1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 58 u32 index, int offset, struct bio *bio); 59 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 /* 178 * Check if request is within bounds and aligned on zram logical blocks. 179 */ 180 static inline bool valid_io_request(struct zram *zram, 181 sector_t start, unsigned int size) 182 { 183 u64 end, bound; 184 185 /* unaligned request */ 186 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 187 return false; 188 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 189 return false; 190 191 end = start + (size >> SECTOR_SHIFT); 192 bound = zram->disksize >> SECTOR_SHIFT; 193 /* out of range */ 194 if (unlikely(start >= bound || end > bound || start > end)) 195 return false; 196 197 /* I/O request is valid */ 198 return true; 199 } 200 201 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 202 { 203 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 204 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 205 } 206 207 static inline void update_used_max(struct zram *zram, 208 const unsigned long pages) 209 { 210 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 211 212 do { 213 if (cur_max >= pages) 214 return; 215 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 216 &cur_max, pages)); 217 } 218 219 static inline void zram_fill_page(void *ptr, unsigned long len, 220 unsigned long value) 221 { 222 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 223 memset_l(ptr, value, len / sizeof(unsigned long)); 224 } 225 226 static bool page_same_filled(void *ptr, unsigned long *element) 227 { 228 unsigned long *page; 229 unsigned long val; 230 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 231 232 page = (unsigned long *)ptr; 233 val = page[0]; 234 235 if (val != page[last_pos]) 236 return false; 237 238 for (pos = 1; pos < last_pos; pos++) { 239 if (val != page[pos]) 240 return false; 241 } 242 243 *element = val; 244 245 return true; 246 } 247 248 static ssize_t initstate_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 u32 val; 252 struct zram *zram = dev_to_zram(dev); 253 254 down_read(&zram->init_lock); 255 val = init_done(zram); 256 up_read(&zram->init_lock); 257 258 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 259 } 260 261 static ssize_t disksize_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct zram *zram = dev_to_zram(dev); 265 266 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 267 } 268 269 static ssize_t mem_limit_store(struct device *dev, 270 struct device_attribute *attr, const char *buf, size_t len) 271 { 272 u64 limit; 273 char *tmp; 274 struct zram *zram = dev_to_zram(dev); 275 276 limit = memparse(buf, &tmp); 277 if (buf == tmp) /* no chars parsed, invalid input */ 278 return -EINVAL; 279 280 down_write(&zram->init_lock); 281 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 282 up_write(&zram->init_lock); 283 284 return len; 285 } 286 287 static ssize_t mem_used_max_store(struct device *dev, 288 struct device_attribute *attr, const char *buf, size_t len) 289 { 290 int err; 291 unsigned long val; 292 struct zram *zram = dev_to_zram(dev); 293 294 err = kstrtoul(buf, 10, &val); 295 if (err || val != 0) 296 return -EINVAL; 297 298 down_read(&zram->init_lock); 299 if (init_done(zram)) { 300 atomic_long_set(&zram->stats.max_used_pages, 301 zs_get_total_pages(zram->mem_pool)); 302 } 303 up_read(&zram->init_lock); 304 305 return len; 306 } 307 308 /* 309 * Mark all pages which are older than or equal to cutoff as IDLE. 310 * Callers should hold the zram init lock in read mode 311 */ 312 static void mark_idle(struct zram *zram, ktime_t cutoff) 313 { 314 int is_idle = 1; 315 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 316 int index; 317 318 for (index = 0; index < nr_pages; index++) { 319 /* 320 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 321 * See the comment in writeback_store. 322 */ 323 zram_slot_lock(zram, index); 324 if (zram_allocated(zram, index) && 325 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 326 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 327 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); 328 #endif 329 if (is_idle) 330 zram_set_flag(zram, index, ZRAM_IDLE); 331 } 332 zram_slot_unlock(zram, index); 333 } 334 } 335 336 static ssize_t idle_store(struct device *dev, 337 struct device_attribute *attr, const char *buf, size_t len) 338 { 339 struct zram *zram = dev_to_zram(dev); 340 ktime_t cutoff_time = 0; 341 ssize_t rv = -EINVAL; 342 343 if (!sysfs_streq(buf, "all")) { 344 /* 345 * If it did not parse as 'all' try to treat it as an integer 346 * when we have memory tracking enabled. 347 */ 348 u64 age_sec; 349 350 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) 351 cutoff_time = ktime_sub(ktime_get_boottime(), 352 ns_to_ktime(age_sec * NSEC_PER_SEC)); 353 else 354 goto out; 355 } 356 357 down_read(&zram->init_lock); 358 if (!init_done(zram)) 359 goto out_unlock; 360 361 /* 362 * A cutoff_time of 0 marks everything as idle, this is the 363 * "all" behavior. 364 */ 365 mark_idle(zram, cutoff_time); 366 rv = len; 367 368 out_unlock: 369 up_read(&zram->init_lock); 370 out: 371 return rv; 372 } 373 374 #ifdef CONFIG_ZRAM_WRITEBACK 375 static ssize_t writeback_limit_enable_store(struct device *dev, 376 struct device_attribute *attr, const char *buf, size_t len) 377 { 378 struct zram *zram = dev_to_zram(dev); 379 u64 val; 380 ssize_t ret = -EINVAL; 381 382 if (kstrtoull(buf, 10, &val)) 383 return ret; 384 385 down_read(&zram->init_lock); 386 spin_lock(&zram->wb_limit_lock); 387 zram->wb_limit_enable = val; 388 spin_unlock(&zram->wb_limit_lock); 389 up_read(&zram->init_lock); 390 ret = len; 391 392 return ret; 393 } 394 395 static ssize_t writeback_limit_enable_show(struct device *dev, 396 struct device_attribute *attr, char *buf) 397 { 398 bool val; 399 struct zram *zram = dev_to_zram(dev); 400 401 down_read(&zram->init_lock); 402 spin_lock(&zram->wb_limit_lock); 403 val = zram->wb_limit_enable; 404 spin_unlock(&zram->wb_limit_lock); 405 up_read(&zram->init_lock); 406 407 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 408 } 409 410 static ssize_t writeback_limit_store(struct device *dev, 411 struct device_attribute *attr, const char *buf, size_t len) 412 { 413 struct zram *zram = dev_to_zram(dev); 414 u64 val; 415 ssize_t ret = -EINVAL; 416 417 if (kstrtoull(buf, 10, &val)) 418 return ret; 419 420 down_read(&zram->init_lock); 421 spin_lock(&zram->wb_limit_lock); 422 zram->bd_wb_limit = val; 423 spin_unlock(&zram->wb_limit_lock); 424 up_read(&zram->init_lock); 425 ret = len; 426 427 return ret; 428 } 429 430 static ssize_t writeback_limit_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 u64 val; 434 struct zram *zram = dev_to_zram(dev); 435 436 down_read(&zram->init_lock); 437 spin_lock(&zram->wb_limit_lock); 438 val = zram->bd_wb_limit; 439 spin_unlock(&zram->wb_limit_lock); 440 up_read(&zram->init_lock); 441 442 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 443 } 444 445 static void reset_bdev(struct zram *zram) 446 { 447 struct block_device *bdev; 448 449 if (!zram->backing_dev) 450 return; 451 452 bdev = zram->bdev; 453 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 454 /* hope filp_close flush all of IO */ 455 filp_close(zram->backing_dev, NULL); 456 zram->backing_dev = NULL; 457 zram->bdev = NULL; 458 zram->disk->fops = &zram_devops; 459 kvfree(zram->bitmap); 460 zram->bitmap = NULL; 461 } 462 463 static ssize_t backing_dev_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct file *file; 467 struct zram *zram = dev_to_zram(dev); 468 char *p; 469 ssize_t ret; 470 471 down_read(&zram->init_lock); 472 file = zram->backing_dev; 473 if (!file) { 474 memcpy(buf, "none\n", 5); 475 up_read(&zram->init_lock); 476 return 5; 477 } 478 479 p = file_path(file, buf, PAGE_SIZE - 1); 480 if (IS_ERR(p)) { 481 ret = PTR_ERR(p); 482 goto out; 483 } 484 485 ret = strlen(p); 486 memmove(buf, p, ret); 487 buf[ret++] = '\n'; 488 out: 489 up_read(&zram->init_lock); 490 return ret; 491 } 492 493 static ssize_t backing_dev_store(struct device *dev, 494 struct device_attribute *attr, const char *buf, size_t len) 