xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35 
36 #include "zram_drv.h"
37 
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41 
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44 
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47 
48 static void zram_free_page(struct zram *zram, size_t index);
49 
50 static inline bool init_done(struct zram *zram)
51 {
52 	return zram->disksize;
53 }
54 
55 static inline struct zram *dev_to_zram(struct device *dev)
56 {
57 	return (struct zram *)dev_to_disk(dev)->private_data;
58 }
59 
60 static unsigned long zram_get_handle(struct zram *zram, u32 index)
61 {
62 	return zram->table[index].handle;
63 }
64 
65 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66 {
67 	zram->table[index].handle = handle;
68 }
69 
70 /* flag operations require table entry bit_spin_lock() being held */
71 static int zram_test_flag(struct zram *zram, u32 index,
72 			enum zram_pageflags flag)
73 {
74 	return zram->table[index].value & BIT(flag);
75 }
76 
77 static void zram_set_flag(struct zram *zram, u32 index,
78 			enum zram_pageflags flag)
79 {
80 	zram->table[index].value |= BIT(flag);
81 }
82 
83 static void zram_clear_flag(struct zram *zram, u32 index,
84 			enum zram_pageflags flag)
85 {
86 	zram->table[index].value &= ~BIT(flag);
87 }
88 
89 static inline void zram_set_element(struct zram *zram, u32 index,
90 			unsigned long element)
91 {
92 	zram->table[index].element = element;
93 }
94 
95 static unsigned long zram_get_element(struct zram *zram, u32 index)
96 {
97 	return zram->table[index].element;
98 }
99 
100 static size_t zram_get_obj_size(struct zram *zram, u32 index)
101 {
102 	return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
103 }
104 
105 static void zram_set_obj_size(struct zram *zram,
106 					u32 index, size_t size)
107 {
108 	unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
109 
110 	zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
111 }
112 
113 #if PAGE_SIZE != 4096
114 static inline bool is_partial_io(struct bio_vec *bvec)
115 {
116 	return bvec->bv_len != PAGE_SIZE;
117 }
118 #else
119 static inline bool is_partial_io(struct bio_vec *bvec)
120 {
121 	return false;
122 }
123 #endif
124 
125 static void zram_revalidate_disk(struct zram *zram)
126 {
127 	revalidate_disk(zram->disk);
128 	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
129 	zram->disk->queue->backing_dev_info->capabilities |=
130 		BDI_CAP_STABLE_WRITES;
131 }
132 
133 /*
134  * Check if request is within bounds and aligned on zram logical blocks.
135  */
136 static inline bool valid_io_request(struct zram *zram,
137 		sector_t start, unsigned int size)
138 {
139 	u64 end, bound;
140 
141 	/* unaligned request */
142 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
143 		return false;
144 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
145 		return false;
146 
147 	end = start + (size >> SECTOR_SHIFT);
148 	bound = zram->disksize >> SECTOR_SHIFT;
149 	/* out of range range */
150 	if (unlikely(start >= bound || end > bound || start > end))
151 		return false;
152 
153 	/* I/O request is valid */
154 	return true;
155 }
156 
157 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158 {
159 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
160 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161 }
162 
163 static inline void update_used_max(struct zram *zram,
164 					const unsigned long pages)
165 {
166 	unsigned long old_max, cur_max;
167 
168 	old_max = atomic_long_read(&zram->stats.max_used_pages);
169 
170 	do {
171 		cur_max = old_max;
172 		if (pages > cur_max)
173 			old_max = atomic_long_cmpxchg(
174 				&zram->stats.max_used_pages, cur_max, pages);
175 	} while (old_max != cur_max);
176 }
177 
178 static inline void zram_fill_page(char *ptr, unsigned long len,
179 					unsigned long value)
180 {
181 	int i;
182 	unsigned long *page = (unsigned long *)ptr;
183 
184 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
185 
186 	if (likely(value == 0)) {
187 		memset(ptr, 0, len);
188 	} else {
189 		for (i = 0; i < len / sizeof(*page); i++)
190 			page[i] = value;
191 	}
192 }
193 
194 static bool page_same_filled(void *ptr, unsigned long *element)
195 {
196 	unsigned int pos;
197 	unsigned long *page;
198 	unsigned long val;
199 
200 	page = (unsigned long *)ptr;
201 	val = page[0];
202 
203 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
204 		if (val != page[pos])
205 			return false;
206 	}
207 
208 	*element = val;
209 
210 	return true;
211 }
212 
213 static ssize_t initstate_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	u32 val;
217 	struct zram *zram = dev_to_zram(dev);
218 
219 	down_read(&zram->init_lock);
220 	val = init_done(zram);
221 	up_read(&zram->init_lock);
222 
223 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
224 }
225 
226 static ssize_t disksize_show(struct device *dev,
227 		struct device_attribute *attr, char *buf)
228 {
229 	struct zram *zram = dev_to_zram(dev);
230 
231 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
232 }
233 
234 static ssize_t mem_limit_store(struct device *dev,
235 		struct device_attribute *attr, const char *buf, size_t len)
236 {
237 	u64 limit;
238 	char *tmp;
239 	struct zram *zram = dev_to_zram(dev);
240 
241 	limit = memparse(buf, &tmp);
242 	if (buf == tmp) /* no chars parsed, invalid input */
243 		return -EINVAL;
244 
245 	down_write(&zram->init_lock);
246 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
247 	up_write(&zram->init_lock);
248 
249 	return len;
250 }
251 
252 static ssize_t mem_used_max_store(struct device *dev,
253 		struct device_attribute *attr, const char *buf, size_t len)
254 {
255 	int err;
256 	unsigned long val;
257 	struct zram *zram = dev_to_zram(dev);
258 
259 	err = kstrtoul(buf, 10, &val);
260 	if (err || val != 0)
261 		return -EINVAL;
262 
263 	down_read(&zram->init_lock);
264 	if (init_done(zram)) {
265 		atomic_long_set(&zram->stats.max_used_pages,
266 				zs_get_total_pages(zram->mem_pool));
267 	}
268 	up_read(&zram->init_lock);
269 
270 	return len;
271 }
272 
273 /*
274  * We switched to per-cpu streams and this attr is not needed anymore.
