1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #ifdef CONFIG_ZRAM_DEBUG 19 #define DEBUG 20 #endif 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/bio.h> 25 #include <linux/bitops.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> 28 #include <linux/device.h> 29 #include <linux/genhd.h> 30 #include <linux/highmem.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/vmalloc.h> 34 #include <linux/err.h> 35 36 #include "zram_drv.h" 37 38 /* Globals */ 39 static int zram_major; 40 static struct zram *zram_devices; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 #define ZRAM_ATTR_RO(name) \ 47 static ssize_t zram_attr_##name##_show(struct device *d, \ 48 struct device_attribute *attr, char *b) \ 49 { \ 50 struct zram *zram = dev_to_zram(d); \ 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 52 (u64)atomic64_read(&zram->stats.name)); \ 53 } \ 54 static struct device_attribute dev_attr_##name = \ 55 __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL); 56 57 static inline int init_done(struct zram *zram) 58 { 59 return zram->meta != NULL; 60 } 61 62 static inline struct zram *dev_to_zram(struct device *dev) 63 { 64 return (struct zram *)dev_to_disk(dev)->private_data; 65 } 66 67 static ssize_t disksize_show(struct device *dev, 68 struct device_attribute *attr, char *buf) 69 { 70 struct zram *zram = dev_to_zram(dev); 71 72 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 73 } 74 75 static ssize_t initstate_show(struct device *dev, 76 struct device_attribute *attr, char *buf) 77 { 78 u32 val; 79 struct zram *zram = dev_to_zram(dev); 80 81 down_read(&zram->init_lock); 82 val = init_done(zram); 83 up_read(&zram->init_lock); 84 85 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 86 } 87 88 static ssize_t orig_data_size_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct zram *zram = dev_to_zram(dev); 92 93 return scnprintf(buf, PAGE_SIZE, "%llu\n", 94 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 95 } 96 97 static ssize_t mem_used_total_show(struct device *dev, 98 struct device_attribute *attr, char *buf) 99 { 100 u64 val = 0; 101 struct zram *zram = dev_to_zram(dev); 102 struct zram_meta *meta = zram->meta; 103 104 down_read(&zram->init_lock); 105 if (init_done(zram)) 106 val = zs_get_total_size_bytes(meta->mem_pool); 107 up_read(&zram->init_lock); 108 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 110 } 111 112 static ssize_t max_comp_streams_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 int val; 116 struct zram *zram = dev_to_zram(dev); 117 118 down_read(&zram->init_lock); 119 val = zram->max_comp_streams; 120 up_read(&zram->init_lock); 121 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 123 } 124 125 static ssize_t max_comp_streams_store(struct device *dev, 126 struct device_attribute *attr, const char *buf, size_t len) 127 { 128 int num; 129 struct zram *zram = dev_to_zram(dev); 130 int ret; 131 132 ret = kstrtoint(buf, 0, &num); 133 if (ret < 0) 134 return ret; 135 if (num < 1) 136 return -EINVAL; 137 138 down_write(&zram->init_lock); 139 if (init_done(zram)) { 140 if (!zcomp_set_max_streams(zram->comp, num)) { 141 pr_info("Cannot change max compression streams\n"); 142 ret = -EINVAL; 143 goto out; 144 } 145 } 146 147 zram->max_comp_streams = num; 148 ret = len; 149 out: 150 up_write(&zram->init_lock); 151 return ret; 152 } 153 154 static ssize_t comp_algorithm_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 size_t sz; 158 struct zram *zram = dev_to_zram(dev); 159 160 down_read(&zram->init_lock); 161 sz = zcomp_available_show(zram->compressor, buf); 162 up_read(&zram->init_lock); 163 164 return sz; 165 } 166 167 static ssize_t comp_algorithm_store(struct device *dev, 168 struct device_attribute *attr, const char *buf, size_t len) 169 { 170 struct zram *zram = dev_to_zram(dev); 171 down_write(&zram->init_lock); 172 if (init_done(zram)) { 173 up_write(&zram->init_lock); 174 pr_info("Can't change