xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 2fe60ec9)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static const struct block_device_operations zram_devops;
55 static const struct block_device_operations zram_wb_devops;
56 
57 static void zram_free_page(struct zram *zram, size_t index);
58 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
59 				u32 index, int offset, struct bio *bio);
60 
61 
62 static int zram_slot_trylock(struct zram *zram, u32 index)
63 {
64 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
65 }
66 
67 static void zram_slot_lock(struct zram *zram, u32 index)
68 {
69 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
70 }
71 
72 static void zram_slot_unlock(struct zram *zram, u32 index)
73 {
74 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
75 }
76 
77 static inline bool init_done(struct zram *zram)
78 {
79 	return zram->disksize;
80 }
81 
82 static inline struct zram *dev_to_zram(struct device *dev)
83 {
84 	return (struct zram *)dev_to_disk(dev)->private_data;
85 }
86 
87 static unsigned long zram_get_handle(struct zram *zram, u32 index)
88 {
89 	return zram->table[index].handle;
90 }
91 
92 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
93 {
94 	zram->table[index].handle = handle;
95 }
96 
97 /* flag operations require table entry bit_spin_lock() being held */
98 static bool zram_test_flag(struct zram *zram, u32 index,
99 			enum zram_pageflags flag)
100 {
101 	return zram->table[index].flags & BIT(flag);
102 }
103 
104 static void zram_set_flag(struct zram *zram, u32 index,
105 			enum zram_pageflags flag)
106 {
107 	zram->table[index].flags |= BIT(flag);
108 }
109 
110 static void zram_clear_flag(struct zram *zram, u32 index,
111 			enum zram_pageflags flag)
112 {
113 	zram->table[index].flags &= ~BIT(flag);
114 }
115 
116 static inline void zram_set_element(struct zram *zram, u32 index,
117 			unsigned long element)
118 {
119 	zram->table[index].element = element;
120 }
121 
122 static unsigned long zram_get_element(struct zram *zram, u32 index)
123 {
124 	return zram->table[index].element;
125 }
126 
127 static size_t zram_get_obj_size(struct zram *zram, u32 index)
128 {
129 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
130 }
131 
132 static void zram_set_obj_size(struct zram *zram,
133 					u32 index, size_t size)
134 {
135 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
136 
137 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
138 }
139 
140 static inline bool zram_allocated(struct zram *zram, u32 index)
141 {
142 	return zram_get_obj_size(zram, index) ||
143 			zram_test_flag(zram, index, ZRAM_SAME) ||
144 			zram_test_flag(zram, index, ZRAM_WB);
145 }
146 
147 #if PAGE_SIZE != 4096
148 static inline bool is_partial_io(struct bio_vec *bvec)
149 {
150 	return bvec->bv_len != PAGE_SIZE;
151 }
152 #else
153 static inline bool is_partial_io(struct bio_vec *bvec)
154 {
155 	return false;
156 }
157 #endif
158 
159 /*
160  * Check if request is within bounds and aligned on zram logical blocks.
161  */
162 static inline bool valid_io_request(struct zram *zram,
163 		sector_t start, unsigned int size)
164 {
165 	u64 end, bound;
166 
167 	/* unaligned request */
168 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
169 		return false;
170 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
171 		return false;
172 
173 	end = start + (size >> SECTOR_SHIFT);
174 	bound = zram->disksize >> SECTOR_SHIFT;
175 	/* out of range range */
176 	if (unlikely(start >= bound || end > bound || start > end))
177 		return false;
178 
179 	/* I/O request is valid */
180 	return true;
181 }
182 
183 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
184 {
185 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
186 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
187 }
188 
189 static inline void update_used_max(struct zram *zram,
190 					const unsigned long pages)
191 {
192 	unsigned long old_max, cur_max;
193 
194 	old_max = atomic_long_read(&zram->stats.max_used_pages);
195 
196 	do {
197 		cur_max = old_max;
198 		if (pages > cur_max)
199 			old_max = atomic_long_cmpxchg(
200 				&zram->stats.max_used_pages, cur_max, pages);
201 	} while (old_max != cur_max);
202 }
203 
204 static inline void zram_fill_page(void *ptr, unsigned long len,
205 					unsigned long value)
206 {
207 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
208 	memset_l(ptr, value, len / sizeof(unsigned long));
209 }
210 
211 static bool page_same_filled(void *ptr, unsigned long *element)
212 {
213 	unsigned long *page;
214 	unsigned long val;
215 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
216 
217 	page = (unsigned long *)ptr;
218 	val = page[0];
219 
220 	if (val != page[last_pos])
221 		return false;
222 
223 	for (pos = 1; pos < last_pos; pos++) {
224 		if (val != page[pos])
225 			return false;
226 	}
227 
228 	*element = val;
229 
230 	return true;
231 }
232 
233 static ssize_t initstate_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	u32 val;
237 	struct zram *zram = dev_to_zram(dev);
238 
239 	down_read(&zram->init_lock);
240 	val = init_done(zram);
241 	up_read(&zram->init_lock);
242 
243 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
244 }
245 
246 static ssize_t disksize_show(struct device *dev,
247 		struct device_attribute *attr, char *buf)
248 {
249 	struct zram *zram = dev_to_zram(dev);
250 
251 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
252 }
253 
254 static ssize_t mem_limit_store(struct device *dev,
255 		struct device_attribute *attr, const char *buf, size_t len)
256 {
257 	u64 limit;
258 	char *tmp;
259 	struct zram *zram = dev_to_zram(dev);
260 
261 	limit = memparse(buf, &tmp);
262 	if (buf == tmp) /* no chars parsed, invalid input */
263 		return -EINVAL;
264 
265 	down_write(&zram->init_lock);
266 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
267 	up_write(&zram->init_lock);
268 
269 	return len;
270 }
271 
272 static ssize_t mem_used_max_store(struct device *dev,
273 		struct device_attribute *attr, const char *buf, size_t len)
274 {
275 	int err;
276 	unsigned long val;
277 	struct zram *zram = dev_to_zram(dev);
278 
279 	err = kstrtoul(buf, 10, &val);
280 	if (err || val != 0)
281 		return -EINVAL;
282 
283 	down_read(&zram->init_lock);
284 	if (init_done(zram)) {
285 		atomic_long_set(&zram->stats.max_used_pages,
286 				zs_get_total_pages(zram->mem_pool));
287 	}
288 	up_read(&zram->init_lock);
289 
290 	return len;
291 }
292 
293 /*
294  * Mark all pages which are older than or equal to cutoff as IDLE.
295  * Callers should hold the zram init lock in read mode
296  */
297 static void mark_idle(struct zram *zram, ktime_t cutoff)
298 {
299 	int is_idle = 1;
300 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
301 	int index;
302 
303 	for (index = 0; index < nr_pages; index++) {
304 		/*
305 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
306 		 * See the comment in writeback_store.
