1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/cpuhotplug.h> 35 36 #include "zram_drv.h" 37 38 static DEFINE_IDR(zram_index_idr); 39 /* idr index must be protected */ 40 static DEFINE_MUTEX(zram_index_mutex); 41 42 static int zram_major; 43 static const char *default_compressor = "lzo"; 44 45 /* Module params (documentation at end) */ 46 static unsigned int num_devices = 1; 47 48 static void zram_free_page(struct zram *zram, size_t index); 49 50 static inline bool init_done(struct zram *zram) 51 { 52 return zram->disksize; 53 } 54 55 static inline struct zram *dev_to_zram(struct device *dev) 56 { 57 return (struct zram *)dev_to_disk(dev)->private_data; 58 } 59 60 static unsigned long zram_get_handle(struct zram *zram, u32 index) 61 { 62 return zram->table[index].handle; 63 } 64 65 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 66 { 67 zram->table[index].handle = handle; 68 } 69 70 /* flag operations require table entry bit_spin_lock() being held */ 71 static int zram_test_flag(struct zram *zram, u32 index, 72 enum zram_pageflags flag) 73 { 74 return zram->table[index].value & BIT(flag); 75 } 76 77 static void zram_set_flag(struct zram *zram, u32 index, 78 enum zram_pageflags flag) 79 { 80 zram->table[index].value |= BIT(flag); 81 } 82 83 static void zram_clear_flag(struct zram *zram, u32 index, 84 enum zram_pageflags flag) 85 { 86 zram->table[index].value &= ~BIT(flag); 87 } 88 89 static inline void zram_set_element(struct zram *zram, u32 index, 90 unsigned long element) 91 { 92 zram->table[index].element = element; 93 } 94 95 static unsigned long zram_get_element(struct zram *zram, u32 index) 96 { 97 return zram->table[index].element; 98 } 99 100 static size_t zram_get_obj_size(struct zram *zram, u32 index) 101 { 102 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 103 } 104 105 static void zram_set_obj_size(struct zram *zram, 106 u32 index, size_t size) 107 { 108 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT; 109 110 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 111 } 112 113 #if PAGE_SIZE != 4096 114 static inline bool is_partial_io(struct bio_vec *bvec) 115 { 116 return bvec->bv_len != PAGE_SIZE; 117 } 118 #else 119 static inline bool is_partial_io(struct bio_vec *bvec) 120 { 121 return false; 122 } 123 #endif 124 125 static void zram_revalidate_disk(struct zram *zram) 126 { 127 revalidate_disk(zram->disk); 128 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */ 129 zram->disk->queue->backing_dev_info->capabilities |= 130 BDI_CAP_STABLE_WRITES; 131 } 132 133 /* 134 * Check if request is within bounds and aligned on zram logical blocks. 135 */ 136 static inline bool valid_io_request(struct zram *zram, 137 sector_t start, unsigned int size) 138 { 139 u64 end, bound; 140 141 /* unaligned request */ 142 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 143 return false; 144 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 145 return false; 146 147 end = start + (size >> SECTOR_SHIFT); 148 bound = zram->disksize >> SECTOR_SHIFT; 149 /* out of range range */ 150 if (unlikely(start >= bound || end > bound || start > end)) 151 return false; 152 153 /* I/O request is valid */ 154 return true; 155 } 156 157 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 158 { 159 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 160 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 161 } 162 163 static inline void update_used_max(struct zram *zram, 164 const unsigned long pages) 165 { 166 unsigned long old_max, cur_max; 167 168 old_max = atomic_long_read(&zram->stats.max_used_pages); 169 170 do { 171 cur_max = old_max; 172 if (pages > cur_max) 173 old_max = atomic_long_cmpxchg( 174 &zram->stats.max_used_pages, cur_max, pages); 175 } while (old_max != cur_max); 176 } 177 178 static inline void zram_fill_page(char *ptr, unsigned long len, 179 unsigned long value) 180 { 181 int i; 182 unsigned long *page = (unsigned long *)ptr; 183 184 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 185 186 if (likely(value == 0)) { 187 memset(ptr, 0, len); 188 } else { 189 for (i = 0; i < len / sizeof(*page); i++) 190 page[i] = value; 191 } 192 } 193 194 static bool page_same_filled(void *ptr, unsigned long *element) 195 { 196 unsigned int pos; 197 unsigned long *page; 198 unsigned long val; 199 200 page = (unsigned long *)ptr; 201 val = page[0]; 202 203 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) { 204 if (val != page[pos]) 205 return false; 206 } 207 208 *element = val; 209 210 return true; 211 } 212 213 static ssize_t initstate_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 