275  * However, we will keep it around for some time, because:
276  * a) we may revert per-cpu streams in the future
277  * b) it's visible to user space and we need to follow our 2 years
278  *    retirement rule; but we already have a number of 'soon to be
279  *    altered' attrs, so max_comp_streams need to wait for the next
280  *    layoff cycle.
281  */
282 static ssize_t max_comp_streams_show(struct device *dev,
283 		struct device_attribute *attr, char *buf)
284 {
285 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
286 }
287 
288 static ssize_t max_comp_streams_store(struct device *dev,
289 		struct device_attribute *attr, const char *buf, size_t len)
290 {
291 	return len;
292 }
293 
294 static ssize_t comp_algorithm_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	size_t sz;
298 	struct zram *zram = dev_to_zram(dev);
299 
300 	down_read(&zram->init_lock);
301 	sz = zcomp_available_show(zram->compressor, buf);
302 	up_read(&zram->init_lock);
303 
304 	return sz;
305 }
306 
307 static ssize_t comp_algorithm_store(struct device *dev,
308 		struct device_attribute *attr, const char *buf, size_t len)
309 {
310 	struct zram *zram = dev_to_zram(dev);
311 	char compressor[CRYPTO_MAX_ALG_NAME];
312 	size_t sz;
313 
314 	strlcpy(compressor, buf, sizeof(compressor));
315 	/* ignore trailing newline */
316 	sz = strlen(compressor);
317 	if (sz > 0 && compressor[sz - 1] == '\n')
318 		compressor[sz - 1] = 0x00;
319 
320 	if (!zcomp_available_algorithm(compressor))
321 		return -EINVAL;
322 
323 	down_write(&zram->init_lock);
324 	if (init_done(zram)) {
325 		up_write(&zram->init_lock);
326 		pr_info("Can't change algorithm for initialized device\n");
327 		return -EBUSY;
328 	}
329 
330 	strlcpy(zram->compressor, compressor, sizeof(compressor));
331 	up_write(&zram->init_lock);
332 	return len;
333 }
334 
335 static ssize_t compact_store(struct device *dev,
336 		struct device_attribute *attr, const char *buf, size_t len)
337 {
338 	struct zram *zram = dev_to_zram(dev);
339 
340 	down_read(&zram->init_lock);
341 	if (!init_done(zram)) {
342 		up_read(&zram->init_lock);
343 		return -EINVAL;
344 	}
345 
346 	zs_compact(zram->mem_pool);
347 	up_read(&zram->init_lock);
348 
349 	return len;
350 }
351 
352 static ssize_t io_stat_show(struct device *dev,
353 		struct device_attribute *attr, char *buf)
354 {
355 	struct zram *zram = dev_to_zram(dev);
356 	ssize_t ret;
357 
358 	down_read(&zram->init_lock);
359 	ret = scnprintf(buf, PAGE_SIZE,
360 			"%8llu %8llu %8llu %8llu\n",
361 			(u64)atomic64_read(&zram->stats.failed_reads),
362 			(u64)atomic64_read(&zram->stats.failed_writes),
363 			(u64)atomic64_read(&zram->stats.invalid_io),
364 			(u64)atomic64_read(&zram->stats.notify_free));
365 	up_read(&zram->init_lock);
366 
367 	return ret;
368 }
369 
370 static ssize_t mm_stat_show(struct device *dev,
371 		struct device_attribute *attr, char *buf)
372 {
373 	struct zram *zram = dev_to_zram(dev);
374 	struct zs_pool_stats pool_stats;
375 	u64 orig_size, mem_used = 0;
376 	long max_used;
377 	ssize_t ret;
378 
379 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
380 
381 	down_read(&zram->init_lock);
382 	if (init_done(zram)) {
383 		mem_used = zs_get_total_pages(zram->mem_pool);
384 		zs_pool_stats(zram->mem_pool, &pool_stats);
385 	}
386 
387 	orig_size = atomic64_read(&zram->stats.pages_stored);
388 	max_used = atomic_long_read(&zram->stats.max_used_pages);
389 
390 	ret = scnprintf(buf, PAGE_SIZE,
391 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
392 			orig_size << PAGE_SHIFT,
