xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 6774def6)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 #define ZRAM_ATTR_RO(name)						\
47 static ssize_t zram_attr_##name##_show(struct device *d,		\
48 				struct device_attribute *attr, char *b)	\
49 {									\
50 	struct zram *zram = dev_to_zram(d);				\
51 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
52 		(u64)atomic64_read(&zram->stats.name));			\
53 }									\
54 static struct device_attribute dev_attr_##name =			\
55 	__ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56 
57 static inline int init_done(struct zram *zram)
58 {
59 	return zram->meta != NULL;
60 }
61 
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64 	return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66 
67 static ssize_t disksize_show(struct device *dev,
68 		struct device_attribute *attr, char *buf)
69 {
70 	struct zram *zram = dev_to_zram(dev);
71 
72 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74 
75 static ssize_t initstate_show(struct device *dev,
76 		struct device_attribute *attr, char *buf)
77 {
78 	u32 val;
79 	struct zram *zram = dev_to_zram(dev);
80 
81 	down_read(&zram->init_lock);
82 	val = init_done(zram);
83 	up_read(&zram->init_lock);
84 
85 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87 
88 static ssize_t orig_data_size_show(struct device *dev,
89 		struct device_attribute *attr, char *buf)
90 {
91 	struct zram *zram = dev_to_zram(dev);
92 
93 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
94 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96 
97 static ssize_t mem_used_total_show(struct device *dev,
98 		struct device_attribute *attr, char *buf)
99 {
100 	u64 val = 0;
101 	struct zram *zram = dev_to_zram(dev);
102 
103 	down_read(&zram->init_lock);
104 	if (init_done(zram)) {
105 		struct zram_meta *meta = zram->meta;
106 		val = zs_get_total_pages(meta->mem_pool);
107 	}
108 	up_read(&zram->init_lock);
109 
110 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
111 }
112 
113 static ssize_t max_comp_streams_show(struct device *dev,
114 		struct device_attribute *attr, char *buf)
115 {
116 	int val;
117 	struct zram *zram = dev_to_zram(dev);
118 
119 	down_read(&zram->init_lock);
120 	val = zram->max_comp_streams;
121 	up_read(&zram->init_lock);
122 
123 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
124 }
125 
126 static ssize_t mem_limit_show(struct device *dev,
127 		struct device_attribute *attr, char *buf)
128 {
129 	u64 val;
130 	struct zram *zram = dev_to_zram(dev);
131 
132 	down_read(&zram->init_lock);
133 	val = zram->limit_pages;
134 	up_read(&zram->init_lock);
135 
136 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
137 }
138 
139 static ssize_t mem_limit_store(struct device *dev,
140 		struct device_attribute *attr, const char *buf, size_t len)
141 {
142 	u64 limit;
143 	char *tmp;
144 	struct zram *zram = dev_to_zram(dev);
145 
146 	limit = memparse(buf, &tmp);
147 	if (buf == tmp) /* no chars parsed, invalid input */
148 		return -EINVAL;
149 
150 	down_write(&zram->init_lock);
151 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
152 	up_write(&zram->init_lock);
153 
154 	return len;
155 }
156 
157 static ssize_t mem_used_max_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	u64 val = 0;
161 	struct zram *zram = dev_to_zram(dev);
162 
163 	down_read(&zram->init_lock);
164 	if (init_done(zram))
165 		val = atomic_long_read(&zram->stats.max_used_pages);
166 	up_read(&zram->init_lock);
167 
168 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
169 }
170 
171 static ssize_t mem_used_max_store(struct device *dev,
172 		struct device_attribute *attr, const char *buf, size_t len)
173 {
174 	int err;
175 	unsigned long val;
176 	struct zram *zram = dev_to_zram(dev);
177 
178 	err = kstrtoul(buf, 10, &val);
179 	if (err || val != 0)
180 		return -EINVAL;
181 
182 	down_read(&zram->init_lock);
183 	if (init_done(zram)) {