algorithm for initialized device\n"); 175 return -EBUSY; 176 } 177 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 178 up_write(&zram->init_lock); 179 return len; 180 } 181 182 /* flag operations needs meta->tb_lock */ 183 static int zram_test_flag(struct zram_meta *meta, u32 index, 184 enum zram_pageflags flag) 185 { 186 return meta->table[index].value & BIT(flag); 187 } 188 189 static void zram_set_flag(struct zram_meta *meta, u32 index, 190 enum zram_pageflags flag) 191 { 192 meta->table[index].value |= BIT(flag); 193 } 194 195 static void zram_clear_flag(struct zram_meta *meta, u32 index, 196 enum zram_pageflags flag) 197 { 198 meta->table[index].value &= ~BIT(flag); 199 } 200 201 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 202 { 203 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 204 } 205 206 static void zram_set_obj_size(struct zram_meta *meta, 207 u32 index, size_t size) 208 { 209 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 210 211 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 212 } 213 214 static inline int is_partial_io(struct bio_vec *bvec) 215 { 216 return bvec->bv_len != PAGE_SIZE; 217 } 218 219 /* 220 * Check if request is within bounds and aligned on zram logical blocks. 221 */ 222 static inline int valid_io_request(struct zram *zram, struct bio *bio) 223 { 224 u64 start, end, bound; 225 226 /* unaligned request */ 227 if (unlikely(bio->bi_iter.bi_sector & 228 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 229 return 0; 230 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 231 return 0; 232 233 start = bio->bi_iter.bi_sector; 234 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 235 bound = zram->disksize >> SECTOR_SHIFT; 236 /* out of range range */ 237 if (unlikely(start >= bound || end > bound || start > end)) 238 return 0; 239 240 /* I/O request is valid */ 241 return 1; 242 } 243 244 static void zram_meta_free(struct zram_meta *meta) 245 { 246 zs_destroy_pool(meta->mem_pool); 247 vfree(meta->table); 248 kfree(meta); 249 } 250 251 static struct zram_meta *zram_meta_alloc(u64 disksize) 252 { 253 size_t num_pages; 254 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 255 if (!meta) 256 goto out; 257 258 num_pages = disksize >> PAGE_SHIFT; 259 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 260 if (!meta->table) { 261 pr_err("Error allocating zram address table\n"); 262 goto free_meta; 263 } 264 265 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM); 266 if (!meta->mem_pool) { 267 pr_err("Error creating memory pool\n"); 268 goto free_table; 269 } 270 271 return meta; 272 273 free_table: 274 vfree(meta->table); 275 free_meta: 276 kfree(meta); 277 meta = NULL; 278 out: 279 return meta; 280 } 281 282 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 283 { 284 if (*offset + bvec->bv_len >= PAGE_SIZE) 285 (*index)++; 286 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 287 } 288 289 static int page_zero_filled(void *ptr) 290 { 291 unsigned int pos; 292 unsigned long *page; 293 294 page = (unsigned long *)ptr; 295 296 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 297 if (page[pos]) 298 return 0; 299 } 300 301 return 1; 302 } 303 304 static void handle_zero_page(struct bio_vec *bvec) 305 { 306 struct page *page = bvec->bv_page; 307 void *user_mem; 308 309 user_mem = kmap_atomic(page); 310 if (is_partial_io(bvec)) 311 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 312 else 313 clear_page(user_mem); 314 kunmap_atomic(user_mem); 315 316 flush_dcache_page(page); 317 } 318 319 320 /* 321 * To protect concurrent access to the same index entry, 322 * caller should hold this table index entry's bit_spinlock to 323 * indicate this index entry is accessing. 324 */ 325 static void zram_free_page(struct zram *zram, size_t index) 326 { 327 struct zram_meta *meta = zram->meta; 328 unsigned long handle = meta->table[index].handle; 329 330 if (unlikely(!handle)) { 331 /* 332 * No memory is allocated for zero filled pages. 