xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 84b102f5)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46 
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50  * Pages that compress to sizes equals or greater than this are stored
51  * uncompressed in memory.
52  */
53 static size_t huge_class_size;
54 
55 static const struct block_device_operations zram_devops;
56 static const struct block_device_operations zram_wb_devops;
57 
58 static void zram_free_page(struct zram *zram, size_t index);
59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
60 				u32 index, int offset, struct bio *bio);
61 
62 
63 static int zram_slot_trylock(struct zram *zram, u32 index)
64 {
65 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
66 }
67 
68 static void zram_slot_lock(struct zram *zram, u32 index)
69 {
70 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
71 }
72 
73 static void zram_slot_unlock(struct zram *zram, u32 index)
74 {
75 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
76 }
77 
78 static inline bool init_done(struct zram *zram)
79 {
80 	return zram->disksize;
81 }
82 
83 static inline struct zram *dev_to_zram(struct device *dev)
84 {
85 	return (struct zram *)dev_to_disk(dev)->private_data;
86 }
87 
88 static unsigned long zram_get_handle(struct zram *zram, u32 index)
89 {
90 	return zram->table[index].handle;
91 }
92 
93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
94 {
95 	zram->table[index].handle = handle;
96 }
97 
98 /* flag operations require table entry bit_spin_lock() being held */
99 static bool zram_test_flag(struct zram *zram, u32 index,
100 			enum zram_pageflags flag)
101 {
102 	return zram->table[index].flags & BIT(flag);
103 }
104 
105 static void zram_set_flag(struct zram *zram, u32 index,
106 			enum zram_pageflags flag)
107 {
108 	zram->table[index].flags |= BIT(flag);
109 }
110 
111 static void zram_clear_flag(struct zram *zram, u32 index,
112 			enum zram_pageflags flag)
113 {
114 	zram->table[index].flags &= ~BIT(flag);
115 }
116 
117 static inline void zram_set_element(struct zram *zram, u32 index,
118 			unsigned long element)
119 {
120 	zram->table[index].element = element;
121 }
122 
123 static unsigned long zram_get_element(struct zram *zram, u32 index)
124 {
125 	return zram->table[index].element;
126 }
127 
128 static size_t zram_get_obj_size(struct zram *zram, u32 index)
129 {
130 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
131 }
132 
133 static void zram_set_obj_size(struct zram *zram,
134 					u32 index, size_t size)
135 {
136 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
137 
138 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
139 }
140 
141 static inline bool zram_allocated(struct zram *zram, u32 index)
142 {
143 	return zram_get_obj_size(zram, index) ||
144 			zram_test_flag(zram, index, ZRAM_SAME) ||
145 			zram_test_flag(zram, index, ZRAM_WB);
146 }
147 
148 #if PAGE_SIZE != 4096
149 static inline bool is_partial_io(struct bio_vec *bvec)
150 {
151 	return bvec->bv_len != PAGE_SIZE;
152 }
153 #else
154 static inline bool is_partial_io(struct bio_vec *bvec)
155 {
156 	return false;
157 }
158 #endif
159 
160 /*
161  * Check if request is within bounds and aligned on zram logical blocks.
162  */
163 static inline bool valid_io_request(struct zram *zram,
164 		sector_t start, unsigned int size)
165 {
166 	u64 end, bound;
167 
168 	/* unaligned request */
169 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
170 		return false;
171 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
172 		return false;
173 
174 	end = start + (size >> SECTOR_SHIFT);
175 	bound = zram->disksize >> SECTOR_SHIFT;
176 	/* out of range range */
177 	if (unlikely(start >= bound || end > bound || start > end))
178 		return false;
179 
180 	/* I/O request is valid */
181 	return true;
182 }
183 
184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
185 {
186 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
187 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
188 }
189 
190 static inline void update_used_max(struct zram *zram,
191 					const unsigned long pages)
192 {
193 	unsigned long old_max, cur_max;
194 
195 	old_max = atomic_long_read(&zram->stats.max_used_pages);
196 
197 	do {
198 		cur_max = old_max;
199 		if (pages > cur_max)
200 			old_max = atomic_long_cmpxchg(
201 				&zram->stats.max_used_pages, cur_max, pages);
202 	} while (old_max != cur_max);
203 }
204 
205 static inline void zram_fill_page(void *ptr, unsigned long len,
206 					unsigned long value)
207 {
208 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
209 	memset_l(ptr, value, len / sizeof(unsigned long));
210 }
211 
212 static bool page_same_filled(void *ptr, unsigned long *element)
213 {
214 	unsigned long *page;
215 	unsigned long val;
216 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
217 
218 	page = (unsigned long *)ptr;
219 	val = page[0];
220 
221 	if (val != page[last_pos])
222 		return false;
223 
224 	for (pos = 1; pos < last_pos; pos++) {
225 		if (val != page[pos])
226 			return false;
227 	}
228 
229 	*element = val;
230 
231 	return true;
232 }
233 
234 static ssize_t initstate_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	u32 val;
238 	struct zram *zram = dev_to_zram(dev);
239 
240 	down_read(&zram->init_lock);
241 	val = init_done(zram);
242 	up_read(&zram->init_lock);
243 
244 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
245 }
246 
247 static ssize_t disksize_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct zram *zram = dev_to_zram(dev);
251 
252 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
253 }
254 
255 static ssize_t mem_limit_store(struct device *dev,
256 		struct device_attribute *attr, const char *buf, size_t len)
257 {
258 	u64 limit;
259 	char *tmp;
260 	struct zram *zram = dev_to_zram(dev);
261 
262 	limit = memparse(buf, &tmp);
263 	if (buf == tmp) /* no chars parsed, invalid input */
264 		return -EINVAL;
265 
266 	down_write(&zram->init_lock);
267 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
268 	up_write(&zram->init_lock);
269 
270 	return len;
271 }
272 
273 static ssize_t mem_used_max_store(struct device *dev,
274 		struct device_attribute *attr, const char *buf, size_t len)
275 {
276 	int err;
277 	unsigned long val;
278 	struct zram *zram = dev_to_zram(dev);
279 
280 	err = kstrtoul(buf, 10, &val);
281 	if (err || val != 0)
282 		return -EINVAL;
283 
284 	down_read(&zram->init_lock);
285 	if (init_done(zram)) {
286 		atomic_long_set(&zram->stats.max_used_pages,
287 				zs_get_total_pages(zram->mem_pool));
288 	}
289 	up_read(&zram->init_lock);
290 
291 	return len;
292 }
293 
294 static ssize_t idle_store(struct device *dev,
295 		struct device_attribute *attr, const char *buf, size_t len)
296 {
297 	struct zram *zram = dev_to_zram(dev);
298 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
299 	int index;
300 
301 	if (!sysfs_streq(buf, "all"))
302 		return -EINVAL;
303 
304 	down_read(&zram->init_lock);
305 	if (!init_done(zram)) {
306 		up_read(&zram->init_lock);
307 		return -EINVAL;
308 	}
309 
310 	for (index = 0; index < nr_pages; index++) {
311 		/*
312 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
313 		 * See the comment in writeback_store.
