 	return 0;
2126 
2127 out_error:
2128 	destroy_devices();
2129 	return ret;
2130 }
2131 
2132 static void __exit zram_exit(void)
2133 {
2134 	destroy_devices();
2135 }
2136 
2137 module_init(zram_init);
2138 module_exit(zram_exit);
2139 
2140 module_param(num_devices, uint, 0);
2141 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2142 
2143 MODULE_LICENSE("Dual BSD/GPL");
2144 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2145 MODULE_DESCRIPTION("Compressed RAM Block Device");
2146