u32 val; 217 struct zram *zram = dev_to_zram(dev); 218 219 down_read(&zram->init_lock); 220 val = init_done(zram); 221 up_read(&zram->init_lock); 222 223 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 224 } 225 226 static ssize_t disksize_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct zram *zram = dev_to_zram(dev); 230 231 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 232 } 233 234 static ssize_t mem_limit_store(struct device *dev, 235 struct device_attribute *attr, const char *buf, size_t len) 236 { 237 u64 limit; 238 char *tmp; 239 struct zram *zram = dev_to_zram(dev); 240 241 limit = memparse(buf, &tmp); 242 if (buf == tmp) /* no chars parsed, invalid input */ 243 return -EINVAL; 244 245 down_write(&zram->init_lock); 246 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 247 up_write(&zram->init_lock); 248 249 return len; 250 } 251 252 static ssize_t mem_used_max_store(struct device *dev, 253 struct device_attribute *attr, const char *buf, size_t len) 254 { 255 int err; 256 unsigned long val; 257 struct zram *zram = dev_to_zram(dev); 258 259 err = kstrtoul(buf, 10, &val); 260 if (err || val != 0) 261 return -EINVAL; 262 263 down_read(&zram->init_lock); 264 if (init_done(zram)) { 265 atomic_long_set(&zram->stats.max_used_pages, 266 zs_get_total_pages(zram->mem_pool)); 267 } 268 up_read(&zram->init_lock); 269 270 return len; 271 } 272 273 /* 274 * We switched to per-cpu streams and this attr is not needed anymore. 275 * However, we will keep it around for some time, because: 276 * a) we may revert per-cpu streams in the future 277 * b) it's visible to user space and we need to follow our 2 years 278 * retirement rule; but we already have a number of 'soon to be 279 * altered' attrs, so max_comp_streams need to wait for the next 280 * layoff cycle. 281 */ 282 static ssize_t max_comp_streams_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 286 } 287 288 static ssize_t max_comp_streams_store(struct device *dev, 289 struct device_attribute *attr, const char *buf, size_t len) 290 { 291 return len; 292 } 293 294 static ssize_t comp_algorithm_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 size_t sz; 298 struct zram *zram = dev_to_zram(dev); 299 300 down_read(&zram->init_lock); 301 sz = zcomp_available_show(zram->compressor, buf); 302 up_read(&zram->init_lock); 303 304 return sz; 305 } 306 307 static ssize_t comp_algorithm_store(struct device *dev, 308 struct device_attribute *attr, const char *buf, size_t len) 309 { 310 struct zram *zram = dev_to_zram(dev); 311 char compressor[CRYPTO_MAX_ALG_NAME]; 312 size_t sz; 313 314 strlcpy(compressor, buf, sizeof(compressor)); 315 /* ignore trailing newline */ 316 sz = strlen(compressor); 317 if (sz > 0 && compressor[sz - 1] == '\n') 318 compressor[sz - 1] = 0x00; 319 320 if (!zcomp_available_algorithm(compressor)) 321 return -EINVAL; 322 323 down_write(&zram->init_lock); 324 if (init_done(zram)) { 325 up_write(&zram->init_lock); 326 pr_info("Can't change algorithm for initialized device\n"); 327 return -EBUSY; 328 } 329 330 strlcpy(zram->compressor, compressor, sizeof(compressor)); 331 up_write(&zram->init_lock); 332 return len; 333 } 334 335 static ssize_t compact_store(struct device *dev, 336 struct device_attribute *attr, const char *buf, size_t len) 337 { 338 struct zram *zram = dev_to_zram(dev); 339 340 down_read(&zram->init_lock); 341 if (!init_done(zram)) { 342 up_read(&zram->init_lock); 343 return -EINVAL; 344 } 345 346 zs_compact(zram->mem_pool); 347 up_read(&zram->init_lock); 348 349 return len; 350 } 351 352 static ssize_t io_stat_show(struct device *dev, 353 struct device_attribute *attr, char *buf) 354 { 355 struct zram *zram = dev_to_zram(dev); 356 ssize_t ret; 357 358 down_read(&zram->init_lock); 359 ret = scnprintf(buf, PAGE_SIZE, 360 "%8llu %8llu %8llu %8llu\n", 361 (u64)atomic64_read(&zram->stats.failed_reads), 362 (u64)atomic64_read(&zram->stats.failed_writes), 363 (u64)atomic64_read(&zram->stats.invalid_io), 364 (u64)atomic64_read(&zram->stats.notify_free)); 365 up_read(&zram->init_lock); 366 367 return ret; 368 } 369 370 static ssize_t mm_stat_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct zram *zram = dev_to_zram(dev); 374 struct zs_pool_stats pool_stats; 375 u64 orig_size, mem_used = 0; 376 long max_used; 377 ssize_t ret; 378 379 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 380 381 down_read(&zram->init_lock); 382 if (init_done(zram)) { 383 mem_used = zs_get_total_pages(zram->mem_pool); 384 zs_pool_stats(zram->mem_pool, &pool_stats); 385 } 386 387 orig_size = atomic64_read(&zram->stats.pages_stored); 388 max_used = atomic_long_read(&zram->stats.max_used_pages); 389 390 ret = scnprintf(buf, PAGE_SIZE, 391 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n", 392 orig_size << PAGE_SHIFT, 393 (u64)atomic64_read(&zram->stats.compr_data_size), 394 mem_used << PAGE_SHIFT, 395 zram->limit_pages << PAGE_SHIFT, 396 max_used << PAGE_SHIFT, 397 (u64)atomic64_read(&zram->stats.same_pages), 398 pool_stats.pages_compacted); 399 up_read(&zram->init_lock); 400 401 return ret; 402 } 403 404 static ssize_t debug_stat_show(struct device *dev, 405 struct device_attribute *attr, char *buf) 406 { 407 int version = 1; 408 struct zram *zram = dev_to_zram(dev); 409 ssize_t ret; 410 411 down_read(&zram->init_lock); 412 ret = scnprintf(buf, PAGE_SIZE, 413 "version: %d\n%8llu\n", 414 version, 415 (u64)atomic64_read(&zram->stats.writestall)); 416 up_read(&zram->init_lock); 417 418 return ret; 419 } 420 421 static DEVICE_ATTR_RO(io_stat); 422 static DEVICE_ATTR_RO(mm_stat); 423 static DEVICE_ATTR_RO(debug_stat); 424 425 static void zram_slot_lock(struct zram *zram, u32 index) 426 { 427 bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value); 428 } 429 430 static void zram_slot_unlock(struct zram *zram, u32 index) 431 { 432 bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value); 433 } 434 435 static bool zram_same_page_read(struct zram *zram, u32 index, 436 struct page *page, 437 unsigned int offset, unsigned int len) 438 { 439 zram_slot_lock(zram, index); 440 if (unlikely(!zram_get_handle(zram, index) || 441 zram_test_flag(zram, index, ZRAM_SAME))) { 442 void *mem; 443 444 zram_slot_unlock(zram, index); 445 mem = kmap_atomic(page); 446 zram_fill_page(mem + offset, len, 447 zram_get_element(zram, index)); 448 kunmap_atomic(mem); 449 return true; 450 } 451 zram_slot_unlock(zram, index); 452 453 return false; 454 } 455 456 static bool zram_same_page_write(struct zram *zram, u32 index, 457 struct page *page) 458 { 459 unsigned long element; 460 void *mem = kmap_atomic(page); 461 462 if (page_same_filled(mem, &element)) { 463 kunmap_atomic(mem); 464 /* Free memory associated with this sector now. */ 465 zram_slot_lock(zram, index); 466 zram_free_page(zram, index); 467 zram_set_flag(zram, index, ZRAM_SAME); 468 zram_set_element(zram, index, element); 469 zram_slot_unlock(zram, index); 470 471 atomic64_inc(&zram->stats.same_pages); 472 atomic64_inc(&zram->stats.pages_stored); 473 return true; 474 } 475 kunmap_atomic(mem); 476 477 return false; 478 } 479 480 static void zram_meta_free(struct zram *zram, u64 disksize) 481 { 482 size_t num_pages = disksize >> PAGE_SHIFT; 483 size_t index; 484 485 /* Free all pages that are still in this zram device */ 486 for (index = 0; index < num_pages; index++) 487 zram_free_page(zram, index); 488 489 zs_destroy_pool(zram->mem_pool); 490 vfree(zram->table); 491 } 492 493 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 494 { 495 size_t num_pages; 496 497 num_pages = disksize >> PAGE_SHIFT; 498 zram->table = vzalloc(num_pages * sizeof(*zram->table)); 499 if (!zram->table) 500 return false; 501 502 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 503 if (!zram->mem_pool) { 504 vfree(zram->table); 505 return false; 506 } 507 508 return true; 509 } 510 511 /* 512 * To protect concurrent access to the same index entry, 513 * caller should hold this table index entry's bit_spinlock to 514 * indicate this index entry is accessing. 515 */ 516 static void zram_free_page(struct zram *zram, size_t index) 517 { 518 unsigned long handle = zram_get_handle(zram, index); 519 520 /* 521 * No memory is allocated for same element filled pages. 522 * Simply clear same page flag. 523 */ 524 if (zram_test_flag(zram, index, ZRAM_SAME)) { 525 zram_clear_flag(zram, index, ZRAM_SAME); 526 zram_set_element(zram, index, 0); 527 atomic64_dec(&zram->stats.same_pages); 528 atomic64_dec(&zram->stats.pages_stored); 529 return; 530 } 531 532 if (!handle) 533 return; 534 535 zs_free(zram->mem_pool, handle); 536 537 atomic64_sub(zram_get_obj_size(zram, index), 538 &zram->stats.compr_data_size); 539 atomic64_dec(&zram->stats.pages_stored); 540 541 zram_set_handle(zram, index, 0); 542 zram_set_obj_size(zram, index, 0); 543 } 544 545 static int zram_decompress_page(struct zram *zram, struct page *page, u32 index) 546 { 547 int ret; 548 unsigned long handle; 549 unsigned int size; 550 void *src, *dst; 551 552 if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE)) 553 return 0; 554 555 zram_slot_lock(zram, index); 556 handle = zram_get_handle(zram, index); 557 size = zram_get_obj_size(zram, index); 558 559 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 560 if (size == PAGE_SIZE) { 561 dst = kmap_atomic(page); 562 memcpy(dst, src, PAGE_SIZE); 563 kunmap_atomic(dst); 564 ret = 0; 565 } else { 566 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); 567 568 dst = kmap_atomic(page); 569 ret = zcomp_decompress(zstrm, src, size, dst); 570 kunmap_atomic(dst); 571 zcomp_stream_put(zram->comp); 572 } 573 zs_unmap_object(zram->mem_pool, handle); 574 zram_slot_unlock(zram, index); 575 576 /* Should NEVER happen. Return bio error if it does. */ 577 if (unlikely(ret)) 578 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 579 580 return ret; 581 } 582 583 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 584 u32 index, int offset) 585 { 586 int ret; 587 struct page *page; 588 589 page = bvec->bv_page; 590 if (is_partial_io(bvec)) { 591 /* Use a temporary buffer to decompress the page */ 592 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 593 if (!page) 594 return -ENOMEM; 595 } 596 597 ret = zram_decompress_page(zram, page, index); 598 if (unlikely(ret)) 599 goto out; 600 601 if (is_partial_io(bvec)) { 602 void *dst = kmap_atomic(bvec->bv_page); 603 void *src = kmap_atomic(page); 604 605 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 606 kunmap_atomic(src); 607 kunmap_atomic(dst); 608 } 609 out: 610 if (is_partial_io(bvec)) 611 __free_page(page); 612 613 return ret; 614 } 615 616 static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm, 617 struct page *page, 618 unsigned long *out_handle, unsigned int *out_comp_len) 619 { 620 int ret; 621 unsigned int comp_len; 622 void *src; 623 unsigned long alloced_pages; 624 unsigned long handle = 0; 625 626 compress_again: 627 src = kmap_atomic(page); 628 ret = zcomp_compress(*zstrm, src, &comp_len); 629 kunmap_atomic(src); 630 631 if (unlikely(ret)) { 632 pr_err("Compression failed! err=%d\n", ret); 633 if (handle) 634 zs_free(zram->mem_pool, handle); 635 return ret; 636 } 637 638 if (unlikely(comp_len > max_zpage_size)) 639 comp_len = PAGE_SIZE; 640 641 /* 642 * handle allocation has 2 paths: 643 * a) fast path is executed with preemption disabled (for 644 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 645 * since we can't sleep; 646 * b) slow path enables preemption and attempts to allocate 647 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 648 * put per-cpu compression stream and, thus, to re-do 649 * the compression once handle is allocated. 650 * 651 * if we have a 'non-null' handle here then we are coming 652 * from the slow path and handle has already been allocated. 653 */ 654 if (!handle) 655 handle = zs_malloc(zram->mem_pool, comp_len, 656 __GFP_KSWAPD_RECLAIM | 657 __GFP_NOWARN | 658 __GFP_HIGHMEM | 659 __GFP_MOVABLE); 660 if (!handle) { 661 zcomp_stream_put(zram->comp); 662 atomic64_inc(&zram->stats.writestall); 663 handle = zs_malloc(zram->mem_pool, comp_len, 664 GFP_NOIO | __GFP_HIGHMEM | 665 __GFP_MOVABLE); 666 *zstrm = zcomp_stream_get(zram->comp); 667 if (handle) 668 goto compress_again; 669 return -ENOMEM; 670 } 671 672 alloced_pages = zs_get_total_pages(zram->mem_pool); 673 update_used_max(zram, alloced_pages); 674 675 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 676 zs_free(zram->mem_pool, handle); 677 return -ENOMEM; 678 } 679 680 *out_handle = handle; 681 *out_comp_len = comp_len; 682 return 0; 683 } 684 685 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index) 686 { 687 int ret; 688 unsigned long handle; 689 unsigned int comp_len; 690 void *src, *dst; 691 struct zcomp_strm *zstrm; 692 struct page *page = bvec->bv_page; 693 694 if (zram_same_page_write(zram, index, page)) 695 return 0; 696 697 zstrm = zcomp_stream_get(zram->comp); 698 ret = zram_compress(zram, &zstrm, page, &handle, &comp_len); 699 if (ret) { 700 zcomp_stream_put(zram->comp); 701 return ret; 702 } 703 704 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 705 706 src = zstrm->buffer; 707 if (comp_len == PAGE_SIZE) 708 src = kmap_atomic(page); 709 memcpy(dst, src, comp_len); 710 if (comp_len == PAGE_SIZE) 711 kunmap_atomic(src); 712 713 zcomp_stream_put(zram->comp); 714 zs_unmap_object(zram->mem_pool, handle); 715 716 /* 717 * Free memory associated with this sector 718 * before overwriting unused sectors. 