333 * Simply clear zero page flag. 334 */ 335 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 336 zram_clear_flag(meta, index, ZRAM_ZERO); 337 atomic64_dec(&zram->stats.zero_pages); 338 } 339 return; 340 } 341 342 zs_free(meta->mem_pool, handle); 343 344 atomic64_sub(zram_get_obj_size(meta, index), 345 &zram->stats.compr_data_size); 346 atomic64_dec(&zram->stats.pages_stored); 347 348 meta->table[index].handle = 0; 349 zram_set_obj_size(meta, index, 0); 350 } 351 352 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 353 { 354 int ret = 0; 355 unsigned char *cmem; 356 struct zram_meta *meta = zram->meta; 357 unsigned long handle; 358 size_t size; 359 360 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 361 handle = meta->table[index].handle; 362 size = zram_get_obj_size(meta, index); 363 364 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 365 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 366 clear_page(mem); 367 return 0; 368 } 369 370 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 371 if (size == PAGE_SIZE) 372 copy_page(mem, cmem); 373 else 374 ret = zcomp_decompress(zram->comp, cmem, size, mem); 375 zs_unmap_object(meta->mem_pool, handle); 376 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 377 378 /* Should NEVER happen. Return bio error if it does. */ 379 if (unlikely(ret)) { 380 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 381 atomic64_inc(&zram->stats.failed_reads); 382 return ret; 383 } 384 385 return 0; 386 } 387 388 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 389 u32 index, int offset, struct bio *bio) 390 { 391 int ret; 392 struct page *page; 393 unsigned char *user_mem, *uncmem = NULL; 394 struct zram_meta *meta = zram->meta; 395 page = bvec->bv_page; 396 397 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 398 if (unlikely(!meta->table[index].handle) || 399 zram_test_flag(meta, index, ZRAM_ZERO)) { 400 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 401 handle_zero_page(bvec); 402 return 0; 403 } 404 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 405 406 if (is_partial_io(bvec)) 407 /* Use a temporary buffer to decompress the page */ 408 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 409 410 user_mem = kmap_atomic(page); 411 if (!is_partial_io(bvec)) 412 uncmem = user_mem; 413 414 if (!uncmem) { 415 pr_info("Unable to allocate temp memory\n"); 416 ret = -ENOMEM; 417 goto out_cleanup; 418 } 419 420 ret = zram_decompress_page(zram, uncmem, index); 421 /* Should NEVER happen. Return bio error if it does. */ 422 if (unlikely(ret)) 423 goto out_cleanup; 424 425 if (is_partial_io(bvec)) 426 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 427 bvec->bv_len); 428 429 flush_dcache_page(page); 430 ret = 0; 431 out_cleanup: 432 kunmap_atomic(user_mem); 433 if (is_partial_io(bvec)) 434 kfree(uncmem); 435 return ret; 436 } 437 438 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 439 int offset) 440 { 441 int ret = 0; 442 size_t clen; 443 unsigned long handle; 444 struct page *page; 445 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 446 struct zram_meta *meta = zram->meta; 447 struct zcomp_strm *zstrm; 448 bool locked = false; 449 450 page = bvec->bv_page; 451 if (is_partial_io(bvec)) { 452 /* 453 * This is a partial IO. We need to read the full page 454 * before to write the changes. 