307 		 */
308 		zram_slot_lock(zram, index);
309 		if (zram_allocated(zram, index) &&
310 				!zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
311 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
312 			is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
313 #endif
314 			if (is_idle)
315 				zram_set_flag(zram, index, ZRAM_IDLE);
316 		}
317 		zram_slot_unlock(zram, index);
318 	}
319 }
320 
321 static ssize_t idle_store(struct device *dev,
322 		struct device_attribute *attr, const char *buf, size_t len)
323 {
324 	struct zram *zram = dev_to_zram(dev);
325 	ktime_t cutoff_time = 0;
326 	ssize_t rv = -EINVAL;
327 
328 	if (!sysfs_streq(buf, "all")) {
329 		/*
330 		 * If it did not parse as 'all' try to treat it as an integer when
331 		 * we have memory tracking enabled.
332 		 */
333 		u64 age_sec;
334 
335 		if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
336 			cutoff_time = ktime_sub(ktime_get_boottime(),
337 					ns_to_ktime(age_sec * NSEC_PER_SEC));
338 		else
339 			goto out;
340 	}
341 
342 	down_read(&zram->init_lock);
343 	if (!init_done(zram))
344 		goto out_unlock;
345 
346 	/* A cutoff_time of 0 marks everything as idle, this is the "all" behavior */
347 	mark_idle(zram, cutoff_time);
348 	rv = len;
349 
350 out_unlock:
351 	up_read(&zram->init_lock);
352 out:
353 	return rv;
354 }
355 
356 #ifdef CONFIG_ZRAM_WRITEBACK
357 static ssize_t writeback_limit_enable_store(struct device *dev,
358 		struct device_attribute *attr, const char *buf, size_t len)
359 {
360 	struct zram *zram = dev_to_zram(dev);
361 	u64 val;
362 	ssize_t ret = -EINVAL;
363 
364 	if (kstrtoull(buf, 10, &val))
365 		return ret;
366 
367 	down_read(&zram->init_lock);
368 	spin_lock(&zram->wb_limit_lock);
369 	zram->wb_limit_enable = val;
370 	spin_unlock(&zram->wb_limit_lock);
371 	up_read(&zram->init_lock);
372 	ret = len;
373 
374 	return ret;
375 }
376 
377 static ssize_t writeback_limit_enable_show(struct device *dev,
378 		struct device_attribute *attr, char *buf)
379 {
380 	bool val;
381 	struct zram *zram = dev_to_zram(dev);
382 
383 	down_read(&zram->init_lock);
384 	spin_lock(&zram->wb_limit_lock);
385 	val = zram->wb_limit_enable;
386 	spin_unlock(&zram->wb_limit_lock);
387 	up_read(&zram->init_lock);
388 
389 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
390 }
391 
392 static ssize_t writeback_limit_store(struct device *dev,
393 		struct device_attribute *attr, const char *buf, size_t len)
394 {
395 	struct zram *zram = dev_to_zram(dev);
396 	u64 val;
397 	ssize_t ret = -EINVAL;
398 
399 	if (kstrtoull(buf, 10, &val))
400 		return ret;
401 
402 	down_read(&zram->init_lock);
403 	spin_lock(&zram->wb_limit_lock);
404 	zram->bd_wb_limit = val;
405 	spin_unlock(&zram->wb_limit_lock);
406 	up_read(&zram->init_lock);
407 	ret = len;
408 
409 	return ret;
410 }
411 
412 static ssize_t writeback_limit_show(struct device *dev,
413 		struct device_attribute *attr, char *buf)
414 {
415 	u64 val;
416 	struct zram *zram = dev_to_zram(dev);
417 
418 	down_read(&zram->init_lock);
419 	spin_lock(&zram->wb_limit_lock);
420 	val = zram->bd_wb_limit;
421 	spin_unlock(&zram->wb_limit_lock);
422 	up_read(&zram->init_lock);
423 
424 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
425 }
426 
427 static void reset_bdev(struct zram *zram)
428 {
429 	struct block_device *bdev;
430 
431 	if (!zram->backing_dev)
432 		return;
433 
434 	bdev = zram->bdev;
435 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
436 	/* hope filp_close flush all of IO */
437 	filp_close(zram->backing_dev, NULL);
438 	zram->backing_dev = NULL;
439 	zram->bdev = NULL;
440 	zram->disk->fops = &zram_devops;
441 	kvfree(zram->bitmap);
442 	zram->bitmap = NULL;
443 }
444 
445 static ssize_t backing_dev_show(struct device *dev,
446 		struct device_attribute *attr, char *buf)
447 {
448 	struct file *file;
449 	struct zram *zram = dev_to_zram(dev);
450 	char *p;
451 	ssize_t ret;
452 
453 	down_read(&zram->init_lock);
454 	file = zram->backing_dev;
455 	if (!file) {
456 		memcpy(buf, "none\n", 5);
457 		up_read(&zram->init_lock);
458 		return 5;
459 	}
460 
461 	p = file_path(file, buf, PAGE_SIZE - 1);
462 	if (IS_ERR(p)) {
463 		ret = PTR_ERR(p);
464 		goto out;
465 	}
466 
467 	ret = strlen(p);
468 	memmove(buf, p, ret);
469 	buf[ret++] = '\n';
470 out:
471 	up_read(&zram->init_lock);
472 	return ret;
473 }
474 
475 static ssize_t backing_dev_store(struct device *dev,
476 		struct device_attribute *attr, const char *buf, size_t len)
477 {
478 	char *file_name;
479 	size_t sz;
480 	struct file *backing_dev = NULL;
481 	struct inode *inode;
482 	struct address_space *mapping;
483 	unsigned int bitmap_sz;
484 	unsigned long nr_pages, *bitmap = NULL;
485 	struct block_device *bdev = NULL;
486 	int err;
487 	struct zram *zram = dev_to_zram(dev);
488 
489 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
490 	if (!file_name)
491 		return -ENOMEM;
492 
493 	down_write(&zram->init_lock);
494 	if (init_done(zram)) {
495 		pr_info("Can't setup backing device for initialized device\n");
496 		err = -EBUSY;
497 		goto out;
498 	}
499 
500 	strlcpy(file_name, buf, PATH_MAX);
501 	/* ignore trailing newline */
502 	sz = strlen(file_name);
503 	if (sz > 0 && file_name[sz - 1] == '\n')
504 		file_name[sz - 1] = 0x00;
505 
506 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
507 	if (IS_ERR(backing_dev)) {
508 		err = PTR_ERR(backing_dev);
509 		backing_dev = NULL;
510 		goto out;
511 	}
512 
513 	mapping = backing_dev->f_mapping;
514 	inode = mapping->host;
515 
516 	/* Support only block device in this moment */
517 	if (!S_ISBLK(inode->i_mode)) {
518 		err = -ENOTBLK;
519 		goto out;
520 	}
521 
522 	bdev = blkdev_get_by_dev(inode->i_rdev,
523 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
524 	if (IS_ERR(bdev)) {
525 		err = PTR_ERR(bdev);
526 		bdev = NULL;
527 		goto out;
528 	}
529 
530 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
531 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
532 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
533 	if (!bitmap) {
534 		err = -ENOMEM;
535 		goto out;
536 	}
537 
538 	reset_bdev(zram);
539 
540 	zram->bdev = bdev;
541 	zram->backing_dev = backing_dev;
542 	zram->bitmap = bitmap;
543 	zram->nr_pages = nr_pages;
544 	/*
545 	 * With writeback feature, zram does asynchronous IO so it's no longer
546 	 * synchronous device so let's remove synchronous io flag. Othewise,
547 	 * upper layer(e.g., swap) could wait IO completion rather than
548 	 * (submit and return), which will cause system sluggish.