393 			(u64)atomic64_read(&zram->stats.compr_data_size),
394 			mem_used << PAGE_SHIFT,
395 			zram->limit_pages << PAGE_SHIFT,
396 			max_used << PAGE_SHIFT,
397 			(u64)atomic64_read(&zram->stats.same_pages),
398 			pool_stats.pages_compacted);
399 	up_read(&zram->init_lock);
400 
401 	return ret;
402 }
403 
404 static ssize_t debug_stat_show(struct device *dev,
405 		struct device_attribute *attr, char *buf)
406 {
407 	int version = 1;
408 	struct zram *zram = dev_to_zram(dev);
409 	ssize_t ret;
410 
411 	down_read(&zram->init_lock);
412 	ret = scnprintf(buf, PAGE_SIZE,
413 			"version: %d\n%8llu\n",
414 			version,
415 			(u64)atomic64_read(&zram->stats.writestall));
416 	up_read(&zram->init_lock);
417 
418 	return ret;
419 }
420 
421 static DEVICE_ATTR_RO(io_stat);
422 static DEVICE_ATTR_RO(mm_stat);
423 static DEVICE_ATTR_RO(debug_stat);
424 
425 static void zram_slot_lock(struct zram *zram, u32 index)
426 {
427 	bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
428 }
429 
430 static void zram_slot_unlock(struct zram *zram, u32 index)
431 {
432 	bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
433 }
434 
435 static bool zram_same_page_read(struct zram *zram, u32 index,
436 				struct page *page,
437 				unsigned int offset, unsigned int len)
438 {
439 	zram_slot_lock(zram, index);
440 	if (unlikely(!zram_get_handle(zram, index) ||
441 			zram_test_flag(zram, index, ZRAM_SAME))) {
442 		void *mem;
443 
444 		zram_slot_unlock(zram, index);
445 		mem = kmap_atomic(page);
446 		zram_fill_page(mem + offset, len,
447 					zram_get_element(zram, index));
448 		kunmap_atomic(mem);
449 		return true;
450 	}
451 	zram_slot_unlock(zram, index);
452 
453 	return false;
454 }
455 
456 static bool zram_same_page_write(struct zram *zram, u32 index,
457 					struct page *page)
458 {
459 	unsigned long element;
460 	void *mem = kmap_atomic(page);
461 
462 	if (page_same_filled(mem, &element)) {
463 		kunmap_atomic(mem);
464 		/* Free memory associated with this sector now. */
465 		zram_slot_lock(zram, index);
466 		zram_free_page(zram, index);
467 		zram_set_flag(zram, index, ZRAM_SAME);
468 		zram_set_element(zram, index, element);
469 		zram_slot_unlock(zram, index);
470 
471 		atomic64_inc(&zram->stats.same_pages);
472 		atomic64_inc(&zram->stats.pages_stored);
473 		return true;
474 	}
475 	kunmap_atomic(mem);
476 
477 	return false;
478 }
479 
480 static void zram_meta_free(struct zram *zram, u64 disksize)
481 {
482 	size_t num_pages = disksize >> PAGE_SHIFT;
483 	size_t index;
484 
485 	/* Free all pages that are still in this zram device */
486 	for (index = 0; index < num_pages; index++)
487 		zram_free_page(zram, index);
488 
489 	zs_destroy_pool(zram->mem_pool);
490 	vfree(zram->table);
491 }
492 
493 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
494 {
495 	size_t num_pages;
496 
497 	num_pages = disksize >> PAGE_SHIFT;
498 	zram->table = vzalloc(num_pages * sizeof(*zram->table));
499 	if (!zram->table)
500 		return false;
501 
502 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
503 	if (!zram->mem_pool) {
504 		vfree(zram->table);
505 		return false;
506 	}
507 
508 	return true;
509 }
510 
511 /*
512  * To protect concurrent access to the same index entry,
513  * caller should hold this table index entry's bit_spinlock to
514  * indicate this index entry is accessing.
515  */
516 static void zram_free_page(struct zram *zram, size_t index)
517 {
518 	unsigned long handle = zram_get_handle(zram, index);
519 
520 	/*
521 	 * No memory is allocated for same element filled pages.
522 	 * Simply clear same page flag.
