1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #ifdef CONFIG_ZRAM_DEBUG 19 #define DEBUG 20 #endif 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/bio.h> 25 #include <linux/bitops.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> 28 #include <linux/device.h> 29 #include <linux/genhd.h> 30 #include <linux/highmem.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/vmalloc.h> 34 #include <linux/err.h> 35 36 #include "zram_drv.h" 37 38 /* Globals */ 39 static int zram_major; 40 static struct zram *zram_devices; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 #define ZRAM_ATTR_RO(name) \ 47 static ssize_t zram_attr_##name##_show(struct device *d, \ 48 struct device_attribute *attr, char *b) \ 49 { \ 50 struct zram *zram = dev_to_zram(d); \ 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 52 (u64)atomic64_read(&zram->stats.name)); \ 53 } \ 54 static struct device_attribute dev_attr_##name = \ 55 __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL); 56 57 static inline int init_done(struct zram *zram) 58 { 59 return zram->meta != NULL; 60 } 61 62 static inline struct zram *dev_to_zram(struct device *dev) 63 { 64 return (struct zram *)dev_to_disk(dev)->private_data; 65 } 66 67 static ssize_t disksize_show(struct device *dev, 68 struct device_attribute *attr, char *buf) 69 { 70 struct zram *zram = dev_to_zram(dev); 71 72 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 73 } 74 75 static ssize_t initstate_show(struct device *dev, 76 struct device_attribute *attr, char *buf) 77 { 78 u32 val; 79 struct zram *zram = dev_to_zram(dev); 80 81 down_read(&zram->init_lock); 82 val = init_done(zram); 83 up_read(&zram->init_lock); 84 85 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 86 } 87 88 static ssize_t orig_data_size_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct zram *zram = dev_to_zram(dev); 92 93 return scnprintf(buf, PAGE_SIZE, "%llu\n", 94 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 95 } 96 97 static ssize_t mem_used_total_show(struct device *dev, 98 struct device_attribute *attr, char *buf) 99 { 100 u64 val = 0; 101 struct zram *zram = dev_to_zram(dev); 102 struct zram_meta *meta = zram->meta; 103 104 down_read(&zram->init_lock); 105 if (init_done(zram)) 106 val = zs_get_total_pages(meta->mem_pool); 107 up_read(&zram->init_lock); 108 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 110 } 111 112 static ssize_t max_comp_streams_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 int val; 116 struct zram *zram = dev_to_zram(dev); 117 118 down_read(&zram->init_lock); 119 val = zram->max_comp_streams; 120 up_read(&zram->init_lock); 121 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 123 } 124 125 static ssize_t mem_limit_show(struct device *dev, 126 struct device_attribute *attr, char *buf) 127 { 128 u64 val; 129 struct zram *zram = dev_to_zram(dev); 130 131 down_read(&zram->init_lock); 132 val = zram->limit_pages; 133 up_read(&zram->init_lock); 134 135 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 136 } 137 138 static ssize_t mem_limit_store(struct device *dev, 139 struct device_attribute *attr, const char *buf, size_t len) 140 { 141 u64 limit; 142 char *tmp; 143 struct zram *zram = dev_to_zram(dev); 144 145 limit = memparse(buf, &tmp); 146 if (buf == tmp) /* no chars parsed, invalid input */ 147 return -EINVAL; 148 149 down_write(&zram->init_lock); 150 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 151 up_write(&zram->init_lock); 152 153 return len; 154 } 155 156 static ssize_t mem_used_max_show(struct device *dev, 157 struct device_attribute *attr, char *buf) 158 { 159 u64 val = 0; 160 struct zram *zram = dev_to_zram(dev); 161 162 down_read(&zram->init_lock); 163 if (init_done(zram)) 164 val = atomic_long_read(&zram->stats.max_used_pages); 165 up_read(&zram->init_lock); 