549 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
550 	 * upper layer expects IO was done so it could deallocate the page
551 	 * freely but in fact, IO is going on so finally could cause
552 	 * use-after-free when the IO is really done.
553 	 */
554 	zram->disk->fops = &zram_wb_devops;
555 	up_write(&zram->init_lock);
556 
557 	pr_info("setup backing device %s\n", file_name);
558 	kfree(file_name);
559 
560 	return len;
561 out:
562 	kvfree(bitmap);
563 
564 	if (bdev)
565 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
566 
567 	if (backing_dev)
568 		filp_close(backing_dev, NULL);
569 
570 	up_write(&zram->init_lock);
571 
572 	kfree(file_name);
573 
574 	return err;
575 }
576 
577 static unsigned long alloc_block_bdev(struct zram *zram)
578 {
579 	unsigned long blk_idx = 1;
580 retry:
581 	/* skip 0 bit to confuse zram.handle = 0 */
582 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
583 	if (blk_idx == zram->nr_pages)
584 		return 0;
585 
586 	if (test_and_set_bit(blk_idx, zram->bitmap))
587 		goto retry;
588 
589 	atomic64_inc(&zram->stats.bd_count);
590 	return blk_idx;
591 }
592 
593 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
594 {
595 	int was_set;
596 
597 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
598 	WARN_ON_ONCE(!was_set);
599 	atomic64_dec(&zram->stats.bd_count);
600 }
601 
602 static void zram_page_end_io(struct bio *bio)
603 {
604 	struct page *page = bio_first_page_all(bio);
605 
606 	page_endio(page, op_is_write(bio_op(bio)),
607 			blk_status_to_errno(bio->bi_status));
608 	bio_put(bio);
609 }
610 
611 /*
612  * Returns 1 if the submission is successful.
613  */
614 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
615 			unsigned long entry, struct bio *parent)
616 {
617 	struct bio *bio;
618 
619 	bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ,
620 			GFP_NOIO);
621 	if (!bio)
622 		return -ENOMEM;
623 
624 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
625 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
626 		bio_put(bio);
627 		return -EIO;
628 	}
629 
630 	if (!parent)
631 		bio->bi_end_io = zram_page_end_io;
632 	else
633 		bio_chain(bio, parent);
634 
635 	submit_bio(bio);
636 	return 1;
637 }
638 
639 #define PAGE_WB_SIG "page_index="
640 
641 #define PAGE_WRITEBACK 0
642 #define HUGE_WRITEBACK (1<<0)
643 #define IDLE_WRITEBACK (1<<1)
644 
645 
646 static ssize_t writeback_store(struct device *dev,
647 		struct device_attribute *attr, const char *buf, size_t len)
648 {
649 	struct zram *zram = dev_to_zram(dev);
650 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
651 	unsigned long index = 0;
652 	struct bio bio;
653 	struct bio_vec bio_vec;
654 	struct page *page;
655 	ssize_t ret = len;
656 	int mode, err;
657 	unsigned long blk_idx = 0;
658 
659 	if (sysfs_streq(buf, "idle"))
660 		mode = IDLE_WRITEBACK;
661 	else if (sysfs_streq(buf, "huge"))
662 		mode = HUGE_WRITEBACK;
663 	else if (sysfs_streq(buf, "huge_idle"))
664 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
665 	else {
666 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
667 			return -EINVAL;
668 
669 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
670 				index >= nr_pages)
671 			return -EINVAL;
672 
673 		nr_pages = 1;
674 		mode = PAGE_WRITEBACK;
675 	}
676 
677 	down_read(&zram->init_lock);
678 	if (!init_done(zram)) {
679 		ret = -EINVAL;
680 		goto release_init_lock;
681 	}
682 
683 	if (!zram->backing_dev) {
684 		ret = -ENODEV;
685 		goto release_init_lock;
686 	}
687 
688 	page = alloc_page(GFP_KERNEL);
689 	if (!page) {
690 		ret = -ENOMEM;
691 		goto release_init_lock;
692 	}
693 
694 	for (; nr_pages != 0; index++, nr_pages--) {
695 		struct bio_vec bvec;
696 
697 		bvec.bv_page = page;
698 		bvec.bv_len = PAGE_SIZE;
699 		bvec.bv_offset = 0;
700 
701 		spin_lock(&zram->wb_limit_lock);
702 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
703 			spin_unlock(&zram->wb_limit_lock);
704 			ret = -EIO;
705 			break;
706 		}
707 		spin_unlock(&zram->wb_limit_lock);
708 
709 		if (!blk_idx) {
710 			blk_idx = alloc_block_bdev(zram);
711 			if (!blk_idx) {
712 				ret = -ENOSPC;
713 				break;
714 			}
715 		}
716 
717 		zram_slot_lock(zram, index);
718 		if (!zram_allocated(zram, index))
719 			goto next;
720 
721 		if (zram_test_flag(zram, index, ZRAM_WB) ||
722 				zram_test_flag(zram, index, ZRAM_SAME) ||
723 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
724 			goto next;
725 
726 		if (mode & IDLE_WRITEBACK &&
727 			  !zram_test_flag(zram, index, ZRAM_IDLE))
728 			goto next;
729 		if (mode & HUGE_WRITEBACK &&
730 			  !zram_test_flag(zram, index, ZRAM_HUGE))
731 			goto next;
732 		/*
733 		 * Clearing ZRAM_UNDER_WB is duty of caller.
734 		 * IOW, zram_free_page never clear it.
735 		 */
736 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
737 		/* Need for hugepage writeback racing */
738 		zram_set_flag(zram, index, ZRAM_IDLE);
739 		zram_slot_unlock(zram, index);
740 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
741 			zram_slot_lock(zram, index);
742 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
743 			zram_clear_flag(zram, index, ZRAM_IDLE);
744 			zram_slot_unlock(zram, index);
745 			continue;
746 		}
747 
748 		bio_init(&bio, zram->bdev, &bio_vec, 1,
749 			 REQ_OP_WRITE | REQ_SYNC);
750 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
751 
752 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
753 				bvec.bv_offset);
754 		/*
755 		 * XXX: A single page IO would be inefficient for write
756 		 * but it would be not bad as starter.
