xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 711aab1d)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35 
36 #include "zram_drv.h"
37 
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41 
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44 
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47 
48 static void zram_free_page(struct zram *zram, size_t index);
49 
50 static inline bool init_done(struct zram *zram)
51 {
52 	return zram->disksize;
53 }
54 
55 static inline struct zram *dev_to_zram(struct device *dev)
56 {
57 	return (struct zram *)dev_to_disk(dev)->private_data;
58 }
59 
60 static unsigned long zram_get_handle(struct zram *zram, u32 index)
61 {
62 	return zram->table[index].handle;
63 }
64 
65 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66 {
67 	zram->table[index].handle = handle;
68 }
69 
70 /* flag operations require table entry bit_spin_lock() being held */
71 static int zram_test_flag(struct zram *zram, u32 index,
72 			enum zram_pageflags flag)
73 {
74 	return zram->table[index].value & BIT(flag);
75 }
76 
77 static void zram_set_flag(struct zram *zram, u32 index,
78 			enum zram_pageflags flag)
79 {
80 	zram->table[index].value |= BIT(flag);
81 }
82 
83 static void zram_clear_flag(struct zram *zram, u32 index,
84 			enum zram_pageflags flag)
85 {
86 	zram->table[index].value &= ~BIT(flag);
87 }
88 
89 static inline void zram_set_element(struct zram *zram, u32 index,
90 			unsigned long element)
91 {
92 	zram->table[index].element = element;
93 }
94 
95 static unsigned long zram_get_element(struct zram *zram, u32 index)
96 {
97 	return zram->table[index].element;
98 }
99 
100 static size_t zram_get_obj_size(struct zram *zram, u32 index)
101 {
102 	return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
103 }
104 
105 static void zram_set_obj_size(struct zram *zram,
106 					u32 index, size_t size)
107 {
108 	unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
109 
110 	zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
111 }
112 
113 #if PAGE_SIZE != 4096
114 static inline bool is_partial_io(struct bio_vec *bvec)
115 {
116 	return bvec->bv_len != PAGE_SIZE;
117 }
118 #else
119 static inline bool is_partial_io(struct bio_vec *bvec)
120 {
121 	return false;
122 }
123 #endif
124 
125 static void zram_revalidate_disk(struct zram *zram)
126 {
127 	revalidate_disk(zram->disk);
128 	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
129 	zram->disk->queue->backing_dev_info->capabilities |=
130 		BDI_CAP_STABLE_WRITES;
131 }
132 
133 /*
134  * Check if request is within bounds and aligned on zram logical blocks.
135  */
136 static inline bool valid_io_request(struct zram *zram,
137 		sector_t start, unsigned int size)
138 {
139 	u64 end, bound;
140 
141 	/* unaligned request */
142 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
143 		return false;
144 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
145 		return false;
146 
147 	end = start + (size >> SECTOR_SHIFT);
148 	bound = zram->disksize >> SECTOR_SHIFT;
149 	/* out of range range */
150 	if (unlikely(start >= bound || end > bound || start > end))
151 		return false;
152 
153 	/* I/O request is valid */
154 	return true;
155 }
156 
157 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158 {
159 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
160 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161 }
162 
163 static inline void update_used_max(struct zram *zram,
164 					const unsigned long pages)
165 {
166 	unsigned long old_max, cur_max;
167 
168 	old_max = atomic_long_read(&zram->stats.max_used_pages);
169 
170 	do {
171 		cur_max = old_max;
172 		if (pages > cur_max)
173 			old_max = atomic_long_cmpxchg(
174 				&zram->stats.max_used_pages, cur_max, pages);
175 	} while (old_max != cur_max);
176 }
177 
178 static inline void zram_fill_page(void *ptr, unsigned long len,
179 					unsigned long value)
180 {
181 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
182 	memset_l(ptr, value, len / sizeof(unsigned long));
183 }
184 
185 static bool page_same_filled(void *ptr, unsigned long *element)
186 {
187 	unsigned int pos;
188 	unsigned long *page;
189 	unsigned long val;
190 
191 	page = (unsigned long *)ptr;
192 	val = page[0];
193 
194 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
195 		if (val != page[pos])
196 			return false;
197 	}
198 
199 	*element = val;
200 
201 	return true;
202 }
203 
204 static ssize_t initstate_show(struct device *dev,
205 		struct device_attribute *attr, char *buf)
206 {
207 	u32 val;
208 	struct zram *zram = dev_to_zram(dev);
209 
210 	down_read(&zram->init_lock);
211 	val = init_done(zram);
212 	up_read(&zram->init_lock);
213 
214 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
215 }
216 
217 static ssize_t disksize_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct zram *zram = dev_to_zram(dev);
221 
222 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
223 }
224 
225 static ssize_t mem_limit_store(struct device *dev,
226 		struct device_attribute *attr, const char *buf, size_t len)
227 {
228 	u64 limit;
229 	char *tmp;
230 	struct zram *zram = dev_to_zram(dev);
231 
232 	limit = memparse(buf, &tmp);
233 	if (buf == tmp) /* no chars parsed, invalid input */
234 		return -EINVAL;
235 
236 	down_write(&zram->init_lock);
237 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
238 	up_write(&zram->init_lock);
239 
240 	return len;
241 }
242 
243 static ssize_t mem_used_max_store(struct device *dev,
244 		struct device_attribute *attr, const char *buf, size_t len)
245 {
246 	int err;
247 	unsigned long val;
248 	struct zram *zram = dev_to_zram(dev);
249 
250 	err = kstrtoul(buf, 10, &val);
251 	if (err || val != 0)
252 		return -EINVAL;
253 
254 	down_read(&zram->init_lock);
255 	if (init_done(zram)) {
256 		atomic_long_set(&zram->stats.max_used_pages,
257 				zs_get_total_pages(zram->mem_pool));
258 	}
259 	up_read(&zram->init_lock);
260 
261 	return len;
262 }
263 