523 	 */
524 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
525 		zram_clear_flag(zram, index, ZRAM_SAME);
526 		zram_set_element(zram, index, 0);
527 		atomic64_dec(&zram->stats.same_pages);
528 		atomic64_dec(&zram->stats.pages_stored);
529 		return;
530 	}
531 
532 	if (!handle)
533 		return;
534 
535 	zs_free(zram->mem_pool, handle);
536 
537 	atomic64_sub(zram_get_obj_size(zram, index),
538 			&zram->stats.compr_data_size);
539 	atomic64_dec(&zram->stats.pages_stored);
540 
541 	zram_set_handle(zram, index, 0);
542 	zram_set_obj_size(zram, index, 0);
543 }
544 
545 static int zram_decompress_page(struct zram *zram, struct page *page, u32 index)
546 {
547 	int ret;
548 	unsigned long handle;
549 	unsigned int size;
550 	void *src, *dst;
551 
552 	if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
553 		return 0;
554 
555 	zram_slot_lock(zram, index);
556 	handle = zram_get_handle(zram, index);
557 	size = zram_get_obj_size(zram, index);
558 
559 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
560 	if (size == PAGE_SIZE) {
561 		dst = kmap_atomic(page);
562 		memcpy(dst, src, PAGE_SIZE);
563 		kunmap_atomic(dst);
564 		ret = 0;
565 	} else {
566 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
567 
568 		dst = kmap_atomic(page);
569 		ret = zcomp_decompress(zstrm, src, size, dst);
570 		kunmap_atomic(dst);
571 		zcomp_stream_put(zram->comp);
572 	}
573 	zs_unmap_object(zram->mem_pool, handle);
574 	zram_slot_unlock(zram, index);
575 
576 	/* Should NEVER happen. Return bio error if it does. */
577 	if (unlikely(ret))
578 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
579 
580 	return ret;
581 }
582 
583 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
584 				u32 index, int offset)
585 {
586 	int ret;
587 	struct page *page;
588 
589 	page = bvec->bv_page;
590 	if (is_partial_io(bvec)) {
591 		/* Use a temporary buffer to decompress the page */
592 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
593 		if (!page)
594 			return -ENOMEM;
595 	}
596 
597 	ret = zram_decompress_page(zram, page, index);
598 	if (unlikely(ret))
599 		goto out;
600 
601 	if (is_partial_io(bvec)) {
602 		void *dst = kmap_atomic(bvec->bv_page);
603 		void *src = kmap_atomic(page);
604 
605 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
606 		kunmap_atomic(src);
607 		kunmap_atomic(dst);
608 	}
609 out:
610 	if (is_partial_io(bvec))
611 		__free_page(page);
612 
613 	return ret;
614 }
615 
616 static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm,
617 			struct page *page,
618 			unsigned long *out_handle, unsigned int *out_comp_len)
619 {
620 	int ret;
621 	unsigned int comp_len;
622 	void *src;
623 	unsigned long alloced_pages;
624 	unsigned long handle = 0;
625 
626 compress_again:
627 	src = kmap_atomic(page);
628 	ret = zcomp_compress(*zstrm, src, &comp_len);
629 	kunmap_atomic(src);
630 
631 	if (unlikely(ret)) {
632 		pr_err("Compression failed! err=%d\n", ret);
633 		if (handle)
634 			zs_free(zram->mem_pool, handle);
635 		return ret;
636 	}
637 
638 	if (unlikely(comp_len > max_zpage_size))
639 		comp_len = PAGE_SIZE;
640 
641 	/*
642 	 * handle allocation has 2 paths:
643 	 * a) fast path is executed with preemption disabled (for
644 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
645 	 *  since we can't sleep;
646 	 * b) slow path enables preemption and attempts to allocate
647 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
648 	 *  put per-cpu compression stream and, thus, to re-do
649 	 *  the compression once handle is allocated.
650 	 *
651 	 * if we have a 'non-null' handle here then we are coming
652 	 * from the slow path and handle has already been allocated.
653 	 */
654 	if (!handle)
655 		handle = zs_malloc(zram->mem_pool, comp_len,
656 				__GFP_KSWAPD_RECLAIM |
657 				__GFP_NOWARN |
658 				__GFP_HIGHMEM |
659 				__GFP_MOVABLE);
660 	if (!handle) {
661 		zcomp_stream_put(zram->comp);
662 		atomic64_inc(&zram->stats.writestall);
663 		handle = zs_malloc(zram->mem_pool, comp_len,
664 				GFP_NOIO | __GFP_HIGHMEM |
665 				__GFP_MOVABLE);
666 		*zstrm = zcomp_stream_get(zram->comp);
667 		if (handle)
668 			goto compress_again;
669 		return -ENOMEM;
670 	}
671 
672 	alloced_pages = zs_get_total_pages(zram->mem_pool);
673 	update_used_max(zram, alloced_pages);
674 
675 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
676 		zs_free(zram->mem_pool, handle);
677 		return -ENOMEM;
678 	}
679 
680 	*out_handle = handle;
681 	*out_comp_len = comp_len;
682 	return 0;
683 }
684 
685 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index)
686 {
687 	int ret;
688 	unsigned long handle;
689 	unsigned int comp_len;
690 	void *src, *dst;
691 	struct zcomp_strm *zstrm;
692 	struct page *page = bvec->bv_page;
693 
694 	if (zram_same_page_write(zram, index, page))
695 		return 0;
696 
697 	zstrm = zcomp_stream_get(zram->comp);
698 	ret = zram_compress(zram, &zstrm, page, &handle, &comp_len);
699 	if (ret) {
700 		zcomp_stream_put(zram->comp);
701 		return ret;
702 	}
703 
704 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
705 
706 	src = zstrm->buffer;
707 	if (comp_len == PAGE_SIZE)
708 		src = kmap_atomic(page);
709 	memcpy(dst, src, comp_len);
710 	if (comp_len == PAGE_SIZE)
711 		kunmap_atomic(src);
712 
713 	zcomp_stream_put(zram->comp);
714 	zs_unmap_object(zram->mem_pool, handle);
715 
716 	/*
717 	 * Free memory associated with this sector
718 	 * before overwriting unused sectors.
719 	 */
720 	zram_slot_lock(zram, index);
721 	zram_free_page(zram, index);
722 	zram_set_handle(zram, index, handle);
723 	zram_set_obj_size(zram, index, comp_len);
724 	zram_slot_unlock(zram, index);
725 
726 	/* Update stats */
727 	atomic64_add(comp_len, &zram->stats.compr_data_size);
728 	atomic64_inc(&zram->stats.pages_stored);
729 	return 0;
730 }
731 
732 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
733 				u32 index, int offset)
734 {
735 	int ret;
736 	struct page *page = NULL;
737 	void *src;
738 	struct bio_vec vec;
739 
740 	vec = *bvec;
741 	if (is_partial_io(bvec)) {
742 		void *dst;
743 		/*
744 		 * This is a partial IO. We need to read the full page
745 		 * before to write the changes.