495 { 496 char *file_name; 497 size_t sz; 498 struct file *backing_dev = NULL; 499 struct inode *inode; 500 struct address_space *mapping; 501 unsigned int bitmap_sz; 502 unsigned long nr_pages, *bitmap = NULL; 503 struct block_device *bdev = NULL; 504 int err; 505 struct zram *zram = dev_to_zram(dev); 506 507 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 508 if (!file_name) 509 return -ENOMEM; 510 511 down_write(&zram->init_lock); 512 if (init_done(zram)) { 513 pr_info("Can't setup backing device for initialized device\n"); 514 err = -EBUSY; 515 goto out; 516 } 517 518 strscpy(file_name, buf, PATH_MAX); 519 /* ignore trailing newline */ 520 sz = strlen(file_name); 521 if (sz > 0 && file_name[sz - 1] == '\n') 522 file_name[sz - 1] = 0x00; 523 524 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 525 if (IS_ERR(backing_dev)) { 526 err = PTR_ERR(backing_dev); 527 backing_dev = NULL; 528 goto out; 529 } 530 531 mapping = backing_dev->f_mapping; 532 inode = mapping->host; 533 534 /* Support only block device in this moment */ 535 if (!S_ISBLK(inode->i_mode)) { 536 err = -ENOTBLK; 537 goto out; 538 } 539 540 bdev = blkdev_get_by_dev(inode->i_rdev, 541 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 542 if (IS_ERR(bdev)) { 543 err = PTR_ERR(bdev); 544 bdev = NULL; 545 goto out; 546 } 547 548 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 549 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 550 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 551 if (!bitmap) { 552 err = -ENOMEM; 553 goto out; 554 } 555 556 reset_bdev(zram); 557 558 zram->bdev = bdev; 559 zram->backing_dev = backing_dev; 560 zram->bitmap = bitmap; 561 zram->nr_pages = nr_pages; 562 up_write(&zram->init_lock); 563 564 pr_info("setup backing device %s\n", file_name); 565 kfree(file_name); 566 567 return len; 568 out: 569 kvfree(bitmap); 570 571 if (bdev) 572 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 573 574 if (backing_dev) 575 filp_close(backing_dev, NULL); 576 577 up_write(&zram->init_lock); 578 579 kfree(file_name); 580 581 return err; 582 } 583 584 static unsigned long alloc_block_bdev(struct zram *zram) 585 { 586 unsigned long blk_idx = 1; 587 retry: 588 /* skip 0 bit to confuse zram.handle = 0 */ 589 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 590 if (blk_idx == zram->nr_pages) 591 return 0; 592 593 if (test_and_set_bit(blk_idx, zram->bitmap)) 594 goto retry; 595 596 atomic64_inc(&zram->stats.bd_count); 597 return blk_idx; 598 } 599 600 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 601 { 602 int was_set; 603 604 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 605 WARN_ON_ONCE(!was_set); 606 atomic64_dec(&zram->stats.bd_count); 607 } 608 609 static void zram_page_end_io(struct bio *bio) 610 { 611 struct page *page = bio_first_page_all(bio); 612 613 page_endio(page, op_is_write(bio_op(bio)), 614 blk_status_to_errno(bio->bi_status)); 615 bio_put(bio); 616 } 617 618 /* 619 * Returns 1 if the submission is successful. 620 */ 621 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 622 unsigned long entry, struct bio *parent) 623 { 624 struct bio *bio; 625 626 bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ, 627 GFP_NOIO); 628 if (!bio) 629 return -ENOMEM; 630 631 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 632 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 633 bio_put(bio); 634 return -EIO; 635 } 636 637 if (!parent) 638 bio->bi_end_io = zram_page_end_io; 639 else 640 bio_chain(bio, parent); 641 642 submit_bio(bio); 643 return 1; 644 } 645 646 #define PAGE_WB_SIG "page_index=" 647 648 #define PAGE_WRITEBACK 0 649 #define HUGE_WRITEBACK (1<<0) 650 #define IDLE_WRITEBACK (1<<1) 651 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 652 653 static ssize_t writeback_store(struct device *dev, 654 struct device_attribute *attr, const char *buf, size_t len) 655 { 656 struct zram *zram = dev_to_zram(dev); 657 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 658 unsigned long index = 0; 659 struct bio bio; 660 struct bio_vec bio_vec; 661 struct page *page; 662 ssize_t ret = len; 663 int mode, err; 664 unsigned long blk_idx = 0; 665 666 if (sysfs_streq(buf, "idle")) 667 mode = IDLE_WRITEBACK; 668 else if (sysfs_streq(buf, "huge")) 669 mode = HUGE_WRITEBACK; 670 else if (sysfs_streq(buf, "huge_idle")) 671 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 672 else if (sysfs_streq(buf, "incompressible")) 673 mode = INCOMPRESSIBLE_WRITEBACK; 674 else { 675 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 676 return -EINVAL; 677 678 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 679 index >= nr_pages) 680 return -EINVAL; 681 682 nr_pages = 1; 683 mode = PAGE_WRITEBACK; 684 } 685 686 down_read(&zram->init_lock); 687 if (!init_done(zram)) { 688 ret = -EINVAL; 689 goto release_init_lock; 690 } 691 692 if (!zram->backing_dev) { 693 ret = -ENODEV; 694 goto release_init_lock; 695 } 696 697 page = alloc_page(GFP_KERNEL); 698 if (!page) { 699 ret = -ENOMEM; 700 goto release_init_lock; 701 } 702 703 for (; nr_pages != 0; index++, nr_pages--) { 704 struct bio_vec bvec; 705 706 bvec.bv_page = page; 707 bvec.bv_len = PAGE_SIZE; 708 bvec.bv_offset = 0; 709 710 spin_lock(&zram->wb_limit_lock); 711 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 712 spin_unlock(&zram->wb_limit_lock); 713 ret = -EIO; 714 break; 715 } 716 spin_unlock(&zram->wb_limit_lock); 717 718 if (!blk_idx) { 719 blk_idx = alloc_block_bdev(zram); 720 if (!blk_idx) { 721 ret = -ENOSPC; 722 break; 723 } 724 } 725 726 zram_slot_lock(zram, index); 727 if (!zram_allocated(zram, index)) 728 goto next; 729 730 if (zram_test_flag(zram, index, ZRAM_WB) || 731 zram_test_flag(zram, index, ZRAM_SAME) || 732 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 733 goto next; 734 735 if (mode & IDLE_WRITEBACK && 736 !zram_test_flag(zram, index, ZRAM_IDLE)) 737 goto next; 738 if (mode & HUGE_WRITEBACK && 739 !zram_test_flag(zram, index, ZRAM_HUGE)) 740 goto next; 741 if (mode & INCOMPRESSIBLE_WRITEBACK && 742 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 743 goto next; 744 745 /* 746 * Clearing ZRAM_UNDER_WB is duty of caller. 747 * IOW, zram_free_page never clear it. 748 */ 749 zram_set_flag(zram, index, ZRAM_UNDER_WB); 750 /* Need for hugepage writeback racing */ 751 zram_set_flag(zram, index, ZRAM_IDLE); 752 zram_slot_unlock(zram, index); 753 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 754 zram_slot_lock(zram, index); 755 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 756 zram_clear_flag(zram, index, ZRAM_IDLE); 757 zram_slot_unlock(zram, index); 758 continue; 759 } 760 761 bio_init(&bio, zram->bdev, &bio_vec, 1, 762 REQ_OP_WRITE | REQ_SYNC); 763 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 764 765 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 766 bvec.bv_offset); 767 /* 768 * XXX: A single page IO would be inefficient for write 769 * but it would be not bad as starter. 770 */ 771 err = submit_bio_wait(&bio); 772 if (err) { 773 zram_slot_lock(zram, index); 774 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 775 zram_clear_flag(zram, index, ZRAM_IDLE); 776 zram_slot_unlock(zram, index); 777 /* 778 * BIO errors are not fatal, we continue and simply 779 * attempt to writeback the remaining objects (pages). 780 * At the same time we need to signal user-space that 781 * some writes (at least one, but also could be all of 782 * them) were not successful and we do so by returning 783 * the most recent BIO error. 784 */ 785 ret = err; 786 continue; 787 } 788 789 atomic64_inc(&zram->stats.bd_writes); 790 /* 791 * We released zram_slot_lock so need to check if the slot was 792 * changed. If there is freeing for the slot, we can catch it 793 * easily by zram_allocated. 