264 #ifdef CONFIG_ZRAM_WRITEBACK
265 static bool zram_wb_enabled(struct zram *zram)
266 {
267 	return zram->backing_dev;
268 }
269 
270 static void reset_bdev(struct zram *zram)
271 {
272 	struct block_device *bdev;
273 
274 	if (!zram_wb_enabled(zram))
275 		return;
276 
277 	bdev = zram->bdev;
278 	if (zram->old_block_size)
279 		set_blocksize(bdev, zram->old_block_size);
280 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
281 	/* hope filp_close flush all of IO */
282 	filp_close(zram->backing_dev, NULL);
283 	zram->backing_dev = NULL;
284 	zram->old_block_size = 0;
285 	zram->bdev = NULL;
286 
287 	kvfree(zram->bitmap);
288 	zram->bitmap = NULL;
289 }
290 
291 static ssize_t backing_dev_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct zram *zram = dev_to_zram(dev);
295 	struct file *file = zram->backing_dev;
296 	char *p;
297 	ssize_t ret;
298 
299 	down_read(&zram->init_lock);
300 	if (!zram_wb_enabled(zram)) {
301 		memcpy(buf, "none\n", 5);
302 		up_read(&zram->init_lock);
303 		return 5;
304 	}
305 
306 	p = file_path(file, buf, PAGE_SIZE - 1);
307 	if (IS_ERR(p)) {
308 		ret = PTR_ERR(p);
309 		goto out;
310 	}
311 
312 	ret = strlen(p);
313 	memmove(buf, p, ret);
314 	buf[ret++] = '\n';
315 out:
316 	up_read(&zram->init_lock);
317 	return ret;
318 }
319 
320 static ssize_t backing_dev_store(struct device *dev,
321 		struct device_attribute *attr, const char *buf, size_t len)
322 {
323 	char *file_name;
324 	struct file *backing_dev = NULL;
325 	struct inode *inode;
326 	struct address_space *mapping;
327 	unsigned int bitmap_sz, old_block_size = 0;
328 	unsigned long nr_pages, *bitmap = NULL;
329 	struct block_device *bdev = NULL;
330 	int err;
331 	struct zram *zram = dev_to_zram(dev);
332 
333 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
334 	if (!file_name)
335 		return -ENOMEM;
336 
337 	down_write(&zram->init_lock);
338 	if (init_done(zram)) {
339 		pr_info("Can't setup backing device for initialized device\n");
340 		err = -EBUSY;
341 		goto out;
342 	}
343 
344 	strlcpy(file_name, buf, len);
345 
346 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
347 	if (IS_ERR(backing_dev)) {
348 		err = PTR_ERR(backing_dev);
349 		backing_dev = NULL;
350 		goto out;
351 	}
352 
353 	mapping = backing_dev->f_mapping;
354 	inode = mapping->host;
355 
356 	/* Support only block device in this moment */
357 	if (!S_ISBLK(inode->i_mode)) {
358 		err = -ENOTBLK;
359 		goto out;
360 	}
361 
362 	bdev = bdgrab(I_BDEV(inode));
363 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
364 	if (err < 0)
365 		goto out;
366 
367 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
368 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
369 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
370 	if (!bitmap) {
371 		err = -ENOMEM;
372 		goto out;
373 	}
374 
375 	old_block_size = block_size(bdev);
376 	err = set_blocksize(bdev, PAGE_SIZE);
377 	if (err)
378 		goto out;
379 
380 	reset_bdev(zram);
381 	spin_lock_init(&zram->bitmap_lock);
382 
383 	zram->old_block_size = old_block_size;
384 	zram->bdev = bdev;
385 	zram->backing_dev = backing_dev;
386 	zram->bitmap = bitmap;
387 	zram->nr_pages = nr_pages;
388 	up_write(&zram->init_lock);
389 
390 	pr_info("setup backing device %s\n", file_name);
391 	kfree(file_name);
392 
393 	return len;
394 out:
395 	if (bitmap)
396 		kvfree(bitmap);
397 
398 	if (bdev)
399 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
400 
401 	if (backing_dev)
402 		filp_close(backing_dev, NULL);
403 
404 	up_write(&zram->init_lock);
405 
406 	kfree(file_name);
407 
408 	return err;
409 }
410 
411 static unsigned long get_entry_bdev(struct zram *zram)
412 {
413 	unsigned long entry;
414 
415 	spin_lock(&zram->bitmap_lock);
416 	/* skip 0 bit to confuse zram.handle = 0 */
417 	entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
418 	if (entry == zram->nr_pages) {
419 		spin_unlock(&zram->bitmap_lock);
420 		return 0;
421 	}
422 
423 	set_bit(entry, zram->bitmap);
424 	spin_unlock(&zram->bitmap_lock);
425 
426 	return entry;
427 }
428 
429 static void put_entry_bdev(struct zram *zram, unsigned long entry)
430 {
431 	int was_set;
432 
433 	spin_lock(&zram->bitmap_lock);
434 	was_set = test_and_clear_bit(entry, zram->bitmap);
435 	spin_unlock(&zram->bitmap_lock);
436 	WARN_ON_ONCE(!was_set);
437 }
438 
439 void zram_page_end_io(struct bio *bio)
440 {
441 	struct page *page = bio->bi_io_vec[0].bv_page;
442 
443 	page_endio(page, op_is_write(bio_op(bio)),
444 			blk_status_to_errno(bio->bi_status));
445 	bio_put(bio);
446 }
447 
448 /*
449  * Returns 1 if the submission is successful.
450  */
451 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
452 			unsigned long entry, struct bio *parent)
453 {
454 	struct bio *bio;
455 
456 	bio = bio_alloc(GFP_ATOMIC, 1);
457 	if (!bio)
458 		return -ENOMEM;
459 
460 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
461 	bio_set_dev(bio, zram->bdev);
462 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
463 		bio_put(bio);
464 		return -EIO;
465 	}
466 
467 	if (!parent) {
468 		bio->bi_opf = REQ_OP_READ;
469 		bio->bi_end_io = zram_page_end_io;
470 	} else {
471 		bio->bi_opf = parent->bi_opf;
472 		bio_chain(bio, parent);
473 	}
474 
475 	submit_bio(bio);
476 	return 1;
477 }
478 
479 struct zram_work {
480 	struct work_struct work;
481 	struct zram *zram;
482 	unsigned long entry;
483 	struct bio *bio;
484 };
485 
486 #if PAGE_SIZE != 4096
487 static void zram_sync_read(struct work_struct *work)
488 {
489 	struct bio_vec bvec;
490 	struct zram_work *zw = container_of(work, struct zram_work, work);
491 	struct zram *zram = zw->zram;
492 	unsigned long entry = zw->entry;
493 	struct bio *bio = zw->bio;
494 
495 	read_from_bdev_async(zram, &bvec, entry, bio);
496 }
497 
498 /*
499  * Block layer want one ->make_request_fn to be active at a time
500  * so if we use chained IO with parent IO in same context,
501  * it's a deadlock. To avoid, it, it uses worker thread context.