314 		 */
315 		zram_slot_lock(zram, index);
316 		if (zram_allocated(zram, index) &&
317 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
318 			zram_set_flag(zram, index, ZRAM_IDLE);
319 		zram_slot_unlock(zram, index);
320 	}
321 
322 	up_read(&zram->init_lock);
323 
324 	return len;
325 }
326 
327 #ifdef CONFIG_ZRAM_WRITEBACK
328 static ssize_t writeback_limit_enable_store(struct device *dev,
329 		struct device_attribute *attr, const char *buf, size_t len)
330 {
331 	struct zram *zram = dev_to_zram(dev);
332 	u64 val;
333 	ssize_t ret = -EINVAL;
334 
335 	if (kstrtoull(buf, 10, &val))
336 		return ret;
337 
338 	down_read(&zram->init_lock);
339 	spin_lock(&zram->wb_limit_lock);
340 	zram->wb_limit_enable = val;
341 	spin_unlock(&zram->wb_limit_lock);
342 	up_read(&zram->init_lock);
343 	ret = len;
344 
345 	return ret;
346 }
347 
348 static ssize_t writeback_limit_enable_show(struct device *dev,
349 		struct device_attribute *attr, char *buf)
350 {
351 	bool val;
352 	struct zram *zram = dev_to_zram(dev);
353 
354 	down_read(&zram->init_lock);
355 	spin_lock(&zram->wb_limit_lock);
356 	val = zram->wb_limit_enable;
357 	spin_unlock(&zram->wb_limit_lock);
358 	up_read(&zram->init_lock);
359 
360 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
361 }
362 
363 static ssize_t writeback_limit_store(struct device *dev,
364 		struct device_attribute *attr, const char *buf, size_t len)
365 {
366 	struct zram *zram = dev_to_zram(dev);
367 	u64 val;
368 	ssize_t ret = -EINVAL;
369 
370 	if (kstrtoull(buf, 10, &val))
371 		return ret;
372 
373 	down_read(&zram->init_lock);
374 	spin_lock(&zram->wb_limit_lock);
375 	zram->bd_wb_limit = val;
376 	spin_unlock(&zram->wb_limit_lock);
377 	up_read(&zram->init_lock);
378 	ret = len;
379 
380 	return ret;
381 }
382 
383 static ssize_t writeback_limit_show(struct device *dev,
384 		struct device_attribute *attr, char *buf)
385 {
386 	u64 val;
387 	struct zram *zram = dev_to_zram(dev);
388 
389 	down_read(&zram->init_lock);
390 	spin_lock(&zram->wb_limit_lock);
391 	val = zram->bd_wb_limit;
392 	spin_unlock(&zram->wb_limit_lock);
393 	up_read(&zram->init_lock);
394 
395 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
396 }
397 
398 static void reset_bdev(struct zram *zram)
399 {
400 	struct block_device *bdev;
401 
402 	if (!zram->backing_dev)
403 		return;
404 
405 	bdev = zram->bdev;
406 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
407 	/* hope filp_close flush all of IO */
408 	filp_close(zram->backing_dev, NULL);
409 	zram->backing_dev = NULL;
410 	zram->bdev = NULL;
411 	zram->disk->fops = &zram_devops;
412 	kvfree(zram->bitmap);
413 	zram->bitmap = NULL;
414 }
415 
416 static ssize_t backing_dev_show(struct device *dev,
417 		struct device_attribute *attr, char *buf)
418 {
419 	struct file *file;
420 	struct zram *zram = dev_to_zram(dev);
421 	char *p;
422 	ssize_t ret;
423 
424 	down_read(&zram->init_lock);
425 	file = zram->backing_dev;
426 	if (!file) {
427 		memcpy(buf, "none\n", 5);
428 		up_read(&zram->init_lock);
429 		return 5;
430 	}
431 
432 	p = file_path(file, buf, PAGE_SIZE - 1);
433 	if (IS_ERR(p)) {
434 		ret = PTR_ERR(p);
435 		goto out;
436 	}
437 
438 	ret = strlen(p);
439 	memmove(buf, p, ret);
440 	buf[ret++] = '\n';
441 out:
442 	up_read(&zram->init_lock);
443 	return ret;
444 }
445 
446 static ssize_t backing_dev_store(struct device *dev,
447 		struct device_attribute *attr, const char *buf, size_t len)
448 {
449 	char *file_name;
450 	size_t sz;
451 	struct file *backing_dev = NULL;
452 	struct inode *inode;
453 	struct address_space *mapping;
454 	unsigned int bitmap_sz;
455 	unsigned long nr_pages, *bitmap = NULL;
456 	struct block_device *bdev = NULL;
457 	int err;
458 	struct zram *zram = dev_to_zram(dev);
459 
460 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
461 	if (!file_name)
462 		return -ENOMEM;
463 
464 	down_write(&zram->init_lock);
465 	if (init_done(zram)) {
466 		pr_info("Can't setup backing device for initialized device\n");
467 		err = -EBUSY;
468 		goto out;
469 	}
470 
471 	strlcpy(file_name, buf, PATH_MAX);
472 	/* ignore trailing newline */
473 	sz = strlen(file_name);
474 	if (sz > 0 && file_name[sz - 1] == '\n')
475 		file_name[sz - 1] = 0x00;
476 
477 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
478 	if (IS_ERR(backing_dev)) {
479 		err = PTR_ERR(backing_dev);
480 		backing_dev = NULL;
481 		goto out;
482 	}
483 
484 	mapping = backing_dev->f_mapping;
485 	inode = mapping->host;
486 
487 	/* Support only block device in this moment */
488 	if (!S_ISBLK(inode->i_mode)) {
489 		err = -ENOTBLK;
490 		goto out;
491 	}
492 
493 	bdev = blkdev_get_by_dev(inode->i_rdev,
494 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
495 	if (IS_ERR(bdev)) {
496 		err = PTR_ERR(bdev);
497 		bdev = NULL;
498 		goto out;
499 	}
500 
501 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
502 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
503 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
504 	if (!bitmap) {
505 		err = -ENOMEM;
506 		goto out;
507 	}
508 
509 	reset_bdev(zram);
510 
511 	zram->bdev = bdev;
512 	zram->backing_dev = backing_dev;
513 	zram->bitmap = bitmap;
514 	zram->nr_pages = nr_pages;
515 	/*
516 	 * With writeback feature, zram does asynchronous IO so it's no longer
517 	 * synchronous device so let's remove synchronous io flag. Othewise,
518 	 * upper layer(e.g., swap) could wait IO completion rather than
519 	 * (submit and return), which will cause system sluggish.
520 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
521 	 * upper layer expects IO was done so it could deallocate the page
522 	 * freely but in fact, IO is going on so finally could cause
523 	 * use-after-free when the IO is really done.
524 	 */
525 	zram->disk->fops = &zram_wb_devops;
526 	up_write(&zram->init_lock);
527 
528 	pr_info("setup backing device %s\n", file_name);
529 	kfree(file_name);
530 
531 	return len;
532 out:
533 	if (bitmap)
534 		kvfree(bitmap);
535 
536 	if (bdev)
537 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
538 
539 	if (backing_dev)
540 		filp_close(backing_dev, NULL);
541 
542 	up_write(&zram->init_lock);
543 
544 	kfree(file_name);
545 
546 	return err;
547 }
548 
549 static unsigned long alloc_block_bdev(struct zram *zram)
550 {
551 	unsigned long blk_idx = 1;
552 retry:
553 	/* skip 0 bit to confuse zram.handle = 0 */
554 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
555 	if (blk_idx == zram->nr_pages)
556 		return 0;
557 
558 	if (test_and_set_bit(blk_idx, zram->bitmap))
559 		goto retry;
560 
561 	atomic64_inc(&zram->stats.bd_count);
562 	return blk_idx;
563 }
564 
565 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
566 {
567 	int was_set;
568 
569 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
570 	WARN_ON_ONCE(!was_set);
571 	atomic64_dec(&zram->stats.bd_count);
572 }
573 
574 static void zram_page_end_io(struct bio *bio)
575 {
576 	struct page *page = bio_first_page_all(bio);
577 
578 	page_endio(page, op_is_write(bio_op(bio)),
579 			blk_status_to_errno(bio->bi_status));
580 	bio_put(bio);
581 }
582 
583 /*
584  * Returns 1 if the submission is successful.