746 		 */
747 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
748 		if (!page)
749 			return -ENOMEM;
750 
751 		ret = zram_decompress_page(zram, page, index);
752 		if (ret)
753 			goto out;
754 
755 		src = kmap_atomic(bvec->bv_page);
756 		dst = kmap_atomic(page);
757 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
758 		kunmap_atomic(dst);
759 		kunmap_atomic(src);
760 
761 		vec.bv_page = page;
762 		vec.bv_len = PAGE_SIZE;
763 		vec.bv_offset = 0;
764 	}
765 
766 	ret = __zram_bvec_write(zram, &vec, index);
767 out:
768 	if (is_partial_io(bvec))
769 		__free_page(page);
770 	return ret;
771 }
772 
773 /*
774  * zram_bio_discard - handler on discard request
775  * @index: physical block index in PAGE_SIZE units
776  * @offset: byte offset within physical block
777  */
778 static void zram_bio_discard(struct zram *zram, u32 index,
779 			     int offset, struct bio *bio)
780 {
781 	size_t n = bio->bi_iter.bi_size;
782 
783 	/*
784 	 * zram manages data in physical block size units. Because logical block
785 	 * size isn't identical with physical block size on some arch, we
786 	 * could get a discard request pointing to a specific offset within a
787 	 * certain physical block.  Although we can handle this request by
788 	 * reading that physiclal block and decompressing and partially zeroing
789 	 * and re-compressing and then re-storing it, this isn't reasonable
790 	 * because our intent with a discard request is to save memory.  So
791 	 * skipping this logical block is appropriate here.
792 	 */
793 	if (offset) {
794 		if (n <= (PAGE_SIZE - offset))
795 			return;
796 
797 		n -= (PAGE_SIZE - offset);
798 		index++;
799 	}
800 
801 	while (n >= PAGE_SIZE) {
802 		zram_slot_lock(zram, index);
803 		zram_free_page(zram, index);
804 		zram_slot_unlock(zram, index);
805 		atomic64_inc(&zram->stats.notify_free);
806 		index++;
807 		n -= PAGE_SIZE;
808 	}
809 }
810 
811 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
812 			int offset, bool is_write)
813 {
814 	unsigned long start_time = jiffies;
815 	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
816 	int ret;
817 
818 	generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
819 			&zram->disk->part0);
820 
821 	if (!is_write) {
822 		atomic64_inc(&zram->stats.num_reads);
823 		ret = zram_bvec_read(zram, bvec, index, offset);
824 		flush_dcache_page(bvec->bv_page);
825 	} else {
826 		atomic64_inc(&zram->stats.num_writes);
827 		ret = zram_bvec_write(zram, bvec, index, offset);
828 	}
829 
830 	generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
831 
832 	if (unlikely(ret)) {
833 		if (!is_write)
834 			atomic64_inc(&zram->stats.failed_reads);
835 		else
836 			atomic64_inc(&zram->stats.failed_writes);
837 	}
838 
839 	return ret;
840 }
841 
842 static void __zram_make_request(struct zram *zram, struct bio *bio)
843 {
844 	int offset;
845 	u32 index;
846 	struct bio_vec bvec;
847 	struct bvec_iter iter;
848 
849 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
850 	offset = (bio->bi_iter.bi_sector &
851 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
852 
853 	switch (bio_op(bio)) {
854 	case REQ_OP_DISCARD:
855 	case REQ_OP_WRITE_ZEROES:
856 		zram_bio_discard(zram, index, offset, bio);
857 		bio_endio(bio);
858 		return;
859 	default:
860 		break;
861 	}
862 
863 	bio_for_each_segment(bvec, bio, iter) {
864 		struct bio_vec bv = bvec;
865 		unsigned int unwritten = bvec.bv_len;
866 
867 		do {
868 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
869 							unwritten);
870 			if (zram_bvec_rw(zram, &bv, index, offset,
871 					op_is_write(bio_op(bio))) < 0)
872 				goto out;
873 
874 			bv.bv_offset += bv.bv_len;
875 			unwritten -= bv.bv_len;
876 
877 			update_position(&index, &offset, &bv);
878 		} while (unwritten);
879 	}
880 
881 	bio_endio(bio);
882 	return;
883 
884 out:
885 	bio_io_error(bio);
886 }
887 
888 /*
889  * Handler function for all zram I/O requests.