794 * A subtle case is the slot is freed/reallocated/marked as 795 * ZRAM_IDLE again. To close the race, idle_store doesn't 796 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 797 * Thus, we could close the race by checking ZRAM_IDLE bit. 798 */ 799 zram_slot_lock(zram, index); 800 if (!zram_allocated(zram, index) || 801 !zram_test_flag(zram, index, ZRAM_IDLE)) { 802 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 803 zram_clear_flag(zram, index, ZRAM_IDLE); 804 goto next; 805 } 806 807 zram_free_page(zram, index); 808 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 809 zram_set_flag(zram, index, ZRAM_WB); 810 zram_set_element(zram, index, blk_idx); 811 blk_idx = 0; 812 atomic64_inc(&zram->stats.pages_stored); 813 spin_lock(&zram->wb_limit_lock); 814 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 815 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 816 spin_unlock(&zram->wb_limit_lock); 817 next: 818 zram_slot_unlock(zram, index); 819 } 820 821 if (blk_idx) 822 free_block_bdev(zram, blk_idx); 823 __free_page(page); 824 release_init_lock: 825 up_read(&zram->init_lock); 826 827 return ret; 828 } 829 830 struct zram_work { 831 struct work_struct work; 832 struct zram *zram; 833 unsigned long entry; 834 struct bio *bio; 835 struct bio_vec bvec; 836 }; 837 838 #if PAGE_SIZE != 4096 839 static void zram_sync_read(struct work_struct *work) 840 { 841 struct zram_work *zw = container_of(work, struct zram_work, work); 842 struct zram *zram = zw->zram; 843 unsigned long entry = zw->entry; 844 struct bio *bio = zw->bio; 845 846 read_from_bdev_async(zram, &zw->bvec, entry, bio); 847 } 848 849 /* 850 * Block layer want one ->submit_bio to be active at a time, so if we use 851 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 852 * use a worker thread context. 853 */ 854 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 855 unsigned long entry, struct bio *bio) 856 { 857 struct zram_work work; 858 859 work.bvec = *bvec; 860 work.zram = zram; 861 work.entry = entry; 862 work.bio = bio; 863 864 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 865 queue_work(system_unbound_wq, &work.work); 866 flush_work(&work.work); 867 destroy_work_on_stack(&work.work); 868 869 return 1; 870 } 871 #else 872 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 873 unsigned long entry, struct bio *bio) 874 { 875 WARN_ON(1); 876 return -EIO; 877 } 878 #endif 879 880 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 881 unsigned long entry, struct bio *parent, bool sync) 882 { 883 atomic64_inc(&zram->stats.bd_reads); 884 if (sync) 885 return read_from_bdev_sync(zram, bvec, entry, parent); 886 else 887 return read_from_bdev_async(zram, bvec, entry, parent); 888 } 889 #else 890 static inline void reset_bdev(struct zram *zram) {}; 891 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 892 unsigned long entry, struct bio *parent, bool sync) 893 { 894 return -EIO; 895 } 896 897 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 898 #endif 899 900 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 901 902 static struct dentry *zram_debugfs_root; 903 904 static void zram_debugfs_create(void) 905 { 906 zram_debugfs_root = debugfs_create_dir("zram", NULL); 907 } 908 909 static void zram_debugfs_destroy(void) 910 { 911 debugfs_remove_recursive(zram_debugfs_root); 912 } 913 914 static void zram_accessed(struct zram *zram, u32 index) 915 { 916 zram_clear_flag(zram, index, ZRAM_IDLE); 917 zram->table[index].ac_time = ktime_get_boottime(); 918 } 919 920 static ssize_t read_block_state(struct file *file, char __user *buf, 921 size_t count, loff_t *ppos) 922 { 923 char *kbuf; 924 ssize_t index, written = 0; 925 struct zram *zram = file->private_data; 926 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 927 struct timespec64 ts; 928 929 kbuf = kvmalloc(count, GFP_KERNEL); 930 if (!kbuf) 931 return -ENOMEM; 932 933 down_read(&zram->init_lock); 934 if (!init_done(zram)) { 935 up_read(&zram->init_lock); 936 kvfree(kbuf); 937 return -EINVAL; 938 } 939 940 for (index = *ppos; index < nr_pages; index++) { 941 int copied; 942 943 zram_slot_lock(zram, index); 944 if (!zram_allocated(zram, index)) 945 goto next; 946 947 ts = ktime_to_timespec64(zram->table[index].ac_time); 948 copied = snprintf(kbuf + written, count, 949 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 950 index, (s64)ts.tv_sec, 951 ts.tv_nsec / NSEC_PER_USEC, 952 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 953 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 954 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 955 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 956 zram_get_priority(zram, index) ? 'r' : '.', 957 zram_test_flag(zram, index, 958 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 959 960 if (count <= copied) { 961 zram_slot_unlock(zram, index); 962 break; 963 } 964 written += copied; 965 count -= copied; 966 next: 967 zram_slot_unlock(zram, index); 968 *ppos += 1; 969 } 970 971 up_read(&zram->init_lock); 972 if (copy_to_user(buf, kbuf, written)) 973 written = -EFAULT; 974 kvfree(kbuf); 975 976 return written; 977 } 978 979 static const struct file_operations proc_zram_block_state_op = { 980 .open = simple_open, 981 .read = read_block_state, 982 .llseek = default_llseek, 983 }; 984 985 static void zram_debugfs_register(struct zram *zram) 986 { 987 if (!zram_debugfs_root) 988 return; 989 990 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 991 zram_debugfs_root); 992 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 993 zram, &proc_zram_block_state_op); 994 } 995 996 static void zram_debugfs_unregister(struct zram *zram) 997 { 998 debugfs_remove_recursive(zram->debugfs_dir); 999 } 1000 #else 1001 static void zram_debugfs_create(void) {}; 1002 static void zram_debugfs_destroy(void) {}; 1003 static void zram_accessed(struct zram *zram, u32 index) 1004 { 1005 zram_clear_flag(zram, index, ZRAM_IDLE); 1006 }; 1007 static void zram_debugfs_register(struct zram *zram) {}; 1008 static void zram_debugfs_unregister(struct zram *zram) {}; 1009 #endif 1010 1011 /* 1012 * We switched to per-cpu streams and this attr is not needed anymore. 1013 * However, we will keep it around for some time, because: 1014 * a) we may revert per-cpu streams in the future 1015 * b) it's visible to user space and we need to follow our 2 years 1016 * retirement rule; but we already have a number of 'soon to be 1017 * altered' attrs, so max_comp_streams need to wait for the next 1018 * layoff cycle. 1019 */ 1020 static ssize_t max_comp_streams_show(struct device *dev, 1021 struct device_attribute *attr, char *buf) 1022 { 1023 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 1024 } 1025 1026 static ssize_t max_comp_streams_store(struct device *dev, 1027 struct device_attribute *attr, const char *buf, size_t len) 1028 { 1029 return len; 1030 } 1031 1032 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 1033 { 1034 /* Do not free statically defined compression algorithms */ 1035 if (zram->comp_algs[prio] != default_compressor) 1036 kfree(zram->comp_algs[prio]); 1037 1038 zram->comp_algs[prio] = alg; 1039 } 1040 1041 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 1042 { 1043 ssize_t sz; 1044 1045 down_read(&zram->init_lock); 1046 sz = zcomp_available_show(zram->comp_algs[prio], buf); 1047 up_read(&zram->init_lock); 1048 1049 return sz; 1050 } 1051 1052 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 1053 { 1054 char *compressor; 1055 size_t sz; 1056 1057 sz = strlen(buf); 1058 if (sz >= CRYPTO_MAX_ALG_NAME) 1059 return -E2BIG; 1060 1061 compressor = kstrdup(buf, GFP_KERNEL); 1062 if (!compressor) 1063 return -ENOMEM; 1064 1065 /* ignore trailing newline */ 1066 if (sz > 0 && compressor[sz - 1] == '\n') 1067 compressor[sz - 1] = 0x00; 1068 1069 if (!zcomp_available_algorithm(compressor)) { 1070 kfree(compressor); 1071 return -EINVAL; 1072 } 1073 1074 down_write(&zram->init_lock); 1075 if (init_done(zram)) { 1076 up_write(&zram->init_lock); 1077 kfree(compressor); 1078 pr_info("Can't change algorithm for initialized device\n"); 1079 return -EBUSY; 1080 } 1081 1082 comp_algorithm_set(zram, prio, compressor); 1083 up_write(&zram->init_lock); 1084 return 0; 1085 } 1086 1087 static ssize_t comp_algorithm_show(struct device *dev, 1088 struct device_attribute *attr, 1089 char *buf) 1090 { 1091 struct zram *zram = dev_to_zram(dev); 1092 1093 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1094 } 1095 1096 static ssize_t comp_algorithm_store(struct device *dev, 1097 struct device_attribute *attr, 1098 const char *buf, 1099 size_t len) 1100 { 1101 struct zram *zram = dev_to_zram(dev); 1102 int ret; 1103 1104 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1105 return ret ? ret : len; 1106 } 1107 1108 #ifdef CONFIG_ZRAM_MULTI_COMP 1109 static ssize_t recomp_algorithm_show(struct device *dev, 1110 struct device_attribute *attr, 1111 char *buf) 1112 { 1113 struct zram *zram = dev_to_zram(dev); 1114 ssize_t sz = 0; 1115 u32 prio; 1116 1117 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1118 if (!zram->comp_algs[prio]) 1119 continue; 1120 1121 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1122 sz += __comp_algorithm_show(zram, prio, buf + sz); 1123 } 1124 1125 return sz; 1126 } 1127 1128 static ssize_t recomp_algorithm_store(struct device *dev, 1129 struct device_attribute *attr, 1130 const char *buf, 1131 size_t len) 1132 { 1133 struct zram *zram = dev_to_zram(dev); 1134 int prio = ZRAM_SECONDARY_COMP; 1135 char *args, *param, *val; 1136 char *alg = NULL; 1137 int ret; 1138 1139 args = skip_spaces(buf); 1140 while (*args) { 1141 args = next_arg(args, ¶m, &val); 1142 1143 if (!val || !