184 		struct zram_meta *meta = zram->meta;
185 		atomic_long_set(&zram->stats.max_used_pages,
186 				zs_get_total_pages(meta->mem_pool));
187 	}
188 	up_read(&zram->init_lock);
189 
190 	return len;
191 }
192 
193 static ssize_t max_comp_streams_store(struct device *dev,
194 		struct device_attribute *attr, const char *buf, size_t len)
195 {
196 	int num;
197 	struct zram *zram = dev_to_zram(dev);
198 	int ret;
199 
200 	ret = kstrtoint(buf, 0, &num);
201 	if (ret < 0)
202 		return ret;
203 	if (num < 1)
204 		return -EINVAL;
205 
206 	down_write(&zram->init_lock);
207 	if (init_done(zram)) {
208 		if (!zcomp_set_max_streams(zram->comp, num)) {
209 			pr_info("Cannot change max compression streams\n");
210 			ret = -EINVAL;
211 			goto out;
212 		}
213 	}
214 
215 	zram->max_comp_streams = num;
216 	ret = len;
217 out:
218 	up_write(&zram->init_lock);
219 	return ret;
220 }
221 
222 static ssize_t comp_algorithm_show(struct device *dev,
223 		struct device_attribute *attr, char *buf)
224 {
225 	size_t sz;
226 	struct zram *zram = dev_to_zram(dev);
227 
228 	down_read(&zram->init_lock);
229 	sz = zcomp_available_show(zram->compressor, buf);
230 	up_read(&zram->init_lock);
231 
232 	return sz;
233 }
234 
235 static ssize_t comp_algorithm_store(struct device *dev,
236 		struct device_attribute *attr, const char *buf, size_t len)
237 {
238 	struct zram *zram = dev_to_zram(dev);
239 	down_write(&zram->init_lock);
240 	if (init_done(zram)) {
241 		up_write(&zram->init_lock);
242 		pr_info("Can't change algorithm for initialized device\n");
243 		return -EBUSY;
244 	}
245 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
246 	up_write(&zram->init_lock);
247 	return len;
248 }
249 
250 /* flag operations needs meta->tb_lock */
251 static int zram_test_flag(struct zram_meta *meta, u32 index,
252 			enum zram_pageflags flag)
253 {
254 	return meta->table[index].value & BIT(flag);
255 }
256 
257 static void zram_set_flag(struct zram_meta *meta, u32 index,
258 			enum zram_pageflags flag)
259 {
260 	meta->table[index].value |= BIT(flag);
261 }
262 
263 static void zram_clear_flag(struct zram_meta *meta, u32 index,
264 			enum zram_pageflags flag)
265 {
266 	meta->table[index].value &= ~BIT(flag);
267 }
268 
269 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
270 {
271 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
272 }
273 
274 static void zram_set_obj_size(struct zram_meta *meta,
275 					u32 index, size_t size)
276 {
277 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
278 
279 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
280 }
281 
282 static inline int is_partial_io(struct bio_vec *bvec)
283 {
284 	return bvec->bv_len != PAGE_SIZE;
285 }
286 
287 /*
288  * Check if request is within bounds and aligned on zram logical blocks.
289  */
290 static inline int valid_io_request(struct zram *zram, struct bio *bio)
291 {
292 	u64 start, end, bound;
293 
294 	/* unaligned request */
295 	if (unlikely(bio->bi_iter.bi_sector &
296 		     (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
297 		return 0;
298 	if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
299 		return 0;
300 
301 	start = bio->bi_iter.bi_sector;
302 	end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
303 	bound = zram->disksize >> SECTOR_SHIFT;
304 	/* out of range range */
305 	if (unlikely(start >= bound || end > bound || start > end))
306 		return 0;
307 
308 	/* I/O request is valid */
309 	return 1;
310 }
311 
312 static void zram_meta_free(struct zram_meta *meta)
313 {
314 	zs_destroy_pool(meta->mem_pool);
315 	vfree(meta->table);
316 	kfree(meta);
317 }
318 
319 static struct zram_meta *zram_meta_alloc(u64 disksize)
320 {
321 	size_t num_pages;
322 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
323 	if (!meta)
324 		goto out;
325 
326 	num_pages = disksize >> PAGE_SHIFT;
327 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
328 	if (!meta->table) {
329 		pr_err("Error allocating zram address table\n");