719 */ 720 zram_slot_lock(zram, index); 721 zram_free_page(zram, index); 722 zram_set_handle(zram, index, handle); 723 zram_set_obj_size(zram, index, comp_len); 724 zram_slot_unlock(zram, index); 725 726 /* Update stats */ 727 atomic64_add(comp_len, &zram->stats.compr_data_size); 728 atomic64_inc(&zram->stats.pages_stored); 729 return 0; 730 } 731 732 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 733 u32 index, int offset) 734 { 735 int ret; 736 struct page *page = NULL; 737 void *src; 738 struct bio_vec vec; 739 740 vec = *bvec; 741 if (is_partial_io(bvec)) { 742 void *dst; 743 /* 744 * This is a partial IO. We need to read the full page 745 * before to write the changes. 746 */ 747 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 748 if (!page) 749 return -ENOMEM; 750 751 ret = zram_decompress_page(zram, page, index); 752 if (ret) 753 goto out; 754 755 src = kmap_atomic(bvec->bv_page); 756 dst = kmap_atomic(page); 757 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 758 kunmap_atomic(dst); 759 kunmap_atomic(src); 760 761 vec.bv_page = page; 762 vec.bv_len = PAGE_SIZE; 763 vec.bv_offset = 0; 764 } 765 766 ret = __zram_bvec_write(zram, &vec, index); 767 out: 768 if (is_partial_io(bvec)) 769 __free_page(page); 770 return ret; 771 } 772 773 /* 774 * zram_bio_discard - handler on discard request 775 * @index: physical block index in PAGE_SIZE units 776 * @offset: byte offset within physical block 777 */ 778 static void zram_bio_discard(struct zram *zram, u32 index, 779 int offset, struct bio *bio) 780 { 781 size_t n = bio->bi_iter.bi_size; 782 783 /* 784 * zram manages data in physical block size units. Because logical block 785 * size isn't identical with physical block size on some arch, we 786 * could get a discard request pointing to a specific offset within a 787 * certain physical block. Although we can handle this request by 788 * reading that physiclal block and decompressing and partially zeroing 789 * and re-compressing and then re-storing it, this isn't reasonable 790 * because our intent with a discard request is to save memory. So 791 * skipping this logical block is appropriate here. 792 */ 793 if (offset) { 794 if (n <= (PAGE_SIZE - offset)) 795 return; 796 797 n -= (PAGE_SIZE - offset); 798 index++; 799 } 800 801 while (n >= PAGE_SIZE) { 802 zram_slot_lock(zram, index); 803 zram_free_page(zram, index); 804 zram_slot_unlock(zram, index); 805 atomic64_inc(&zram->stats.notify_free); 806 index++; 807 n -= PAGE_SIZE; 808 } 809 } 810 811 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 812 int offset, bool is_write) 813 { 814 unsigned long start_time = jiffies; 815 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ; 816 int ret; 817 818 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT, 819 &zram->disk->part0); 820 821 if (!is_write) { 822 atomic64_inc(&zram->stats.num_reads); 823 ret = zram_bvec_read(zram, bvec, index, offset); 824 flush_dcache_page(bvec->bv_page); 825 } else { 826 atomic64_inc(&zram->stats.num_writes); 827 ret = zram_bvec_write(zram, bvec, index, offset); 828 } 829 830 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time); 831 832 if (unlikely(ret)) { 833 if (!is_write) 834 atomic64_inc(&zram->stats.failed_reads); 835 else 836 atomic64_inc(&zram->stats.failed_writes); 837 } 838 839 return ret; 840 } 841 842 static void __zram_make_request(struct zram *zram, struct bio *bio) 843 { 844 int offset; 845 u32 index; 846 struct bio_vec bvec; 847 struct bvec_iter iter; 848 849 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 850 offset = (bio->bi_iter.bi_sector & 851 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 852 853 switch (bio_op(bio)) { 854 case REQ_OP_DISCARD: 855 case REQ_OP_WRITE_ZEROES: 856 zram_bio_discard(zram, index, offset, bio); 857 bio_endio(bio); 858 return; 859 default: 860 break; 861 } 862 863 bio_for_each_segment(bvec, bio, iter) { 864 struct bio_vec bv = bvec; 865 unsigned int unwritten = bvec.bv_len; 866 867 do { 868 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 869 unwritten); 870 if (zram_bvec_rw(zram, &bv, index, offset, 871 op_is_write(bio_op(bio))) < 0) 872 goto out; 873 874 bv.bv_offset += bv.bv_len; 875 unwritten -= bv.bv_len; 876 877 update_position(&index, &offset, &bv); 878 } while (unwritten); 879 } 880 881 bio_endio(bio); 882 return; 883 884 out: 885 bio_io_error(bio); 886 } 887 888 /* 889 * Handler function for all zram I/O requests. 