166 167 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 168 } 169 170 static ssize_t mem_used_max_store(struct device *dev, 171 struct device_attribute *attr, const char *buf, size_t len) 172 { 173 int err; 174 unsigned long val; 175 struct zram *zram = dev_to_zram(dev); 176 struct zram_meta *meta = zram->meta; 177 178 err = kstrtoul(buf, 10, &val); 179 if (err || val != 0) 180 return -EINVAL; 181 182 down_read(&zram->init_lock); 183 if (init_done(zram)) 184 atomic_long_set(&zram->stats.max_used_pages, 185 zs_get_total_pages(meta->mem_pool)); 186 up_read(&zram->init_lock); 187 188 return len; 189 } 190 191 static ssize_t max_comp_streams_store(struct device *dev, 192 struct device_attribute *attr, const char *buf, size_t len) 193 { 194 int num; 195 struct zram *zram = dev_to_zram(dev); 196 int ret; 197 198 ret = kstrtoint(buf, 0, &num); 199 if (ret < 0) 200 return ret; 201 if (num < 1) 202 return -EINVAL; 203 204 down_write(&zram->init_lock); 205 if (init_done(zram)) { 206 if (!zcomp_set_max_streams(zram->comp, num)) { 207 pr_info("Cannot change max compression streams\n"); 208 ret = -EINVAL; 209 goto out; 210 } 211 } 212 213 zram->max_comp_streams = num; 214 ret = len; 215 out: 216 up_write(&zram->init_lock); 217 return ret; 218 } 219 220 static ssize_t comp_algorithm_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 size_t sz; 224 struct zram *zram = dev_to_zram(dev); 225 226 down_read(&zram->init_lock); 227 sz = zcomp_available_show(zram->compressor, buf); 228 up_read(&zram->init_lock); 229 230 return sz; 231 } 232 233 static ssize_t comp_algorithm_store(struct device *dev, 234 struct device_attribute *attr, const char *buf, size_t len) 235 { 236 struct zram *zram = dev_to_zram(dev); 237 down_write(&zram->init_lock); 238 if (init_done(zram)) { 239 up_write(&zram->init_lock); 240 pr_info("Can't change algorithm for initialized device\n"); 241 return -EBUSY; 242 } 243 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 244 up_write(&zram->init_lock); 245 return len; 246 } 247 248 /* flag operations needs meta->tb_lock */ 249 static int zram_test_flag(struct zram_meta *meta, u32 index, 250 enum zram_pageflags flag) 251 { 252 return meta->table[index].value & BIT(flag); 253 } 254 255 static void zram_set_flag(struct zram_meta *meta, u32 index, 256 enum zram_pageflags flag) 257 { 258 meta->table[index].value |= BIT(flag); 259 } 260 261 static void zram_clear_flag(struct zram_meta *meta, u32 index, 262 enum zram_pageflags flag) 263 { 264 meta->table[index].value &= ~BIT(flag); 265 } 266 267 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 268 { 269 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 270 } 271 272 static void zram_set_obj_size(struct zram_meta *meta, 273 u32 index, size_t size) 274 { 275 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 276 277 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 278 } 279 280 static inline int is_partial_io(struct bio_vec *bvec) 281 { 282 return bvec->bv_len != PAGE_SIZE; 283 } 284 285 /* 286 * Check if request is within bounds and aligned on zram logical blocks. 287 */ 288 static inline int valid_io_request(struct zram *zram, struct bio *bio) 289 { 290 u64 start, end, bound; 291 292 /* unaligned request */ 293 if (unlikely(bio->bi_iter.bi_sector & 294 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 295 return 0; 296 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 297 return 0; 298 299 start = bio->bi_iter.bi_sector; 300 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 301 bound = zram->disksize >> SECTOR_SHIFT; 302 /* out of range range */ 303 if (unlikely(start >= bound || end > bound || start > end)) 304 return 0; 305 306 /* I/O request is valid */ 307 return 1; 308 } 309 310 static void zram_meta_free(struct zram_meta *meta) 311 { 312 