585  */
586 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
587 			unsigned long entry, struct bio *parent)
588 {
589 	struct bio *bio;
590 
591 	bio = bio_alloc(GFP_ATOMIC, 1);
592 	if (!bio)
593 		return -ENOMEM;
594 
595 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
596 	bio_set_dev(bio, zram->bdev);
597 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
598 		bio_put(bio);
599 		return -EIO;
600 	}
601 
602 	if (!parent) {
603 		bio->bi_opf = REQ_OP_READ;
604 		bio->bi_end_io = zram_page_end_io;
605 	} else {
606 		bio->bi_opf = parent->bi_opf;
607 		bio_chain(bio, parent);
608 	}
609 
610 	submit_bio(bio);
611 	return 1;
612 }
613 
614 #define PAGE_WB_SIG "page_index="
615 
616 #define PAGE_WRITEBACK 0
617 #define HUGE_WRITEBACK 1
618 #define IDLE_WRITEBACK 2
619 
620 
621 static ssize_t writeback_store(struct device *dev,
622 		struct device_attribute *attr, const char *buf, size_t len)
623 {
624 	struct zram *zram = dev_to_zram(dev);
625 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
626 	unsigned long index = 0;
627 	struct bio bio;
628 	struct bio_vec bio_vec;
629 	struct page *page;
630 	ssize_t ret = len;
631 	int mode;
632 	unsigned long blk_idx = 0;
633 
634 	if (sysfs_streq(buf, "idle"))
635 		mode = IDLE_WRITEBACK;
636 	else if (sysfs_streq(buf, "huge"))
637 		mode = HUGE_WRITEBACK;
638 	else {
639 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
640 			return -EINVAL;
641 
642 		ret = kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index);
643 		if (ret || index >= nr_pages)
644 			return -EINVAL;
645 
646 		nr_pages = 1;
647 		mode = PAGE_WRITEBACK;
648 	}
649 
650 	down_read(&zram->init_lock);
651 	if (!init_done(zram)) {
652 		ret = -EINVAL;
653 		goto release_init_lock;
654 	}
655 
656 	if (!zram->backing_dev) {
657 		ret = -ENODEV;
658 		goto release_init_lock;
659 	}
660 
661 	page = alloc_page(GFP_KERNEL);
662 	if (!page) {
663 		ret = -ENOMEM;
664 		goto release_init_lock;
665 	}
666 
667 	while (nr_pages--) {
668 		struct bio_vec bvec;
669 
670 		bvec.bv_page = page;
671 		bvec.bv_len = PAGE_SIZE;
672 		bvec.bv_offset = 0;
673 
674 		spin_lock(&zram->wb_limit_lock);
675 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
676 			spin_unlock(&zram->wb_limit_lock);
677 			ret = -EIO;
678 			break;
679 		}
680 		spin_unlock(&zram->wb_limit_lock);
681 
682 		if (!blk_idx) {
683 			blk_idx = alloc_block_bdev(zram);
684 			if (!blk_idx) {
685 				ret = -ENOSPC;
686 				break;
687 			}
688 		}
689 
690 		zram_slot_lock(zram, index);
691 		if (!zram_allocated(zram, index))
692 			goto next;
693 
694 		if (zram_test_flag(zram, index, ZRAM_WB) ||
695 				zram_test_flag(zram, index, ZRAM_SAME) ||
696 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
697 			goto next;
698 
699 		if (mode == IDLE_WRITEBACK &&
700 			  !zram_test_flag(zram, index, ZRAM_IDLE))
701 			goto next;
702 		if (mode == HUGE_WRITEBACK &&
703 			  !zram_test_flag(zram, index, ZRAM_HUGE))
704 			goto next;
705 		/*
706 		 * Clearing ZRAM_UNDER_WB is duty of caller.
707 		 * IOW, zram_free_page never clear it.
708 		 */
709 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
710 		/* Need for hugepage writeback racing */
711 		zram_set_flag(zram, index, ZRAM_IDLE);
712 		zram_slot_unlock(zram, index);
713 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
714 			zram_slot_lock(zram, index);
715 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
716 			zram_clear_flag(zram, index, ZRAM_IDLE);
717 			zram_slot_unlock(zram, index);
718 			continue;
719 		}
720 
721 		bio_init(&bio, &bio_vec, 1);
722 		bio_set_dev(&bio, zram->bdev);
723 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
724 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
725 
726 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
727 				bvec.bv_offset);
728 		/*
729 		 * XXX: A single page IO would be inefficient for write
730 		 * but it would be not bad as starter.
731 		 */
732 		ret = submit_bio_wait(&bio);
733 		if (ret) {
734 			zram_slot_lock(zram, index);
735 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
736 			zram_clear_flag(zram, index, ZRAM_IDLE);
737 			zram_slot_unlock(zram, index);
738 			continue;
739 		}
740 
741 		atomic64_inc(&zram->stats.bd_writes);
742 		/*
743 		 * We released zram_slot_lock so need to check if the slot was
744 		 * changed. If there is freeing for the slot, we can catch it
745 		 * easily by zram_allocated.
746 		 * A subtle case is the slot is freed/reallocated/marked as
747 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
748 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
749 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
750 		 */
751 		zram_slot_lock(zram, index);
752 		if (!zram_allocated(zram, index) ||
753 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
754 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
755 			zram_clear_flag(zram, index, ZRAM_IDLE);
756 			goto next;
757 		}
758 
759 		zram_free_page(zram, index);
760 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
761 		zram_set_flag(zram, index, ZRAM_WB);
762 		zram_set_element(zram, index, blk_idx);
763 		blk_idx = 0;
764 		atomic64_inc(&zram->stats.pages_stored);
765 		spin_lock(&zram->wb_limit_lock);
766 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
767 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
768 		spin_unlock(&zram->wb_limit_lock);
769 next:
770 		zram_slot_unlock(zram, index);
771 	}
772 
773 	if (blk_idx)
774 		free_block_bdev(zram, blk_idx);
775 	__free_page(page);
776 release_init_lock:
777 	up_read(&zram->init_lock);
778 
779 	return ret;
780 }
781 
782 struct zram_work {
783 	struct work_struct work;
784 	struct zram *zram;
785 	unsigned long entry;
786 	struct bio *bio;
787 	struct bio_vec bvec;
788 };
789 
790 #if PAGE_SIZE != 4096
791 static void zram_sync_read(struct work_struct *work)
792 {
793 	struct zram_work *zw = container_of(work, struct zram_work, work);
794 	struct zram *zram = zw->zram;
795 	unsigned long entry = zw->entry;
796 	struct bio *bio = zw->bio;
797 
798 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
799 }
800 
801 /*
802  * Block layer want one ->submit_bio to be active at a time, so if we use
803  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
804  * use a worker thread context.
805  */
806 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
807 				unsigned long entry, struct bio *bio)
808 {
809 	struct zram_work work;
810 
811 	work.bvec = *bvec;
812 	work.zram = zram;
813 	work.entry = entry;
814 	work.bio = bio;
815 
816 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
817 	queue_work(system_unbound_wq, &work.work);
818 	flush_work(&work.work);
819 	destroy_work_on_stack(&work.work);
820 
821 	return 1;
822 }
823 #else
824 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
825 				unsigned long entry, struct bio *bio)
826 {
827 	WARN_ON(1);
828 	return -EIO;
829 }
830 #endif
831 
832 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
833 			unsigned long entry, struct bio *parent, bool sync)
834 {
835 	atomic64_inc(&zram->stats.bd_reads);
836 	if (sync)
837 		return read_from_bdev_sync(zram, bvec, entry, parent);
838 	else
839 		return read_from_bdev_async(zram, bvec, entry, parent);
840 }
841 #else
842 static inline void reset_bdev(struct zram *zram) {};
843 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
844 			unsigned long entry, struct bio *parent, bool sync)
845 {
846 	return -EIO;
847 }
848 
849 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
850 #endif
851 
852 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
853 
854 static struct dentry *zram_debugfs_root;
855 
856 static void zram_debugfs_create(void)
857 {
858 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
859 }
860 
861 static void zram_debugfs_destroy(void)
862 {
863 	debugfs_remove_recursive(zram_debugfs_root);
864 }
865 
866 static void zram_accessed(struct zram *zram, u32 index)
867 {
868 	zram_clear_flag(zram, index, ZRAM_IDLE);
869 	zram->table[index].ac_time = ktime_get_boottime();
870 }
871 
872 static ssize_t read_block_state(struct file *file, char __user *buf,
873 				size_t count, loff_t *ppos)
874 {
875 	char *kbuf;
876 	ssize_t index, written = 0;
877 	struct zram *zram = file->private_data;
878 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
879 	struct timespec64 ts;
880 
881 	kbuf = kvmalloc(count, GFP_KERNEL);
882 	if (!kbuf)
883 		return -ENOMEM;
884 
885 	down_read(&zram->init_lock);
886 	if (!init_done(zram)) {
887 		up_read(&zram->init_lock);
888 		kvfree(kbuf);
889 		return -EINVAL;
890 	}
891 
892 	for (index = *ppos; index < nr_pages; index++) {
893 		int copied;
894 
895 		zram_slot_lock(zram, index);
896 		if (!zram_allocated(zram, index))
897 			goto next;
898 
899 		ts = ktime_to_timespec64(zram->table[index].ac_time);
900 		copied = snprintf(kbuf + written, count,
901 			"%12zd %12lld.%06lu %c%c%c%c\n",
902 			index, (s64)ts.tv_sec,
903 			ts.tv_nsec / NSEC_PER_USEC,
904 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
905 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
906 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
907 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
908 
909 		if (count < copied) {
910 			zram_slot_unlock(zram, index);
911 			break;
912 		}
913 		written += copied;
914 		count -= copied;
915 next:
916 		zram_slot_unlock(zram, index);
917 		*ppos += 1;
918 	}
919 
920 	up_read(&zram->init_lock);
921 	if (copy_to_user(buf, kbuf, written))
922 		written = -EFAULT;
923 	kvfree(kbuf);
924 
925 	return written;
926 }
927 
928 static const struct file_operations proc_zram_block_state_op = {
929 	.open = simple_open,
930 	.read = read_block_state,
931 	.llseek = default_llseek,
932 };
933 
934 static void zram_debugfs_register(struct zram *zram)
935 {
936 	if (!zram_debugfs_root)
937 		return;
938 
939 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
940 						zram_debugfs_root);
941 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
942 				zram, &proc_zram_block_state_op);
943 }
944 
945 static void zram_debugfs_unregister(struct zram *zram)
946 {
947 	debugfs_remove_recursive(zram->debugfs_dir);
948 }
949 #else
950 static void zram_debugfs_create(void) {};
951 static void zram_debugfs_destroy(void) {};
952 static void zram_accessed(struct zram *zram, u32 index)
953 {
954 	zram_clear_flag(zram, index, ZRAM_IDLE);
955 };
956 static void zram_debugfs_register(struct zram *zram) {};
957 static void zram_debugfs_unregister(struct zram *zram) {};
958 #endif
959 
960 /*
961  * We switched to per-cpu streams and this attr is not needed anymore.