502  */
503 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
504 				unsigned long entry, struct bio *bio)
505 {
506 	struct zram_work work;
507 
508 	work.zram = zram;
509 	work.entry = entry;
510 	work.bio = bio;
511 
512 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
513 	queue_work(system_unbound_wq, &work.work);
514 	flush_work(&work.work);
515 	destroy_work_on_stack(&work.work);
516 
517 	return 1;
518 }
519 #else
520 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
521 				unsigned long entry, struct bio *bio)
522 {
523 	WARN_ON(1);
524 	return -EIO;
525 }
526 #endif
527 
528 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
529 			unsigned long entry, struct bio *parent, bool sync)
530 {
531 	if (sync)
532 		return read_from_bdev_sync(zram, bvec, entry, parent);
533 	else
534 		return read_from_bdev_async(zram, bvec, entry, parent);
535 }
536 
537 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
538 					u32 index, struct bio *parent,
539 					unsigned long *pentry)
540 {
541 	struct bio *bio;
542 	unsigned long entry;
543 
544 	bio = bio_alloc(GFP_ATOMIC, 1);
545 	if (!bio)
546 		return -ENOMEM;
547 
548 	entry = get_entry_bdev(zram);
549 	if (!entry) {
550 		bio_put(bio);
551 		return -ENOSPC;
552 	}
553 
554 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
555 	bio_set_dev(bio, zram->bdev);
556 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
557 					bvec->bv_offset)) {
558 		bio_put(bio);
559 		put_entry_bdev(zram, entry);
560 		return -EIO;
561 	}
562 
563 	if (!parent) {
564 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
565 		bio->bi_end_io = zram_page_end_io;
566 	} else {
567 		bio->bi_opf = parent->bi_opf;
568 		bio_chain(bio, parent);
569 	}
570 
571 	submit_bio(bio);
572 	*pentry = entry;
573 
574 	return 0;
575 }
576 
577 static void zram_wb_clear(struct zram *zram, u32 index)
578 {
579 	unsigned long entry;
580 
581 	zram_clear_flag(zram, index, ZRAM_WB);
582 	entry = zram_get_element(zram, index);
583 	zram_set_element(zram, index, 0);
584 	put_entry_bdev(zram, entry);
585 }
586 
587 #else
588 static bool zram_wb_enabled(struct zram *zram) { return false; }
589 static inline void reset_bdev(struct zram *zram) {};
590 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
591 					u32 index, struct bio *parent,
592 					unsigned long *pentry)
593 
594 {
595 	return -EIO;
596 }
597 
598 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
599 			unsigned long entry, struct bio *parent, bool sync)
600 {
601 	return -EIO;
602 }
603 static void zram_wb_clear(struct zram *zram, u32 index) {}
604 #endif
605 
606 
607 /*
608  * We switched to per-cpu streams and this attr is not needed anymore.
609  * However, we will keep it around for some time, because:
610  * a) we may revert per-cpu streams in the future
611  * b) it's visible to user space and we need to follow our 2 years
612  *    retirement rule; but we already have a number of 'soon to be
613  *    altered' attrs, so max_comp_streams need to wait for the next
614  *    layoff cycle.
615  */
616 static ssize_t max_comp_streams_show(struct device *dev,
617 		struct device_attribute *attr, char *buf)
618 {
619 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
620 }
621 
622 static ssize_t max_comp_streams_store(struct device *dev,
623 		struct device_attribute *attr, const char *buf, size_t len)
624 {
625 	return len;
626 }
627 
628 static ssize_t comp_algorithm_show(struct device *dev,
629 		struct device_attribute *attr, char *buf)
630 {
631 	size_t sz;
632 	struct zram *zram = dev_to_zram(dev);
633 
634 	down_read(&zram->init_lock);
635 	sz = zcomp_available_show(zram->compressor, buf);
636 	up_read(&zram->init_lock);
637 
638 	return sz;
639 }
640 
641 static ssize_t comp_algorithm_store(struct device *dev,
642 		struct device_attribute *attr, const char *buf, size_t len)
643 {
644 	struct zram *zram = dev_to_zram(dev);
645 	char compressor[ARRAY_SIZE(zram->compressor)];
646 	size_t sz;
647 
648 	strlcpy(compressor, buf, sizeof(compressor));
649 	/* ignore trailing newline */
650 	sz = strlen(compressor);
651 	if (sz > 0 && compressor[sz - 1] == '\n')
652 		compressor[sz - 1] = 0x00;
653 
654 	if (!zcomp_available_algorithm(compressor))
655 		return -EINVAL;
656 
657 	down_write(&zram->init_lock);
658 	if (init_done(zram)) {
659 		up_write(&zram->init_lock);
660 		pr_info("Can't change algorithm for initialized device\n");
661 		return -EBUSY;
662 	}
663 
664 	strcpy(zram->compressor, compressor);
665 	up_write(&zram->init_lock);
666 	return len;
667 }
668 
669 static ssize_t compact_store(struct device *dev,
670 		struct device_attribute *attr, const char *buf, size_t len)
671 {
672 	struct zram *zram = dev_to_zram(dev);
673 
674 	down_read(&zram->init_lock);
675 	if (!init_done(zram)) {
676 		up_read(&zram->init_lock);
677 		return -EINVAL;
678 	}
679 
680 	zs_compact(zram->mem_pool);
681 	up_read(&zram->init_lock);
682 
683 	return len;
684 }
685 
686 static ssize_t io_stat_show(struct device *dev,
687 		struct device_attribute *attr, char *buf)
688 {
689 	struct zram *zram = dev_to_zram(dev);
690 	ssize_t ret;
691 
692 	down_read(&zram->init_lock);
693 	ret = scnprintf(buf, PAGE_SIZE,
694 			"%8llu %8llu %8llu %8llu\n",
695 			(u64)atomic64_read(&zram->stats.failed_reads),
696 			(u64)atomic64_read(&zram->stats.failed_writes),
697 			(u64)atomic64_read(&zram->stats.invalid_io),
698 			(u64)atomic64_read(&zram->stats.notify_free));
699 	up_read(&zram->init_lock);
700 
701 	return ret;
702 }
703 
704 static ssize_t mm_stat_show(struct device *dev,
705 		struct device_attribute *attr, char *buf)
706 {
707 	struct zram *zram = dev_to_zram(dev);
708 	struct zs_pool_stats pool_stats;
709 	u64 orig_size, mem_used = 0;
710 	long max_used;
711 	ssize_t ret;
712 
713 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
714 
715 	down_read(&zram->init_lock);
716 	if (init_done(zram)) {
717 		mem_used = zs_get_total_pages(zram->mem_pool);
718 		zs_pool_stats(zram->mem_pool, &pool_stats);
719 	}
720 
721 	orig_size = atomic64_read(&zram->stats.pages_stored);
722 	max_used = atomic_long_read(&zram->stats.max_used_pages);
723 
724 	ret = scnprintf(buf, PAGE_SIZE,
725 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
726 			orig_size << PAGE_SHIFT,
727 			(u64)atomic64_read(&zram->stats.compr_data_size),
728 			mem_used << PAGE_SHIFT,
729 			zram->limit_pages << PAGE_SHIFT,
730 			max_used << PAGE_SHIFT,
731 			(u64)atomic64_read(&zram->stats.same_pages),
732 			pool_stats.pages_compacted);
733 	up_read(&zram->init_lock);
734 
735 	return ret;
736 }
737 
738 static ssize_t debug_stat_show(struct device *dev,
739 		struct device_attribute *attr, char *buf)
740 {
741 	int version = 1;
742 	struct zram *zram = dev_to_zram(dev);
743 	ssize_t ret;
744 
745 	down_read(&zram->init_lock);
746 	ret = scnprintf(buf, PAGE_SIZE,
747 			"version: %d\n%8llu\n",
748 			version,
749 			(u64)atomic64_read(&zram->stats.writestall));
750 	up_read(&zram->init_lock);
751 
752 	return ret;
753 }
754 
755 static DEVICE_ATTR_RO(io_stat);
756 static DEVICE_ATTR_RO(mm_stat);