330 		goto free_meta;
331 	}
332 
333 	meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
334 	if (!meta->mem_pool) {
335 		pr_err("Error creating memory pool\n");
336 		goto free_table;
337 	}
338 
339 	return meta;
340 
341 free_table:
342 	vfree(meta->table);
343 free_meta:
344 	kfree(meta);
345 	meta = NULL;
346 out:
347 	return meta;
348 }
349 
350 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
351 {
352 	if (*offset + bvec->bv_len >= PAGE_SIZE)
353 		(*index)++;
354 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
355 }
356 
357 static int page_zero_filled(void *ptr)
358 {
359 	unsigned int pos;
360 	unsigned long *page;
361 
362 	page = (unsigned long *)ptr;
363 
364 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
365 		if (page[pos])
366 			return 0;
367 	}
368 
369 	return 1;
370 }
371 
372 static void handle_zero_page(struct bio_vec *bvec)
373 {
374 	struct page *page = bvec->bv_page;
375 	void *user_mem;
376 
377 	user_mem = kmap_atomic(page);
378 	if (is_partial_io(bvec))
379 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
380 	else
381 		clear_page(user_mem);
382 	kunmap_atomic(user_mem);
383 
384 	flush_dcache_page(page);
385 }
386 
387 
388 /*
389  * To protect concurrent access to the same index entry,
390  * caller should hold this table index entry's bit_spinlock to
391  * indicate this index entry is accessing.
392  */
393 static void zram_free_page(struct zram *zram, size_t index)
394 {
395 	struct zram_meta *meta = zram->meta;
396 	unsigned long handle = meta->table[index].handle;
397 
398 	if (unlikely(!handle)) {
399 		/*
400 		 * No memory is allocated for zero filled pages.
401 		 * Simply clear zero page flag.
402 		 */
403 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
404 			zram_clear_flag(meta, index, ZRAM_ZERO);
405 			atomic64_dec(&zram->stats.zero_pages);
406 		}
407 		return;
408 	}
409 
410 	zs_free(meta->mem_pool, handle);
411 
412 	atomic64_sub(zram_get_obj_size(meta, index),
413 			&zram->stats.compr_data_size);
414 	atomic64_dec(&zram->stats.pages_stored);
415 
416 	meta->table[index].handle = 0;
417 	zram_set_obj_size(meta, index, 0);
418 }
419 
420 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
421 {
422 	int ret = 0;
423 	unsigned char *cmem;
424 	struct zram_meta *meta = zram->meta;
425 	unsigned long handle;
426 	size_t size;
427 
428 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
429 	handle = meta->table[index].handle;
430 	size = zram_get_obj_size(meta, index);
431 
432 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
433 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
434 		clear_page(mem);
435 		return 0;
436 	}
437 
438 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
439 	if (size == PAGE_SIZE)
440 		copy_page(mem, cmem);
441 	else
442 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
443 	zs_unmap_object(meta->mem_pool, handle);
444 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
445 
446 	/* Should NEVER happen. Return bio error if it does. */
447 	if (unlikely(ret)) {
448 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
449 		return ret;
450 	}
451 
452 	return 0;
453 }
454 
455 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
456 			  u32 index, int offset, struct bio *bio)
457 {
458 	int ret;
459 	struct page *page;
460 	unsigned char *user_mem, *uncmem = NULL;
461 	struct zram_meta *meta = zram->meta;
462 	page = bvec->bv_page;
463 
464 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
465 	if (unlikely(!meta->table[index].handle) ||
466 			zram_test_flag(meta, index, ZRAM_ZERO)) {
467 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
468 		handle_zero_page(bvec);
469 		return 0;
470 	}
471 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
472 
473 	if (is_partial_io(bvec))
474 		/* Use  a temporary buffer to decompress the page */
475 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
476 