757 		 */
758 		err = submit_bio_wait(&bio);
759 		if (err) {
760 			zram_slot_lock(zram, index);
761 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
762 			zram_clear_flag(zram, index, ZRAM_IDLE);
763 			zram_slot_unlock(zram, index);
764 			/*
765 			 * Return last IO error unless every IO were
766 			 * not suceeded.
767 			 */
768 			ret = err;
769 			continue;
770 		}
771 
772 		atomic64_inc(&zram->stats.bd_writes);
773 		/*
774 		 * We released zram_slot_lock so need to check if the slot was
775 		 * changed. If there is freeing for the slot, we can catch it
776 		 * easily by zram_allocated.
777 		 * A subtle case is the slot is freed/reallocated/marked as
778 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
779 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
780 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
781 		 */
782 		zram_slot_lock(zram, index);
783 		if (!zram_allocated(zram, index) ||
784 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
785 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
786 			zram_clear_flag(zram, index, ZRAM_IDLE);
787 			goto next;
788 		}
789 
790 		zram_free_page(zram, index);
791 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
792 		zram_set_flag(zram, index, ZRAM_WB);
793 		zram_set_element(zram, index, blk_idx);
794 		blk_idx = 0;
795 		atomic64_inc(&zram->stats.pages_stored);
796 		spin_lock(&zram->wb_limit_lock);
797 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
798 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
799 		spin_unlock(&zram->wb_limit_lock);
800 next:
801 		zram_slot_unlock(zram, index);
802 	}
803 
804 	if (blk_idx)
805 		free_block_bdev(zram, blk_idx);
806 	__free_page(page);
807 release_init_lock:
808 	up_read(&zram->init_lock);
809 
810 	return ret;
811 }
812 
813 struct zram_work {
814 	struct work_struct work;
815 	struct zram *zram;
816 	unsigned long entry;
817 	struct bio *bio;
818 	struct bio_vec bvec;
819 };
820 
821 #if PAGE_SIZE != 4096
822 static void zram_sync_read(struct work_struct *work)
823 {
824 	struct zram_work *zw = container_of(work, struct zram_work, work);
825 	struct zram *zram = zw->zram;
826 	unsigned long entry = zw->entry;
827 	struct bio *bio = zw->bio;
828 
829 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
830 }
831 
832 /*
833  * Block layer want one ->submit_bio to be active at a time, so if we use
834  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
835  * use a worker thread context.
836  */
837 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
838 				unsigned long entry, struct bio *bio)
839 {
840 	struct zram_work work;
841 
842 	work.bvec = *bvec;
843 	work.zram = zram;
844 	work.entry = entry;
845 	work.bio = bio;
846 
847 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
848 	queue_work(system_unbound_wq, &work.work);
849 	flush_work(&work.work);
850 	destroy_work_on_stack(&work.work);
851 
852 	return 1;
853 }
854 #else
855 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
856 				unsigned long entry, struct bio *bio)
857 {
858 	WARN_ON(1);
859 	return -EIO;
860 }
861 #endif
862 
863 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
864 			unsigned long entry, struct bio *parent, bool sync)
865 {
866 	atomic64_inc(&zram->stats.bd_reads);
867 	if (sync)
868 		return read_from_bdev_sync(zram, bvec, entry, parent);
869 	else
870 		return read_from_bdev_async(zram, bvec, entry, parent);
871 }
872 #else
873 static inline void reset_bdev(struct zram *zram) {};
874 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
875 			unsigned long entry, struct bio *parent, bool sync)
876 {
877 	return -EIO;
878 }
879 
880 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
881 #endif
882 
883 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
884 
885 static struct dentry *zram_debugfs_root;
886 
887 static void zram_debugfs_create(void)
888 {
889 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
890 }
891 
892 static void zram_debugfs_destroy(void)
893 {
894 	debugfs_remove_recursive(zram_debugfs_root);
895 }
896 
897 static void zram_accessed(struct zram *zram, u32 index)
898 {
899 	zram_clear_flag(zram, index, ZRAM_IDLE);
900 	zram->table[index].ac_time = ktime_get_boottime();
901 }
902 
903 static ssize_t read_block_state(struct file *file, char __user *buf,
904 				size_t count, loff_t *ppos)
905 {
906 	char *kbuf;
907 	ssize_t index, written = 0;
908 	struct zram *zram = file->private_data;
909 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
910 	struct timespec64 ts;
911 
912 	kbuf = kvmalloc(count, GFP_KERNEL);
913 	if (!kbuf)
914 		return -ENOMEM;
915 
916 	down_read(&zram->init_lock);
917 	if (!init_done(zram)) {
918 		up_read(&zram->init_lock);
919 		kvfree(kbuf);
920 		return -EINVAL;
921 	}
922 
923 	for (index = *ppos; index < nr_pages; index++) {
924 		int copied;
925 
926 		zram_slot_lock(zram, index);
927 		if (!zram_allocated(zram, index))
928 			goto next;
929 
930 		ts = ktime_to_timespec64(zram->table[index].ac_time);
931 		copied = snprintf(kbuf + written, count,
932 			"%12zd %12lld.%06lu %c%c%c%c\n",
933 			index, (s64)ts.tv_sec,
934 			ts.tv_nsec / NSEC_PER_USEC,
935 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
936 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
937 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
938 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
939 
940 		if (count <= copied) {
941 			zram_slot_unlock(zram, index);
942 			break;
943 		}
944 		written += copied;
945 		count -= copied;
946 next:
947 		zram_slot_unlock(zram, index);
948 		*ppos += 1;
949 	}
950 
951 	up_read(&zram->init_lock);
952 	if (copy_to_user(buf, kbuf, written))
953 		written = -EFAULT;
954 	kvfree(kbuf);
955 
956 	return written;
957 }
958 
959 static const struct file_operations proc_zram_block_state_op = {
960 	.open = simple_open,
961 	.read = read_block_state,
962 	.llseek = default_llseek,
963 };
964 
965 static void zram_debugfs_register(struct zram *zram)
966 {
967 	if (!zram_debugfs_root)
968 		return;
969 
970 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
971 						zram_debugfs_root);
972 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
973 				zram, &proc_zram_block_state_op);
974 }
975 
976 static void zram_debugfs_unregister(struct zram *zram)
977 {
978 	debugfs_remove_recursive(zram->debugfs_dir);
979 }
980 #else
981 static void zram_debugfs_create(void) {};
982 static void zram_debugfs_destroy(void) {};
983 static void zram_accessed(struct zram *zram, u32 index)
984 {
985 	zram_clear_flag(zram, index, ZRAM_IDLE);
986 };
987 static void zram_debugfs_register(struct zram *zram) {};
988 static void zram_debugfs_unregister(struct zram *zram) {};
989 #endif
990 
991 /*
992  * We switched to per-cpu streams and this attr is not needed anymore.