757 static DEVICE_ATTR_RO(debug_stat);
758 
759 static void zram_slot_lock(struct zram *zram, u32 index)
760 {
761 	bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
762 }
763 
764 static void zram_slot_unlock(struct zram *zram, u32 index)
765 {
766 	bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
767 }
768 
769 static bool zram_same_page_read(struct zram *zram, u32 index,
770 				struct page *page,
771 				unsigned int offset, unsigned int len)
772 {
773 	zram_slot_lock(zram, index);
774 	if (unlikely(!zram_get_handle(zram, index) ||
775 			zram_test_flag(zram, index, ZRAM_SAME))) {
776 		void *mem;
777 
778 		zram_slot_unlock(zram, index);
779 		mem = kmap_atomic(page);
780 		zram_fill_page(mem + offset, len,
781 					zram_get_element(zram, index));
782 		kunmap_atomic(mem);
783 		return true;
784 	}
785 	zram_slot_unlock(zram, index);
786 
787 	return false;
788 }
789 
790 static void zram_meta_free(struct zram *zram, u64 disksize)
791 {
792 	size_t num_pages = disksize >> PAGE_SHIFT;
793 	size_t index;
794 
795 	/* Free all pages that are still in this zram device */
796 	for (index = 0; index < num_pages; index++)
797 		zram_free_page(zram, index);
798 
799 	zs_destroy_pool(zram->mem_pool);
800 	vfree(zram->table);
801 }
802 
803 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
804 {
805 	size_t num_pages;
806 
807 	num_pages = disksize >> PAGE_SHIFT;
808 	zram->table = vzalloc(num_pages * sizeof(*zram->table));
809 	if (!zram->table)
810 		return false;
811 
812 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
813 	if (!zram->mem_pool) {
814 		vfree(zram->table);
815 		return false;
816 	}
817 
818 	return true;
819 }
820 
821 /*
822  * To protect concurrent access to the same index entry,
823  * caller should hold this table index entry's bit_spinlock to
824  * indicate this index entry is accessing.
825  */
826 static void zram_free_page(struct zram *zram, size_t index)
827 {
828 	unsigned long handle;
829 
830 	if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
831 		zram_wb_clear(zram, index);
832 		atomic64_dec(&zram->stats.pages_stored);
833 		return;
834 	}
835 
836 	/*
837 	 * No memory is allocated for same element filled pages.
838 	 * Simply clear same page flag.
839 	 */
840 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
841 		zram_clear_flag(zram, index, ZRAM_SAME);
842 		zram_set_element(zram, index, 0);
843 		atomic64_dec(&zram->stats.same_pages);
844 		atomic64_dec(&zram->stats.pages_stored);
845 		return;
846 	}
847 
848 	handle = zram_get_handle(zram, index);
849 	if (!handle)
850 		return;
851 
852 	zs_free(zram->mem_pool, handle);
853 
854 	atomic64_sub(zram_get_obj_size(zram, index),
855 			&zram->stats.compr_data_size);
856 	atomic64_dec(&zram->stats.pages_stored);
857 
858 	zram_set_handle(zram, index, 0);
859 	zram_set_obj_size(zram, index, 0);
860 }
861 
862 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
863 				struct bio *bio, bool partial_io)
864 {
865 	int ret;
866 	unsigned long handle;
867 	unsigned int size;
868 	void *src, *dst;
869 
870 	if (zram_wb_enabled(zram)) {
871 		zram_slot_lock(zram, index);
872 		if (zram_test_flag(zram, index, ZRAM_WB)) {
873 			struct bio_vec bvec;
874 
875 			zram_slot_unlock(zram, index);
876 
877 			bvec.bv_page = page;
878 			bvec.bv_len = PAGE_SIZE;
879 			bvec.bv_offset = 0;
880 			return read_from_bdev(zram, &bvec,
881 					zram_get_element(zram, index),
882 					bio, partial_io);
883 		}
884 		zram_slot_unlock(zram, index);
885 	}
886 
887 	if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
888 		return 0;
889 
890 	zram_slot_lock(zram, index);
891 	handle = zram_get_handle(zram, index);
892 	size = zram_get_obj_size(zram, index);
893 
894 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
895 	if (size == PAGE_SIZE) {
896 		dst = kmap_atomic(page);
897 		memcpy(dst, src, PAGE_SIZE);
898 		kunmap_atomic(dst);
899 		ret = 0;
900 	} else {
901 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
902 
903 		dst = kmap_atomic(page);
904 		ret = zcomp_decompress(zstrm, src, size, dst);
905 		kunmap_atomic(dst);
906 		zcomp_stream_put(zram->comp);
907 	}
908 	zs_unmap_object(zram->mem_pool, handle);
909 	zram_slot_unlock(zram, index);
910 
911 	/* Should NEVER happen. Return bio error if it does. */
912 	if (unlikely(ret))
913 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
914 
915 	return ret;
916 }
917 
918 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
919 				u32 index, int offset, struct bio *bio)
920 {
921 	int ret;
922 	struct page *page;
923 
924 	page = bvec->bv_page;
925 	if (is_partial_io(bvec)) {
926 		/* Use a temporary buffer to decompress the page */
927 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
928 		if (!page)
929 			return -ENOMEM;
930 	}
931 
932 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
933 	if (unlikely(ret))
934 		goto out;
935 
936 	if (is_partial_io(bvec)) {
937 		void *dst = kmap_atomic(bvec->bv_page);
938 		void *src = kmap_atomic(page);
939 
940 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
941 		kunmap_atomic(src);
942 		kunmap_atomic(dst);
943 	}
944 out:
945 	if (is_partial_io(bvec))
946 		__free_page(page);
947 
948 	return ret;
949 }
950 
951 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
952 				u32 index, struct bio *bio)
953 {
954 	int ret = 0;
955 	unsigned long alloced_pages;
956 	unsigned long handle = 0;
957 	unsigned int comp_len = 0;
958 	void *src, *dst, *mem;
959 	struct zcomp_strm *zstrm;
960 	struct page *page = bvec->bv_page;
961 	unsigned long element = 0;
962 	enum zram_pageflags flags = 0;
963 	bool allow_wb = true;
964 
965 	mem = kmap_atomic(page);
966 	if (page_same_filled(mem, &element)) {
967 		kunmap_atomic(mem);
968 		/* Free memory associated with this sector now. */
969 		flags = ZRAM_SAME;
970 		atomic64_inc(&zram->stats.same_pages);
971 		goto out;
972 	}
973 	kunmap_atomic(mem);
974 
975 compress_again:
976 	zstrm = zcomp_stream_get(zram->comp);
977 	src = kmap_atomic(page);
978 	ret = zcomp_compress(zstrm, src, &comp_len);
979 	kunmap_atomic(src);
980 
981 	if (unlikely(ret)) {
982 		zcomp_stream_put(zram->comp);
983 		pr_err("Compression failed! err=%d\n", ret);
984 		zs_free(zram->mem_pool, handle);
985 		return ret;
986 	}
987 
988 	if (unlikely(comp_len > max_zpage_size)) {
989 		if (zram_wb_enabled(zram) && allow_wb) {
990 			zcomp_stream_put(zram->comp);
991 			ret = write_to_bdev(zram, bvec, index, bio, &element);
992 			if (!ret) {
993 				flags = ZRAM_WB;
994 				ret = 1;
995 				goto out;
996 			}
997 			allow_wb = false;
998 			goto compress_again;
999 		}
1000 		comp_len = PAGE_SIZE;
1001 	}
1002 
1003 	/*
1004 	 * handle allocation has 2 paths:
1005 	 * a) fast path is executed with preemption disabled (for
1006 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1007 	 *  since we can't sleep;
1008 	 * b) slow path enables preemption and attempts to allocate
1009 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1010 	 *  put per-cpu compression stream and, thus, to re-do
1011 	 *  the compression once handle is allocated.