962  * However, we will keep it around for some time, because:
963  * a) we may revert per-cpu streams in the future
964  * b) it's visible to user space and we need to follow our 2 years
965  *    retirement rule; but we already have a number of 'soon to be
966  *    altered' attrs, so max_comp_streams need to wait for the next
967  *    layoff cycle.
968  */
969 static ssize_t max_comp_streams_show(struct device *dev,
970 		struct device_attribute *attr, char *buf)
971 {
972 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
973 }
974 
975 static ssize_t max_comp_streams_store(struct device *dev,
976 		struct device_attribute *attr, const char *buf, size_t len)
977 {
978 	return len;
979 }
980 
981 static ssize_t comp_algorithm_show(struct device *dev,
982 		struct device_attribute *attr, char *buf)
983 {
984 	size_t sz;
985 	struct zram *zram = dev_to_zram(dev);
986 
987 	down_read(&zram->init_lock);
988 	sz = zcomp_available_show(zram->compressor, buf);
989 	up_read(&zram->init_lock);
990 
991 	return sz;
992 }
993 
994 static ssize_t comp_algorithm_store(struct device *dev,
995 		struct device_attribute *attr, const char *buf, size_t len)
996 {
997 	struct zram *zram = dev_to_zram(dev);
998 	char compressor[ARRAY_SIZE(zram->compressor)];
999 	size_t sz;
1000 
1001 	strlcpy(compressor, buf, sizeof(compressor));
1002 	/* ignore trailing newline */
1003 	sz = strlen(compressor);
1004 	if (sz > 0 && compressor[sz - 1] == '\n')
1005 		compressor[sz - 1] = 0x00;
1006 
1007 	if (!zcomp_available_algorithm(compressor))
1008 		return -EINVAL;
1009 
1010 	down_write(&zram->init_lock);
1011 	if (init_done(zram)) {
1012 		up_write(&zram->init_lock);
1013 		pr_info("Can't change algorithm for initialized device\n");
1014 		return -EBUSY;
1015 	}
1016 
1017 	strcpy(zram->compressor, compressor);
1018 	up_write(&zram->init_lock);
1019 	return len;
1020 }
1021 
1022 static ssize_t compact_store(struct device *dev,
1023 		struct device_attribute *attr, const char *buf, size_t len)
1024 {
1025 	struct zram *zram = dev_to_zram(dev);
1026 
1027 	down_read(&zram->init_lock);
1028 	if (!init_done(zram)) {
1029 		up_read(&zram->init_lock);
1030 		return -EINVAL;
1031 	}
1032 
1033 	zs_compact(zram->mem_pool);
1034 	up_read(&zram->init_lock);
1035 
1036 	return len;
1037 }
1038 
1039 static ssize_t io_stat_show(struct device *dev,
1040 		struct device_attribute *attr, char *buf)
1041 {
1042 	struct zram *zram = dev_to_zram(dev);
1043 	ssize_t ret;
1044 
1045 	down_read(&zram->init_lock);
1046 	ret = scnprintf(buf, PAGE_SIZE,
1047 			"%8llu %8llu %8llu %8llu\n",
1048 			(u64)atomic64_read(&zram->stats.failed_reads),
1049 			(u64)atomic64_read(&zram->stats.failed_writes),
1050 			(u64)atomic64_read(&zram->stats.invalid_io),
1051 			(u64)atomic64_read(&zram->stats.notify_free));
1052 	up_read(&zram->init_lock);
1053 
1054 	return ret;
1055 }
1056 
1057 static ssize_t mm_stat_show(struct device *dev,
1058 		struct device_attribute *attr, char *buf)
1059 {
1060 	struct zram *zram = dev_to_zram(dev);
1061 	struct zs_pool_stats pool_stats;
1062 	u64 orig_size, mem_used = 0;
1063 	long max_used;
1064 	ssize_t ret;
1065 
1066 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1067 
1068 	down_read(&zram->init_lock);
1069 	if (init_done(zram)) {
1070 		mem_used = zs_get_total_pages(zram->mem_pool);
1071 		zs_pool_stats(zram->mem_pool, &pool_stats);
1072 	}
1073 
1074 	orig_size = atomic64_read(&zram->stats.pages_stored);
1075 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1076 
1077 	ret = scnprintf(buf, PAGE_SIZE,
1078 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1079 			orig_size << PAGE_SHIFT,
1080 			(u64)atomic64_read(&zram->stats.compr_data_size),
1081 			mem_used << PAGE_SHIFT,
1082 			zram->limit_pages << PAGE_SHIFT,
1083 			max_used << PAGE_SHIFT,
1084 			(u64)atomic64_read(&zram->stats.same_pages),
1085 			pool_stats.pages_compacted,
1086 			(u64)atomic64_read(&zram->stats.huge_pages),
1087 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1088 	up_read(&zram->init_lock);
1089 
1090 	return ret;
1091 }
1092 
1093 #ifdef CONFIG_ZRAM_WRITEBACK
1094 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1095 static ssize_t bd_stat_show(struct device *dev,
1096 		struct device_attribute *attr, char *buf)
1097 {
1098 	struct zram *zram = dev_to_zram(dev);
1099 	ssize_t ret;
1100 
1101 	down_read(&zram->init_lock);
1102 	ret = scnprintf(buf, PAGE_SIZE,
1103 		"%8llu %8llu %8llu\n",
1104 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1105 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1106 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1107 	up_read(&zram->init_lock);
1108 
1109 	return ret;
1110 }
1111 #endif
1112 
1113 static ssize_t debug_stat_show(struct device *dev,
1114 		struct device_attribute *attr, char *buf)
1115 {
1116 	int version = 1;
1117 	struct zram *zram = dev_to_zram(dev);
1118 	ssize_t ret;
1119 
1120 	down_read(&zram->init_lock);
1121 	ret = scnprintf(buf, PAGE_SIZE,
1122 			"version: %d\n%8llu %8llu\n",
1123 			version,
1124 			(u64)atomic64_read(&zram->stats.writestall),
1125 			(u64)atomic64_read(&zram->stats.miss_free));
1126 	up_read(&zram->init_lock);
1127 
1128 	return ret;
1129 }
1130 
1131 static DEVICE_ATTR_RO(io_stat);
1132 static DEVICE_ATTR_RO(mm_stat);
1133 #ifdef CONFIG_ZRAM_WRITEBACK
1134 static DEVICE_ATTR_RO(bd_stat);
1135 #endif
1136 static DEVICE_ATTR_RO(debug_stat);
1137 
1138 static void zram_meta_free(struct zram *zram, u64 disksize)
1139 {
1140 	size_t num_pages = disksize >> PAGE_SHIFT;
1141 	size_t index;
1142 
1143 	/* Free all pages that are still in this zram device */
1144 	for (index = 0; index < num_pages; index++)
1145 		zram_free_page(zram, index);
1146 
1147 	zs_destroy_pool(zram->mem_pool);
1148 	vfree(zram->table);
1149 }
1150 
1151 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1152 {
1153 	size_t num_pages;
1154 
1155 	num_pages = disksize >> PAGE_SHIFT;
1156 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1157 	if (!zram->table)
1158 		return false;
1159 
1160 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1161 	if (!zram->mem_pool) {
1162 		vfree(zram->table);
1163 		return false;
1164 	}
1165 
1166 	if (!huge_class_size)
1167 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1168 	return true;
1169 }
1170 
1171 /*
1172  * To protect concurrent access to the same index entry,
1173  * caller should hold this table index entry's bit_spinlock to
1174  * indicate this index entry is accessing.