993  * However, we will keep it around for some time, because:
994  * a) we may revert per-cpu streams in the future
995  * b) it's visible to user space and we need to follow our 2 years
996  *    retirement rule; but we already have a number of 'soon to be
997  *    altered' attrs, so max_comp_streams need to wait for the next
998  *    layoff cycle.
999  */
1000 static ssize_t max_comp_streams_show(struct device *dev,
1001 		struct device_attribute *attr, char *buf)
1002 {
1003 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
1004 }
1005 
1006 static ssize_t max_comp_streams_store(struct device *dev,
1007 		struct device_attribute *attr, const char *buf, size_t len)
1008 {
1009 	return len;
1010 }
1011 
1012 static ssize_t comp_algorithm_show(struct device *dev,
1013 		struct device_attribute *attr, char *buf)
1014 {
1015 	size_t sz;
1016 	struct zram *zram = dev_to_zram(dev);
1017 
1018 	down_read(&zram->init_lock);
1019 	sz = zcomp_available_show(zram->compressor, buf);
1020 	up_read(&zram->init_lock);
1021 
1022 	return sz;
1023 }
1024 
1025 static ssize_t comp_algorithm_store(struct device *dev,
1026 		struct device_attribute *attr, const char *buf, size_t len)
1027 {
1028 	struct zram *zram = dev_to_zram(dev);
1029 	char compressor[ARRAY_SIZE(zram->compressor)];
1030 	size_t sz;
1031 
1032 	strlcpy(compressor, buf, sizeof(compressor));
1033 	/* ignore trailing newline */
1034 	sz = strlen(compressor);
1035 	if (sz > 0 && compressor[sz - 1] == '\n')
1036 		compressor[sz - 1] = 0x00;
1037 
1038 	if (!zcomp_available_algorithm(compressor))
1039 		return -EINVAL;
1040 
1041 	down_write(&zram->init_lock);
1042 	if (init_done(zram)) {
1043 		up_write(&zram->init_lock);
1044 		pr_info("Can't change algorithm for initialized device\n");
1045 		return -EBUSY;
1046 	}
1047 
1048 	strcpy(zram->compressor, compressor);
1049 	up_write(&zram->init_lock);
1050 	return len;
1051 }
1052 
1053 static ssize_t compact_store(struct device *dev,
1054 		struct device_attribute *attr, const char *buf, size_t len)
1055 {
1056 	struct zram *zram = dev_to_zram(dev);
1057 
1058 	down_read(&zram->init_lock);
1059 	if (!init_done(zram)) {
1060 		up_read(&zram->init_lock);
1061 		return -EINVAL;
1062 	}
1063 
1064 	zs_compact(zram->mem_pool);
1065 	up_read(&zram->init_lock);
1066 
1067 	return len;
1068 }
1069 
1070 static ssize_t io_stat_show(struct device *dev,
1071 		struct device_attribute *attr, char *buf)
1072 {
1073 	struct zram *zram = dev_to_zram(dev);
1074 	ssize_t ret;
1075 
1076 	down_read(&zram->init_lock);
1077 	ret = scnprintf(buf, PAGE_SIZE,
1078 			"%8llu %8llu %8llu %8llu\n",
1079 			(u64)atomic64_read(&zram->stats.failed_reads),
1080 			(u64)atomic64_read(&zram->stats.failed_writes),
1081 			(u64)atomic64_read(&zram->stats.invalid_io),
1082 			(u64)atomic64_read(&zram->stats.notify_free));
1083 	up_read(&zram->init_lock);
1084 
1085 	return ret;
1086 }
1087 
1088 static ssize_t mm_stat_show(struct device *dev,
1089 		struct device_attribute *attr, char *buf)
1090 {
1091 	struct zram *zram = dev_to_zram(dev);
1092 	struct zs_pool_stats pool_stats;
1093 	u64 orig_size, mem_used = 0;
1094 	long max_used;
1095 	ssize_t ret;
1096 
1097 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1098 
1099 	down_read(&zram->init_lock);
1100 	if (init_done(zram)) {
1101 		mem_used = zs_get_total_pages(zram->mem_pool);
1102 		zs_pool_stats(zram->mem_pool, &pool_stats);
1103 	}
1104 
1105 	orig_size = atomic64_read(&zram->stats.pages_stored);
1106 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1107 
1108 	ret = scnprintf(buf, PAGE_SIZE,
1109 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1110 			orig_size << PAGE_SHIFT,
1111 			(u64)atomic64_read(&zram->stats.compr_data_size),
1112 			mem_used << PAGE_SHIFT,
1113 			zram->limit_pages << PAGE_SHIFT,
1114 			max_used << PAGE_SHIFT,
1115 			(u64)atomic64_read(&zram->stats.same_pages),
1116 			atomic_long_read(&pool_stats.pages_compacted),
1117 			(u64)atomic64_read(&zram->stats.huge_pages),
1118 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1119 	up_read(&zram->init_lock);
1120 
1121 	return ret;
1122 }
1123 
1124 #ifdef CONFIG_ZRAM_WRITEBACK
1125 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1126 static ssize_t bd_stat_show(struct device *dev,
1127 		struct device_attribute *attr, char *buf)
1128 {
1129 	struct zram *zram = dev_to_zram(dev);
1130 	ssize_t ret;
1131 
1132 	down_read(&zram->init_lock);
1133 	ret = scnprintf(buf, PAGE_SIZE,
1134 		"%8llu %8llu %8llu\n",
1135 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1136 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1137 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1138 	up_read(&zram->init_lock);
1139 
1140 	return ret;
1141 }
1142 #endif
1143 
1144 static ssize_t debug_stat_show(struct device *dev,
1145 		struct device_attribute *attr, char *buf)
1146 {
1147 	int version = 1;
1148 	struct zram *zram = dev_to_zram(dev);
1149 	ssize_t ret;
1150 
1151 	down_read(&zram->init_lock);
1152 	ret = scnprintf(buf, PAGE_SIZE,
1153 			"version: %d\n%8llu %8llu\n",
1154 			version,
1155 			(u64)atomic64_read(&zram->stats.writestall),
1156 			(u64)atomic64_read(&zram->stats.miss_free));
1157 	up_read(&zram->init_lock);
1158 
1159 	return ret;
1160 }
1161 
1162 static DEVICE_ATTR_RO(io_stat);
1163 static DEVICE_ATTR_RO(mm_stat);
1164 #ifdef CONFIG_ZRAM_WRITEBACK
1165 static DEVICE_ATTR_RO(bd_stat);
1166 #endif
1167 static DEVICE_ATTR_RO(debug_stat);
1168 
1169 static void zram_meta_free(struct zram *zram, u64 disksize)
1170 {
1171 	size_t num_pages = disksize >> PAGE_SHIFT;
1172 	size_t index;
1173 
1174 	/* Free all pages that are still in this zram device */
1175 	for (index = 0; index < num_pages; index++)
1176 		zram_free_page(zram, index);
1177 
1178 	zs_destroy_pool(zram->mem_pool);
1179 	vfree(zram->table);
1180 }
1181 
1182 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1183 {
1184 	size_t num_pages;
1185 
1186 	num_pages = disksize >> PAGE_SHIFT;
1187 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1188 	if (!zram->table)
1189 		return false;
1190 
1191 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1192 	if (!zram->mem_pool) {
1193 		vfree(zram->table);
1194 		return false;
1195 	}
1196 
1197 	if (!huge_class_size)
1198 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1199 	return true;
1200 }
1201 
1202 /*
1203  * To protect concurrent access to the same index entry,
1204  * caller should hold this table index entry's bit_spinlock to
1205  * indicate this index entry is accessing.