455 */ 456 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 457 if (!uncmem) { 458 ret = -ENOMEM; 459 goto out; 460 } 461 ret = zram_decompress_page(zram, uncmem, index); 462 if (ret) 463 goto out; 464 } 465 466 zstrm = zcomp_strm_find(zram->comp); 467 locked = true; 468 user_mem = kmap_atomic(page); 469 470 if (is_partial_io(bvec)) { 471 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 472 bvec->bv_len); 473 kunmap_atomic(user_mem); 474 user_mem = NULL; 475 } else { 476 uncmem = user_mem; 477 } 478 479 if (page_zero_filled(uncmem)) { 480 kunmap_atomic(user_mem); 481 /* Free memory associated with this sector now. */ 482 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 483 zram_free_page(zram, index); 484 zram_set_flag(meta, index, ZRAM_ZERO); 485 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 486 487 atomic64_inc(&zram->stats.zero_pages); 488 ret = 0; 489 goto out; 490 } 491 492 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 493 if (!is_partial_io(bvec)) { 494 kunmap_atomic(user_mem); 495 user_mem = NULL; 496 uncmem = NULL; 497 } 498 499 if (unlikely(ret)) { 500 pr_err("Compression failed! err=%d\n", ret); 501 goto out; 502 } 503 src = zstrm->buffer; 504 if (unlikely(clen > max_zpage_size)) { 505 clen = PAGE_SIZE; 506 if (is_partial_io(bvec)) 507 src = uncmem; 508 } 509 510 handle = zs_malloc(meta->mem_pool, clen); 511 if (!handle) { 512 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 513 index, clen); 514 ret = -ENOMEM; 515 goto out; 516 } 517 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 518 519 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 520 src = kmap_atomic(page); 521 copy_page(cmem, src); 522 kunmap_atomic(src); 523 } else { 524 memcpy(cmem, src, clen); 525 } 526 527 zcomp_strm_release(zram->comp, zstrm); 528 locked = false; 529 zs_unmap_object(meta->mem_pool, handle); 530 531 /* 532 * Free memory associated with this sector 533 * before overwriting unused sectors. 534 */ 535 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 536 zram_free_page(zram, index); 537 538 meta->table[index].handle = handle; 539 zram_set_obj_size(meta, index, clen); 540 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 541 542 /* Update stats */ 543 atomic64_add(clen, &zram->stats.compr_data_size); 544 atomic64_inc(&zram->stats.pages_stored); 545 out: 546 if (locked) 547 zcomp_strm_release(zram->comp, zstrm); 548 if (is_partial_io(bvec)) 549 kfree(uncmem); 550 if (ret) 551 atomic64_inc(&zram->stats.failed_writes); 552 return ret; 553 } 554 555 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 556 int offset, struct bio *bio) 557 { 558 int ret; 559 int rw = bio_data_dir(bio); 560 561 if (rw == READ) { 562 atomic64_inc(&zram->stats.num_reads); 563 ret = zram_bvec_read(zram, bvec, index, offset, bio); 564 } else { 565 atomic64_inc(&zram->stats.num_writes); 566 ret = zram_bvec_write(zram, bvec, index, offset); 567 } 568 569 return ret; 570 } 571 572 /* 573 * zram_bio_discard - handler on discard request 574 * @index: physical block index in PAGE_SIZE units 575 * @offset: byte offset within physical block 576 */ 577 static void zram_bio_discard(struct zram *zram, u32 index, 578 int offset, struct bio *bio) 579 { 580 size_t n = bio->bi_iter.bi_size; 581 struct zram_meta *meta = zram->meta; 582 583 /* 584 * zram manages data in physical block size units. Because logical block 585 * size isn't identical with physical block size on some arch, we 586 * could get a discard request pointing to a specific offset within a 587 * certain physical block. Although we can handle this request by 588 * reading that physiclal block and decompressing and partially zeroing 589 * and re-compressing and then re-storing it, this isn't reasonable 590 * because our intent with a discard request is to save memory. So 591 * skipping this logical block is appropriate here. 592 */ 593 if (offset) { 594 if (n <= (PAGE_SIZE - offset)) 595 return; 596 597 n -= (PAGE_SIZE - offset); 598 index++; 599 } 600 601 while (n >= PAGE_SIZE) { 602 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 603 zram_free_page(zram, index); 604 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 605 index++; 606 n -= PAGE_SIZE; 607 } 608 } 609 610 static void zram_reset_device(struct zram *zram, bool reset_capacity) 611 { 612 size_t index; 613 struct zram_meta *meta; 614 615 down_write(&zram->init_lock); 616 if (!init_done(zram)) { 617 up_write(&zram->init_lock); 618 return; 619 } 620 621 meta = zram->meta; 622 /* Free