zs_destroy_pool(meta->mem_pool); 313 vfree(meta->table); 314 kfree(meta); 315 } 316 317 static struct zram_meta *zram_meta_alloc(u64 disksize) 318 { 319 size_t num_pages; 320 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 321 if (!meta) 322 goto out; 323 324 num_pages = disksize >> PAGE_SHIFT; 325 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 326 if (!meta->table) { 327 pr_err("Error allocating zram address table\n"); 328 goto free_meta; 329 } 330 331 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM); 332 if (!meta->mem_pool) { 333 pr_err("Error creating memory pool\n"); 334 goto free_table; 335 } 336 337 return meta; 338 339 free_table: 340 vfree(meta->table); 341 free_meta: 342 kfree(meta); 343 meta = NULL; 344 out: 345 return meta; 346 } 347 348 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 349 { 350 if (*offset + bvec->bv_len >= PAGE_SIZE) 351 (*index)++; 352 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 353 } 354 355 static int page_zero_filled(void *ptr) 356 { 357 unsigned int pos; 358 unsigned long *page; 359 360 page = (unsigned long *)ptr; 361 362 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 363 if (page[pos]) 364 return 0; 365 } 366 367 return 1; 368 } 369 370 static void handle_zero_page(struct bio_vec *bvec) 371 { 372 struct page *page = bvec->bv_page; 373 void *user_mem; 374 375 user_mem = kmap_atomic(page); 376 if (is_partial_io(bvec)) 377 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 378 else 379 clear_page(user_mem); 380 kunmap_atomic(user_mem); 381 382 flush_dcache_page(page); 383 } 384 385 386 /* 387 * To protect concurrent access to the same index entry, 388 * caller should hold this table index entry's bit_spinlock to 389 * indicate this index entry is accessing. 390 */ 391 static void zram_free_page(struct zram *zram, size_t index) 392 { 393 struct zram_meta *meta = zram->meta; 394 unsigned long handle = meta->table[index].handle; 395 396 if (unlikely(!handle)) { 397 /* 398 * No memory is allocated for zero filled pages. 399 * Simply clear zero page flag. 400 */ 401 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 402 zram_clear_flag(meta, index, ZRAM_ZERO); 403 atomic64_dec(&zram->stats.zero_pages); 404 } 405 return; 406 } 407 408 zs_free(meta->mem_pool, handle); 409 410 atomic64_sub(zram_get_obj_size(meta, index), 411 &zram->stats.compr_data_size); 412 atomic64_dec(&zram->stats.pages_stored); 413 414 meta->table[index].handle = 0; 415 zram_set_obj_size(meta, index, 0); 416 } 417 418 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 419 { 420 int ret = 0; 421 unsigned char *cmem; 422 struct zram_meta *meta = zram->meta; 423 unsigned long handle; 424 size_t size; 425 426 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 427 handle = meta->table[index].handle; 428 size = zram_get_obj_size(meta, index); 429 430 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 431 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 432 clear_page(mem); 433 return 0; 434 } 435 436 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 437 if (size == PAGE_SIZE) 438 copy_page(mem, cmem); 439 else 440 ret = zcomp_decompress(zram->comp, cmem, size, mem); 441 zs_unmap_object(meta->mem_pool, handle); 442 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 443 444 /* Should NEVER happen. Return bio error if it does. */ 445 if (unlikely(ret)) { 446 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 447 return ret; 448 } 449 450 return 0; 451 } 452 453 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 454 u32 index, int offset, struct bio *bio) 455 { 456 int ret; 457 struct page *page; 458 unsigned char *user_mem, *uncmem = NULL; 459 struct zram_meta *meta = zram->meta; 460 page = bvec->bv_page; 461 462 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 463 if (unlikely(!meta->table[index].handle) || 464 zram_test_flag(meta, index, ZRAM_ZERO)) { 465 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 466 handle_zero_page(bvec); 467 return 0; 468 } 469 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 470 471 if (is_partial_io(bvec)) 472 /* Use a temporary buffer to decompress the page */ 473 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 474 475 user_mem = kmap_atomic(page); 476 if (!is_partial_io(bvec)) 477 uncmem = user_mem; 478 479 if (!uncmem) { 480 pr_info("Unable to allocate temp memory\n"); 481 ret = -ENOMEM; 482 goto out_cleanup; 483 } 484 485 ret = zram_decompress_page(zram, uncmem, index); 486 /* Should NEVER happen. Return bio error if it does. */ 487 if (unlikely(ret)) 488 goto out_cleanup; 489 490 if (is_partial_io(bvec)) 491 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 492 bvec->bv_len); 493 494 flush_dcache_page(page); 495 ret = 0; 496 out_cleanup: 497 kunmap_atomic(user_mem); 498 if (is_partial_io(bvec)) 499 kfree(uncmem); 500 return ret; 501 } 502 503 static inline void update_used_max(struct zram *zram, 504 const unsigned long pages) 505 { 506 int old_max, cur_max; 507 508 old_max = atomic_long_read(&zram->stats.max_used_pages); 509 510 do { 511 cur_max = old_max; 512 if (pages > cur_max) 513 old_max = atomic_long_cmpxchg( 514 &zram->stats.max_used_pages, cur_max, pages); 515 } while (old_max != cur_max); 516 } 517 518 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 519 int offset) 520 { 521 int ret = 0; 522 size_t clen; 523 unsigned long handle; 524 struct page *page; 525 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 526 struct zram_meta *meta = zram->meta; 527 struct zcomp_strm *zstrm; 528 bool locked = false; 529 unsigned long alloced_pages; 530 531 page = bvec->bv_page; 532 if (is_partial_io(bvec)) { 533 /* 534 * This is a partial IO. We need to read the full page 535 * before to write the changes. 536 */ 537 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 538 if (!uncmem) { 539 ret = -ENOMEM; 540 goto out; 541 } 542 ret = zram_decompress_page(zram, uncmem, index); 543 if (ret) 544 goto out; 545 } 546 547 zstrm = zcomp_strm_find(zram->comp); 548 locked = true; 549 user_mem = kmap_atomic(page); 550 551 if (is_partial_io(bvec)) { 552 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 553 bvec->bv_len); 554 kunmap_atomic(user_mem); 555 user_mem = NULL; 556 } else { 557 uncmem = user_mem; 558 } 559 560 if (page_zero_filled(uncmem)) { 561 kunmap_atomic(user_mem); 562 /* Free memory associated with this sector now. */ 563 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 564 zram_free_page(zram, index); 565 zram_set_flag(meta, index, ZRAM_ZERO); 566 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 567 568 atomic64_inc(&zram->stats.zero_pages); 569 ret = 0; 570 goto out; 571 } 572 573 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 574 if (!is_partial_io(bvec)) { 575 kunmap_atomic(user_mem); 576 user_mem = NULL; 577 uncmem = NULL; 578 } 579 580 if (unlikely(ret)) { 581 pr_err("Compression failed! err=%d\n", ret); 582 goto out; 583 } 584 src = zstrm->buffer; 585 if (unlikely(clen > max_zpage_size)) { 586 clen = PAGE_SIZE; 587 if (is_partial_io(bvec)) 588 src = uncmem; 589 } 590 591 handle = zs_malloc(meta->mem_pool, clen); 592 if (!handle) { 593 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 594 index, clen); 595 ret = -ENOMEM; 596 goto out; 597 } 598 599 alloced_pages = zs_get_total_pages(meta->mem_pool); 600 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 601 zs_free(meta->mem_pool, handle); 602 ret = -ENOMEM; 603 goto out; 604 } 605 606 update_used_max(zram, alloced_pages); 607 608 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 609 610 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 611 src = kmap_atomic(page); 612 copy_page(cmem, src); 613 kunmap_atomic(src); 614 } else { 615 memcpy(cmem, src, clen); 616 } 617 618 zcomp_strm_release(zram->comp, zstrm); 619 locked = false; 620 zs_unmap_object(meta->mem_pool, handle); 621 622 /* 623 * Free memory associated with this sector 624 * before overwriting unused sectors. 