1012 	 *
1013 	 * if we have a 'non-null' handle here then we are coming
1014 	 * from the slow path and handle has already been allocated.
1015 	 */
1016 	if (!handle)
1017 		handle = zs_malloc(zram->mem_pool, comp_len,
1018 				__GFP_KSWAPD_RECLAIM |
1019 				__GFP_NOWARN |
1020 				__GFP_HIGHMEM |
1021 				__GFP_MOVABLE);
1022 	if (!handle) {
1023 		zcomp_stream_put(zram->comp);
1024 		atomic64_inc(&zram->stats.writestall);
1025 		handle = zs_malloc(zram->mem_pool, comp_len,
1026 				GFP_NOIO | __GFP_HIGHMEM |
1027 				__GFP_MOVABLE);
1028 		if (handle)
1029 			goto compress_again;
1030 		return -ENOMEM;
1031 	}
1032 
1033 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1034 	update_used_max(zram, alloced_pages);
1035 
1036 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1037 		zcomp_stream_put(zram->comp);
1038 		zs_free(zram->mem_pool, handle);
1039 		return -ENOMEM;
1040 	}
1041 
1042 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1043 
1044 	src = zstrm->buffer;
1045 	if (comp_len == PAGE_SIZE)
1046 		src = kmap_atomic(page);
1047 	memcpy(dst, src, comp_len);
1048 	if (comp_len == PAGE_SIZE)
1049 		kunmap_atomic(src);
1050 
1051 	zcomp_stream_put(zram->comp);
1052 	zs_unmap_object(zram->mem_pool, handle);
1053 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1054 out:
1055 	/*
1056 	 * Free memory associated with this sector
1057 	 * before overwriting unused sectors.
1058 	 */
1059 	zram_slot_lock(zram, index);
1060 	zram_free_page(zram, index);
1061 
1062 	if (flags) {
1063 		zram_set_flag(zram, index, flags);
1064 		zram_set_element(zram, index, element);
1065 	}  else {
1066 		zram_set_handle(zram, index, handle);
1067 		zram_set_obj_size(zram, index, comp_len);
1068 	}
1069 	zram_slot_unlock(zram, index);
1070 
1071 	/* Update stats */
1072 	atomic64_inc(&zram->stats.pages_stored);
1073 	return ret;
1074 }
1075 
1076 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1077 				u32 index, int offset, struct bio *bio)
1078 {
1079 	int ret;
1080 	struct page *page = NULL;
1081 	void *src;
1082 	struct bio_vec vec;
1083 
1084 	vec = *bvec;
1085 	if (is_partial_io(bvec)) {
1086 		void *dst;
1087 		/*
1088 		 * This is a partial IO. We need to read the full page
1089 		 * before to write the changes.
1090 		 */
1091 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1092 		if (!page)
1093 			return -ENOMEM;
1094 
1095 		ret = __zram_bvec_read(zram, page, index, bio, true);
1096 		if (ret)
1097 			goto out;
1098 
1099 		src = kmap_atomic(bvec->bv_page);
1100 		dst = kmap_atomic(page);
1101 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1102 		kunmap_atomic(dst);
1103 		kunmap_atomic(src);
1104 
1105 		vec.bv_page = page;
1106 		vec.bv_len = PAGE_SIZE;
1107 		vec.bv_offset = 0;
1108 	}
1109 
1110 	ret = __zram_bvec_write(zram, &vec, index, bio);
1111 out:
1112 	if (is_partial_io(bvec))
1113 		__free_page(page);
1114 	return ret;
1115 }
1116 
1117 /*
1118  * zram_bio_discard - handler on discard request
1119  * @index: physical block index in PAGE_SIZE units
1120  * @offset: byte offset within physical block
1121  */
1122 static void zram_bio_discard(struct zram *zram, u32 index,
1123 			     int offset, struct bio *bio)
1124 {
1125 	size_t n = bio->bi_iter.bi_size;
1126 
1127 	/*
1128 	 * zram manages data in physical block size units. Because logical block
1129 	 * size isn't identical with physical block size on some arch, we
1130 	 * could get a discard request pointing to a specific offset within a
1131 	 * certain physical block.  Although we can handle this request by
1132 	 * reading that physiclal block and decompressing and partially zeroing
1133 	 * and re-compressing and then re-storing it, this isn't reasonable
1134 	 * because our intent with a discard request is to save memory.  So
1135 	 * skipping this logical block is appropriate here.
1136 	 */
1137 	if (offset) {
1138 		if (n <= (PAGE_SIZE - offset))
1139 			return;
1140 
1141 		n -= (PAGE_SIZE - offset);
1142 		index++;
1143 	}
1144 
1145 	while (n >= PAGE_SIZE) {
1146 		zram_slot_lock(zram, index);
1147 		zram_free_page(zram, index);
1148 		zram_slot_unlock(zram, index);
1149 		atomic64_inc(&zram->stats.notify_free);
1150 		index++;
1151 		n -= PAGE_SIZE;
1152 	}
1153 }
1154 
1155 /*
1156  * Returns errno if it has some problem. Otherwise return 0 or 1.