1175  */
1176 static void zram_free_page(struct zram *zram, size_t index)
1177 {
1178 	unsigned long handle;
1179 
1180 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1181 	zram->table[index].ac_time = 0;
1182 #endif
1183 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1184 		zram_clear_flag(zram, index, ZRAM_IDLE);
1185 
1186 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1187 		zram_clear_flag(zram, index, ZRAM_HUGE);
1188 		atomic64_dec(&zram->stats.huge_pages);
1189 	}
1190 
1191 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1192 		zram_clear_flag(zram, index, ZRAM_WB);
1193 		free_block_bdev(zram, zram_get_element(zram, index));
1194 		goto out;
1195 	}
1196 
1197 	/*
1198 	 * No memory is allocated for same element filled pages.
1199 	 * Simply clear same page flag.
1200 	 */
1201 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1202 		zram_clear_flag(zram, index, ZRAM_SAME);
1203 		atomic64_dec(&zram->stats.same_pages);
1204 		goto out;
1205 	}
1206 
1207 	handle = zram_get_handle(zram, index);
1208 	if (!handle)
1209 		return;
1210 
1211 	zs_free(zram->mem_pool, handle);
1212 
1213 	atomic64_sub(zram_get_obj_size(zram, index),
1214 			&zram->stats.compr_data_size);
1215 out:
1216 	atomic64_dec(&zram->stats.pages_stored);
1217 	zram_set_handle(zram, index, 0);
1218 	zram_set_obj_size(zram, index, 0);
1219 	WARN_ON_ONCE(zram->table[index].flags &
1220 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1221 }
1222 
1223 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1224 				struct bio *bio, bool partial_io)
1225 {
1226 	struct zcomp_strm *zstrm;
1227 	unsigned long handle;
1228 	unsigned int size;
1229 	void *src, *dst;
1230 	int ret;
1231 
1232 	zram_slot_lock(zram, index);
1233 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1234 		struct bio_vec bvec;
1235 
1236 		zram_slot_unlock(zram, index);
1237 
1238 		bvec.bv_page = page;
1239 		bvec.bv_len = PAGE_SIZE;
1240 		bvec.bv_offset = 0;
1241 		return read_from_bdev(zram, &bvec,
1242 				zram_get_element(zram, index),
1243 				bio, partial_io);
1244 	}
1245 
1246 	handle = zram_get_handle(zram, index);
1247 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1248 		unsigned long value;
1249 		void *mem;
1250 
1251 		value = handle ? zram_get_element(zram, index) : 0;
1252 		mem = kmap_atomic(page);
1253 		zram_fill_page(mem, PAGE_SIZE, value);
1254 		kunmap_atomic(mem);
1255 		zram_slot_unlock(zram, index);
1256 		return 0;
1257 	}
1258 
1259 	size = zram_get_obj_size(zram, index);
1260 
1261 	if (size != PAGE_SIZE)
1262 		zstrm = zcomp_stream_get(zram->comp);
1263 
1264 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1265 	if (size == PAGE_SIZE) {
1266 		dst = kmap_atomic(page);
1267 		memcpy(dst, src, PAGE_SIZE);
1268 		kunmap_atomic(dst);
1269 		ret = 0;
1270 	} else {
1271 		dst = kmap_atomic(page);
1272 		ret = zcomp_decompress(zstrm, src, size, dst);
1273 		kunmap_atomic(dst);
1274 		zcomp_stream_put(zram->comp);
1275 	}
1276 	zs_unmap_object(zram->mem_pool, handle);
1277 	zram_slot_unlock(zram, index);
1278 
1279 	/* Should NEVER happen. Return bio error if it does. */
1280 	if (WARN_ON(ret))
1281 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1282 
1283 	return ret;
1284 }
1285 
1286 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1287 				u32 index, int offset, struct bio *bio)
1288 {
1289 	int ret;
1290 	struct page *page;
1291 
1292 	page = bvec->bv_page;
1293 	if (is_partial_io(bvec)) {
1294 		/* Use a temporary buffer to decompress the page */
1295 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1296 		if (!page)
1297 			return -ENOMEM;
1298 	}
1299 
1300 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1301 	if (unlikely(ret))
1302 		goto out;
1303 
1304 	if (is_partial_io(bvec)) {
1305 		void *dst = kmap_atomic(bvec->bv_page);
1306 		void *src = kmap_atomic(page);
1307 
1308 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1309 		kunmap_atomic(src);
1310 		kunmap_atomic(dst);
1311 	}
1312 out:
1313 	if (is_partial_io(bvec))
1314 		__free_page(page);
1315 
1316 	return ret;
1317 }
1318 
1319 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1320 				u32 index, struct bio *bio)
1321 {
1322 	int ret = 0;
1323 	unsigned long alloced_pages;
1324 	unsigned long handle = 0;
1325 	unsigned int comp_len = 0;
1326 	void *src, *dst, *mem;
1327 	struct zcomp_strm *zstrm;
1328 	struct page *page = bvec->bv_page;
1329 	unsigned long element = 0;
1330 	enum zram_pageflags flags = 0;
1331 
1332 	mem = kmap_atomic(page);
1333 	if (page_same_filled(mem, &element)) {
1334 		kunmap_atomic(mem);
1335 		/* Free memory associated with this sector now. */
1336 		flags = ZRAM_SAME;
1337 		atomic64_inc(&zram->stats.same_pages);
1338 		goto out;
1339 	}
1340 	kunmap_atomic(mem);
1341 
1342 compress_again:
1343 	zstrm = zcomp_stream_get(zram->comp);
1344 	src = kmap_atomic(page);
1345 	ret = zcomp_compress(zstrm, src, &comp_len);
1346 	kunmap_atomic(src);
1347 
1348 	if (unlikely(ret)) {
1349 		zcomp_stream_put(zram->comp);
1350 		pr_err("Compression failed! err=%d\n", ret);
1351 		zs_free(zram->mem_pool, handle);
1352 		return ret;
1353 	}
1354 
1355 	if (comp_len >= huge_class_size)
1356 		comp_len = PAGE_SIZE;
1357 	/*
1358 	 * handle allocation has 2 paths:
1359 	 * a) fast path is executed with preemption disabled (for
1360 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1361 	 *  since we can't sleep;
1362 	 * b) slow path enables preemption and attempts to allocate
1363 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1364 	 *  put per-cpu compression stream and, thus, to re-do
1365 	 *  the compression once handle is allocated.
1366 	 *
1367 	 * if we have a 'non-null' handle here then we are coming
1368 	 * from the slow path and handle has already been allocated.