all pages that are still in this zram device */ 623 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) { 624 unsigned long handle = meta->table[index].handle; 625 if (!handle) 626 continue; 627 628 zs_free(meta->mem_pool, handle); 629 } 630 631 zcomp_destroy(zram->comp); 632 zram->max_comp_streams = 1; 633 634 zram_meta_free(zram->meta); 635 zram->meta = NULL; 636 /* Reset stats */ 637 memset(&zram->stats, 0, sizeof(zram->stats)); 638 639 zram->disksize = 0; 640 if (reset_capacity) 641 set_capacity(zram->disk, 0); 642 643 up_write(&zram->init_lock); 644 645 /* 646 * Revalidate disk out of the init_lock to avoid lockdep splat. 647 * It's okay because disk's capacity is protected by init_lock 648 * so that revalidate_disk always sees up-to-date capacity. 649 */ 650 if (reset_capacity) 651 revalidate_disk(zram->disk); 652 } 653 654 static ssize_t disksize_store(struct device *dev, 655 struct device_attribute *attr, const char *buf, size_t len) 656 { 657 u64 disksize; 658 struct zcomp *comp; 659 struct zram_meta *meta; 660 struct zram *zram = dev_to_zram(dev); 661 int err; 662 663 disksize = memparse(buf, NULL); 664 if (!disksize) 665 return -EINVAL; 666 667 disksize = PAGE_ALIGN(disksize); 668 meta = zram_meta_alloc(disksize); 669 if (!meta) 670 return -ENOMEM; 671 672 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 673 if (IS_ERR(comp)) { 674 pr_info("Cannot initialise %s compressing backend\n", 675 zram->compressor); 676 err = PTR_ERR(comp); 677 goto out_free_meta; 678 } 679 680 down_write(&zram->init_lock); 681 if (init_done(zram)) { 682 pr_info("Cannot change disksize for initialized device\n"); 683 err = -EBUSY; 684 goto out_destroy_comp; 685 } 686 687 zram->meta = meta; 688 zram->comp = comp; 689 zram->disksize = disksize; 690 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 691 up_write(&zram->init_lock); 692 693 /* 694 * Revalidate disk out of the init_lock to avoid lockdep splat. 695 * It's okay because disk's capacity is protected by init_lock 696 * so that revalidate_disk always sees up-to-date capacity. 697 */ 698 revalidate_disk(zram->disk); 699 700 return len; 701 702 out_destroy_comp: 703 up_write(&zram->init_lock); 704 zcomp_destroy(comp); 705 out_free_meta: 706 zram_meta_free(meta); 707 return err; 708 } 709 710 static ssize_t reset_store(struct device *dev, 711 struct device_attribute *attr, const char *buf, size_t len) 712 { 713 int ret; 714 unsigned short do_reset; 715 struct zram *zram; 716 struct block_device *bdev; 717 718 zram = dev_to_zram(dev); 719 bdev = bdget_disk(zram->disk, 0); 720 721 if (!bdev) 722 return -ENOMEM; 723 724 /* Do not reset an active device! */ 725 if (bdev->bd_holders) { 726 ret = -EBUSY; 727 goto out; 728 } 729 730 ret = kstrtou16(buf, 10, &do_reset); 731 if (ret) 732 goto out; 733 734 if (!do_reset) { 735 ret = -EINVAL; 736 goto out; 737 } 738 739 /* Make sure all pending I/O is finished */ 740 fsync_bdev(bdev); 741 bdput(bdev); 742 743 zram_reset_device(zram, true); 744 return len; 745 746 out: 747 bdput(bdev); 748 return ret; 749 } 750 751 static void __zram_make_request(struct zram *zram, struct bio *bio) 752 { 753 int offset; 754 u32 index; 755 struct bio_vec bvec; 756 struct bvec_iter iter; 757 758 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 759 offset = (bio->bi_iter.bi_sector & 760 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 761 762 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 763 zram_bio_discard(zram, index, offset, bio); 764 bio_endio(bio, 0); 765 return; 766 } 767 768 bio_for_each_segment(bvec, bio, iter) { 769 int max_transfer_size = PAGE_SIZE - offset; 770 771 if (bvec.bv_len > max_transfer_size) { 772 /* 773 * zram_bvec_rw() can only make operation on a single 774 * zram page. Split the bio vector. 