1206  */
1207 static void zram_free_page(struct zram *zram, size_t index)
1208 {
1209 	unsigned long handle;
1210 
1211 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1212 	zram->table[index].ac_time = 0;
1213 #endif
1214 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1215 		zram_clear_flag(zram, index, ZRAM_IDLE);
1216 
1217 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1218 		zram_clear_flag(zram, index, ZRAM_HUGE);
1219 		atomic64_dec(&zram->stats.huge_pages);
1220 	}
1221 
1222 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1223 		zram_clear_flag(zram, index, ZRAM_WB);
1224 		free_block_bdev(zram, zram_get_element(zram, index));
1225 		goto out;
1226 	}
1227 
1228 	/*
1229 	 * No memory is allocated for same element filled pages.
1230 	 * Simply clear same page flag.
1231 	 */
1232 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1233 		zram_clear_flag(zram, index, ZRAM_SAME);
1234 		atomic64_dec(&zram->stats.same_pages);
1235 		goto out;
1236 	}
1237 
1238 	handle = zram_get_handle(zram, index);
1239 	if (!handle)
1240 		return;
1241 
1242 	zs_free(zram->mem_pool, handle);
1243 
1244 	atomic64_sub(zram_get_obj_size(zram, index),
1245 			&zram->stats.compr_data_size);
1246 out:
1247 	atomic64_dec(&zram->stats.pages_stored);
1248 	zram_set_handle(zram, index, 0);
1249 	zram_set_obj_size(zram, index, 0);
1250 	WARN_ON_ONCE(zram->table[index].flags &
1251 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1252 }
1253 
1254 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1255 				struct bio *bio, bool partial_io)
1256 {
1257 	struct zcomp_strm *zstrm;
1258 	unsigned long handle;
1259 	unsigned int size;
1260 	void *src, *dst;
1261 	int ret;
1262 
1263 	zram_slot_lock(zram, index);
1264 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1265 		struct bio_vec bvec;
1266 
1267 		zram_slot_unlock(zram, index);
1268 
1269 		bvec.bv_page = page;
1270 		bvec.bv_len = PAGE_SIZE;
1271 		bvec.bv_offset = 0;
1272 		return read_from_bdev(zram, &bvec,
1273 				zram_get_element(zram, index),
1274 				bio, partial_io);
1275 	}
1276 
1277 	handle = zram_get_handle(zram, index);
1278 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1279 		unsigned long value;
1280 		void *mem;
1281 
1282 		value = handle ? zram_get_element(zram, index) : 0;
1283 		mem = kmap_atomic(page);
1284 		zram_fill_page(mem, PAGE_SIZE, value);
1285 		kunmap_atomic(mem);
1286 		zram_slot_unlock(zram, index);
1287 		return 0;
1288 	}
1289 
1290 	size = zram_get_obj_size(zram, index);
1291 
1292 	if (size != PAGE_SIZE)
1293 		zstrm = zcomp_stream_get(zram->comp);
1294 
1295 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1296 	if (size == PAGE_SIZE) {
1297 		dst = kmap_atomic(page);
1298 		memcpy(dst, src, PAGE_SIZE);
1299 		kunmap_atomic(dst);
1300 		ret = 0;
1301 	} else {
1302 		dst = kmap_atomic(page);
1303 		ret = zcomp_decompress(zstrm, src, size, dst);
1304 		kunmap_atomic(dst);
1305 		zcomp_stream_put(zram->comp);
1306 	}
1307 	zs_unmap_object(zram->mem_pool, handle);
1308 	zram_slot_unlock(zram, index);
1309 
1310 	/* Should NEVER happen. Return bio error if it does. */
1311 	if (WARN_ON(ret))
1312 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1313 
1314 	return ret;
1315 }
1316 
1317 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1318 				u32 index, int offset, struct bio *bio)
1319 {
1320 	int ret;
1321 	struct page *page;
1322 
1323 	page = bvec->bv_page;
1324 	if (is_partial_io(bvec)) {
1325 		/* Use a temporary buffer to decompress the page */
1326 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1327 		if (!page)
1328 			return -ENOMEM;
1329 	}
1330 
1331 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1332 	if (unlikely(ret))
1333 		goto out;
1334 
1335 	if (is_partial_io(bvec)) {
1336 		void *src = kmap_atomic(page);
1337 
1338 		memcpy_to_bvec(bvec, src + offset);
1339 		kunmap_atomic(src);
1340 	}
1341 out:
1342 	if (is_partial_io(bvec))
1343 		__free_page(page);
1344 
1345 	return ret;
1346 }
1347 
1348 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1349 				u32 index, struct bio *bio)
1350 {
1351 	int ret = 0;
1352 	unsigned long alloced_pages;
1353 	unsigned long handle = 0;
1354 	unsigned int comp_len = 0;
1355 	void *src, *dst, *mem;
1356 	struct zcomp_strm *zstrm;
1357 	struct page *page = bvec->bv_page;
1358 	unsigned long element = 0;
1359 	enum zram_pageflags flags = 0;
1360 
1361 	mem = kmap_atomic(page);
1362 	if (page_same_filled(mem, &element)) {
1363 		kunmap_atomic(mem);
1364 		/* Free memory associated with this sector now. */
1365 		flags = ZRAM_SAME;
1366 		atomic64_inc(&zram->stats.same_pages);
1367 		goto out;
1368 	}
1369 	kunmap_atomic(mem);
1370 
1371 compress_again:
1372 	zstrm = zcomp_stream_get(zram->comp);
1373 	src = kmap_atomic(page);
1374 	ret = zcomp_compress(zstrm, src, &comp_len);
1375 	kunmap_atomic(src);
1376 
1377 	if (unlikely(ret)) {
1378 		zcomp_stream_put(zram->comp);
1379 		pr_err("Compression failed! err=%d\n", ret);
1380 		zs_free(zram->mem_pool, handle);
1381 		return ret;
1382 	}
1383 
1384 	if (comp_len >= huge_class_size)
1385 		comp_len = PAGE_SIZE;
1386 	/*
1387 	 * handle allocation has 2 paths:
1388 	 * a) fast path is executed with preemption disabled (for
1389 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1390 	 *  since we can't sleep;
1391 	 * b) slow path enables preemption and attempts to allocate
1392 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1393 	 *  put per-cpu compression stream and, thus, to re-do
1394 	 *  the compression once handle is allocated.