477 	user_mem = kmap_atomic(page);
478 	if (!is_partial_io(bvec))
479 		uncmem = user_mem;
480 
481 	if (!uncmem) {
482 		pr_info("Unable to allocate temp memory\n");
483 		ret = -ENOMEM;
484 		goto out_cleanup;
485 	}
486 
487 	ret = zram_decompress_page(zram, uncmem, index);
488 	/* Should NEVER happen. Return bio error if it does. */
489 	if (unlikely(ret))
490 		goto out_cleanup;
491 
492 	if (is_partial_io(bvec))
493 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
494 				bvec->bv_len);
495 
496 	flush_dcache_page(page);
497 	ret = 0;
498 out_cleanup:
499 	kunmap_atomic(user_mem);
500 	if (is_partial_io(bvec))
501 		kfree(uncmem);
502 	return ret;
503 }
504 
505 static inline void update_used_max(struct zram *zram,
506 					const unsigned long pages)
507 {
508 	int old_max, cur_max;
509 
510 	old_max = atomic_long_read(&zram->stats.max_used_pages);
511 
512 	do {
513 		cur_max = old_max;
514 		if (pages > cur_max)
515 			old_max = atomic_long_cmpxchg(
516 				&zram->stats.max_used_pages, cur_max, pages);
517 	} while (old_max != cur_max);
518 }
519 
520 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
521 			   int offset)
522 {
523 	int ret = 0;
524 	size_t clen;
525 	unsigned long handle;
526 	struct page *page;
527 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
528 	struct zram_meta *meta = zram->meta;
529 	struct zcomp_strm *zstrm;
530 	bool locked = false;
531 	unsigned long alloced_pages;
532 
533 	page = bvec->bv_page;
534 	if (is_partial_io(bvec)) {
535 		/*
536 		 * This is a partial IO. We need to read the full page
537 		 * before to write the changes.
538 		 */
539 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
540 		if (!uncmem) {
541 			ret = -ENOMEM;
542 			goto out;
543 		}
544 		ret = zram_decompress_page(zram, uncmem, index);
545 		if (ret)
546 			goto out;
547 	}
548 
549 	zstrm = zcomp_strm_find(zram->comp);
550 	locked = true;
551 	user_mem = kmap_atomic(page);
552 
553 	if (is_partial_io(bvec)) {
554 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
555 		       bvec->bv_len);
556 		kunmap_atomic(user_mem);
557 		user_mem = NULL;
558 	} else {
559 		uncmem = user_mem;
560 	}
561 
562 	if (page_zero_filled(uncmem)) {
563 		if (user_mem)
564 			kunmap_atomic(user_mem);
565 		/* Free memory associated with this sector now. */
566 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
567 		zram_free_page(zram, index);
568 		zram_set_flag(meta, index, ZRAM_ZERO);
569 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
570 
571 		atomic64_inc(&zram->stats.zero_pages);
572 		ret = 0;
573 		goto out;
574 	}
575 
576 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
577 	if (!is_partial_io(bvec)) {
578 		kunmap_atomic(user_mem);
579 		user_mem = NULL;
580 		uncmem = NULL;
581 	}
582 
583 	if (unlikely(ret)) {
584 		pr_err("Compression failed! err=%d\n", ret);
585 		goto out;
586 	}
587 	src = zstrm->buffer;
588 	if (unlikely(clen > max_zpage_size)) {
589 		clen = PAGE_SIZE;
590 		if (is_partial_io(bvec))
591 			src = uncmem;
592 	}
593 
594 	handle = zs_malloc(meta->mem_pool, clen);
595 	if (!handle) {
596 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
597 			index, clen);
598 		ret = -ENOMEM;
599 		goto out;
600 	}
601 
602 	alloced_pages = zs_get_total_pages(meta->mem_pool);
603 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
604 		zs_free(meta->mem_pool, handle);
605 		ret = -ENOMEM;
606 		goto out;
607 	}
608 
609 	update_used_max(zram, alloced_pages);
610 
611 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
612 
613 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
614 		src = kmap_atomic(page);
615 		copy_page(cmem, src);
616 		kunmap_atomic(src);
617 	} else {
618 		memcpy(cmem, src, clen);
619 	}
620 
621 	zcomp_strm_release(zram->comp, zstrm);
622 	locked = false;
623 	zs_unmap_object(meta->mem_pool, handle);
624 
625 	/*
626 	 * Free memory associated with this sector
627 	 * before overwriting unused sectors.