625 */ 626 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 627 zram_free_page(zram, index); 628 629 meta->table[index].handle = handle; 630 zram_set_obj_size(meta, index, clen); 631 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 632 633 /* Update stats */ 634 atomic64_add(clen, &zram->stats.compr_data_size); 635 atomic64_inc(&zram->stats.pages_stored); 636 out: 637 if (locked) 638 zcomp_strm_release(zram->comp, zstrm); 639 if (is_partial_io(bvec)) 640 kfree(uncmem); 641 return ret; 642 } 643 644 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 645 int offset, struct bio *bio) 646 { 647 int ret; 648 int rw = bio_data_dir(bio); 649 650 if (rw == READ) { 651 atomic64_inc(&zram->stats.num_reads); 652 ret = zram_bvec_read(zram, bvec, index, offset, bio); 653 } else { 654 atomic64_inc(&zram->stats.num_writes); 655 ret = zram_bvec_write(zram, bvec, index, offset); 656 } 657 658 if (unlikely(ret)) { 659 if (rw == READ) 660 atomic64_inc(&zram->stats.failed_reads); 661 else 662 atomic64_inc(&zram->stats.failed_writes); 663 } 664 665 return ret; 666 } 667 668 /* 669 * zram_bio_discard - handler on discard request 670 * @index: physical block index in PAGE_SIZE units 671 * @offset: byte offset within physical block 672 */ 673 static void zram_bio_discard(struct zram *zram, u32 index, 674 int offset, struct bio *bio) 675 { 676 size_t n = bio->bi_iter.bi_size; 677 struct zram_meta *meta = zram->meta; 678 679 /* 680 * zram manages data in physical block size units. Because logical block 681 * size isn't identical with physical block size on some arch, we 682 * could get a discard request pointing to a specific offset within a 683 * certain physical block. Although we can handle this request by 684 * reading that physiclal block and decompressing and partially zeroing 685 * and re-compressing and then re-storing it, this isn't reasonable 686 * because our intent with a discard request is to save memory. So 687 * skipping this logical block is appropriate here. 688 */ 689 if (offset) { 690 if (n <= (PAGE_SIZE - offset)) 691 return; 692 693 n -= (PAGE_SIZE - offset); 694 index++; 695 } 696 697 while (n >= PAGE_SIZE) { 698 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 699 zram_free_page(zram, index); 700 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 701 atomic64_inc(&zram->stats.notify_free); 702 index++; 703 n -= PAGE_SIZE; 704 } 705 } 706 707 static void zram_reset_device(struct zram *zram, bool reset_capacity) 708 { 709 size_t index; 710 struct zram_meta *meta; 711 712 down_write(&zram->init_lock); 713 714 zram->limit_pages = 0; 715 716 if (!init_done(zram)) { 717 up_write(&zram->init_lock); 718 return; 719 } 720 721 meta = zram->meta; 722 /* Free all pages that are still in this zram device */ 723 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) { 724 unsigned long handle = meta->table[index].handle; 725 if (!handle) 726 continue; 727 728 zs_free(meta->mem_pool, handle); 729 } 730 731 zcomp_destroy(zram->comp); 732 zram->max_comp_streams = 1; 733 734 zram_meta_free(zram->meta); 735 zram->meta = NULL; 736 /* Reset stats */ 737 memset(&zram->stats, 0, sizeof(zram->stats)); 738 739 zram->disksize = 0; 740 if (reset_capacity) 741 set_capacity(zram->disk, 0); 742 743 up_write(&zram->init_lock); 744 745 /* 746 * Revalidate disk out of the init_lock to avoid lockdep splat. 747 * It's okay because disk's capacity is protected by init_lock 748 * so that revalidate_disk always sees up-to-date capacity. 