890  */
891 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
892 {
893 	struct zram *zram = queue->queuedata;
894 
895 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
896 					bio->bi_iter.bi_size)) {
897 		atomic64_inc(&zram->stats.invalid_io);
898 		goto error;
899 	}
900 
901 	__zram_make_request(zram, bio);
902 	return BLK_QC_T_NONE;
903 
904 error:
905 	bio_io_error(bio);
906 	return BLK_QC_T_NONE;
907 }
908 
909 static void zram_slot_free_notify(struct block_device *bdev,
910 				unsigned long index)
911 {
912 	struct zram *zram;
913 
914 	zram = bdev->bd_disk->private_data;
915 
916 	zram_slot_lock(zram, index);
917 	zram_free_page(zram, index);
918 	zram_slot_unlock(zram, index);
919 	atomic64_inc(&zram->stats.notify_free);
920 }
921 
922 static int zram_rw_page(struct block_device *bdev, sector_t sector,
923 		       struct page *page, bool is_write)
924 {
925 	int offset, err = -EIO;
926 	u32 index;
927 	struct zram *zram;
928 	struct bio_vec bv;
929 
930 	zram = bdev->bd_disk->private_data;
931 
932 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
933 		atomic64_inc(&zram->stats.invalid_io);
934 		err = -EINVAL;
935 		goto out;
936 	}
937 
938 	index = sector >> SECTORS_PER_PAGE_SHIFT;
939 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
940 
941 	bv.bv_page = page;
942 	bv.bv_len = PAGE_SIZE;
943 	bv.bv_offset = 0;
944 
945 	err = zram_bvec_rw(zram, &bv, index, offset, is_write);
946 out:
947 	/*
948 	 * If I/O fails, just return error(ie, non-zero) without
949 	 * calling page_endio.
950 	 * It causes resubmit the I/O with bio request by upper functions
951 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
952 	 * bio->bi_end_io does things to handle the error
953 	 * (e.g., SetPageError, set_page_dirty and extra works).
954 	 */
955 	if (err == 0)
956 		page_endio(page, is_write, 0);
957 	return err;
958 }
959 
960 static void zram_reset_device(struct zram *zram)
961 {
962 	struct zcomp *comp;
963 	u64 disksize;
964 
965 	down_write(&zram->init_lock);
966 
967 	zram->limit_pages = 0;
968 
969 	if (!init_done(zram)) {
970 		up_write(&zram->init_lock);
971 		return;
972 	}
973 
974 	comp = zram->comp;
975 	disksize = zram->disksize;
976 	zram->disksize = 0;
977 
978 	set_capacity(zram->disk, 0);
979 	part_stat_set_all(&zram->disk->part0, 0);
980 
981 	up_write(&zram->init_lock);
982 	/* I/O operation under all of CPU are done so let's free */
983 	zram_meta_free(zram, disksize);
984 	memset(&zram->stats, 0, sizeof(zram->stats));
985 	zcomp_destroy(comp);
986 }
987 
988 static ssize_t disksize_store(struct device *dev,
989 		struct device_attribute *attr, const char *buf, size_t len)
990 {
991 	u64 disksize;
992 	struct zcomp *comp;
993 	struct zram *zram = dev_to_zram(dev);
994 	int err;
995 
996 	disksize = memparse(buf, NULL);
997 	if (!disksize)
998 		return -EINVAL;
999 
1000 	down_write(&zram->init_lock);
1001 	if (init_done(zram)) {
1002 		pr_info("Cannot change disksize for initialized device\n");
1003 		err = -EBUSY;
1004 		goto out_unlock;
1005 	}
1006 
1007 	disksize = PAGE_ALIGN(disksize);
1008 	if (!zram_meta_alloc(zram, disksize)) {
1009 		err = -ENOMEM;
1010 		goto out_unlock;
1011 	}
1012 
1013 	comp = zcomp_create(zram->compressor);
1014 	if (IS_ERR(comp)) {
1015 		pr_err("Cannot initialise %s compressing backend\n",
1016 				zram->compressor);
1017 		err = PTR_ERR(comp);
1018 		goto out_free_meta;
1019 	}
1020 
1021 	zram->comp = comp;
1022 	zram->disksize = disksize;
1023 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1024 	zram_revalidate_disk(zram);
1025 	up_write(&zram->init_lock);
1026 
1027 	return len;
1028 
1029 out_free_meta:
1030 	zram_meta_free(zram, disksize);
1031 out_unlock:
1032 	up_write(&zram->init_lock);
1033 	return err;
1034 }
1035 
1036 static ssize_t reset_store(struct device *dev,
1037 		struct device_attribute *attr, const char *buf, size_t len)
1038 {
1039 	int ret;
1040 	unsigned short do_reset;
1041 	struct zram *zram;
1042 	struct block_device *bdev;
1043 
1044 	ret = kstrtou16(buf, 10, &do_reset);
1045 	if (ret)
1046 		return ret;
1047 
1048 	if (!do_reset)
1049 		return -EINVAL;
1050 
1051 	zram = dev_to_zram(dev);
1052 	bdev = bdget_disk(zram->disk, 0);
1053 	if (!bdev)
1054 		return -ENOMEM;
1055 
1056 	mutex_lock(&bdev->bd_mutex);
1057 	/* Do not reset an active device or claimed device */
1058 	if (bdev->bd_openers || zram->claim) {
1059 		mutex_unlock(&bdev->bd_mutex);
1060 		bdput(bdev);
1061 		return -EBUSY;
1062 	}
1063 
1064 	/* From now on, anyone can't open /dev/zram[0-9] */
1065 	zram->claim = true;
1066 	mutex_unlock(&bdev->bd_mutex);
1067 
1068 	/* Make sure all the pending I/O are finished */
1069 	fsync_bdev(bdev);
1070 	zram_reset_device(zram);
1071 	zram_revalidate_disk(zram);
1072 	bdput(bdev);
1073 
1074 	mutex_lock(&bdev->bd_mutex);
1075 	zram->claim = false;
1076 	mutex_unlock(&bdev->bd_mutex);
1077 
1078 	return len;
1079 }
1080 
1081 static int zram_open(struct block_device *bdev, fmode_t mode)
1082 {
1083 	int ret = 0;
1084 	struct zram *zram;
1085 
1086 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1087 
1088 	zram = bdev->bd_disk->private_data;
1089 	/* zram was claimed to reset so open request fails */
1090 	if (zram->claim)
1091 		ret = -EBUSY;