1369 	 */
1370 	if (!handle)
1371 		handle = zs_malloc(zram->mem_pool, comp_len,
1372 				__GFP_KSWAPD_RECLAIM |
1373 				__GFP_NOWARN |
1374 				__GFP_HIGHMEM |
1375 				__GFP_MOVABLE);
1376 	if (!handle) {
1377 		zcomp_stream_put(zram->comp);
1378 		atomic64_inc(&zram->stats.writestall);
1379 		handle = zs_malloc(zram->mem_pool, comp_len,
1380 				GFP_NOIO | __GFP_HIGHMEM |
1381 				__GFP_MOVABLE);
1382 		if (handle)
1383 			goto compress_again;
1384 		return -ENOMEM;
1385 	}
1386 
1387 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1388 	update_used_max(zram, alloced_pages);
1389 
1390 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1391 		zcomp_stream_put(zram->comp);
1392 		zs_free(zram->mem_pool, handle);
1393 		return -ENOMEM;
1394 	}
1395 
1396 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1397 
1398 	src = zstrm->buffer;
1399 	if (comp_len == PAGE_SIZE)
1400 		src = kmap_atomic(page);
1401 	memcpy(dst, src, comp_len);
1402 	if (comp_len == PAGE_SIZE)
1403 		kunmap_atomic(src);
1404 
1405 	zcomp_stream_put(zram->comp);
1406 	zs_unmap_object(zram->mem_pool, handle);
1407 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1408 out:
1409 	/*
1410 	 * Free memory associated with this sector
1411 	 * before overwriting unused sectors.
1412 	 */
1413 	zram_slot_lock(zram, index);
1414 	zram_free_page(zram, index);
1415 
1416 	if (comp_len == PAGE_SIZE) {
1417 		zram_set_flag(zram, index, ZRAM_HUGE);
1418 		atomic64_inc(&zram->stats.huge_pages);
1419 		atomic64_inc(&zram->stats.huge_pages_since);
1420 	}
1421 
1422 	if (flags) {
1423 		zram_set_flag(zram, index, flags);
1424 		zram_set_element(zram, index, element);
1425 	}  else {
1426 		zram_set_handle(zram, index, handle);
1427 		zram_set_obj_size(zram, index, comp_len);
1428 	}
1429 	zram_slot_unlock(zram, index);
1430 
1431 	/* Update stats */
1432 	atomic64_inc(&zram->stats.pages_stored);
1433 	return ret;
1434 }
1435 
1436 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1437 				u32 index, int offset, struct bio *bio)
1438 {
1439 	int ret;
1440 	struct page *page = NULL;
1441 	void *src;
1442 	struct bio_vec vec;
1443 
1444 	vec = *bvec;
1445 	if (is_partial_io(bvec)) {
1446 		void *dst;
1447 		/*
1448 		 * This is a partial IO. We need to read the full page
1449 		 * before to write the changes.
1450 		 */
1451 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1452 		if (!page)
1453 			return -ENOMEM;
1454 
1455 		ret = __zram_bvec_read(zram, page, index, bio, true);
1456 		if (ret)
1457 			goto out;
1458 
1459 		src = kmap_atomic(bvec->bv_page);
1460 		dst = kmap_atomic(page);
1461 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1462 		kunmap_atomic(dst);
1463 		kunmap_atomic(src);
1464 
1465 		vec.bv_page = page;
1466 		vec.bv_len = PAGE_SIZE;
1467 		vec.bv_offset = 0;
1468 	}
1469 
1470 	ret = __zram_bvec_write(zram, &vec, index, bio);
1471 out:
1472 	if (is_partial_io(bvec))
1473 		__free_page(page);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * zram_bio_discard - handler on discard request
1479  * @index: physical block index in PAGE_SIZE units
1480  * @offset: byte offset within physical block
1481  */
1482 static void zram_bio_discard(struct zram *zram, u32 index,
1483 			     int offset, struct bio *bio)
1484 {
1485 	size_t n = bio->bi_iter.bi_size;
1486 
1487 	/*
1488 	 * zram manages data in physical block size units. Because logical block
1489 	 * size isn't identical with physical block size on some arch, we
1490 	 * could get a discard request pointing to a specific offset within a
1491 	 * certain physical block.  Although we can handle this request by
1492 	 * reading that physiclal block and decompressing and partially zeroing
1493 	 * and re-compressing and then re-storing it, this isn't reasonable
1494 	 * because our intent with a discard request is to save memory.  So
1495 	 * skipping this logical block is appropriate here.
1496 	 */
1497 	if (offset) {
1498 		if (n <= (PAGE_SIZE - offset))
1499 			return;
1500 
1501 		n -= (PAGE_SIZE - offset);
1502 		index++;
1503 	}
1504 
1505 	while (n >= PAGE_SIZE) {
1506 		zram_slot_lock(zram, index);
1507 		zram_free_page(zram, index);
1508 		zram_slot_unlock(zram, index);
1509 		atomic64_inc(&zram->stats.notify_free);
1510 		index++;
1511 		n -= PAGE_SIZE;
1512 	}
1513 }
1514 
1515 /*
1516  * Returns errno if it has some problem. Otherwise return 0 or 1.
1517  * Returns 0 if IO request was done synchronously
1518  * Returns 1 if IO request was successfully submitted.
1519  */
1520 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1521 			int offset, unsigned int op, struct bio *bio)
1522 {
1523 	int ret;
1524 
1525 	if (!op_is_write(op)) {
1526 		atomic64_inc(&zram->stats.num_reads);
1527 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1528 		flush_dcache_page(bvec->bv_page);
1529 	} else {
1530 		atomic64_inc(&zram->stats.num_writes);
1531 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1532 	}
1533 
1534 	zram_slot_lock(zram, index);
1535 	zram_accessed(zram, index);
1536 	zram_slot_unlock(zram, index);
1537 
1538 	if (unlikely(ret < 0)) {
1539 		if (!op_is_write(op))
1540 			atomic64_inc(&zram->stats.failed_reads);
1541 		else
1542 			atomic64_inc(&zram->stats.failed_writes);
1543 	}
1544 
1545 	return ret;
1546 }
1547 
1548 static void __zram_make_request(struct zram *zram, struct bio *bio)
1549 {
1550 	int offset;
1551 	u32 index;
1552 	struct bio_vec bvec;
1553 	struct bvec_iter iter;
1554 	unsigned long start_time;
1555 
1556 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1557 	offset = (bio->bi_iter.bi_sector &
1558 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1559 
1560 	switch (bio_op(bio)) {
1561 	case REQ_OP_DISCARD:
1562 	case REQ_OP_WRITE_ZEROES:
1563 		zram_bio_discard(zram, index, offset, bio);
1564 		bio_endio(bio);
1565 		return;
1566 	default:
1567 		break;
1568 	}
1569 
1570 	start_time = bio_start_io_acct(bio);
1571 	bio_for_each_segment(bvec, bio, iter) {
1572 		struct bio_vec bv = bvec;
1573 		unsigned int unwritten = bvec.bv_len;
1574 
1575 		do {
1576 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1577 							unwritten);
1578 			if (zram_bvec_rw(zram, &bv, index, offset,
1579 					 bio_op(bio), bio) < 0) {
1580 				bio->bi_status = BLK_STS_IOERR;
1581 				break;
1582 			}
1583 
1584 			bv.bv_offset += bv.bv_len;
1585 			unwritten -= bv.bv_len;
1586 
1587 			update_position(&index, &offset, &bv);
1588 		} while (unwritten);
1589 	}
1590 	bio_end_io_acct(bio, start_time);
1591 	bio_endio(bio);
1592 }
1593 
1594 /*
1595  * Handler function for all zram I/O requests.
1596  */
1597 static blk_qc_t zram_submit_bio(struct bio *bio)
1598 {
1599 	struct zram *zram = bio->bi_disk->private_data;
1600 
1601 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1602 					bio->bi_iter.bi_size)) {
1603 		atomic64_inc(&zram->stats.invalid_io);
1604 		goto error;
1605 	}
1606 
1607 	__zram_make_request(zram, bio);
1608 	return BLK_QC_T_NONE;
1609 
1610 error:
1611 	bio_io_error(bio);
1612 	return BLK_QC_T_NONE;
1613 }
1614 
1615 static void zram_slot_free_notify(struct block_device *bdev,
1616 				unsigned long index)
1617 {
1618 	struct zram *zram;
1619 
1620 	zram = bdev->bd_disk->private_data;
1621 
1622 	atomic64_inc(&zram->stats.notify_free);
1623 	if (!zram_slot_trylock(zram, index)) {
1624 		atomic64_inc(&zram->stats.miss_free);
1625 		return;
1626 	}
1627 
1628 	zram_free_page(zram, index);
1629 	zram_slot_unlock(zram, index);
1630 }
1631 
1632 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1633 		       struct page *page, unsigned int op)
1634 {
1635 	int offset, ret;
1636 	u32 index;
1637 	struct zram *zram;
1638 	struct bio_vec bv;
1639 	unsigned long start_time;
1640 
1641 	if (PageTransHuge(page))
1642 		return -ENOTSUPP;
1643 	zram = bdev->bd_disk->private_data;
1644 
1645 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1646 		atomic64_inc(&zram->stats.invalid_io);
1647 		ret = -EINVAL;
1648 		goto out;
1649 	}
1650 
1651 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1652 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1653 
1654 	bv.bv_page = page;
1655 	bv.bv_len = PAGE_SIZE;
1656 	bv.bv_offset = 0;
1657 
1658 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1659 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1660 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1661 out:
1662 	/*
1663 	 * If I/O fails, just return error(ie, non-zero) without
1664 	 * calling page_endio.