749 */ 750 if (reset_capacity) 751 revalidate_disk(zram->disk); 752 } 753 754 static ssize_t disksize_store(struct device *dev, 755 struct device_attribute *attr, const char *buf, size_t len) 756 { 757 u64 disksize; 758 struct zcomp *comp; 759 struct zram_meta *meta; 760 struct zram *zram = dev_to_zram(dev); 761 int err; 762 763 disksize = memparse(buf, NULL); 764 if (!disksize) 765 return -EINVAL; 766 767 disksize = PAGE_ALIGN(disksize); 768 meta = zram_meta_alloc(disksize); 769 if (!meta) 770 return -ENOMEM; 771 772 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 773 if (IS_ERR(comp)) { 774 pr_info("Cannot initialise %s compressing backend\n", 775 zram->compressor); 776 err = PTR_ERR(comp); 777 goto out_free_meta; 778 } 779 780 down_write(&zram->init_lock); 781 if (init_done(zram)) { 782 pr_info("Cannot change disksize for initialized device\n"); 783 err = -EBUSY; 784 goto out_destroy_comp; 785 } 786 787 zram->meta = meta; 788 zram->comp = comp; 789 zram->disksize = disksize; 790 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 791 up_write(&zram->init_lock); 792 793 /* 794 * Revalidate disk out of the init_lock to avoid lockdep splat. 795 * It's okay because disk's capacity is protected by init_lock 796 * so that revalidate_disk always sees up-to-date capacity. 797 */ 798 revalidate_disk(zram->disk); 799 800 return len; 801 802 out_destroy_comp: 803 up_write(&zram->init_lock); 804 zcomp_destroy(comp); 805 out_free_meta: 806 zram_meta_free(meta); 807 return err; 808 } 809 810 static ssize_t reset_store(struct device *dev, 811 struct device_attribute *attr, const char *buf, size_t len) 812 { 813 int ret; 814 unsigned short do_reset; 815 struct zram *zram; 816 struct block_device *bdev; 817 818 zram = dev_to_zram(dev); 819 bdev = bdget_disk(zram->disk, 0); 820 821 if (!bdev) 822 return -ENOMEM; 823 824 /* Do not reset an active device! */ 825 if (bdev->bd_holders) { 826 ret = -EBUSY; 827 goto out; 828 } 829 830 ret = kstrtou16(buf, 10, &do_reset); 831 if (ret) 832 goto out; 833 834 if (!do_reset) { 835 ret = -EINVAL; 836 goto out; 837 } 838 839 /* Make sure all pending I/O is finished */ 840 fsync_bdev(bdev); 841 bdput(bdev); 842 843 zram_reset_device(zram, true); 844 return len; 845 846 out: 847 bdput(bdev); 848 return ret; 849 } 850 851 static void __zram_make_request(struct zram *zram, struct bio *bio) 852 { 853 int offset; 854 u32 index; 855 struct bio_vec bvec; 856 struct bvec_iter iter; 857 858 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 859 offset = (bio->bi_iter.bi_sector & 860 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 861 862 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 863 zram_bio_discard(zram, index, offset, bio); 864 bio_endio(bio, 0); 865 return; 866 } 867 868 bio_for_each_segment(bvec, bio, iter) { 869 int max_transfer_size = PAGE_SIZE - offset; 870 871 if (bvec.bv_len > max_transfer_size) { 872 /* 873 * zram_bvec_rw() can only make operation on a single 874 * zram page. Split the bio vector. 875 */ 876 struct bio_vec bv; 877 878 bv.bv_page = bvec.bv_page; 879 bv.bv_len = max_transfer_size; 880 bv.bv_offset = bvec.bv_offset; 881 882 if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0) 883 goto out; 884 885 bv.bv_len = bvec.bv_len - max_transfer_size; 886 bv.bv_offset += max_transfer_size; 887 if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0) 888 goto out; 889 } else 890 if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0) 891 goto out; 892 893 update_position(&index, &offset, &bvec); 894 } 895 896 set_bit(BIO_UPTODATE, &bio->bi_flags); 897 bio_endio(bio, 0); 898 return; 899 900 out: 901 bio_io_error(bio); 902 } 903 904 /* 905 * Handler function for all zram I/O requests. 