890 */ 891 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 892 { 893 struct zram *zram = queue->queuedata; 894 895 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 896 bio->bi_iter.bi_size)) { 897 atomic64_inc(&zram->stats.invalid_io); 898 goto error; 899 } 900 901 __zram_make_request(zram, bio); 902 return BLK_QC_T_NONE; 903 904 error: 905 bio_io_error(bio); 906 return BLK_QC_T_NONE; 907 } 908 909 static void zram_slot_free_notify(struct block_device *bdev, 910 unsigned long index) 911 { 912 struct zram *zram; 913 914 zram = bdev->bd_disk->private_data; 915 916 zram_slot_lock(zram, index); 917 zram_free_page(zram, index); 918 zram_slot_unlock(zram, index); 919 atomic64_inc(&zram->stats.notify_free); 920 } 921 922 static int zram_rw_page(struct block_device *bdev, sector_t sector, 923 struct page *page, bool is_write) 924 { 925 int offset, err = -EIO; 926 u32 index; 927 struct zram *zram; 928 struct bio_vec bv; 929 930 zram = bdev->bd_disk->private_data; 931 932 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 933 atomic64_inc(&zram->stats.invalid_io); 934 err = -EINVAL; 935 goto out; 936 } 937 938 index = sector >> SECTORS_PER_PAGE_SHIFT; 939 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 940 941 bv.bv_page = page; 942 bv.bv_len = PAGE_SIZE; 943 bv.bv_offset = 0; 944 945 err = zram_bvec_rw(zram, &bv, index, offset, is_write); 946 out: 947 /* 948 * If I/O fails, just return error(ie, non-zero) without 949 * calling page_endio. 950 * It causes resubmit the I/O with bio request by upper functions 951 * of rw_page(e.g., swap_readpage, __swap_writepage) and 952 * bio->bi_end_io does things to handle the error 953 * (e.g., SetPageError, set_page_dirty and extra works). 954 */ 955 if (err == 0) 956 page_endio(page, is_write, 0); 957 return err; 958 } 959 960 static void zram_reset_device(struct zram *zram) 961 { 962 struct zcomp *comp; 963 u64 disksize; 964 965 down_write(&zram->init_lock); 966 967 zram->limit_pages = 0; 968 969 if (!init_done(zram)) { 970 up_write(&zram->init_lock); 971 return; 972 } 973 974 comp = zram->comp; 975 disksize = zram->disksize; 976 zram->disksize = 0; 977 978 set_capacity(zram->disk, 0); 979 part_stat_set_all(&zram->disk->part0, 0); 980 981 up_write(&zram->init_lock); 982 /* I/O operation under all of CPU are done so let's free */ 983 zram_meta_free(zram, disksize); 984 memset(&zram->stats, 0, sizeof(zram->stats)); 985 zcomp_destroy(comp); 986 } 987 988 static ssize_t disksize_store(struct device *dev, 989 struct device_attribute *attr, const char *buf, size_t len) 990 { 991 u64 disksize; 992 struct zcomp *comp; 993 struct zram *zram = dev_to_zram(dev); 994 int err; 995 996 disksize = memparse(buf, NULL); 997 if (!disksize) 998 return -EINVAL; 999 1000 down_write(&zram->init_lock); 1001 if (init_done(zram)) { 1002 pr_info("Cannot change disksize for initialized device\n"); 1003 err = -EBUSY; 1004 goto out_unlock; 1005 } 1006 1007 disksize = PAGE_ALIGN(disksize); 1008 if (!zram_meta_alloc(zram, disksize)) { 1009 err = -ENOMEM; 1010 goto out_unlock; 1011 } 1012 1013 comp = zcomp_create(zram->compressor); 1014 if (IS_ERR(comp)) { 1015 pr_err("Cannot initialise %s compressing backend\n", 1016 zram->compressor); 1017 err = PTR_ERR(comp); 1018 goto out_free_meta; 1019 } 1020 1021 zram->comp = comp; 1022 zram->disksize = disksize; 1023 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1024 zram_revalidate_disk(zram); 1025 up_write(&zram->init_lock); 1026 1027 return len; 1028 1029 out_free_meta: 1030 zram_meta_free(zram, disksize); 1031 out_unlock: 1032 up_write(&zram->init_lock); 1033 return err; 1034 } 1035 1036 static ssize_t reset_store(struct device *dev, 1037 struct device_attribute *attr, const char *buf, size_t len) 1038 { 1039 int ret; 1040 unsigned short do_reset; 1041 struct zram *zram; 1042 struct block_device *bdev; 1043 1044 ret = kstrtou16(buf, 10, &do_reset); 1045 if (ret) 1046 return ret; 1047 1048 if (!do_reset) 1049 return -EINVAL; 1050 1051 zram = dev_to_zram(dev); 1052 bdev = bdget_disk(zram->disk, 0); 1053 if (!bdev) 1054 return -ENOMEM; 1055 1056 mutex_lock(&bdev->bd_mutex); 1057 /* Do not reset an active device or claimed device */ 1058 if (bdev->bd_openers || zram->claim) { 1059 mutex_unlock(&bdev->bd_mutex); 1060 bdput(bdev); 1061 return -EBUSY; 1062 } 1063 1064 /* From now on, anyone can't open /dev/zram[0-9] */ 1065 zram->claim = true; 1066 mutex_unlock(&bdev->bd_mutex); 1067 1068 /* Make sure all the pending I/O are finished */ 1069 fsync_bdev(bdev); 1070 zram_reset_device(zram); 1071 zram_revalidate_disk(zram); 1072 bdput(bdev); 1073 1074 mutex_lock(&bdev->bd_mutex); 1075 zram->claim = false; 1076 mutex_unlock(&bdev->bd_mutex); 1077 1078 return len; 1079 } 1080 1081 static int zram_open(struct block_device *bdev, fmode_t mode) 1082 { 1083 int ret = 0; 1084 struct zram *zram; 1085 1086 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1087 1088 zram = bdev->bd_disk->private_data; 1089 /* zram was claimed to reset so open request fails */ 1090 if (zram->claim) 1091 