*val) 1144 return -EINVAL; 1145 1146 if (!strcmp(param, "algo")) { 1147 alg = val; 1148 continue; 1149 } 1150 1151 if (!strcmp(param, "priority")) { 1152 ret = kstrtoint(val, 10, &prio); 1153 if (ret) 1154 return ret; 1155 continue; 1156 } 1157 } 1158 1159 if (!alg) 1160 return -EINVAL; 1161 1162 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1163 return -EINVAL; 1164 1165 ret = __comp_algorithm_store(zram, prio, alg); 1166 return ret ? ret : len; 1167 } 1168 #endif 1169 1170 static ssize_t compact_store(struct device *dev, 1171 struct device_attribute *attr, const char *buf, size_t len) 1172 { 1173 struct zram *zram = dev_to_zram(dev); 1174 1175 down_read(&zram->init_lock); 1176 if (!init_done(zram)) { 1177 up_read(&zram->init_lock); 1178 return -EINVAL; 1179 } 1180 1181 zs_compact(zram->mem_pool); 1182 up_read(&zram->init_lock); 1183 1184 return len; 1185 } 1186 1187 static ssize_t io_stat_show(struct device *dev, 1188 struct device_attribute *attr, char *buf) 1189 { 1190 struct zram *zram = dev_to_zram(dev); 1191 ssize_t ret; 1192 1193 down_read(&zram->init_lock); 1194 ret = scnprintf(buf, PAGE_SIZE, 1195 "%8llu %8llu %8llu %8llu\n", 1196 (u64)atomic64_read(&zram->stats.failed_reads), 1197 (u64)atomic64_read(&zram->stats.failed_writes), 1198 (u64)atomic64_read(&zram->stats.invalid_io), 1199 (u64)atomic64_read(&zram->stats.notify_free)); 1200 up_read(&zram->init_lock); 1201 1202 return ret; 1203 } 1204 1205 static ssize_t mm_stat_show(struct device *dev, 1206 struct device_attribute *attr, char *buf) 1207 { 1208 struct zram *zram = dev_to_zram(dev); 1209 struct zs_pool_stats pool_stats; 1210 u64 orig_size, mem_used = 0; 1211 long max_used; 1212 ssize_t ret; 1213 1214 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1215 1216 down_read(&zram->init_lock); 1217 if (init_done(zram)) { 1218 mem_used = zs_get_total_pages(zram->mem_pool); 1219 zs_pool_stats(zram->mem_pool, &pool_stats); 1220 } 1221 1222 orig_size = atomic64_read(&zram->stats.pages_stored); 1223 max_used = atomic_long_read(&zram->stats.max_used_pages); 1224 1225 ret = scnprintf(buf, PAGE_SIZE, 1226 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1227 orig_size << PAGE_SHIFT, 1228 (u64)atomic64_read(&zram->stats.compr_data_size), 1229 mem_used << PAGE_SHIFT, 1230 zram->limit_pages << PAGE_SHIFT, 1231 max_used << PAGE_SHIFT, 1232 (u64)atomic64_read(&zram->stats.same_pages), 1233 atomic_long_read(&pool_stats.pages_compacted), 1234 (u64)atomic64_read(&zram->stats.huge_pages), 1235 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1236 up_read(&zram->init_lock); 1237 1238 return ret; 1239 } 1240 1241 #ifdef CONFIG_ZRAM_WRITEBACK 1242 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1243 static ssize_t bd_stat_show(struct device *dev, 1244 struct device_attribute *attr, char *buf) 1245 { 1246 struct zram *zram = dev_to_zram(dev); 1247 ssize_t ret; 1248 1249 down_read(&zram->init_lock); 1250 ret = scnprintf(buf, PAGE_SIZE, 1251 "%8llu %8llu %8llu\n", 1252 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1253 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1254 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1255 up_read(&zram->init_lock); 1256 1257 return ret; 1258 } 1259 #endif 1260 1261 static ssize_t debug_stat_show(struct device *dev, 1262 struct device_attribute *attr, char *buf) 1263 { 1264 int version = 1; 1265 struct zram *zram = dev_to_zram(dev); 1266 ssize_t ret; 1267 1268 down_read(&zram->init_lock); 1269 ret = scnprintf(buf, PAGE_SIZE, 1270 "version: %d\n%8llu %8llu\n", 1271 version, 1272 (u64)atomic64_read(&zram->stats.writestall), 1273 (u64)atomic64_read(&zram->stats.miss_free)); 1274 up_read(&zram->init_lock); 1275 1276 return ret; 1277 } 1278 1279 static DEVICE_ATTR_RO(io_stat); 1280 static DEVICE_ATTR_RO(mm_stat); 1281 #ifdef CONFIG_ZRAM_WRITEBACK 1282 static DEVICE_ATTR_RO(bd_stat); 1283 #endif 1284 static DEVICE_ATTR_RO(debug_stat); 1285 1286 static void zram_meta_free(struct zram *zram, u64 disksize) 1287 { 1288 size_t num_pages = disksize >> PAGE_SHIFT; 1289 size_t index; 1290 1291 /* Free all pages that are still in this zram device */ 1292 for (index = 0; index < num_pages; index++) 1293 zram_free_page(zram, index); 1294 1295 zs_destroy_pool(zram->mem_pool); 1296 vfree(zram->table); 1297 } 1298 1299 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1300 { 1301 size_t num_pages; 1302 1303 num_pages = disksize >> PAGE_SHIFT; 1304 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1305 if (!zram->table) 1306 return false; 1307 1308 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1309 if (!zram->mem_pool) { 1310 vfree(zram->table); 1311 return false; 1312 } 1313 1314 if (!huge_class_size) 1315 huge_class_size = zs_huge_class_size(zram->mem_pool); 1316 return true; 1317 } 1318 1319 /* 1320 * To protect concurrent access to the same index entry, 1321 * caller should hold this table index entry's bit_spinlock to 1322 * indicate this index entry is accessing. 1323 */ 1324 static void zram_free_page(struct zram *zram, size_t index) 1325 { 1326 unsigned long handle; 1327 1328 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1329 zram->table[index].ac_time = 0; 1330 #endif 1331 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1332 zram_clear_flag(zram, index, ZRAM_IDLE); 1333 1334 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1335 zram_clear_flag(zram, index, ZRAM_HUGE); 1336 atomic64_dec(&zram->stats.huge_pages); 1337 } 1338 1339 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1340 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1341 1342 zram_set_priority(zram, index, 0); 1343 1344 if (zram_test_flag(zram, index, ZRAM_WB)) { 1345 zram_clear_flag(zram, index, ZRAM_WB); 1346 free_block_bdev(zram, zram_get_element(zram, index)); 1347 goto out; 1348 } 1349 1350 /* 1351 * No memory is allocated for same element filled pages. 1352 * Simply clear same page flag. 1353 */ 1354 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1355 zram_clear_flag(zram, index, ZRAM_SAME); 1356 atomic64_dec(&zram->stats.same_pages); 1357 goto out; 1358 } 1359 1360 handle = zram_get_handle(zram, index); 1361 if (!handle) 1362 return; 1363 1364 zs_free(zram->mem_pool, handle); 1365 1366 atomic64_sub(zram_get_obj_size(zram, index), 1367 &zram->stats.compr_data_size); 1368 out: 1369 atomic64_dec(&zram->stats.pages_stored); 1370 zram_set_handle(zram, index, 0); 1371 zram_set_obj_size(zram, index, 0); 1372 WARN_ON_ONCE(zram->table[index].flags & 1373 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1374 } 1375 1376 /* 1377 * Reads a page from the writeback devices. Corresponding ZRAM slot 1378 * should be unlocked. 1379 */ 1380 static int zram_bvec_read_from_bdev(struct zram *zram, struct page *page, 1381 u32 index, struct bio *bio, bool partial_io) 1382 { 1383 struct bio_vec bvec = { 1384 .bv_page = page, 1385 .bv_len = PAGE_SIZE, 1386 .bv_offset = 0, 1387 }; 1388 1389 return read_from_bdev(zram, &bvec, zram_get_element(zram, index), bio, 1390 partial_io); 1391 } 1392 1393 /* 1394 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1395 * Corresponding ZRAM slot should be locked. 