628 	 */
629 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
630 	zram_free_page(zram, index);
631 
632 	meta->table[index].handle = handle;
633 	zram_set_obj_size(meta, index, clen);
634 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
635 
636 	/* Update stats */
637 	atomic64_add(clen, &zram->stats.compr_data_size);
638 	atomic64_inc(&zram->stats.pages_stored);
639 out:
640 	if (locked)
641 		zcomp_strm_release(zram->comp, zstrm);
642 	if (is_partial_io(bvec))
643 		kfree(uncmem);
644 	return ret;
645 }
646 
647 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
648 			int offset, struct bio *bio)
649 {
650 	int ret;
651 	int rw = bio_data_dir(bio);
652 
653 	if (rw == READ) {
654 		atomic64_inc(&zram->stats.num_reads);
655 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
656 	} else {
657 		atomic64_inc(&zram->stats.num_writes);
658 		ret = zram_bvec_write(zram, bvec, index, offset);
659 	}
660 
661 	if (unlikely(ret)) {
662 		if (rw == READ)
663 			atomic64_inc(&zram->stats.failed_reads);
664 		else
665 			atomic64_inc(&zram->stats.failed_writes);
666 	}
667 
668 	return ret;
669 }
670 
671 /*
672  * zram_bio_discard - handler on discard request
673  * @index: physical block index in PAGE_SIZE units
674  * @offset: byte offset within physical block
675  */
676 static void zram_bio_discard(struct zram *zram, u32 index,
677 			     int offset, struct bio *bio)
678 {
679 	size_t n = bio->bi_iter.bi_size;
680 	struct zram_meta *meta = zram->meta;
681 
682 	/*
683 	 * zram manages data in physical block size units. Because logical block
684 	 * size isn't identical with physical block size on some arch, we
685 	 * could get a discard request pointing to a specific offset within a
686 	 * certain physical block.  Although we can handle this request by
687 	 * reading that physiclal block and decompressing and partially zeroing
688 	 * and re-compressing and then re-storing it, this isn't reasonable
689 	 * because our intent with a discard request is to save memory.  So
690 	 * skipping this logical block is appropriate here.
691 	 */
692 	if (offset) {
693 		if (n <= (PAGE_SIZE - offset))
694 			return;
695 
696 		n -= (PAGE_SIZE - offset);
697 		index++;
698 	}
699 
700 	while (n >= PAGE_SIZE) {
701 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
702 		zram_free_page(zram, index);
703 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
704 		atomic64_inc(&zram->stats.notify_free);
705 		index++;
706 		n -= PAGE_SIZE;
707 	}
708 }
709 
710 static void zram_reset_device(struct zram *zram, bool reset_capacity)
711 {
712 	size_t index;
713 	struct zram_meta *meta;
714 
715 	down_write(&zram->init_lock);
716 
717 	zram->limit_pages = 0;
718 
719 	if (!init_done(zram)) {
720 		up_write(&zram->init_lock);
721 		return;
722 	}
723 
724 	meta = zram->meta;
725 	/* Free all pages that are still in this zram device */
726 	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
727 		unsigned long handle = meta->table[index].handle;
728 		if (!handle)
729 			continue;
730 
731 		zs_free(meta->mem_pool, handle);
732 	}
733 
734 	zcomp_destroy(zram->comp);
735 	zram->max_comp_streams = 1;
736 
737 	zram_meta_free(zram->meta);
738 	zram->meta = NULL;
739 	/* Reset stats */
740 	memset(&zram->stats, 0, sizeof(zram->stats));
741 
742 	zram->disksize = 0;
743 	if (reset_capacity)
744 		set_capacity(zram->disk, 0);
745 
746 	up_write(&zram->init_lock);
747 
748 	/*
749 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
750 	 * It's okay because disk's capacity is protected by init_lock
751 	 * so that revalidate_disk always sees up-to-date capacity.