1665 	 * It causes resubmit the I/O with bio request by upper functions
1666 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1667 	 * bio->bi_end_io does things to handle the error
1668 	 * (e.g., SetPageError, set_page_dirty and extra works).
1669 	 */
1670 	if (unlikely(ret < 0))
1671 		return ret;
1672 
1673 	switch (ret) {
1674 	case 0:
1675 		page_endio(page, op_is_write(op), 0);
1676 		break;
1677 	case 1:
1678 		ret = 0;
1679 		break;
1680 	default:
1681 		WARN_ON(1);
1682 	}
1683 	return ret;
1684 }
1685 
1686 static void zram_reset_device(struct zram *zram)
1687 {
1688 	struct zcomp *comp;
1689 	u64 disksize;
1690 
1691 	down_write(&zram->init_lock);
1692 
1693 	zram->limit_pages = 0;
1694 
1695 	if (!init_done(zram)) {
1696 		up_write(&zram->init_lock);
1697 		return;
1698 	}
1699 
1700 	comp = zram->comp;
1701 	disksize = zram->disksize;
1702 	zram->disksize = 0;
1703 
1704 	set_capacity_and_notify(zram->disk, 0);
1705 	part_stat_set_all(zram->disk->part0, 0);
1706 
1707 	up_write(&zram->init_lock);
1708 	/* I/O operation under all of CPU are done so let's free */
1709 	zram_meta_free(zram, disksize);
1710 	memset(&zram->stats, 0, sizeof(zram->stats));
1711 	zcomp_destroy(comp);
1712 	reset_bdev(zram);
1713 }
1714 
1715 static ssize_t disksize_store(struct device *dev,
1716 		struct device_attribute *attr, const char *buf, size_t len)
1717 {
1718 	u64 disksize;
1719 	struct zcomp *comp;
1720 	struct zram *zram = dev_to_zram(dev);
1721 	int err;
1722 
1723 	disksize = memparse(buf, NULL);
1724 	if (!disksize)
1725 		return -EINVAL;
1726 
1727 	down_write(&zram->init_lock);
1728 	if (init_done(zram)) {
1729 		pr_info("Cannot change disksize for initialized device\n");
1730 		err = -EBUSY;
1731 		goto out_unlock;
1732 	}
1733 
1734 	disksize = PAGE_ALIGN(disksize);
1735 	if (!zram_meta_alloc(zram, disksize)) {
1736 		err = -ENOMEM;
1737 		goto out_unlock;
1738 	}
1739 
1740 	comp = zcomp_create(zram->compressor);
1741 	if (IS_ERR(comp)) {
1742 		pr_err("Cannot initialise %s compressing backend\n",
1743 				zram->compressor);
1744 		err = PTR_ERR(comp);
1745 		goto out_free_meta;
1746 	}
1747 
1748 	zram->comp = comp;
1749 	zram->disksize = disksize;
1750 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1751 	up_write(&zram->init_lock);
1752 
1753 	return len;
1754 
1755 out_free_meta:
1756 	zram_meta_free(zram, disksize);
1757 out_unlock:
1758 	up_write(&zram->init_lock);
1759 	return err;
1760 }
1761 
1762 static ssize_t reset_store(struct device *dev,
1763 		struct device_attribute *attr, const char *buf, size_t len)
1764 {
1765 	int ret;
1766 	unsigned short do_reset;
1767 	struct zram *zram;
1768 	struct block_device *bdev;
1769 
1770 	ret = kstrtou16(buf, 10, &do_reset);
1771 	if (ret)
1772 		return ret;
1773 
1774 	if (!do_reset)
1775 		return -EINVAL;
1776 
1777 	zram = dev_to_zram(dev);
1778 	bdev = zram->disk->part0;
1779 
1780 	mutex_lock(&bdev->bd_mutex);
1781 	/* Do not reset an active device or claimed device */
1782 	if (bdev->bd_openers || zram->claim) {
1783 		mutex_unlock(&bdev->bd_mutex);
1784 		return -EBUSY;
1785 	}
1786 
1787 	/* From now on, anyone can't open /dev/zram[0-9] */
1788 	zram->claim = true;
1789 	mutex_unlock(&bdev->bd_mutex);
1790 
1791 	/* Make sure all the pending I/O are finished */
1792 	fsync_bdev(bdev);
1793 	zram_reset_device(zram);
1794 
1795 	mutex_lock(&bdev->bd_mutex);
1796 	zram->claim = false;
1797 	mutex_unlock(&bdev->bd_mutex);
1798 
1799 	return len;
1800 }
1801 
1802 static int zram_open(struct block_device *bdev, fmode_t mode)
1803 {
1804 	int ret = 0;
1805 	struct zram *zram;
1806 
1807 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1808 
1809 	zram = bdev->bd_disk->private_data;
1810 	/* zram was claimed to reset so open request fails */
1811 	if (zram->claim)
1812 		ret = -EBUSY;
1813 
1814 	return ret;
1815 }
1816 
1817 static const struct block_device_operations zram_devops = {
1818 	.open = zram_open,
1819 	.submit_bio = zram_submit_bio,
1820 	.swap_slot_free_notify = zram_slot_free_notify,
1821 	.rw_page = zram_rw_page,
1822 	.owner = THIS_MODULE
1823 };
1824 
1825 static const struct block_device_operations zram_wb_devops = {
1826 	.open = zram_open,
1827 	.submit_bio = zram_submit_bio,
1828 	.swap_slot_free_notify = zram_slot_free_notify,
1829 	.owner = THIS_MODULE
1830 };
1831 
1832 static DEVICE_ATTR_WO(compact);
1833 static DEVICE_ATTR_RW(disksize);
1834 static DEVICE_ATTR_RO(initstate);
1835 static DEVICE_ATTR_WO(reset);
1836 static DEVICE_ATTR_WO(mem_limit);
1837 static DEVICE_ATTR_WO(mem_used_max);
1838 static DEVICE_ATTR_WO(idle);
1839 static DEVICE_ATTR_RW(max_comp_streams);
1840 static DEVICE_ATTR_RW(comp_algorithm);
1841 #ifdef CONFIG_ZRAM_WRITEBACK
1842 static DEVICE_ATTR_RW(backing_dev);
1843 static DEVICE_ATTR_WO(writeback);
1844 static DEVICE_ATTR_RW(writeback_limit);
1845 static DEVICE_ATTR_RW(writeback_limit_enable);
1846 #endif
1847 
1848 static struct attribute *zram_disk_attrs[] = {
1849 	&dev_attr_disksize.attr,
1850 	&dev_attr_initstate.attr,
1851 	&dev_attr_reset.attr,
1852 	&dev_attr_compact.attr,
1853 	&dev_attr_mem_limit.attr,
1854 	&dev_attr_mem_used_max.attr,
1855 	&dev_attr_idle.attr,
1856 	&dev_attr_max_comp_streams.attr,
1857 	&dev_attr_comp_algorithm.attr,
1858 #ifdef CONFIG_ZRAM_WRITEBACK
1859 	&dev_attr_backing_dev.attr,
1860 	&dev_attr_writeback.attr,
1861 	&dev_attr_writeback_limit.attr,
1862 	&dev_attr_writeback_limit_enable.attr,
1863 #endif
1864 	&dev_attr_io_stat.attr,
1865 	&dev_attr_mm_stat.attr,
1866 #ifdef CONFIG_ZRAM_WRITEBACK
1867 	&dev_attr_bd_stat.attr,
1868 #endif
1869 	&dev_attr_debug_stat.attr,
1870 	NULL,
1871 };
1872 
1873 static const struct attribute_group zram_disk_attr_group = {
1874 	.attrs = zram_disk_attrs,
1875 };
1876 
1877 static const struct attribute_group *zram_disk_attr_groups[] = {
1878 	&zram_disk_attr_group,
1879 	NULL,
1880 };
1881 
1882 /*
1883  * Allocate and initialize new zram device. the function returns
1884  * '>= 0' device_id upon success, and negative value otherwise.