ret = -EBUSY; 1092 1093 return ret; 1094 } 1095 1096 static const struct block_device_operations zram_devops = { 1097 .open = zram_open, 1098 .swap_slot_free_notify = zram_slot_free_notify, 1099 .rw_page = zram_rw_page, 1100 .owner = THIS_MODULE 1101 }; 1102 1103 static DEVICE_ATTR_WO(compact); 1104 static DEVICE_ATTR_RW(disksize); 1105 static DEVICE_ATTR_RO(initstate); 1106 static DEVICE_ATTR_WO(reset); 1107 static DEVICE_ATTR_WO(mem_limit); 1108 static DEVICE_ATTR_WO(mem_used_max); 1109 static DEVICE_ATTR_RW(max_comp_streams); 1110 static DEVICE_ATTR_RW(comp_algorithm); 1111 1112 static struct attribute *zram_disk_attrs[] = { 1113 &dev_attr_disksize.attr, 1114 &dev_attr_initstate.attr, 1115 &dev_attr_reset.attr, 1116 &dev_attr_compact.attr, 1117 &dev_attr_mem_limit.attr, 1118 &dev_attr_mem_used_max.attr, 1119 &dev_attr_max_comp_streams.attr, 1120 &dev_attr_comp_algorithm.attr, 1121 &dev_attr_io_stat.attr, 1122 &dev_attr_mm_stat.attr, 1123 &dev_attr_debug_stat.attr, 1124 NULL, 1125 }; 1126 1127 static const struct attribute_group zram_disk_attr_group = { 1128 .attrs = zram_disk_attrs, 1129 }; 1130 1131 /* 1132 * Allocate and initialize new zram device. the function returns 1133 * '>= 0' device_id upon success, and negative value otherwise. 1134 */ 1135 static int zram_add(void) 1136 { 1137 struct zram *zram; 1138 struct request_queue *queue; 1139 int ret, device_id; 1140 1141 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1142 if (!zram) 1143 return -ENOMEM; 1144 1145 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1146 if (ret < 0) 1147 goto out_free_dev; 1148 device_id = ret; 1149 1150 init_rwsem(&zram->init_lock); 1151 1152 queue = blk_alloc_queue(GFP_KERNEL); 1153 if (!queue) { 1154 pr_err("Error allocating disk queue for device %d\n", 1155 device_id); 1156 ret = -ENOMEM; 1157 goto out_free_idr; 1158 } 1159 1160 blk_queue_make_request(queue, zram_make_request); 1161 1162 /* gendisk structure */ 1163 zram->disk = alloc_disk(1); 1164 if (!zram->disk) { 1165 pr_err("Error allocating disk structure for device %d\n", 1166 device_id); 1167 ret = -ENOMEM; 1168 goto out_free_queue; 1169 } 1170 1171 zram->disk->major = zram_major; 1172 zram->disk->first_minor = device_id; 1173 zram->disk->fops = &zram_devops; 1174 zram->disk->queue = queue; 1175 zram->disk->queue->queuedata = zram; 1176 zram->disk->private_data = zram; 1177 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1178 1179 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1180 set_capacity(zram->disk, 0); 1181 /* zram devices sort of resembles non-rotational disks */ 1182 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1183 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1184 /* 1185 * To ensure that we always get PAGE_SIZE aligned 1186 * and n*PAGE_SIZED sized I/O requests. 1187 */ 1188 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1189 blk_queue_logical_block_size(zram->disk->queue, 1190 ZRAM_LOGICAL_BLOCK_SIZE); 1191 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1192 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1193 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1194 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1195 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1196 1197 /* 1198 * zram_bio_discard() will clear all logical blocks if logical block 1199 * size is identical with physical block size(PAGE_SIZE). But if it is 1200 * different, we will skip discarding some parts of logical blocks in 1201 * the part of the request range which isn't aligned to physical block 1202 * size. So we can't ensure that all discarded logical blocks are 1203 * zeroed. 1204 */ 1205 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1206 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1207 1208 add_disk(zram->disk); 1209 1210 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1211 &zram_disk_attr_group); 1212 if (ret < 0) { 1213 pr_err("Error creating sysfs group for device %d\n", 1214 device_id); 1215 goto out_free_disk; 1216 } 1217 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1218 1219 pr_info("Added device: %s\n", zram->disk->disk_name); 1220 return device_id; 1221 1222 out_free_disk: 1223 del_gendisk(zram->disk); 1224 put_disk(zram->disk); 1225 out_free_queue: 1226 blk_cleanup_queue(queue); 1227 out_free_idr: 1228 idr_remove(&zram_index_idr, device_id); 1229 out_free_dev: 1230 kfree(zram); 1231 return ret; 1232 } 1233 1234 static int zram_remove(struct zram *zram) 1235 { 1236 struct block_device *bdev; 1237 1238 bdev = bdget_disk(zram->disk, 0); 1239 if (!bdev) 1240 return -ENOMEM; 1241 1242 mutex_lock(&bdev->bd_mutex); 1243 if (bdev->bd_openers || zram->claim) { 1244 mutex_unlock(&bdev->bd_mutex); 1245 bdput(bdev); 1246 return -EBUSY; 1247 } 1248 1249 zram->claim = true; 1250 mutex_unlock(&bdev->bd_mutex); 1251 1252 /* 1253 * Remove sysfs first, so no one will perform a disksize 1254 * store while we destroy the devices. This also helps during 1255 * hot_remove -- zram_reset_device() is the last holder of 1256 * ->init_lock, no later/concurrent disksize_store() or any 1257 * other sysfs handlers are possible. 