752 	 */
753 	if (reset_capacity)
754 		revalidate_disk(zram->disk);
755 }
756 
757 static ssize_t disksize_store(struct device *dev,
758 		struct device_attribute *attr, const char *buf, size_t len)
759 {
760 	u64 disksize;
761 	struct zcomp *comp;
762 	struct zram_meta *meta;
763 	struct zram *zram = dev_to_zram(dev);
764 	int err;
765 
766 	disksize = memparse(buf, NULL);
767 	if (!disksize)
768 		return -EINVAL;
769 
770 	disksize = PAGE_ALIGN(disksize);
771 	meta = zram_meta_alloc(disksize);
772 	if (!meta)
773 		return -ENOMEM;
774 
775 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
776 	if (IS_ERR(comp)) {
777 		pr_info("Cannot initialise %s compressing backend\n",
778 				zram->compressor);
779 		err = PTR_ERR(comp);
780 		goto out_free_meta;
781 	}
782 
783 	down_write(&zram->init_lock);
784 	if (init_done(zram)) {
785 		pr_info("Cannot change disksize for initialized device\n");
786 		err = -EBUSY;
787 		goto out_destroy_comp;
788 	}
789 
790 	zram->meta = meta;
791 	zram->comp = comp;
792 	zram->disksize = disksize;
793 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
794 	up_write(&zram->init_lock);
795 
796 	/*
797 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
798 	 * It's okay because disk's capacity is protected by init_lock
799 	 * so that revalidate_disk always sees up-to-date capacity.
800 	 */
801 	revalidate_disk(zram->disk);
802 
803 	return len;
804 
805 out_destroy_comp:
806 	up_write(&zram->init_lock);
807 	zcomp_destroy(comp);
808 out_free_meta:
809 	zram_meta_free(meta);
810 	return err;
811 }
812 
813 static ssize_t reset_store(struct device *dev,
814 		struct device_attribute *attr, const char *buf, size_t len)
815 {
816 	int ret;
817 	unsigned short do_reset;
818 	struct zram *zram;
819 	struct block_device *bdev;
820 
821 	zram = dev_to_zram(dev);
822 	bdev = bdget_disk(zram->disk, 0);
823 
824 	if (!bdev)
825 		return -ENOMEM;
826 
827 	/* Do not reset an active device! */
828 	if (bdev->bd_holders) {
829 		ret = -EBUSY;
830 		goto out;
831 	}
832 
833 	ret = kstrtou16(buf, 10, &do_reset);
834 	if (ret)
835 		goto out;
836 
837 	if (!do_reset) {
838 		ret = -EINVAL;
839 		goto out;
840 	}
841 
842 	/* Make sure all pending I/O is finished */
843 	fsync_bdev(bdev);
844 	bdput(bdev);
845 
846 	zram_reset_device(zram, true);
847 	return len;
848 
849 out:
850 	bdput(bdev);
851 	return ret;
852 }
853 
854 static void __zram_make_request(struct zram *zram, struct bio *bio)
855 {
856 	int offset;
857 	u32 index;
858 	struct bio_vec bvec;
859 	struct bvec_iter iter;
860 
861 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
862 	offset = (bio->bi_iter.bi_sector &
863 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
864 
865 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
866 		zram_bio_discard(zram, index, offset, bio);
867 		bio_endio(bio, 0);
868 		return;
869 	}
870 
871 	bio_for_each_segment(bvec, bio, iter) {
872 		int max_transfer_size = PAGE_SIZE - offset;
873 
874 		if (bvec.bv_len > max_transfer_size) {
875 			/*
876 			 * zram_bvec_rw() can only make operation on a single
877 			 * zram page. Split the bio vector.
878 			 */
879 			struct bio_vec bv;
880 
881 			bv.bv_page = bvec.bv_page;
882 			bv.bv_len = max_transfer_size;
883 			bv.bv_offset = bvec.bv_offset;
884 
885 			if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
886 				goto out;
887 
888 			bv.bv_len = bvec.bv_len - max_transfer_size;
889 			bv.bv_offset += max_transfer_size;
890 			if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
891 				goto out;
892 		} else
893 			if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
894 				goto out;
895 
896 		update_position(&index, &offset, &bvec);
897 	}
898 
899 	set_bit(BIO_UPTODATE, &bio->bi_flags);
900 	bio_endio(bio, 0);
901 	return;
902 
903 out:
904 	bio_io_error(bio);
905 }
906 
907 /*
908  * Handler function for all zram I/O requests.