775 */ 776 struct bio_vec bv; 777 778 bv.bv_page = bvec.bv_page; 779 bv.bv_len = max_transfer_size; 780 bv.bv_offset = bvec.bv_offset; 781 782 if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0) 783 goto out; 784 785 bv.bv_len = bvec.bv_len - max_transfer_size; 786 bv.bv_offset += max_transfer_size; 787 if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0) 788 goto out; 789 } else 790 if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0) 791 goto out; 792 793 update_position(&index, &offset, &bvec); 794 } 795 796 set_bit(BIO_UPTODATE, &bio->bi_flags); 797 bio_endio(bio, 0); 798 return; 799 800 out: 801 bio_io_error(bio); 802 } 803 804 /* 805 * Handler function for all zram I/O requests. 806 */ 807 static void zram_make_request(struct request_queue *queue, struct bio *bio) 808 { 809 struct zram *zram = queue->queuedata; 810 811 down_read(&zram->init_lock); 812 if (unlikely(!init_done(zram))) 813 goto error; 814 815 if (!valid_io_request(zram, bio)) { 816 atomic64_inc(&zram->stats.invalid_io); 817 goto error; 818 } 819 820 __zram_make_request(zram, bio); 821 up_read(&zram->init_lock); 822 823 return; 824 825 error: 826 up_read(&zram->init_lock); 827 bio_io_error(bio); 828 } 829 830 static void zram_slot_free_notify(struct block_device *bdev, 831 unsigned long index) 832 { 833 struct zram *zram; 834 struct zram_meta *meta; 835 836 zram = bdev->bd_disk->private_data; 837 meta = zram->meta; 838 839 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 840 zram_free_page(zram, index); 841 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 842 atomic64_inc(&zram->stats.notify_free); 843 } 844 845 static const struct block_device_operations zram_devops = { 846 .swap_slot_free_notify = zram_slot_free_notify, 847 .owner = THIS_MODULE 848 }; 849 850 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR, 851 disksize_show, disksize_store); 852 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL); 853 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store); 854 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL); 855 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL); 856 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR, 857 max_comp_streams_show, max_comp_streams_store); 858 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR, 859 comp_algorithm_show, comp_algorithm_store); 860 861 ZRAM_ATTR_RO(num_reads); 862 ZRAM_ATTR_RO(num_writes); 863 ZRAM_ATTR_RO(failed_reads); 864 ZRAM_ATTR_RO(failed_writes); 865 ZRAM_ATTR_RO(invalid_io); 866 ZRAM_ATTR_RO(notify_free); 867 ZRAM_ATTR_RO(zero_pages); 868 ZRAM_ATTR_RO(compr_data_size); 869 870 static struct attribute *zram_disk_attrs[] = { 871 &dev_attr_disksize.attr, 872 &dev_attr_initstate.attr, 873 &dev_attr_reset.attr, 874 &dev_attr_num_reads.attr, 875 &dev_attr_num_writes.attr, 876 &dev_attr_failed_reads.attr, 877 &dev_attr_failed_writes.attr, 878 &dev_attr_invalid_io.attr, 879 &dev_attr_notify_free.attr, 880 &dev_attr_zero_pages.attr, 881 &dev_attr_orig_data_size.attr, 882 &dev_attr_compr_data_size.attr, 883 &dev_attr_mem_used_total.attr, 884 &dev_attr_max_comp_streams.attr, 885 &dev_attr_comp_algorithm.attr, 886 NULL, 887 }; 888 889 static struct attribute_group zram_disk_attr_group = { 890 .attrs = zram_disk_attrs, 891 }; 892 893 static int create_device(struct zram *zram, int device_id) 894 { 895 int ret = -ENOMEM; 896 897 init_rwsem(&zram->init_lock); 898 899 zram->queue = blk_alloc_queue(GFP_KERNEL); 900 if (!zram->queue) { 901 pr_err("Error allocating disk queue for device %d\n", 902 device_id); 903 goto out; 904 } 905 906 blk_queue_make_request(zram->queue, zram_make_request); 907 zram->queue->queuedata = zram; 908 909 /* gendisk structure */ 910 zram->disk = alloc_disk(1); 911 if (!zram->disk) { 912 pr_warn("Error allocating disk structure for device %d\n", 913 device_id); 914 goto out_free_queue; 915 } 916 917 zram->disk->major = zram_major; 918 zram->disk->first_minor = device_id; 919 zram->disk->fops = &zram_devops; 920 zram->disk->queue = zram->queue; 921 zram->disk->private_data = zram; 922 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 923 924 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 925 set_capacity(zram->disk, 0); 926 /* zram devices sort of resembles non-rotational disks */ 927 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 928 /* 929 * To ensure that we always get PAGE_SIZE aligned 930 * and n*PAGE_SIZED sized I/O requests. 