1157  * Returns 0 if IO request was done synchronously
1158  * Returns 1 if IO request was successfully submitted.
1159  */
1160 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1161 			int offset, bool is_write, struct bio *bio)
1162 {
1163 	unsigned long start_time = jiffies;
1164 	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
1165 	struct request_queue *q = zram->disk->queue;
1166 	int ret;
1167 
1168 	generic_start_io_acct(q, rw_acct, bvec->bv_len >> SECTOR_SHIFT,
1169 			&zram->disk->part0);
1170 
1171 	if (!is_write) {
1172 		atomic64_inc(&zram->stats.num_reads);
1173 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1174 		flush_dcache_page(bvec->bv_page);
1175 	} else {
1176 		atomic64_inc(&zram->stats.num_writes);
1177 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1178 	}
1179 
1180 	generic_end_io_acct(q, rw_acct, &zram->disk->part0, start_time);
1181 
1182 	if (unlikely(ret < 0)) {
1183 		if (!is_write)
1184 			atomic64_inc(&zram->stats.failed_reads);
1185 		else
1186 			atomic64_inc(&zram->stats.failed_writes);
1187 	}
1188 
1189 	return ret;
1190 }
1191 
1192 static void __zram_make_request(struct zram *zram, struct bio *bio)
1193 {
1194 	int offset;
1195 	u32 index;
1196 	struct bio_vec bvec;
1197 	struct bvec_iter iter;
1198 
1199 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1200 	offset = (bio->bi_iter.bi_sector &
1201 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1202 
1203 	switch (bio_op(bio)) {
1204 	case REQ_OP_DISCARD:
1205 	case REQ_OP_WRITE_ZEROES:
1206 		zram_bio_discard(zram, index, offset, bio);
1207 		bio_endio(bio);
1208 		return;
1209 	default:
1210 		break;
1211 	}
1212 
1213 	bio_for_each_segment(bvec, bio, iter) {
1214 		struct bio_vec bv = bvec;
1215 		unsigned int unwritten = bvec.bv_len;
1216 
1217 		do {
1218 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1219 							unwritten);
1220 			if (zram_bvec_rw(zram, &bv, index, offset,
1221 					op_is_write(bio_op(bio)), bio) < 0)
1222 				goto out;
1223 
1224 			bv.bv_offset += bv.bv_len;
1225 			unwritten -= bv.bv_len;
1226 
1227 			update_position(&index, &offset, &bv);
1228 		} while (unwritten);
1229 	}
1230 
1231 	bio_endio(bio);
1232 	return;
1233 
1234 out:
1235 	bio_io_error(bio);
1236 }
1237 
1238 /*
1239  * Handler function for all zram I/O requests.
1240  */
1241 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1242 {
1243 	struct zram *zram = queue->queuedata;
1244 
1245 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1246 					bio->bi_iter.bi_size)) {
1247 		atomic64_inc(&zram->stats.invalid_io);
1248 		goto error;
1249 	}
1250 
1251 	__zram_make_request(zram, bio);
1252 	return BLK_QC_T_NONE;
1253 
1254 error:
1255 	bio_io_error(bio);
1256 	return BLK_QC_T_NONE;
1257 }
1258 
1259 static void zram_slot_free_notify(struct block_device *bdev,
1260 				unsigned long index)
1261 {
1262 	struct zram *zram;
1263 
1264 	zram = bdev->bd_disk->private_data;
1265 
1266 	zram_slot_lock(zram, index);
1267 	zram_free_page(zram, index);
1268 	zram_slot_unlock(zram, index);
1269 	atomic64_inc(&zram->stats.notify_free);
1270 }
1271 
1272 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1273 		       struct page *page, bool is_write)
1274 {
1275 	int offset, ret;
1276 	u32 index;
1277 	struct zram *zram;
1278 	struct bio_vec bv;
1279 
1280 	if (PageTransHuge(page))
1281 		return -ENOTSUPP;
1282 	zram = bdev->bd_disk->private_data;
1283 
1284 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1285 		atomic64_inc(&zram->stats.invalid_io);
1286 		ret = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1291 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1292 
1293 	bv.bv_page = page;
1294 	bv.bv_len = PAGE_SIZE;
1295 	bv.bv_offset = 0;
1296 
1297 	ret = zram_bvec_rw(zram, &bv, index, offset, is_write, NULL);
1298 out:
1299 	/*
1300 	 * If I/O fails, just return error(ie, non-zero) without
1301 	 * calling page_endio.
1302 	 * It causes resubmit the I/O with bio request by upper functions
1303 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1304 	 * bio->bi_end_io does things to handle the error
1305 	 * (e.g., SetPageError, set_page_dirty and extra works).
1306 	 */
1307 	if (unlikely(ret < 0))
1308 		return ret;
1309 
1310 	switch (ret) {
1311 	case 0:
1312 		page_endio(page, is_write, 0);
1313 		break;
1314 	case 1:
1315 		ret = 0;
1316 		break;
1317 	default:
1318 		WARN_ON(1);
1319 	}
1320 	return ret;
1321 }
1322 
1323 static void zram_reset_device(struct zram *zram)
1324 {
1325 	struct zcomp *comp;
1326 	u64 disksize;
1327 
1328 	down_write(&zram->init_lock);
1329 
1330 	zram->limit_pages = 0;
1331 
1332 	if (!init_done(zram)) {
1333 		up_write(&zram->init_lock);
1334 		return;
1335 	}
1336 
1337 	comp = zram->comp;
1338 	disksize = zram->disksize;
1339 	zram->disksize = 0;
1340 
1341 	set_capacity(zram->disk, 0);
1342 	part_stat_set_all(&zram->disk->part0, 0);
1343 
1344 	up_write(&zram->init_lock);
1345 	/* I/O operation under all of CPU are done so let's free */
1346 	zram_meta_free(zram, disksize);
1347 	memset(&zram->stats, 0, sizeof(zram->stats));
1348 	zcomp_destroy(comp);
1349 	reset_bdev(zram);
1350 }
1351 
1352 static ssize_t disksize_store(struct device *dev,
1353 		struct device_attribute *attr, const char *buf, size_t len)
1354 {
1355 	u64 disksize;
1356 	struct zcomp *comp;
1357 	struct zram *zram = dev_to_zram(dev);
1358 	int err;
1359 
1360 	disksize = memparse(buf, NULL);
1361 	if (!disksize)