909  */
910 static void zram_make_request(struct request_queue *queue, struct bio *bio)
911 {
912 	struct zram *zram = queue->queuedata;
913 
914 	down_read(&zram->init_lock);
915 	if (unlikely(!init_done(zram)))
916 		goto error;
917 
918 	if (!valid_io_request(zram, bio)) {
919 		atomic64_inc(&zram->stats.invalid_io);
920 		goto error;
921 	}
922 
923 	__zram_make_request(zram, bio);
924 	up_read(&zram->init_lock);
925 
926 	return;
927 
928 error:
929 	up_read(&zram->init_lock);
930 	bio_io_error(bio);
931 }
932 
933 static void zram_slot_free_notify(struct block_device *bdev,
934 				unsigned long index)
935 {
936 	struct zram *zram;
937 	struct zram_meta *meta;
938 
939 	zram = bdev->bd_disk->private_data;
940 	meta = zram->meta;
941 
942 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
943 	zram_free_page(zram, index);
944 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
945 	atomic64_inc(&zram->stats.notify_free);
946 }
947 
948 static const struct block_device_operations zram_devops = {
949 	.swap_slot_free_notify = zram_slot_free_notify,
950 	.owner = THIS_MODULE
951 };
952 
953 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
954 		disksize_show, disksize_store);
955 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
956 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
957 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
958 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
959 static DEVICE_ATTR(mem_limit, S_IRUGO | S_IWUSR, mem_limit_show,
960 		mem_limit_store);
961 static DEVICE_ATTR(mem_used_max, S_IRUGO | S_IWUSR, mem_used_max_show,
962 		mem_used_max_store);
963 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
964 		max_comp_streams_show, max_comp_streams_store);
965 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
966 		comp_algorithm_show, comp_algorithm_store);
967 
968 ZRAM_ATTR_RO(num_reads);
969 ZRAM_ATTR_RO(num_writes);
970 ZRAM_ATTR_RO(failed_reads);
971 ZRAM_ATTR_RO(failed_writes);
972 ZRAM_ATTR_RO(invalid_io);
973 ZRAM_ATTR_RO(notify_free);
974 ZRAM_ATTR_RO(zero_pages);
975 ZRAM_ATTR_RO(compr_data_size);
976 
977 static struct attribute *zram_disk_attrs[] = {
978 	&dev_attr_disksize.attr,
979 	&dev_attr_initstate.attr,
980 	&dev_attr_reset.attr,
981 	&dev_attr_num_reads.attr,
982 	&dev_attr_num_writes.attr,
983 	&dev_attr_failed_reads.attr,
984 	&dev_attr_failed_writes.attr,
985 	&dev_attr_invalid_io.attr,
986 	&dev_attr_notify_free.attr,
987 	&dev_attr_zero_pages.attr,
988 	&dev_attr_orig_data_size.attr,
989 	&dev_attr_compr_data_size.attr,
990 	&dev_attr_mem_used_total.attr,
991 	&dev_attr_mem_limit.attr,
992 	&dev_attr_mem_used_max.attr,
993 	&dev_attr_max_comp_streams.attr,
994 	&dev_attr_comp_algorithm.attr,
995 	NULL,
996 };
997 
998 static struct attribute_group zram_disk_attr_group = {
999 	.attrs = zram_disk_attrs,
1000 };
1001 
1002 static int create_device(struct zram *zram, int device_id)
1003 {
1004 	int ret = -ENOMEM;
1005 
1006 	init_rwsem(&zram->init_lock);
1007 
1008 	zram->queue = blk_alloc_queue(GFP_KERNEL);
1009 	if (!zram->queue) {
1010 		pr_err("Error allocating disk queue for device %d\n",
1011 			device_id);
1012 		goto out;
1013 	}
1014 
1015 	blk_queue_make_request(zram->queue, zram_make_request);
1016 	zram->queue->queuedata = zram;
1017 
1018 	 /* gendisk structure */
1019 	zram->disk = alloc_disk(1);
1020 	if (!zram->disk) {
1021 		pr_warn("Error allocating disk structure for device %d\n",
1022 			device_id);
1023 		goto out_free_queue;
1024 	}
1025 
1026 	zram->disk->major = zram_major;
1027 	zram->disk->first_minor = device_id;
1028 	zram->disk->fops = &zram_devops;
1029 	zram->disk->queue = zram->queue;
1030 	zram->disk->private_data = zram;
1031 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1032 
1033 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1034 	set_capacity(zram->disk, 0);
1035 	/* zram devices sort of resembles non-rotational disks */
1036 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1037 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1038 	/*
1039 	 * To ensure that we always get PAGE_SIZE aligned
1040 	 * and n*PAGE_SIZED sized I/O requests.