906 */ 907 static void zram_make_request(struct request_queue *queue, struct bio *bio) 908 { 909 struct zram *zram = queue->queuedata; 910 911 down_read(&zram->init_lock); 912 if (unlikely(!init_done(zram))) 913 goto error; 914 915 if (!valid_io_request(zram, bio)) { 916 atomic64_inc(&zram->stats.invalid_io); 917 goto error; 918 } 919 920 __zram_make_request(zram, bio); 921 up_read(&zram->init_lock); 922 923 return; 924 925 error: 926 up_read(&zram->init_lock); 927 bio_io_error(bio); 928 } 929 930 static void zram_slot_free_notify(struct block_device *bdev, 931 unsigned long index) 932 { 933 struct zram *zram; 934 struct zram_meta *meta; 935 936 zram = bdev->bd_disk->private_data; 937 meta = zram->meta; 938 939 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 940 zram_free_page(zram, index); 941 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 942 atomic64_inc(&zram->stats.notify_free); 943 } 944 945 static const struct block_device_operations zram_devops = { 946 .swap_slot_free_notify = zram_slot_free_notify, 947 .owner = THIS_MODULE 948 }; 949 950 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR, 951 disksize_show, disksize_store); 952 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL); 953 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store); 954 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL); 955 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL); 956 static DEVICE_ATTR(mem_limit, S_IRUGO | S_IWUSR, mem_limit_show, 957 mem_limit_store); 958 static DEVICE_ATTR(mem_used_max, S_IRUGO | S_IWUSR, mem_used_max_show, 959 mem_used_max_store); 960 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR, 961 max_comp_streams_show, max_comp_streams_store); 962 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR, 963 comp_algorithm_show, comp_algorithm_store); 964 965 ZRAM_ATTR_RO(num_reads); 966 ZRAM_ATTR_RO(num_writes); 967 ZRAM_ATTR_RO(failed_reads); 968 ZRAM_ATTR_RO(failed_writes); 969 ZRAM_ATTR_RO(invalid_io); 970 ZRAM_ATTR_RO(notify_free); 971 ZRAM_ATTR_RO(zero_pages); 972 ZRAM_ATTR_RO(compr_data_size); 973 974 static struct attribute *zram_disk_attrs[] = { 975 &dev_attr_disksize.attr, 976 &dev_attr_initstate.attr, 977 &dev_attr_reset.attr, 978 &dev_attr_num_reads.attr, 979 &dev_attr_num_writes.attr, 980 &dev_attr_failed_reads.attr, 981 &dev_attr_failed_writes.attr, 982 &dev_attr_invalid_io.attr, 983 &dev_attr_notify_free.attr, 984 &dev_attr_zero_pages.attr, 985 &dev_attr_orig_data_size.attr, 986 &dev_attr_compr_data_size.attr, 987 &dev_attr_mem_used_total.attr, 988 &dev_attr_mem_limit.attr, 989 &dev_attr_mem_used_max.attr, 990 &dev_attr_max_comp_streams.attr, 991 &dev_attr_comp_algorithm.attr, 992 NULL, 993 }; 994 995 static struct attribute_group zram_disk_attr_group = { 996 .attrs = zram_disk_attrs, 997 }; 998 999 static int create_device(struct zram *zram, int device_id) 1000 { 1001 int ret = -ENOMEM; 1002 1003 init_rwsem(&zram->init_lock); 1004 1005 zram->queue = blk_alloc_queue(GFP_KERNEL); 1006 if (!zram->queue) { 1007 pr_err("Error allocating disk queue for device %d\n", 1008 device_id); 1009 goto out; 1010 } 1011 1012 blk_queue_make_request(zram->queue, zram_make_request); 1013 zram->queue->queuedata = zram; 1014 1015 /* gendisk structure */ 1016 zram->disk = alloc_disk(1); 1017 if (!zram->disk) { 1018 pr_warn("Error allocating disk structure for device %d\n", 1019 device_id); 1020 goto out_free_queue; 1021 } 1022 1023 zram->disk->major = zram_major; 1024 zram->disk->first_minor = device_id; 1025 zram->disk->fops = &zram_devops; 1026 zram->disk->queue = zram->queue; 1027 zram->disk->private_data = zram; 1028 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1029 1030 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1031 set_capacity(zram->disk, 0); 1032 /* zram devices sort of resembles non-rotational disks */ 1033 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1034 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1035 /* 1036 * To ensure that we always get PAGE_SIZE aligned 1037 * and n*PAGE_SIZED sized I/O requests. 