1362 		return -EINVAL;
1363 
1364 	down_write(&zram->init_lock);
1365 	if (init_done(zram)) {
1366 		pr_info("Cannot change disksize for initialized device\n");
1367 		err = -EBUSY;
1368 		goto out_unlock;
1369 	}
1370 
1371 	disksize = PAGE_ALIGN(disksize);
1372 	if (!zram_meta_alloc(zram, disksize)) {
1373 		err = -ENOMEM;
1374 		goto out_unlock;
1375 	}
1376 
1377 	comp = zcomp_create(zram->compressor);
1378 	if (IS_ERR(comp)) {
1379 		pr_err("Cannot initialise %s compressing backend\n",
1380 				zram->compressor);
1381 		err = PTR_ERR(comp);
1382 		goto out_free_meta;
1383 	}
1384 
1385 	zram->comp = comp;
1386 	zram->disksize = disksize;
1387 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1388 	zram_revalidate_disk(zram);
1389 	up_write(&zram->init_lock);
1390 
1391 	return len;
1392 
1393 out_free_meta:
1394 	zram_meta_free(zram, disksize);
1395 out_unlock:
1396 	up_write(&zram->init_lock);
1397 	return err;
1398 }
1399 
1400 static ssize_t reset_store(struct device *dev,
1401 		struct device_attribute *attr, const char *buf, size_t len)
1402 {
1403 	int ret;
1404 	unsigned short do_reset;
1405 	struct zram *zram;
1406 	struct block_device *bdev;
1407 
1408 	ret = kstrtou16(buf, 10, &do_reset);
1409 	if (ret)
1410 		return ret;
1411 
1412 	if (!do_reset)
1413 		return -EINVAL;
1414 
1415 	zram = dev_to_zram(dev);
1416 	bdev = bdget_disk(zram->disk, 0);
1417 	if (!bdev)
1418 		return -ENOMEM;
1419 
1420 	mutex_lock(&bdev->bd_mutex);
1421 	/* Do not reset an active device or claimed device */
1422 	if (bdev->bd_openers || zram->claim) {
1423 		mutex_unlock(&bdev->bd_mutex);
1424 		bdput(bdev);
1425 		return -EBUSY;
1426 	}
1427 
1428 	/* From now on, anyone can't open /dev/zram[0-9] */
1429 	zram->claim = true;
1430 	mutex_unlock(&bdev->bd_mutex);
1431 
1432 	/* Make sure all the pending I/O are finished */
1433 	fsync_bdev(bdev);
1434 	zram_reset_device(zram);
1435 	zram_revalidate_disk(zram);
1436 	bdput(bdev);
1437 
1438 	mutex_lock(&bdev->bd_mutex);
1439 	zram->claim = false;
1440 	mutex_unlock(&bdev->bd_mutex);
1441 
1442 	return len;
1443 }
1444 
1445 static int zram_open(struct block_device *bdev, fmode_t mode)
1446 {
1447 	int ret = 0;
1448 	struct zram *zram;
1449 
1450 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1451 
1452 	zram = bdev->bd_disk->private_data;
1453 	/* zram was claimed to reset so open request fails */
1454 	if (zram->claim)
1455 		ret = -EBUSY;
1456 
1457 	return ret;
1458 }
1459 
1460 static const struct block_device_operations zram_devops = {
1461 	.open = zram_open,
1462 	.swap_slot_free_notify = zram_slot_free_notify,
1463 	.rw_page = zram_rw_page,
1464 	.owner = THIS_MODULE
1465 };
1466 
1467 static DEVICE_ATTR_WO(compact);
1468 static DEVICE_ATTR_RW(disksize);
1469 static DEVICE_ATTR_RO(initstate);
1470 static DEVICE_ATTR_WO(reset);
1471 static DEVICE_ATTR_WO(mem_limit);
1472 static DEVICE_ATTR_WO(mem_used_max);
1473 static DEVICE_ATTR_RW(max_comp_streams);
1474 static DEVICE_ATTR_RW(comp_algorithm);
1475 #ifdef CONFIG_ZRAM_WRITEBACK
1476 static DEVICE_ATTR_RW(backing_dev);
1477 #endif
1478 
1479 static struct attribute *zram_disk_attrs[] = {
1480 	&dev_attr_disksize.attr,
1481 	&dev_attr_initstate.attr,
1482 	&dev_attr_reset.attr,
1483 	&dev_attr_compact.attr,
1484 	&dev_attr_mem_limit.attr,
1485 	&dev_attr_mem_used_max.attr,
1486 	&dev_attr_max_comp_streams.attr,
1487 	&dev_attr_comp_algorithm.attr,
1488 #ifdef CONFIG_ZRAM_WRITEBACK
1489 	&dev_attr_backing_dev.attr,
1490 #endif
1491 	&dev_attr_io_stat.attr,
1492 	&dev_attr_mm_stat.attr,
1493 	&dev_attr_debug_stat.attr,
1494 	NULL,
1495 };
1496 
1497 static const struct attribute_group zram_disk_attr_group = {
1498 	.attrs = zram_disk_attrs,
1499 };
1500 
1501 /*
1502  * Allocate and initialize new zram device. the function returns
1503  * '>= 0' device_id upon success, and negative value otherwise.
1504  */
1505 static int zram_add(void)
1506 {
1507 	struct zram *zram;
1508 	struct request_queue *queue;
1509 	int ret, device_id;
1510 
1511 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1512 	if (!zram)
1513 		return -ENOMEM;
1514 
1515 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1516 	if (ret < 0)
1517 		goto out_free_dev;
1518 	device_id = ret;
1519 
1520 	init_rwsem(&zram->init_lock);
1521 
1522 	queue = blk_alloc_queue(GFP_KERNEL);
1523 	if (!queue) {
1524 		pr_err("Error allocating disk queue for device %d\n",
1525 			device_id);
1526 		ret = -ENOMEM;
1527 		goto out_free_idr;
1528 	}
1529 
1530 	blk_queue_make_request(queue, zram_make_request);
1531 
1532 	/* gendisk structure */
1533 	zram->disk = alloc_disk(1);
1534 	if (!zram->disk) {
1535 		pr_err("Error allocating disk structure for device %d\n",
1536 			device_id);
1537 		ret = -ENOMEM;
1538 		goto out_free_queue;
1539 	}
1540 
1541 	zram->disk->major = zram_major;
1542 	zram->disk->first_minor = device_id;
1543 	zram->disk->fops = &zram_devops;
1544 	zram->disk->queue = queue;
1545 	zram->disk->queue->queuedata = zram;
1546 	zram->disk->private_data = zram;
1547 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1548 
1549 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1550 	set_capacity(zram->disk, 0);
1551 	/* zram devices sort of resembles non-rotational disks */
1552 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1553 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1554 	/*
1555 	 * To ensure that we always get PAGE_SIZE aligned
1556 	 * and n*PAGE_SIZED sized I/O requests.