1041 	 */
1042 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1043 	blk_queue_logical_block_size(zram->disk->queue,
1044 					ZRAM_LOGICAL_BLOCK_SIZE);
1045 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1046 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1047 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1048 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1049 	/*
1050 	 * zram_bio_discard() will clear all logical blocks if logical block
1051 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1052 	 * different, we will skip discarding some parts of logical blocks in
1053 	 * the part of the request range which isn't aligned to physical block
1054 	 * size.  So we can't ensure that all discarded logical blocks are
1055 	 * zeroed.
1056 	 */
1057 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1058 		zram->disk->queue->limits.discard_zeroes_data = 1;
1059 	else
1060 		zram->disk->queue->limits.discard_zeroes_data = 0;
1061 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1062 
1063 	add_disk(zram->disk);
1064 
1065 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1066 				&zram_disk_attr_group);
1067 	if (ret < 0) {
1068 		pr_warn("Error creating sysfs group");
1069 		goto out_free_disk;
1070 	}
1071 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1072 	zram->meta = NULL;
1073 	zram->max_comp_streams = 1;
1074 	return 0;
1075 
1076 out_free_disk:
1077 	del_gendisk(zram->disk);
1078 	put_disk(zram->disk);
1079 out_free_queue:
1080 	blk_cleanup_queue(zram->queue);
1081 out:
1082 	return ret;
1083 }
1084 
1085 static void destroy_device(struct zram *zram)
1086 {
1087 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1088 			&zram_disk_attr_group);
1089 
1090 	del_gendisk(zram->disk);
1091 	put_disk(zram->disk);
1092 
1093 	blk_cleanup_queue(zram->queue);
1094 }
1095 
1096 static int __init zram_init(void)
1097 {
1098 	int ret, dev_id;
1099 
1100 	if (num_devices > max_num_devices) {
1101 		pr_warn("Invalid value for num_devices: %u\n",
1102 				num_devices);
1103 		ret = -EINVAL;
1104 		goto out;
1105 	}
1106 
1107 	zram_major = register_blkdev(0, "zram");
1108 	if (zram_major <= 0) {
1109 		pr_warn("Unable to get major number\n");
1110 		ret = -EBUSY;
1111 		goto out;
1112 	}
1113 
1114 	/* Allocate the device array and initialize each one */
1115 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1116 	if (!zram_devices) {
1117 		ret = -ENOMEM;
1118 		goto unregister;
1119 	}
1120 
1121 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
1122 		ret = create_device(&zram_devices[dev_id], dev_id);
1123 		if (ret)
1124 			goto free_devices;
1125 	}
1126 
1127 	pr_info("Created %u device(s) ...\n", num_devices);
1128 
1129 	return 0;
1130 
1131 free_devices:
1132 	while (dev_id)
1133 		destroy_device(&zram_devices[--dev_id]);
1134 	kfree(zram_devices);
1135 unregister:
1136 	unregister_blkdev(zram_major, "zram");
1137 out:
1138 	return ret;
1139 }
1140 
1141 static void __exit zram_exit(void)
1142 {
1143 	int i;
1144 	struct zram *zram;
1145 
1146 	for (i = 0; i < num_devices; i++) {
1147 		zram = &zram_devices[i];
1148 
1149 		destroy_device(zram);
1150 		/*
1151 		 * Shouldn't access zram->disk after destroy_device
1152 		 * because destroy_device already released zram->disk.
1153 		 */
1154 		zram_reset_device(zram, false);
1155 	}
1156 
1157 	unregister_blkdev(zram_major, "zram");
1158 
1159 	kfree(zram_devices);
1160 	pr_debug("Cleanup done!\n");
1161 }
1162 
1163 module_init(zram_init);
1164 module_exit(zram_exit);
1165 
1166 module_param(num_devices, uint, 0);
1167 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1168 
1169 MODULE_LICENSE("Dual BSD/GPL");
1170 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1171 MODULE_DESCRIPTION("Compressed RAM Block Device");
1172