1395 	 *
1396 	 * if we have a 'non-null' handle here then we are coming
1397 	 * from the slow path and handle has already been allocated.
1398 	 */
1399 	if (!handle)
1400 		handle = zs_malloc(zram->mem_pool, comp_len,
1401 				__GFP_KSWAPD_RECLAIM |
1402 				__GFP_NOWARN |
1403 				__GFP_HIGHMEM |
1404 				__GFP_MOVABLE);
1405 	if (!handle) {
1406 		zcomp_stream_put(zram->comp);
1407 		atomic64_inc(&zram->stats.writestall);
1408 		handle = zs_malloc(zram->mem_pool, comp_len,
1409 				GFP_NOIO | __GFP_HIGHMEM |
1410 				__GFP_MOVABLE);
1411 		if (handle)
1412 			goto compress_again;
1413 		return -ENOMEM;
1414 	}
1415 
1416 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1417 	update_used_max(zram, alloced_pages);
1418 
1419 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1420 		zcomp_stream_put(zram->comp);
1421 		zs_free(zram->mem_pool, handle);
1422 		return -ENOMEM;
1423 	}
1424 
1425 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1426 
1427 	src = zstrm->buffer;
1428 	if (comp_len == PAGE_SIZE)
1429 		src = kmap_atomic(page);
1430 	memcpy(dst, src, comp_len);
1431 	if (comp_len == PAGE_SIZE)
1432 		kunmap_atomic(src);
1433 
1434 	zcomp_stream_put(zram->comp);
1435 	zs_unmap_object(zram->mem_pool, handle);
1436 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1437 out:
1438 	/*
1439 	 * Free memory associated with this sector
1440 	 * before overwriting unused sectors.
1441 	 */
1442 	zram_slot_lock(zram, index);
1443 	zram_free_page(zram, index);
1444 
1445 	if (comp_len == PAGE_SIZE) {
1446 		zram_set_flag(zram, index, ZRAM_HUGE);
1447 		atomic64_inc(&zram->stats.huge_pages);
1448 		atomic64_inc(&zram->stats.huge_pages_since);
1449 	}
1450 
1451 	if (flags) {
1452 		zram_set_flag(zram, index, flags);
1453 		zram_set_element(zram, index, element);
1454 	}  else {
1455 		zram_set_handle(zram, index, handle);
1456 		zram_set_obj_size(zram, index, comp_len);
1457 	}
1458 	zram_slot_unlock(zram, index);
1459 
1460 	/* Update stats */
1461 	atomic64_inc(&zram->stats.pages_stored);
1462 	return ret;
1463 }
1464 
1465 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1466 				u32 index, int offset, struct bio *bio)
1467 {
1468 	int ret;
1469 	struct page *page = NULL;
1470 	struct bio_vec vec;
1471 
1472 	vec = *bvec;
1473 	if (is_partial_io(bvec)) {
1474 		void *dst;
1475 		/*
1476 		 * This is a partial IO. We need to read the full page
1477 		 * before to write the changes.
1478 		 */
1479 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1480 		if (!page)
1481 			return -ENOMEM;
1482 
1483 		ret = __zram_bvec_read(zram, page, index, bio, true);
1484 		if (ret)
1485 			goto out;
1486 
1487 		dst = kmap_atomic(page);
1488 		memcpy_from_bvec(dst + offset, bvec);
1489 		kunmap_atomic(dst);
1490 
1491 		vec.bv_page = page;
1492 		vec.bv_len = PAGE_SIZE;
1493 		vec.bv_offset = 0;
1494 	}
1495 
1496 	ret = __zram_bvec_write(zram, &vec, index, bio);
1497 out:
1498 	if (is_partial_io(bvec))
1499 		__free_page(page);
1500 	return ret;
1501 }
1502 
1503 /*
1504  * zram_bio_discard - handler on discard request
1505  * @index: physical block index in PAGE_SIZE units
1506  * @offset: byte offset within physical block
1507  */
1508 static void zram_bio_discard(struct zram *zram, u32 index,
1509 			     int offset, struct bio *bio)
1510 {
1511 	size_t n = bio->bi_iter.bi_size;
1512 
1513 	/*
1514 	 * zram manages data in physical block size units. Because logical block
1515 	 * size isn't identical with physical block size on some arch, we
1516 	 * could get a discard request pointing to a specific offset within a
1517 	 * certain physical block.  Although we can handle this request by
1518 	 * reading that physiclal block and decompressing and partially zeroing
1519 	 * and re-compressing and then re-storing it, this isn't reasonable
1520 	 * because our intent with a discard request is to save memory.  So
1521 	 * skipping this logical block is appropriate here.
1522 	 */
1523 	if (offset) {
1524 		if (n <= (PAGE_SIZE - offset))
1525 			return;
1526 
1527 		n -= (PAGE_SIZE - offset);
1528 		index++;
1529 	}
1530 
1531 	while (n >= PAGE_SIZE) {
1532 		zram_slot_lock(zram, index);
1533 		zram_free_page(zram, index);
1534 		zram_slot_unlock(zram, index);
1535 		atomic64_inc(&zram->stats.notify_free);
1536 		index++;
1537 		n -= PAGE_SIZE;
1538 	}
1539 }
1540 
1541 /*
1542  * Returns errno if it has some problem. Otherwise return 0 or 1.
1543  * Returns 0 if IO request was done synchronously
1544  * Returns 1 if IO request was successfully submitted.