1557 	 */
1558 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1559 	blk_queue_logical_block_size(zram->disk->queue,
1560 					ZRAM_LOGICAL_BLOCK_SIZE);
1561 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1562 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1563 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1564 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1565 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1566 
1567 	/*
1568 	 * zram_bio_discard() will clear all logical blocks if logical block
1569 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1570 	 * different, we will skip discarding some parts of logical blocks in
1571 	 * the part of the request range which isn't aligned to physical block
1572 	 * size.  So we can't ensure that all discarded logical blocks are
1573 	 * zeroed.
1574 	 */
1575 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1576 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1577 
1578 	add_disk(zram->disk);
1579 
1580 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1581 				&zram_disk_attr_group);
1582 	if (ret < 0) {
1583 		pr_err("Error creating sysfs group for device %d\n",
1584 				device_id);
1585 		goto out_free_disk;
1586 	}
1587 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1588 
1589 	pr_info("Added device: %s\n", zram->disk->disk_name);
1590 	return device_id;
1591 
1592 out_free_disk:
1593 	del_gendisk(zram->disk);
1594 	put_disk(zram->disk);
1595 out_free_queue:
1596 	blk_cleanup_queue(queue);
1597 out_free_idr:
1598 	idr_remove(&zram_index_idr, device_id);
1599 out_free_dev:
1600 	kfree(zram);
1601 	return ret;
1602 }
1603 
1604 static int zram_remove(struct zram *zram)
1605 {
1606 	struct block_device *bdev;
1607 
1608 	bdev = bdget_disk(zram->disk, 0);
1609 	if (!bdev)
1610 		return -ENOMEM;
1611 
1612 	mutex_lock(&bdev->bd_mutex);
1613 	if (bdev->bd_openers || zram->claim) {
1614 		mutex_unlock(&bdev->bd_mutex);
1615 		bdput(bdev);
1616 		return -EBUSY;
1617 	}
1618 
1619 	zram->claim = true;
1620 	mutex_unlock(&bdev->bd_mutex);
1621 
1622 	/*
1623 	 * Remove sysfs first, so no one will perform a disksize
1624 	 * store while we destroy the devices. This also helps during
1625 	 * hot_remove -- zram_reset_device() is the last holder of
1626 	 * ->init_lock, no later/concurrent disksize_store() or any
1627 	 * other sysfs handlers are possible.
1628 	 */
1629 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1630 			&zram_disk_attr_group);
1631 
1632 	/* Make sure all the pending I/O are finished */
1633 	fsync_bdev(bdev);
1634 	zram_reset_device(zram);
1635 	bdput(bdev);
1636 
1637 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1638 
1639 	blk_cleanup_queue(zram->disk->queue);
1640 	del_gendisk(zram->disk);
1641 	put_disk(zram->disk);
1642 	kfree(zram);
1643 	return 0;
1644 }
1645 
1646 /* zram-control sysfs attributes */
1647 
1648 /*
1649  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1650  * sense that reading from this file does alter the state of your system -- it
1651  * creates a new un-initialized zram device and returns back this device's
1652  * device_id (or an error code if it fails to create a new device).
1653  */
1654 static ssize_t hot_add_show(struct class *class,
1655 			struct class_attribute *attr,
1656 			char *buf)
1657 {
1658 	int ret;
1659 
1660 	mutex_lock(&zram_index_mutex);
1661 	ret = zram_add();
1662 	mutex_unlock(&zram_index_mutex);
1663 
1664 	if (ret < 0)
1665 		return ret;
1666 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1667 }
1668 static CLASS_ATTR_RO(hot_add);
1669 
1670 static ssize_t hot_remove_store(struct class *class,
1671 			struct class_attribute *attr,
1672 			const char *buf,
1673 			size_t count)
1674 {
1675 	struct zram *zram;
1676 	int ret, dev_id;
1677 
1678 	/* dev_id is gendisk->first_minor, which is `int' */
1679 	ret = kstrtoint(buf, 10, &dev_id);
1680 	if (ret)
1681 		return ret;
1682 	if (dev_id < 0)
1683 		return -EINVAL;
1684 
1685 	mutex_lock(&zram_index_mutex);
1686 
1687 	zram = idr_find(&zram_index_idr, dev_id);
1688 	if (zram) {
1689 		ret = zram_remove(zram);
1690 		if (!ret)
1691 			idr_remove(&zram_index_idr, dev_id);
1692 	} else {
1693 		ret = -ENODEV;
1694 	}
1695 
1696 	mutex_unlock(&zram_index_mutex);
1697 	return ret ? ret : count;
1698 }
1699 static CLASS_ATTR_WO(hot_remove);
1700 
1701 static struct attribute *zram_control_class_attrs[] = {
1702 	&class_attr_hot_add.attr,
1703 	&class_attr_hot_remove.attr,
1704 	NULL,
1705 };
1706 ATTRIBUTE_GROUPS(zram_control_class);
1707 
1708 static struct class zram_control_class = {
1709 	.name		= "zram-control",
1710 	.owner		= THIS_MODULE,
1711 	.class_groups	= zram_control_class_groups,
1712 };
1713 
1714 static int zram_remove_cb(int id, void *ptr, void *data)
1715 {
1716 	zram_remove(ptr);
1717 	return 0;
1718 }
1719 
1720 static void destroy_devices(void)
1721 {
1722 	class_unregister(&zram_control_class);
1723 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1724 	idr_destroy(&zram_index_idr);
1725 	unregister_blkdev(zram_major, "zram");
1726 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1727 }
1728 
1729 static int __init zram_init(void)
1730 {
1731 	int ret;
1732 
1733 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1734 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1735 	if (ret < 0)
1736 		return ret;
1737 
1738 	ret = class_register(&zram_control_class);
1739 	if (ret) {
1740 		pr_err("Unable to register zram-control class\n");
1741 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1742 		return ret;
1743 	}
1744 
1745 	zram_major = register_blkdev(0, "zram");
1746 	if (zram_major <= 0) {
1747 		pr_err("Unable to get major number\n");
1748 		class_unregister(&zram_control_class);
1749 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1750 		return -EBUSY;
1751 	}
1752 
1753 	while (num_devices != 0) {
1754 		mutex_lock(&zram_index_mutex);
1755 		ret = zram_add();
1756 		mutex_unlock(&zram_index_mutex);
1757 		if (ret < 0)
1758 			goto out_error;
1759 		num_devices--;
1760 	}
1761 
1762 	return 0;
1763 
1764 out_error:
1765 	destroy_devices();
1766 	return ret;
1767 }
1768 
1769 static void __exit zram_exit(void)
1770 {
1771 	destroy_devices();
1772 }
1773 
1774 module_init(zram_init);
1775 module_exit(zram_exit);
1776 
1777 module_param(num_devices, uint, 0);
1778 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1779 
1780 MODULE_LICENSE("Dual BSD/GPL");
1781 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1782 MODULE_DESCRIPTION("Compressed RAM Block Device");
1783