1396 */ 1397 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1398 u32 index) 1399 { 1400 struct zcomp_strm *zstrm; 1401 unsigned long handle; 1402 unsigned int size; 1403 void *src, *dst; 1404 u32 prio; 1405 int ret; 1406 1407 handle = zram_get_handle(zram, index); 1408 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1409 unsigned long value; 1410 void *mem; 1411 1412 value = handle ? zram_get_element(zram, index) : 0; 1413 mem = kmap_atomic(page); 1414 zram_fill_page(mem, PAGE_SIZE, value); 1415 kunmap_atomic(mem); 1416 return 0; 1417 } 1418 1419 size = zram_get_obj_size(zram, index); 1420 1421 if (size != PAGE_SIZE) { 1422 prio = zram_get_priority(zram, index); 1423 zstrm = zcomp_stream_get(zram->comps[prio]); 1424 } 1425 1426 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1427 if (size == PAGE_SIZE) { 1428 dst = kmap_atomic(page); 1429 memcpy(dst, src, PAGE_SIZE); 1430 kunmap_atomic(dst); 1431 ret = 0; 1432 } else { 1433 dst = kmap_atomic(page); 1434 ret = zcomp_decompress(zstrm, src, size, dst); 1435 kunmap_atomic(dst); 1436 zcomp_stream_put(zram->comps[prio]); 1437 } 1438 zs_unmap_object(zram->mem_pool, handle); 1439 return ret; 1440 } 1441 1442 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1443 struct bio *bio, bool partial_io) 1444 { 1445 int ret; 1446 1447 zram_slot_lock(zram, index); 1448 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1449 /* Slot should be locked through out the function call */ 1450 ret = zram_read_from_zspool(zram, page, index); 1451 zram_slot_unlock(zram, index); 1452 } else { 1453 /* Slot should be unlocked before the function call */ 1454 zram_slot_unlock(zram, index); 1455 1456 ret = zram_bvec_read_from_bdev(zram, page, index, bio, 1457 partial_io); 1458 } 1459 1460 /* Should NEVER happen. Return bio error if it does. */ 1461 if (WARN_ON(ret < 0)) 1462 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1463 1464 return ret; 1465 } 1466 1467 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1468 u32 index, int offset, struct bio *bio) 1469 { 1470 int ret; 1471 struct page *page; 1472 1473 page = bvec->bv_page; 1474 if (is_partial_io(bvec)) { 1475 /* Use a temporary buffer to decompress the page */ 1476 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1477 if (!page) 1478 return -ENOMEM; 1479 } 1480 1481 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1482 if (unlikely(ret)) 1483 goto out; 1484 1485 if (is_partial_io(bvec)) { 1486 void *src = kmap_atomic(page); 1487 1488 memcpy_to_bvec(bvec, src + offset); 1489 kunmap_atomic(src); 1490 } 1491 out: 1492 if (is_partial_io(bvec)) 1493 __free_page(page); 1494 1495 return ret; 1496 } 1497 1498 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1499 u32 index, struct bio *bio) 1500 { 1501 int ret = 0; 1502 unsigned long alloced_pages; 1503 unsigned long handle = -ENOMEM; 1504 unsigned int comp_len = 0; 1505 void *src, *dst, *mem; 1506 struct zcomp_strm *zstrm; 1507 struct page *page = bvec->bv_page; 1508 unsigned long element = 0; 1509 enum zram_pageflags flags = 0; 1510 1511 mem = kmap_atomic(page); 1512 if (page_same_filled(mem, &element)) { 1513 kunmap_atomic(mem); 1514 /* Free memory associated with this sector now. */ 1515 flags = ZRAM_SAME; 1516 atomic64_inc(&zram->stats.same_pages); 1517 goto out; 1518 } 1519 kunmap_atomic(mem); 1520 1521 compress_again: 1522 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1523 src = kmap_atomic(page); 1524 ret = zcomp_compress(zstrm, src, &comp_len); 1525 kunmap_atomic(src); 1526 1527 if (unlikely(ret)) { 1528 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1529 pr_err("Compression failed! err=%d\n", ret); 1530 zs_free(zram->mem_pool, handle); 1531 return ret; 1532 } 1533 1534 if (comp_len >= huge_class_size) 1535 comp_len = PAGE_SIZE; 1536 /* 1537 * handle allocation has 2 paths: 1538 * a) fast path is executed with preemption disabled (for 1539 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1540 * since we can't sleep; 1541 * b) slow path enables preemption and attempts to allocate 1542 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1543 * put per-cpu compression stream and, thus, to re-do 1544 * the compression once handle is allocated. 1545 * 1546 * if we have a 'non-null' handle here then we are coming 1547 * from the slow path and handle has already been allocated. 1548 */ 1549 if (IS_ERR_VALUE(handle)) 1550 handle = zs_malloc(zram->mem_pool, comp_len, 1551 __GFP_KSWAPD_RECLAIM | 1552 __GFP_NOWARN | 1553 __GFP_HIGHMEM | 1554 __GFP_MOVABLE); 1555 if (IS_ERR_VALUE(handle)) { 1556 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1557 atomic64_inc(&zram->stats.writestall); 1558 handle = zs_malloc(zram->mem_pool, comp_len, 1559 GFP_NOIO | __GFP_HIGHMEM | 1560 __GFP_MOVABLE); 1561 if (IS_ERR_VALUE(handle)) 1562 return PTR_ERR((void *)handle); 1563 1564 if (comp_len != PAGE_SIZE) 1565 goto compress_again; 1566 /* 1567 * If the page is not compressible, you need to acquire the 1568 * lock and execute the code below. The zcomp_stream_get() 1569 * call is needed to disable the cpu hotplug and grab the 1570 * zstrm buffer back. It is necessary that the dereferencing 1571 * of the zstrm variable below occurs correctly. 1572 */ 1573 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1574 } 1575 1576 alloced_pages = zs_get_total_pages(zram->mem_pool); 1577 update_used_max(zram, alloced_pages); 1578 1579 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1580 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1581 zs_free(zram->mem_pool, handle); 1582 return -ENOMEM; 1583 } 1584 1585 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1586 1587 src = zstrm->buffer; 1588 if (comp_len == PAGE_SIZE) 1589 src = kmap_atomic(page); 1590 memcpy(dst, src, comp_len); 1591 if (comp_len == PAGE_SIZE) 1592 kunmap_atomic(src); 1593 1594 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1595 zs_unmap_object(zram->mem_pool, handle); 1596 atomic64_add(comp_len, &zram->stats.compr_data_size); 1597 out: 1598 /* 1599 * Free memory associated with this sector 1600 * before overwriting unused sectors. 1601 */ 1602 zram_slot_lock(zram, index); 1603 zram_free_page(zram, index); 1604 1605 if (comp_len == PAGE_SIZE) { 1606 zram_set_flag(zram, index, ZRAM_HUGE); 1607 atomic64_inc(&zram->stats.huge_pages); 1608 atomic64_inc(&zram->stats.huge_pages_since); 1609 } 1610 1611 if (flags) { 1612 zram_set_flag(zram, index, flags); 1613 zram_set_element(zram, index, element); 1614 } else { 1615 zram_set_handle(zram, index, handle); 1616 zram_set_obj_size(zram, index, comp_len); 1617 } 1618 zram_slot_unlock(zram, index); 1619 1620 /* Update stats */ 1621 atomic64_inc(&zram->stats.pages_stored); 1622 return ret; 1623 } 1624 1625 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1626 u32 index, int offset, struct bio *bio) 1627 { 1628 int ret; 1629 struct page *page = NULL; 1630 struct bio_vec vec; 1631 1632 vec = *bvec; 1633 if (is_partial_io(bvec)) { 1634 void *dst; 1635 /* 1636 * This is a partial IO. We need to read the full page 1637 * before to write the changes. 1638 */ 1639 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1640 if (!page) 1641 return -ENOMEM; 1642 1643 ret = __zram_bvec_read(zram, page, index, bio, true); 1644 if (ret) 1645 goto out; 1646 1647 dst = kmap_atomic(page); 1648 memcpy_from_bvec(dst + offset, bvec); 1649 kunmap_atomic(dst); 1650 1651 vec.bv_page = page; 1652 vec.bv_len = PAGE_SIZE; 1653 vec.bv_offset = 0; 1654 } 1655 1656 ret = __zram_bvec_write(zram, &vec, index, bio); 1657 out: 1658 if (is_partial_io(bvec)) 1659 __free_page(page); 1660 return ret; 1661 } 1662 1663 #ifdef CONFIG_ZRAM_MULTI_COMP 1664 /* 1665 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1666 * attempt to compress it using provided compression algorithm priority 1667 * (which is potentially more effective). 1668 * 1669 * Corresponding ZRAM slot should be locked. 