1258 */ 1259 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1260 &zram_disk_attr_group); 1261 1262 /* Make sure all the pending I/O are finished */ 1263 fsync_bdev(bdev); 1264 zram_reset_device(zram); 1265 bdput(bdev); 1266 1267 pr_info("Removed device: %s\n", zram->disk->disk_name); 1268 1269 blk_cleanup_queue(zram->disk->queue); 1270 del_gendisk(zram->disk); 1271 put_disk(zram->disk); 1272 kfree(zram); 1273 return 0; 1274 } 1275 1276 /* zram-control sysfs attributes */ 1277 1278 /* 1279 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 1280 * sense that reading from this file does alter the state of your system -- it 1281 * creates a new un-initialized zram device and returns back this device's 1282 * device_id (or an error code if it fails to create a new device). 1283 */ 1284 static ssize_t hot_add_show(struct class *class, 1285 struct class_attribute *attr, 1286 char *buf) 1287 { 1288 int ret; 1289 1290 mutex_lock(&zram_index_mutex); 1291 ret = zram_add(); 1292 mutex_unlock(&zram_index_mutex); 1293 1294 if (ret < 0) 1295 return ret; 1296 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 1297 } 1298 static CLASS_ATTR_RO(hot_add); 1299 1300 static ssize_t hot_remove_store(struct class *class, 1301 struct class_attribute *attr, 1302 const char *buf, 1303 size_t count) 1304 { 1305 struct zram *zram; 1306 int ret, dev_id; 1307 1308 /* dev_id is gendisk->first_minor, which is `int' */ 1309 ret = kstrtoint(buf, 10, &dev_id); 1310 if (ret) 1311 return ret; 1312 if (dev_id < 0) 1313 return -EINVAL; 1314 1315 mutex_lock(&zram_index_mutex); 1316 1317 zram = idr_find(&zram_index_idr, dev_id); 1318 if (zram) { 1319 ret = zram_remove(zram); 1320 if (!ret) 1321 idr_remove(&zram_index_idr, dev_id); 1322 } else { 1323 ret = -ENODEV; 1324 } 1325 1326 mutex_unlock(&zram_index_mutex); 1327 return ret ? ret : count; 1328 } 1329 static CLASS_ATTR_WO(hot_remove); 1330 1331 static struct attribute *zram_control_class_attrs[] = { 1332 &class_attr_hot_add.attr, 1333 &class_attr_hot_remove.attr, 1334 NULL, 1335 }; 1336 ATTRIBUTE_GROUPS(zram_control_class); 1337 1338 static struct class zram_control_class = { 1339 .name = "zram-control", 1340 .owner = THIS_MODULE, 1341 .class_groups = zram_control_class_groups, 1342 }; 1343 1344 static int zram_remove_cb(int id, void *ptr, void *data) 1345 { 1346 zram_remove(ptr); 1347 return 0; 1348 } 1349 1350 static void destroy_devices(void) 1351 { 1352 class_unregister(&zram_control_class); 1353 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 1354 idr_destroy(&zram_index_idr); 1355 unregister_blkdev(zram_major, "zram"); 1356 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1357 } 1358 1359 static int __init zram_init(void) 1360 { 1361 int ret; 1362 1363 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 1364 zcomp_cpu_up_prepare, zcomp_cpu_dead); 1365 if (ret < 0) 1366 return ret; 1367 1368 ret = class_register(&zram_control_class); 1369 if (ret) { 1370 pr_err("Unable to register zram-control class\n"); 1371 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1372 return ret; 1373 } 1374 1375 zram_major = register_blkdev(0, "zram"); 1376 if (zram_major <= 0) { 1377 pr_err("Unable to get major number\n"); 1378 class_unregister(&zram_control_class); 1379 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 1380 return -EBUSY; 1381 } 1382 1383 while (num_devices != 0) { 1384 mutex_lock(&zram_index_mutex); 1385 ret = zram_add(); 1386 mutex_unlock(&zram_index_mutex); 1387 if (ret < 0) 1388 goto out_error; 1389 num_devices--; 1390 } 1391 1392 return 0; 1393 1394 out_error: 1395 destroy_devices(); 1396 return ret; 1397 } 1398 1399 static void __exit zram_exit(void) 1400 { 1401 destroy_devices(); 1402 } 1403 1404 module_init(zram_init); 1405 module_exit(zram_exit); 1406 1407 module_param(num_devices, uint, 0); 1408 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 1409 1410 MODULE_LICENSE("Dual BSD/GPL"); 1411 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1412 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1413