1092 
1093 	return ret;
1094 }
1095 
1096 static const struct block_device_operations zram_devops = {
1097 	.open = zram_open,
1098 	.swap_slot_free_notify = zram_slot_free_notify,
1099 	.rw_page = zram_rw_page,
1100 	.owner = THIS_MODULE
1101 };
1102 
1103 static DEVICE_ATTR_WO(compact);
1104 static DEVICE_ATTR_RW(disksize);
1105 static DEVICE_ATTR_RO(initstate);
1106 static DEVICE_ATTR_WO(reset);
1107 static DEVICE_ATTR_WO(mem_limit);
1108 static DEVICE_ATTR_WO(mem_used_max);
1109 static DEVICE_ATTR_RW(max_comp_streams);
1110 static DEVICE_ATTR_RW(comp_algorithm);
1111 
1112 static struct attribute *zram_disk_attrs[] = {
1113 	&dev_attr_disksize.attr,
1114 	&dev_attr_initstate.attr,
1115 	&dev_attr_reset.attr,
1116 	&dev_attr_compact.attr,
1117 	&dev_attr_mem_limit.attr,
1118 	&dev_attr_mem_used_max.attr,
1119 	&dev_attr_max_comp_streams.attr,
1120 	&dev_attr_comp_algorithm.attr,
1121 	&dev_attr_io_stat.attr,
1122 	&dev_attr_mm_stat.attr,
1123 	&dev_attr_debug_stat.attr,
1124 	NULL,
1125 };
1126 
1127 static const struct attribute_group zram_disk_attr_group = {
1128 	.attrs = zram_disk_attrs,
1129 };
1130 
1131 /*
1132  * Allocate and initialize new zram device. the function returns
1133  * '>= 0' device_id upon success, and negative value otherwise.
1134  */
1135 static int zram_add(void)
1136 {
1137 	struct zram *zram;
1138 	struct request_queue *queue;
1139 	int ret, device_id;
1140 
1141 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1142 	if (!zram)
1143 		return -ENOMEM;
1144 
1145 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1146 	if (ret < 0)
1147 		goto out_free_dev;
1148 	device_id = ret;
1149 
1150 	init_rwsem(&zram->init_lock);
1151 
1152 	queue = blk_alloc_queue(GFP_KERNEL);
1153 	if (!queue) {
1154 		pr_err("Error allocating disk queue for device %d\n",
1155 			device_id);
1156 		ret = -ENOMEM;
1157 		goto out_free_idr;
1158 	}
1159 
1160 	blk_queue_make_request(queue, zram_make_request);
1161 
1162 	/* gendisk structure */
1163 	zram->disk = alloc_disk(1);
1164 	if (!zram->disk) {
1165 		pr_err("Error allocating disk structure for device %d\n",
1166 			device_id);
1167 		ret = -ENOMEM;
1168 		goto out_free_queue;
1169 	}
1170 
1171 	zram->disk->major = zram_major;
1172 	zram->disk->first_minor = device_id;
1173 	zram->disk->fops = &zram_devops;
1174 	zram->disk->queue = queue;
1175 	zram->disk->queue->queuedata = zram;
1176 	zram->disk->private_data = zram;
1177 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1178 
1179 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1180 	set_capacity(zram->disk, 0);
1181 	/* zram devices sort of resembles non-rotational disks */
1182 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1183 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1184 	/*
1185 	 * To ensure that we always get PAGE_SIZE aligned
1186 	 * and n*PAGE_SIZED sized I/O requests.
1187 	 */
1188 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1189 	blk_queue_logical_block_size(zram->disk->queue,
1190 					ZRAM_LOGICAL_BLOCK_SIZE);
1191 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1192 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1193 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1194 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1195 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1196 
1197 	/*
1198 	 * zram_bio_discard() will clear all logical blocks if logical block
1199 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1200 	 * different, we will skip discarding some parts of logical blocks in
1201 	 * the part of the request range which isn't aligned to physical block
1202 	 * size.  So we can't ensure that all discarded logical blocks are
1203 	 * zeroed.
1204 	 */
1205 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1206 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1207 
1208 	add_disk(zram->disk);
1209 
1210 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1211 				&zram_disk_attr_group);
1212 	if (ret < 0) {
1213 		pr_err("Error creating sysfs group for device %d\n",
1214 				device_id);
1215 		goto out_free_disk;
1216 	}
1217 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1218 
1219 	pr_info("Added device: %s\n", zram->disk->disk_name);
1220 	return device_id;
1221 
1222 out_free_disk:
1223 	del_gendisk(zram->disk);
1224 	put_disk(zram->disk);
1225 out_free_queue:
1226 	blk_cleanup_queue(queue);
1227 out_free_idr:
1228 	idr_remove(&zram_index_idr, device_id);
1229 out_free_dev:
1230 	kfree(zram);
1231 	return ret;
1232 }
1233 
1234 static int zram_remove(struct zram *zram)
1235 {
1236 	struct block_device *bdev;
1237 
1238 	bdev = bdget_disk(zram->disk, 0);
1239 	if (!bdev)
1240 		return -ENOMEM;
1241 
1242 	mutex_lock(&bdev->bd_mutex);
1243 	if (bdev->bd_openers || zram->claim) {
1244 		mutex_unlock(&bdev->bd_mutex);
1245 		bdput(bdev);
1246 		return -EBUSY;
1247 	}
1248 
1249 	zram->claim = true;
1250 	mutex_unlock(&bdev->bd_mutex);
1251 
1252 	/*
1253 	 * Remove sysfs first, so no one will perform a disksize
1254 	 * store while we destroy the devices. This also helps during
1255 	 * hot_remove -- zram_reset_device() is the last holder of
1256 	 * ->init_lock, no later/concurrent disksize_store() or any
1257 	 * other sysfs handlers are possible.