1670 */ 1671 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1672 u32 threshold, u32 prio, u32 prio_max) 1673 { 1674 struct zcomp_strm *zstrm = NULL; 1675 unsigned long handle_old; 1676 unsigned long handle_new; 1677 unsigned int comp_len_old; 1678 unsigned int comp_len_new; 1679 unsigned int class_index_old; 1680 unsigned int class_index_new; 1681 u32 num_recomps = 0; 1682 void *src, *dst; 1683 int ret; 1684 1685 handle_old = zram_get_handle(zram, index); 1686 if (!handle_old) 1687 return -EINVAL; 1688 1689 comp_len_old = zram_get_obj_size(zram, index); 1690 /* 1691 * Do not recompress objects that are already "small enough". 1692 */ 1693 if (comp_len_old < threshold) 1694 return 0; 1695 1696 ret = zram_read_from_zspool(zram, page, index); 1697 if (ret) 1698 return ret; 1699 1700 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1701 /* 1702 * Iterate the secondary comp algorithms list (in order of priority) 1703 * and try to recompress the page. 1704 */ 1705 for (; prio < prio_max; prio++) { 1706 if (!zram->comps[prio]) 1707 continue; 1708 1709 /* 1710 * Skip if the object is already re-compressed with a higher 1711 * priority algorithm (or same algorithm). 1712 */ 1713 if (prio <= zram_get_priority(zram, index)) 1714 continue; 1715 1716 num_recomps++; 1717 zstrm = zcomp_stream_get(zram->comps[prio]); 1718 src = kmap_atomic(page); 1719 ret = zcomp_compress(zstrm, src, &comp_len_new); 1720 kunmap_atomic(src); 1721 1722 if (ret) { 1723 zcomp_stream_put(zram->comps[prio]); 1724 return ret; 1725 } 1726 1727 class_index_new = zs_lookup_class_index(zram->mem_pool, 1728 comp_len_new); 1729 1730 /* Continue until we make progress */ 1731 if (class_index_new >= class_index_old || 1732 (threshold && comp_len_new >= threshold)) { 1733 zcomp_stream_put(zram->comps[prio]); 1734 continue; 1735 } 1736 1737 /* Recompression was successful so break out */ 1738 break; 1739 } 1740 1741 /* 1742 * We did not try to recompress, e.g. when we have only one 1743 * secondary algorithm and the page is already recompressed 1744 * using that algorithm 1745 */ 1746 if (!zstrm) 1747 return 0; 1748 1749 if (class_index_new >= class_index_old) { 1750 /* 1751 * Secondary algorithms failed to re-compress the page 1752 * in a way that would save memory, mark the object as 1753 * incompressible so that we will not try to compress 1754 * it again. 1755 * 1756 * We need to make sure that all secondary algorithms have 1757 * failed, so we test if the number of recompressions matches 1758 * the number of active secondary algorithms. 1759 */ 1760 if (num_recomps == zram->num_active_comps - 1) 1761 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1762 return 0; 1763 } 1764 1765 /* Successful recompression but above threshold */ 1766 if (threshold && comp_len_new >= threshold) 1767 return 0; 1768 1769 /* 1770 * No direct reclaim (slow path) for handle allocation and no 1771 * re-compression attempt (unlike in __zram_bvec_write()) since 1772 * we already have stored that object in zsmalloc. If we cannot 1773 * alloc memory for recompressed object then we bail out and 1774 * simply keep the old (existing) object in zsmalloc. 1775 */ 1776 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1777 __GFP_KSWAPD_RECLAIM | 1778 __GFP_NOWARN | 1779 __GFP_HIGHMEM | 1780 __GFP_MOVABLE); 1781 if (IS_ERR_VALUE(handle_new)) { 1782 zcomp_stream_put(zram->comps[prio]); 1783 return PTR_ERR((void *)handle_new); 1784 } 1785 1786 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1787 memcpy(dst, zstrm->buffer, comp_len_new); 1788 zcomp_stream_put(zram->comps[prio]); 1789 1790 zs_unmap_object(zram->mem_pool, handle_new); 1791 1792 zram_free_page(zram, index); 1793 zram_set_handle(zram, index, handle_new); 1794 zram_set_obj_size(zram, index, comp_len_new); 1795 zram_set_priority(zram, index, prio); 1796 1797 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1798 atomic64_inc(&zram->stats.pages_stored); 1799 1800 return 0; 1801 } 1802 1803 #define RECOMPRESS_IDLE (1 << 0) 1804 #define RECOMPRESS_HUGE (1 << 1) 1805 1806 static ssize_t recompress_store(struct device *dev, 1807 struct device_attribute *attr, 1808 const char *buf, size_t len) 1809 { 1810 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1811 struct zram *zram = dev_to_zram(dev); 1812 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1813 char *args, *param, *val, *algo = NULL; 1814 u32 mode = 0, threshold = 0; 1815 unsigned long index; 1816 struct page *page; 1817 ssize_t ret; 1818 1819 args = skip_spaces(buf); 1820 while (*args) { 1821 args = next_arg(args, ¶m, &val); 1822 1823 if (!val || !*val) 1824 return -EINVAL; 1825 1826 if (!strcmp(param, "type")) { 1827 if (!strcmp(val, "idle")) 1828 mode = RECOMPRESS_IDLE; 1829 if (!strcmp(val, "huge")) 1830 mode = RECOMPRESS_HUGE; 1831 if (!strcmp(val, "huge_idle")) 1832 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1833 continue; 1834 } 1835 1836 if (!strcmp(param, "threshold")) { 1837 /* 1838 * We will re-compress only idle objects equal or 1839 * greater in size than watermark. 1840 */ 1841 ret = kstrtouint(val, 10, &threshold); 1842 if (ret) 1843 return ret; 1844 continue; 1845 } 1846 1847 if (!strcmp(param, "algo")) { 1848 algo = val; 1849 continue; 1850 } 1851 } 1852 1853 if (threshold >= PAGE_SIZE) 1854 return -EINVAL; 1855 1856 down_read(&zram->init_lock); 1857 if (!init_done(zram)) { 1858 ret = -EINVAL; 1859 goto release_init_lock; 1860 } 1861 1862 if (algo) { 1863 bool found = false; 1864 1865 for (; prio < ZRAM_MAX_COMPS; prio++) { 1866 if (!zram->comp_algs[prio]) 1867 continue; 1868 1869 if (!strcmp(zram->comp_algs[prio], algo)) { 1870 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1871 found = true; 1872 break; 1873 } 1874 } 1875 1876 if (!found) { 1877 ret = -EINVAL; 1878 goto release_init_lock; 1879 } 1880 } 1881 1882 page = alloc_page(GFP_KERNEL); 1883 if (!page) { 1884 ret = -ENOMEM; 1885 goto release_init_lock; 1886 } 1887 1888 ret = len; 1889 for (index = 0; index < nr_pages; index++) { 1890 int err = 0; 1891 1892 zram_slot_lock(zram, index); 1893 1894 if (!zram_allocated(zram, index)) 1895 goto next; 1896 1897 if (mode & RECOMPRESS_IDLE && 1898 !zram_test_flag(zram, index, ZRAM_IDLE)) 1899 goto next; 1900 1901 if (mode & RECOMPRESS_HUGE && 1902 !zram_test_flag(zram, index, ZRAM_HUGE)) 1903 goto next; 1904 1905 if (zram_test_flag(zram, index, ZRAM_WB) || 1906 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1907 zram_test_flag(zram, index, ZRAM_SAME) || 1908 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1909 goto next; 1910 1911 err = zram_recompress(zram, index, page, threshold, 1912 prio, prio_max); 1913 next: 1914 zram_slot_unlock(zram, index); 1915 if (err) { 1916 ret = err; 1917 break; 1918 } 1919 1920 cond_resched(); 1921 } 1922 1923 __free_page(page); 1924 1925 release_init_lock: 1926 up_read(&zram->init_lock); 1927 return ret; 1928 } 1929 #endif 1930 1931 /* 1932 * zram_bio_discard - handler on discard request 1933 * @index: physical block index in PAGE_SIZE units 1934 * @offset: byte offset within physical block 1935 */ 1936 static void zram_bio_discard(struct zram *zram, u32 index, 1937 int offset, struct bio *bio) 1938 { 1939 size_t n = bio->bi_iter.bi_size; 1940 1941 /* 1942 * zram manages data in physical block size units. Because logical block 1943 * size isn't identical with physical block size on some arch, we 1944 * could get a discard request pointing to a specific offset within a 1945 * certain physical block. Although we can handle this request by 1946 * reading that physiclal block and decompressing and partially zeroing 1947 * and re-compressing and then re-storing it, this isn't reasonable 1948 * because our intent with a discard request is to save memory. So 1949 * skipping this logical block is appropriate here. 1950 */ 1951 if (offset) { 1952 if (n <= (PAGE_SIZE - offset)) 1953 return; 1954 1955 n -= (PAGE_SIZE - offset); 1956 index++; 1957 } 1958 1959 while (n >= PAGE_SIZE) { 1960 zram_slot_lock(zram, index); 1961 zram_free_page(zram, index); 1962 zram_slot_unlock(zram, index); 1963 atomic64_inc(&zram->stats.notify_free); 1964 index++; 1965 n -= PAGE_SIZE; 1966 } 1967 } 1968 1969 /* 1970 * Returns errno if it has some problem. Otherwise return 0 or 1. 