931 */ 932 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 933 blk_queue_logical_block_size(zram->disk->queue, 934 ZRAM_LOGICAL_BLOCK_SIZE); 935 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 936 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 937 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 938 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 939 /* 940 * zram_bio_discard() will clear all logical blocks if logical block 941 * size is identical with physical block size(PAGE_SIZE). But if it is 942 * different, we will skip discarding some parts of logical blocks in 943 * the part of the request range which isn't aligned to physical block 944 * size. So we can't ensure that all discarded logical blocks are 945 * zeroed. 946 */ 947 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 948 zram->disk->queue->limits.discard_zeroes_data = 1; 949 else 950 zram->disk->queue->limits.discard_zeroes_data = 0; 951 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 952 953 add_disk(zram->disk); 954 955 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 956 &zram_disk_attr_group); 957 if (ret < 0) { 958 pr_warn("Error creating sysfs group"); 959 goto out_free_disk; 960 } 961 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 962 zram->meta = NULL; 963 zram->max_comp_streams = 1; 964 return 0; 965 966 out_free_disk: 967 del_gendisk(zram->disk); 968 put_disk(zram->disk); 969 out_free_queue: 970 blk_cleanup_queue(zram->queue); 971 out: 972 return ret; 973 } 974 975 static void destroy_device(struct zram *zram) 976 { 977 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 978 &zram_disk_attr_group); 979 980 del_gendisk(zram->disk); 981 put_disk(zram->disk); 982 983 blk_cleanup_queue(zram->queue); 984 } 985 986 static int __init zram_init(void) 987 { 988 int ret, dev_id; 989 990 if (num_devices > max_num_devices) { 991 pr_warn("Invalid value for num_devices: %u\n", 992 num_devices); 993 ret = -EINVAL; 994 goto out; 995 } 996 997 zram_major = register_blkdev(0, "zram"); 998 if (zram_major <= 0) { 999 pr_warn("Unable to get major number\n"); 1000 ret = -EBUSY; 1001 goto out; 1002 } 1003 1004 /* Allocate the device array and initialize each one */ 1005 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL); 1006 if (!zram_devices) { 1007 ret = -ENOMEM; 1008 goto unregister; 1009 } 1010 1011 for (dev_id = 0; dev_id < num_devices; dev_id++) { 1012 ret = create_device(&zram_devices[dev_id], dev_id); 1013 if (ret) 1014 goto free_devices; 1015 } 1016 1017 pr_info("Created %u device(s) ...\n", num_devices); 1018 1019 return 0; 1020 1021 free_devices: 1022 while (dev_id) 1023 destroy_device(&zram_devices[--dev_id]); 1024 kfree(zram_devices); 1025 unregister: 1026 unregister_blkdev(zram_major, "zram"); 1027 out: 1028 return ret; 1029 } 1030 1031 static void __exit zram_exit(void) 1032 { 1033 int i; 1034 struct zram *zram; 1035 1036 for (i = 0; i < num_devices; i++) { 1037 zram = &zram_devices[i]; 1038 1039 destroy_device(zram); 1040 /* 1041 * Shouldn't access zram->disk after destroy_device 1042 * because destroy_device already released zram->disk. 1043 */ 1044 zram_reset_device(zram, false); 1045 } 1046 1047 unregister_blkdev(zram_major, "zram"); 1048 1049 kfree(zram_devices); 1050 pr_debug("Cleanup done!\n"); 1051 } 1052 1053 module_init(zram_init); 1054 module_exit(zram_exit); 1055 1056 module_param(num_devices, uint, 0); 1057 MODULE_PARM_DESC(num_devices, "Number of zram devices"); 1058 1059 MODULE_LICENSE("Dual BSD/GPL"); 1060 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1061 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1062