1885  */
1886 static int zram_add(void)
1887 {
1888 	struct zram *zram;
1889 	struct request_queue *queue;
1890 	int ret, device_id;
1891 
1892 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1893 	if (!zram)
1894 		return -ENOMEM;
1895 
1896 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1897 	if (ret < 0)
1898 		goto out_free_dev;
1899 	device_id = ret;
1900 
1901 	init_rwsem(&zram->init_lock);
1902 #ifdef CONFIG_ZRAM_WRITEBACK
1903 	spin_lock_init(&zram->wb_limit_lock);
1904 #endif
1905 	queue = blk_alloc_queue(NUMA_NO_NODE);
1906 	if (!queue) {
1907 		pr_err("Error allocating disk queue for device %d\n",
1908 			device_id);
1909 		ret = -ENOMEM;
1910 		goto out_free_idr;
1911 	}
1912 
1913 	/* gendisk structure */
1914 	zram->disk = alloc_disk(1);
1915 	if (!zram->disk) {
1916 		pr_err("Error allocating disk structure for device %d\n",
1917 			device_id);
1918 		ret = -ENOMEM;
1919 		goto out_free_queue;
1920 	}
1921 
1922 	zram->disk->major = zram_major;
1923 	zram->disk->first_minor = device_id;
1924 	zram->disk->fops = &zram_devops;
1925 	zram->disk->queue = queue;
1926 	zram->disk->private_data = zram;
1927 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1928 
1929 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1930 	set_capacity(zram->disk, 0);
1931 	/* zram devices sort of resembles non-rotational disks */
1932 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1933 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1934 
1935 	/*
1936 	 * To ensure that we always get PAGE_SIZE aligned
1937 	 * and n*PAGE_SIZED sized I/O requests.
1938 	 */
1939 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1940 	blk_queue_logical_block_size(zram->disk->queue,
1941 					ZRAM_LOGICAL_BLOCK_SIZE);
1942 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1943 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1944 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1945 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1946 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1947 
1948 	/*
1949 	 * zram_bio_discard() will clear all logical blocks if logical block
1950 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1951 	 * different, we will skip discarding some parts of logical blocks in
1952 	 * the part of the request range which isn't aligned to physical block
1953 	 * size.  So we can't ensure that all discarded logical blocks are
1954 	 * zeroed.
1955 	 */
1956 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1957 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1958 
1959 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1960 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1961 
1962 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1963 
1964 	zram_debugfs_register(zram);
1965 	pr_info("Added device: %s\n", zram->disk->disk_name);
1966 	return device_id;
1967 
1968 out_free_queue:
1969 	blk_cleanup_queue(queue);
1970 out_free_idr:
1971 	idr_remove(&zram_index_idr, device_id);
1972 out_free_dev:
1973 	kfree(zram);
1974 	return ret;
1975 }
1976 
1977 static int zram_remove(struct zram *zram)
1978 {
1979 	struct block_device *bdev = zram->disk->part0;
1980 
1981 	mutex_lock(&bdev->bd_mutex);
1982 	if (bdev->bd_openers || zram->claim) {
1983 		mutex_unlock(&bdev->bd_mutex);
1984 		return -EBUSY;
1985 	}
1986 
1987 	zram->claim = true;
1988 	mutex_unlock(&bdev->bd_mutex);
1989 
1990 	zram_debugfs_unregister(zram);
1991 
1992 	/* Make sure all the pending I/O are finished */
1993 	fsync_bdev(bdev);
1994 	zram_reset_device(zram);
1995 
1996 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1997 
1998 	del_gendisk(zram->disk);
1999 	blk_cleanup_queue(zram->disk->queue);
2000 	put_disk(zram->disk);
2001 	kfree(zram);
2002 	return 0;
2003 }
2004 
2005 /* zram-control sysfs attributes */
2006 
2007 /*
2008  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2009  * sense that reading from this file does alter the state of your system -- it
2010  * creates a new un-initialized zram device and returns back this device's
2011  * device_id (or an error code if it fails to create a new device).
2012  */
2013 static ssize_t hot_add_show(struct class *class,
2014 			struct class_attribute *attr,
2015 			char *buf)
2016 {
2017 	int ret;
2018 
2019 	mutex_lock(&zram_index_mutex);
2020 	ret = zram_add();
2021 	mutex_unlock(&zram_index_mutex);
2022 
2023 	if (ret < 0)
2024 		return ret;
2025 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2026 }
2027 static struct class_attribute class_attr_hot_add =
2028 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2029 
2030 static ssize_t hot_remove_store(struct class *class,
2031 			struct class_attribute *attr,
2032 			const char *buf,
2033 			size_t count)
2034 {
2035 	struct zram *zram;
2036 	int ret, dev_id;
2037 
2038 	/* dev_id is gendisk->first_minor, which is `int' */
2039 	ret = kstrtoint(buf, 10, &dev_id);
2040 	if (ret)
2041 		return ret;
2042 	if (dev_id < 0)
2043 		return -EINVAL;
2044 
2045 	mutex_lock(&zram_index_mutex);
2046 
2047 	zram = idr_find(&zram_index_idr, dev_id);
2048 	if (zram) {
2049 		ret = zram_remove(zram);
2050 		if (!ret)
2051 			idr_remove(&zram_index_idr, dev_id);
2052 	} else {
2053 		ret = -ENODEV;
2054 	}
2055 
2056 	mutex_unlock(&zram_index_mutex);
2057 	return ret ? ret : count;
2058 }
2059 static CLASS_ATTR_WO(hot_remove);
2060 
2061 static struct attribute *zram_control_class_attrs[] = {
2062 	&class_attr_hot_add.attr,
2063 	&class_attr_hot_remove.attr,
2064 	NULL,
2065 };
2066 ATTRIBUTE_GROUPS(zram_control_class);
2067 
2068 static struct class zram_control_class = {
2069 	.name		= "zram-control",
2070 	.owner		= THIS_MODULE,
2071 	.class_groups	= zram_control_class_groups,
2072 };
2073 
2074 static int zram_remove_cb(int id, void *ptr, void *data)
2075 {
2076 	zram_remove(ptr);
2077 	return 0;
2078 }
2079 
2080 static void destroy_devices(void)
2081 {
2082 	class_unregister(&zram_control_class);
2083 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2084 	zram_debugfs_destroy();
2085 	idr_destroy(&zram_index_idr);
2086 	unregister_blkdev(zram_major, "zram");
2087 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2088 }
2089 
2090 static int __init zram_init(void)
2091 {
2092 	int ret;
2093 
2094 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2095 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2096 	if (ret < 0)
2097 		return ret;
2098 
2099 	ret = class_register(&zram_control_class);
2100 	if (ret) {
2101 		pr_err("Unable to register zram-control class\n");
2102 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2103 		return ret;
2104 	}
2105 
2106 	zram_debugfs_create();
2107 	zram_major = register_blkdev(0, "zram");
2108 	if (zram_major <= 0) {
2109 		pr_err("Unable to get major number\n");
2110 		class_unregister(&zram_control_class);
2111 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2112 		return -EBUSY;
2113 	}
2114 
2115 	while (num_devices != 0) {
2116 		mutex_lock(&zram_index_mutex);
2117 		ret = zram_add();
2118 		mutex_unlock(&zram_index_mutex);
2119 		if (ret < 0)
2120 			goto out_error;
2121 		num_devices--;
2122 	}
2123 
2124 	return 0;
2125 
2126 out_error:
2127 	destroy_devices();
2128 	return ret;
2129 }
2130 
2131 static void __exit zram_exit(void)
2132 {
2133 	destroy_devices();
2134 }
2135 
2136 module_init(zram_init);
2137 module_exit(zram_exit);
2138 
2139 module_param(num_devices, uint, 0);
2140 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2141 
2142 MODULE_LICENSE("Dual BSD/GPL");
2143 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2144 MODULE_DESCRIPTION("Compressed RAM Block Device");
2145