1971 * Returns 0 if IO request was done synchronously 1972 * Returns 1 if IO request was successfully submitted. 1973 */ 1974 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1975 int offset, enum req_op op, struct bio *bio) 1976 { 1977 int ret; 1978 1979 if (!op_is_write(op)) { 1980 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1981 flush_dcache_page(bvec->bv_page); 1982 } else { 1983 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1984 } 1985 1986 zram_slot_lock(zram, index); 1987 zram_accessed(zram, index); 1988 zram_slot_unlock(zram, index); 1989 1990 if (unlikely(ret < 0)) { 1991 if (!op_is_write(op)) 1992 atomic64_inc(&zram->stats.failed_reads); 1993 else 1994 atomic64_inc(&zram->stats.failed_writes); 1995 } 1996 1997 return ret; 1998 } 1999 2000 static void __zram_make_request(struct zram *zram, struct bio *bio) 2001 { 2002 int offset; 2003 u32 index; 2004 struct bio_vec bvec; 2005 struct bvec_iter iter; 2006 unsigned long start_time; 2007 2008 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2009 offset = (bio->bi_iter.bi_sector & 2010 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 2011 2012 switch (bio_op(bio)) { 2013 case REQ_OP_DISCARD: 2014 case REQ_OP_WRITE_ZEROES: 2015 zram_bio_discard(zram, index, offset, bio); 2016 bio_endio(bio); 2017 return; 2018 default: 2019 break; 2020 } 2021 2022 start_time = bio_start_io_acct(bio); 2023 bio_for_each_segment(bvec, bio, iter) { 2024 struct bio_vec bv = bvec; 2025 unsigned int unwritten = bvec.bv_len; 2026 2027 do { 2028 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 2029 unwritten); 2030 if (zram_bvec_rw(zram, &bv, index, offset, 2031 bio_op(bio), bio) < 0) { 2032 bio->bi_status = BLK_STS_IOERR; 2033 break; 2034 } 2035 2036 bv.bv_offset += bv.bv_len; 2037 unwritten -= bv.bv_len; 2038 2039 update_position(&index, &offset, &bv); 2040 } while (unwritten); 2041 } 2042 bio_end_io_acct(bio, start_time); 2043 bio_endio(bio); 2044 } 2045 2046 /* 2047 * Handler function for all zram I/O requests. 2048 */ 2049 static void zram_submit_bio(struct bio *bio) 2050 { 2051 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 2052 2053 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 2054 bio->bi_iter.bi_size)) { 2055 atomic64_inc(&zram->stats.invalid_io); 2056 bio_io_error(bio); 2057 return; 2058 } 2059 2060 __zram_make_request(zram, bio); 2061 } 2062 2063 static void zram_slot_free_notify(struct block_device *bdev, 2064 unsigned long index) 2065 { 2066 struct zram *zram; 2067 2068 zram = bdev->bd_disk->private_data; 2069 2070 atomic64_inc(&zram->stats.notify_free); 2071 if (!zram_slot_trylock(zram, index)) { 2072 atomic64_inc(&zram->stats.miss_free); 2073 return; 2074 } 2075 2076 zram_free_page(zram, index); 2077 zram_slot_unlock(zram, index); 2078 } 2079 2080 static void zram_destroy_comps(struct zram *zram) 2081 { 2082 u32 prio; 2083 2084 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2085 struct zcomp *comp = zram->comps[prio]; 2086 2087 zram->comps[prio] = NULL; 2088 if (!comp) 2089 continue; 2090 zcomp_destroy(comp); 2091 zram->num_active_comps--; 2092 } 2093 } 2094 2095 static void zram_reset_device(struct zram *zram) 2096 { 2097 down_write(&zram->init_lock); 2098 2099 zram->limit_pages = 0; 2100 2101 if (!init_done(zram)) { 2102 up_write(&zram->init_lock); 2103 return; 2104 } 2105 2106 set_capacity_and_notify(zram->disk, 0); 2107 part_stat_set_all(zram->disk->part0, 0); 2108 2109 /* I/O operation under all of CPU are done so let's free */ 2110 zram_meta_free(zram, zram->disksize); 2111 zram->disksize = 0; 2112 zram_destroy_comps(zram); 2113 memset(&zram->stats, 0, sizeof(zram->stats)); 2114 reset_bdev(zram); 2115 2116 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2117 up_write(&zram->init_lock); 2118 } 2119 2120 static ssize_t disksize_store(struct device *dev, 2121 struct device_attribute *attr, const char *buf, size_t len) 2122 { 2123 u64 disksize; 2124 struct zcomp *comp; 2125 struct zram *zram = dev_to_zram(dev); 2126 int err; 2127 u32 prio; 2128 2129 disksize = memparse(buf, NULL); 2130 if (!disksize) 2131 return -EINVAL; 2132 2133 down_write(&zram->init_lock); 2134 if (init_done(zram)) { 2135 pr_info("Cannot change disksize for initialized device\n"); 2136 err = -EBUSY; 2137 goto out_unlock; 2138 } 2139 2140 disksize = PAGE_ALIGN(disksize); 2141 if (!zram_meta_alloc(zram, disksize)) { 2142 err = -ENOMEM; 2143 goto out_unlock; 2144 } 2145 2146 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2147 if (!zram->comp_algs[prio]) 2148 continue; 2149 2150 comp = zcomp_create(zram->comp_algs[prio]); 2151 if (IS_ERR(comp)) { 2152 pr_err("Cannot initialise %s compressing backend\n", 2153 zram->comp_algs[prio]); 2154 err = PTR_ERR(comp); 2155 goto out_free_comps; 2156 } 2157 2158 zram->comps[prio] = comp; 2159 zram->num_active_comps++; 2160 } 2161 zram->disksize = disksize; 2162 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2163 up_write(&zram->init_lock); 2164 2165 return len; 2166 2167 out_free_comps: 2168 zram_destroy_comps(zram); 2169 zram_meta_free(zram, disksize); 2170 out_unlock: 2171 up_write(&zram->init_lock); 2172 return err; 2173 } 2174 2175 static ssize_t reset_store(struct device *dev, 2176 struct device_attribute *attr, const char *buf, size_t len) 2177 { 2178 int ret; 2179 unsigned short do_reset; 2180 struct zram *zram; 2181 struct gendisk *disk; 2182 2183 ret = kstrtou16(buf, 10, &do_reset); 2184 if (ret) 2185 return ret; 2186 2187 if (!do_reset) 2188 return -EINVAL; 2189 2190 zram = dev_to_zram(dev); 2191 disk = zram->disk; 2192 2193 mutex_lock(&disk->open_mutex); 2194 /* Do not reset an active device or claimed device */ 2195 if (disk_openers(disk) || zram->claim) { 2196 mutex_unlock(&disk->open_mutex); 2197 return -EBUSY; 2198 } 2199 2200 /* From now on, anyone can't open /dev/zram[0-9] */ 2201 zram->claim = true; 2202 mutex_unlock(&disk->open_mutex); 2203 2204 /* Make sure all the pending I/O are finished */ 2205 sync_blockdev(disk->part0); 2206 zram_reset_device(zram); 2207 2208 mutex_lock(&disk->open_mutex); 2209 zram->claim = false; 2210 mutex_unlock(&disk->open_mutex); 2211 2212 return len; 2213 } 2214 2215 static int zram_open(struct block_device *bdev, fmode_t mode) 2216 { 2217 int ret = 0; 2218 struct zram *zram; 2219 2220 WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex)); 2221 2222 zram = bdev->bd_disk->private_data; 2223 /* zram was claimed to reset so open request fails */ 2224 if (zram->claim) 2225 ret = -EBUSY; 2226 2227 return ret; 2228 } 2229 2230 static const struct block_device_operations zram_devops = { 2231 .open = zram_open, 2232 .submit_bio = zram_submit_bio, 2233 .swap_slot_free_notify = zram_slot_free_notify, 2234 .owner = THIS_MODULE 2235 }; 2236 2237 static DEVICE_ATTR_WO(compact); 2238 static DEVICE_ATTR_RW(disksize); 2239 static DEVICE_ATTR_RO(initstate); 2240 static DEVICE_ATTR_WO(reset); 2241 static DEVICE_ATTR_WO(mem_limit); 2242 static DEVICE_ATTR_WO(mem_used_max); 2243 static DEVICE_ATTR_WO(idle); 2244 static DEVICE_ATTR_RW(max_comp_streams); 2245 static DEVICE_ATTR_RW(comp_algorithm); 2246 #ifdef CONFIG_ZRAM_WRITEBACK 2247 static DEVICE_ATTR_RW(backing_dev); 2248 static DEVICE_ATTR_WO(writeback); 2249 static DEVICE_ATTR_RW(writeback_limit); 2250 static DEVICE_ATTR_RW(writeback_limit_enable); 2251 #endif 2252 #ifdef CONFIG_ZRAM_MULTI_COMP 2253 static DEVICE_ATTR_RW(recomp_algorithm); 2254 static DEVICE_ATTR_WO(recompress); 2255 #endif 2256 2257 static struct attribute *zram_disk_attrs[] = { 2258 &dev_attr_disksize.attr, 2259 &dev_attr_initstate.attr, 2260 &dev_attr_reset.attr, 2261 &dev_attr_compact.attr, 2262 &dev_attr_mem_limit.attr, 2263 &dev_attr_mem_used_max.attr, 2264 &dev_attr_idle.attr, 2265 &dev_attr_max_comp_streams.attr, 2266 &dev_attr_comp_algorithm.attr, 2267 #ifdef CONFIG_ZRAM_WRITEBACK 2268 &dev_attr_backing_dev.attr, 2269 &dev_attr_writeback.attr, 2270 &dev_attr_writeback_limit.attr, 2271 &dev_attr_writeback_limit_enable.attr, 2272 #endif 2273 &dev_attr_io_stat.attr, 2274 &dev_attr_mm_stat.attr, 2275 #ifdef CONFIG_ZRAM_WRITEBACK 2276 &dev_attr_bd_stat.attr, 2277 #endif 2278 &dev_attr_debug_stat.attr, 2279 #ifdef CONFIG_ZRAM_MULTI_COMP 2280 &dev_attr_recomp_algorithm.attr, 2281 &dev_attr_recompress.attr, 2282 #endif 2283 NULL, 2284 }; 2285 2286 ATTRIBUTE_GROUPS(zram_disk); 2287 2288 /* 2289 * Allocate and initialize new zram device. the function returns 2290 * '>= 0' device_id upon success, and negative value otherwise. 