1258 	 */
1259 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1260 			&zram_disk_attr_group);
1261 
1262 	/* Make sure all the pending I/O are finished */
1263 	fsync_bdev(bdev);
1264 	zram_reset_device(zram);
1265 	bdput(bdev);
1266 
1267 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1268 
1269 	blk_cleanup_queue(zram->disk->queue);
1270 	del_gendisk(zram->disk);
1271 	put_disk(zram->disk);
1272 	kfree(zram);
1273 	return 0;
1274 }
1275 
1276 /* zram-control sysfs attributes */
1277 
1278 /*
1279  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1280  * sense that reading from this file does alter the state of your system -- it
1281  * creates a new un-initialized zram device and returns back this device's
1282  * device_id (or an error code if it fails to create a new device).
1283  */
1284 static ssize_t hot_add_show(struct class *class,
1285 			struct class_attribute *attr,
1286 			char *buf)
1287 {
1288 	int ret;
1289 
1290 	mutex_lock(&zram_index_mutex);
1291 	ret = zram_add();
1292 	mutex_unlock(&zram_index_mutex);
1293 
1294 	if (ret < 0)
1295 		return ret;
1296 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1297 }
1298 static CLASS_ATTR_RO(hot_add);
1299 
1300 static ssize_t hot_remove_store(struct class *class,
1301 			struct class_attribute *attr,
1302 			const char *buf,
1303 			size_t count)
1304 {
1305 	struct zram *zram;
1306 	int ret, dev_id;
1307 
1308 	/* dev_id is gendisk->first_minor, which is `int' */
1309 	ret = kstrtoint(buf, 10, &dev_id);
1310 	if (ret)
1311 		return ret;
1312 	if (dev_id < 0)
1313 		return -EINVAL;
1314 
1315 	mutex_lock(&zram_index_mutex);
1316 
1317 	zram = idr_find(&zram_index_idr, dev_id);
1318 	if (zram) {
1319 		ret = zram_remove(zram);
1320 		if (!ret)
1321 			idr_remove(&zram_index_idr, dev_id);
1322 	} else {
1323 		ret = -ENODEV;
1324 	}
1325 
1326 	mutex_unlock(&zram_index_mutex);
1327 	return ret ? ret : count;
1328 }
1329 static CLASS_ATTR_WO(hot_remove);
1330 
1331 static struct attribute *zram_control_class_attrs[] = {
1332 	&class_attr_hot_add.attr,
1333 	&class_attr_hot_remove.attr,
1334 	NULL,
1335 };
1336 ATTRIBUTE_GROUPS(zram_control_class);
1337 
1338 static struct class zram_control_class = {
1339 	.name		= "zram-control",
1340 	.owner		= THIS_MODULE,
1341 	.class_groups	= zram_control_class_groups,
1342 };
1343 
1344 static int zram_remove_cb(int id, void *ptr, void *data)
1345 {
1346 	zram_remove(ptr);
1347 	return 0;
1348 }
1349 
1350 static void destroy_devices(void)
1351 {
1352 	class_unregister(&zram_control_class);
1353 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1354 	idr_destroy(&zram_index_idr);
1355 	unregister_blkdev(zram_major, "zram");
1356 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1357 }
1358 
1359 static int __init zram_init(void)
1360 {
1361 	int ret;
1362 
1363 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1364 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1365 	if (ret < 0)
1366 		return ret;
1367 
1368 	ret = class_register(&zram_control_class);
1369 	if (ret) {
1370 		pr_err("Unable to register zram-control class\n");
1371 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1372 		return ret;
1373 	}
1374 
1375 	zram_major = register_blkdev(0, "zram");
1376 	if (zram_major <= 0) {
1377 		pr_err("Unable to get major number\n");
1378 		class_unregister(&zram_control_class);
1379 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1380 		return -EBUSY;
1381 	}
1382 
1383 	while (num_devices != 0) {
1384 		mutex_lock(&zram_index_mutex);
1385 		ret = zram_add();
1386 		mutex_unlock(&zram_index_mutex);
1387 		if (ret < 0)
1388 			goto out_error;
1389 		num_devices--;
1390 	}
1391 
1392 	return 0;
1393 
1394 out_error:
1395 	destroy_devices();
1396 	return ret;
1397 }
1398 
1399 static void __exit zram_exit(void)
1400 {
1401 	destroy_devices();
1402 }
1403 
1404 module_init(zram_init);
1405 module_exit(zram_exit);
1406 
1407 module_param(num_devices, uint, 0);
1408 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1409 
1410 MODULE_LICENSE("Dual BSD/GPL");
1411 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1412 MODULE_DESCRIPTION("Compressed RAM Block Device");
1413