1038 */ 1039 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1040 blk_queue_logical_block_size(zram->disk->queue, 1041 ZRAM_LOGICAL_BLOCK_SIZE); 1042 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1043 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1044 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1045 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 1046 /* 1047 * zram_bio_discard() will clear all logical blocks if logical block 1048 * size is identical with physical block size(PAGE_SIZE). But if it is 1049 * different, we will skip discarding some parts of logical blocks in 1050 * the part of the request range which isn't aligned to physical block 1051 * size. So we can't ensure that all discarded logical blocks are 1052 * zeroed. 1053 */ 1054 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1055 zram->disk->queue->limits.discard_zeroes_data = 1; 1056 else 1057 zram->disk->queue->limits.discard_zeroes_data = 0; 1058 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1059 1060 add_disk(zram->disk); 1061 1062 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1063 &zram_disk_attr_group); 1064 if (ret < 0) { 1065 pr_warn("Error creating sysfs group"); 1066 goto out_free_disk; 1067 } 1068 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1069 zram->meta = NULL; 1070 zram->max_comp_streams = 1; 1071 return 0; 1072 1073 out_free_disk: 1074 del_gendisk(zram->disk); 1075 put_disk(zram->disk); 1076 out_free_queue: 1077 blk_cleanup_queue(zram->queue); 1078 out: 1079 return ret; 1080 } 1081 1082 static void destroy_device(struct zram *zram) 1083 { 1084 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1085 &zram_disk_attr_group); 1086 1087 del_gendisk(zram->disk); 1088 put_disk(zram->disk); 1089 1090 blk_cleanup_queue(zram->queue); 1091 } 1092 1093 static int __init zram_init(void) 1094 { 1095 int ret, dev_id; 1096 1097 if (num_devices > max_num_devices) { 1098 pr_warn("Invalid value for num_devices: %u\n", 1099 num_devices); 1100 ret = -EINVAL; 1101 goto out; 1102 } 1103 1104 zram_major = register_blkdev(0, "zram"); 1105 if (zram_major <= 0) { 1106 pr_warn("Unable to get major number\n"); 1107 ret = -EBUSY; 1108 goto out; 1109 } 1110 1111 /* Allocate the device array and initialize each one */ 1112 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL); 1113 if (!zram_devices) { 1114 ret = -ENOMEM; 1115 goto unregister; 1116 } 1117 1118 for (dev_id = 0; dev_id < num_devices; dev_id++) { 1119 ret = create_device(&zram_devices[dev_id], dev_id); 1120 if (ret) 1121 goto free_devices; 1122 } 1123 1124 pr_info("Created %u device(s) ...\n", num_devices); 1125 1126 return 0; 1127 1128 free_devices: 1129 while (dev_id) 1130 destroy_device(&zram_devices[--dev_id]); 1131 kfree(zram_devices); 1132 unregister: 1133 unregister_blkdev(zram_major, "zram"); 1134 out: 1135 return ret; 1136 } 1137 1138 static void __exit zram_exit(void) 1139 { 1140 int i; 1141 struct zram *zram; 1142 1143 for (i = 0; i < num_devices; i++) { 1144 zram = &zram_devices[i]; 1145 1146 destroy_device(zram); 1147 /* 1148 * Shouldn't access zram->disk after destroy_device 1149 * because destroy_device already released zram->disk. 1150 */ 1151 zram_reset_device(zram, false); 1152 } 1153 1154 unregister_blkdev(zram_major, "zram"); 1155 1156 kfree(zram_devices); 1157 pr_debug("Cleanup done!\n"); 1158 } 1159 1160 module_init(zram_init); 1161 module_exit(zram_exit); 1162 1163 module_param(num_devices, uint, 0); 1164 MODULE_PARM_DESC(num_devices, "Number of zram devices"); 1165 1166 MODULE_LICENSE("Dual BSD/GPL"); 1167 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1168 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1169