2291 */ 2292 static int zram_add(void) 2293 { 2294 struct zram *zram; 2295 int ret, device_id; 2296 2297 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2298 if (!zram) 2299 return -ENOMEM; 2300 2301 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2302 if (ret < 0) 2303 goto out_free_dev; 2304 device_id = ret; 2305 2306 init_rwsem(&zram->init_lock); 2307 #ifdef CONFIG_ZRAM_WRITEBACK 2308 spin_lock_init(&zram->wb_limit_lock); 2309 #endif 2310 2311 /* gendisk structure */ 2312 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2313 if (!zram->disk) { 2314 pr_err("Error allocating disk structure for device %d\n", 2315 device_id); 2316 ret = -ENOMEM; 2317 goto out_free_idr; 2318 } 2319 2320 zram->disk->major = zram_major; 2321 zram->disk->first_minor = device_id; 2322 zram->disk->minors = 1; 2323 zram->disk->flags |= GENHD_FL_NO_PART; 2324 zram->disk->fops = &zram_devops; 2325 zram->disk->private_data = zram; 2326 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2327 2328 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2329 set_capacity(zram->disk, 0); 2330 /* zram devices sort of resembles non-rotational disks */ 2331 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2332 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2333 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 2334 2335 /* 2336 * To ensure that we always get PAGE_SIZE aligned 2337 * and n*PAGE_SIZED sized I/O requests. 2338 */ 2339 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2340 blk_queue_logical_block_size(zram->disk->queue, 2341 ZRAM_LOGICAL_BLOCK_SIZE); 2342 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2343 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2344 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2345 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2346 2347 /* 2348 * zram_bio_discard() will clear all logical blocks if logical block 2349 * size is identical with physical block size(PAGE_SIZE). But if it is 2350 * different, we will skip discarding some parts of logical blocks in 2351 * the part of the request range which isn't aligned to physical block 2352 * size. So we can't ensure that all discarded logical blocks are 2353 * zeroed. 2354 */ 2355 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2356 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2357 2358 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2359 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2360 if (ret) 2361 goto out_cleanup_disk; 2362 2363 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2364 2365 zram_debugfs_register(zram); 2366 pr_info("Added device: %s\n", zram->disk->disk_name); 2367 return device_id; 2368 2369 out_cleanup_disk: 2370 put_disk(zram->disk); 2371 out_free_idr: 2372 idr_remove(&zram_index_idr, device_id); 2373 out_free_dev: 2374 kfree(zram); 2375 return ret; 2376 } 2377 2378 static int zram_remove(struct zram *zram) 2379 { 2380 bool claimed; 2381 2382 mutex_lock(&zram->disk->open_mutex); 2383 if (disk_openers(zram->disk)) { 2384 mutex_unlock(&zram->disk->open_mutex); 2385 return -EBUSY; 2386 } 2387 2388 claimed = zram->claim; 2389 if (!claimed) 2390 zram->claim = true; 2391 mutex_unlock(&zram->disk->open_mutex); 2392 2393 zram_debugfs_unregister(zram); 2394 2395 if (claimed) { 2396 /* 2397 * If we were claimed by reset_store(), del_gendisk() will 2398 * wait until reset_store() is done, so nothing need to do. 2399 */ 2400 ; 2401 } else { 2402 /* Make sure all the pending I/O are finished */ 2403 sync_blockdev(zram->disk->part0); 2404 zram_reset_device(zram); 2405 } 2406 2407 pr_info("Removed device: %s\n", zram->disk->disk_name); 2408 2409 del_gendisk(zram->disk); 2410 2411 /* del_gendisk drains pending reset_store */ 2412 WARN_ON_ONCE(claimed && zram->claim); 2413 2414 /* 2415 * disksize_store() may be called in between zram_reset_device() 2416 * and del_gendisk(), so run the last reset to avoid leaking 2417 * anything allocated with disksize_store() 2418 */ 2419 zram_reset_device(zram); 2420 2421 put_disk(zram->disk); 2422 kfree(zram); 2423 return 0; 2424 } 2425 2426 /* zram-control sysfs attributes */ 2427 2428 /* 2429 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2430 * sense that reading from this file does alter the state of your system -- it 2431 * creates a new un-initialized zram device and returns back this device's 2432 * device_id (or an error code if it fails to create a new device). 2433 */ 2434 static ssize_t hot_add_show(struct class *class, 2435 struct class_attribute *attr, 2436 char *buf) 2437 { 2438 int ret; 2439 2440 mutex_lock(&zram_index_mutex); 2441 ret = zram_add(); 2442 mutex_unlock(&zram_index_mutex); 2443 2444 if (ret < 0) 2445 return ret; 2446 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2447 } 2448 static struct class_attribute class_attr_hot_add = 2449 __ATTR(hot_add, 0400, hot_add_show, NULL); 2450 2451 static ssize_t hot_remove_store(struct class *class, 2452 struct class_attribute *attr, 2453 const char *buf, 2454 size_t count) 2455 { 2456 struct zram *zram; 2457 int ret, dev_id; 2458 2459 /* dev_id is gendisk->first_minor, which is `int' */ 2460 ret = kstrtoint(buf, 10, &dev_id); 2461 if (ret) 2462 return ret; 2463 if (dev_id < 0) 2464 return -EINVAL; 2465 2466 mutex_lock(&zram_index_mutex); 2467 2468 zram = idr_find(&zram_index_idr, dev_id); 2469 if (zram) { 2470 ret = zram_remove(zram); 2471 if (!ret) 2472 idr_remove(&zram_index_idr, dev_id); 2473 } else { 2474 ret = -ENODEV; 2475 } 2476 2477 mutex_unlock(&zram_index_mutex); 2478 return ret ? ret : count; 2479 } 2480 static CLASS_ATTR_WO(hot_remove); 2481 2482 static struct attribute *zram_control_class_attrs[] = { 2483 &class_attr_hot_add.attr, 2484 &class_attr_hot_remove.attr, 2485 NULL, 2486 }; 2487 ATTRIBUTE_GROUPS(zram_control_class); 2488 2489 static struct class zram_control_class = { 2490 .name = "zram-control", 2491 .owner = THIS_MODULE, 2492 .class_groups = zram_control_class_groups, 2493 }; 2494 2495 static int zram_remove_cb(int id, void *ptr, void *data) 2496 { 2497 WARN_ON_ONCE(zram_remove(ptr)); 2498 return 0; 2499 } 2500 2501 static void destroy_devices(void) 2502 { 2503 class_unregister(&zram_control_class); 2504 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2505 zram_debugfs_destroy(); 2506 idr_destroy(&zram_index_idr); 2507 unregister_blkdev(zram_major, "zram"); 2508 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2509 } 2510 2511 static int __init zram_init(void) 2512 { 2513 int ret; 2514 2515 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2516 2517 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2518 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2519 if (ret < 0) 2520 return ret; 2521 2522 ret = class_register(&zram_control_class); 2523 if (ret) { 2524 pr_err("Unable to register zram-control class\n"); 2525 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2526 return ret; 2527 } 2528 2529 zram_debugfs_create(); 2530 zram_major = register_blkdev(0, "zram"); 2531 if (zram_major <= 0) { 2532 pr_err("Unable to get major number\n"); 2533 class_unregister(&zram_control_class); 2534 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2535 return -EBUSY; 2536 } 2537 2538 while (num_devices != 0) { 2539 mutex_lock(&zram_index_mutex); 2540 ret = zram_add(); 2541 mutex_unlock(&zram_index_mutex); 2542 if (ret < 0) 2543 goto out_error; 2544 num_devices--; 2545 } 2546 2547 return 0; 2548 2549 out_error: 2550 destroy_devices(); 2551 return ret; 2552 } 2553 2554 static void __exit zram_exit(void) 2555 { 2556 destroy_devices(); 2557 } 2558 2559 module_init(zram_init); 2560 module_exit(zram_exit); 2561 2562 module_param(num_devices, uint, 0); 2563 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2564 2565 MODULE_LICENSE("Dual BSD/GPL"); 2566 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2567 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2568