1545  */
1546 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1547 			int offset, unsigned int op, struct bio *bio)
1548 {
1549 	int ret;
1550 
1551 	if (!op_is_write(op)) {
1552 		atomic64_inc(&zram->stats.num_reads);
1553 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1554 		flush_dcache_page(bvec->bv_page);
1555 	} else {
1556 		atomic64_inc(&zram->stats.num_writes);
1557 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1558 	}
1559 
1560 	zram_slot_lock(zram, index);
1561 	zram_accessed(zram, index);
1562 	zram_slot_unlock(zram, index);
1563 
1564 	if (unlikely(ret < 0)) {
1565 		if (!op_is_write(op))
1566 			atomic64_inc(&zram->stats.failed_reads);
1567 		else
1568 			atomic64_inc(&zram->stats.failed_writes);
1569 	}
1570 
1571 	return ret;
1572 }
1573 
1574 static void __zram_make_request(struct zram *zram, struct bio *bio)
1575 {
1576 	int offset;
1577 	u32 index;
1578 	struct bio_vec bvec;
1579 	struct bvec_iter iter;
1580 	unsigned long start_time;
1581 
1582 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1583 	offset = (bio->bi_iter.bi_sector &
1584 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1585 
1586 	switch (bio_op(bio)) {
1587 	case REQ_OP_DISCARD:
1588 	case REQ_OP_WRITE_ZEROES:
1589 		zram_bio_discard(zram, index, offset, bio);
1590 		bio_endio(bio);
1591 		return;
1592 	default:
1593 		break;
1594 	}
1595 
1596 	start_time = bio_start_io_acct(bio);
1597 	bio_for_each_segment(bvec, bio, iter) {
1598 		struct bio_vec bv = bvec;
1599 		unsigned int unwritten = bvec.bv_len;
1600 
1601 		do {
1602 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1603 							unwritten);
1604 			if (zram_bvec_rw(zram, &bv, index, offset,
1605 					 bio_op(bio), bio) < 0) {
1606 				bio->bi_status = BLK_STS_IOERR;
1607 				break;
1608 			}
1609 
1610 			bv.bv_offset += bv.bv_len;
1611 			unwritten -= bv.bv_len;
1612 
1613 			update_position(&index, &offset, &bv);
1614 		} while (unwritten);
1615 	}
1616 	bio_end_io_acct(bio, start_time);
1617 	bio_endio(bio);
1618 }
1619 
1620 /*
1621  * Handler function for all zram I/O requests.
1622  */
1623 static void zram_submit_bio(struct bio *bio)
1624 {
1625 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1626 
1627 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1628 					bio->bi_iter.bi_size)) {
1629 		atomic64_inc(&zram->stats.invalid_io);
1630 		bio_io_error(bio);
1631 		return;
1632 	}
1633 
1634 	__zram_make_request(zram, bio);
1635 }
1636 
1637 static void zram_slot_free_notify(struct block_device *bdev,
1638 				unsigned long index)
1639 {
1640 	struct zram *zram;
1641 
1642 	zram = bdev->bd_disk->private_data;
1643 
1644 	atomic64_inc(&zram->stats.notify_free);
1645 	if (!zram_slot_trylock(zram, index)) {
1646 		atomic64_inc(&zram->stats.miss_free);
1647 		return;
1648 	}
1649 
1650 	zram_free_page(zram, index);
1651 	zram_slot_unlock(zram, index);
1652 }
1653 
1654 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1655 		       struct page *page, unsigned int op)
1656 {
1657 	int offset, ret;
1658 	u32 index;
1659 	struct zram *zram;
1660 	struct bio_vec bv;
1661 	unsigned long start_time;
1662 
1663 	if (PageTransHuge(page))
1664 		return -ENOTSUPP;
1665 	zram = bdev->bd_disk->private_data;
1666 
1667 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1668 		atomic64_inc(&zram->stats.invalid_io);
1669 		ret = -EINVAL;
1670 		goto out;
1671 	}
1672 
1673 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1674 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1675 
1676 	bv.bv_page = page;
1677 	bv.bv_len = PAGE_SIZE;
1678 	bv.bv_offset = 0;
1679 
1680 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1681 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1682 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1683 out:
1684 	/*
1685 	 * If I/O fails, just return error(ie, non-zero) without
1686 	 * calling page_endio.
1687 	 * It causes resubmit the I/O with bio request by upper functions
1688 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1689 	 * bio->bi_end_io does things to handle the error
1690 	 * (e.g., SetPageError, set_page_dirty and extra works).
1691 	 */
1692 	if (unlikely(ret < 0))
1693 		return ret;
1694 
1695 	switch (ret) {
1696 	case 0:
1697 		page_endio(page, op_is_write(op), 0);
1698 		break;
1699 	case 1:
1700 		ret = 0;
1701 		break;
1702 	default:
1703 		WARN_ON(1);
1704 	}
1705 	return ret;
1706 }
1707 
1708 static void zram_reset_device(struct zram *zram)
1709 {
1710 	struct zcomp *comp;
1711 	u64 disksize;
1712 
1713 	down_write(&zram->init_lock);
1714 
1715 	zram->limit_pages = 0;
1716 
1717 	if (!init_done(zram)) {
1718 		up_write(&zram->init_lock);
1719 		return;
1720 	}
1721 
1722 	comp = zram->comp;
1723 	disksize = zram->disksize;
1724 	zram->disksize = 0;
1725 
1726 	set_capacity_and_notify(zram->disk, 0);
1727 	part_stat_set_all(zram->disk->part0, 0);
1728 
1729 	/* I/O operation under all of CPU are done so let's free */
1730 	zram_meta_free(zram, disksize);
1731 	memset(&zram->stats, 0, sizeof(zram->stats));
1732 	zcomp_destroy(comp);
1733 	reset_bdev(zram);
1734 
1735 	up_write(&zram->init_lock);
1736 }
1737 
1738 static ssize_t disksize_store(struct device *dev,
1739 		struct device_attribute *attr, const char *buf, size_t len)
1740 {
1741 	u64 disksize;
1742 	struct zcomp *comp;
1743 	struct zram *zram = dev_to_zram(dev);
1744 	int err;
1745 
1746 	disksize = memparse(buf, NULL);
1747 	if (!disksize)
1748 		return -EINVAL;
1749 
1750 	down_write(&zram->init_lock);
1751 	if (init_done(zram)) {
1752 		pr_info("Cannot change disksize for initialized device\n");
1753 		err = -EBUSY;
1754 		goto out_unlock;
1755 	}
1756 
1757 	disksize = PAGE_ALIGN(disksize);
1758 	if (!zram_meta_alloc(zram, disksize)) {
1759 		err = -ENOMEM;
1760 		goto out_unlock;
1761 	}
1762 
1763 	comp = zcomp_create(zram->compressor);
1764 	if (IS_ERR(comp)) {
1765 		pr_err("Cannot initialise %s compressing backend\n",
1766 				zram->compressor);
1767 		err = PTR_ERR(comp);
1768 		goto out_free_meta;
1769 	}
1770 
1771 	zram->comp = comp;
1772 	zram->disksize = disksize;
1773 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1774 	up_write(&zram->init_lock);
1775 
1776 	return len;
1777 
1778 out_free_meta:
1779 	zram_meta_free(zram, disksize);
1780 out_unlock:
1781 	up_write(&zram->init_lock);
1782 	return err;
1783 }
1784 
1785 static ssize_t reset_store(struct device *dev,
1786 		struct device_attribute *attr, const char *buf, size_t len)
1787 {
1788 	int ret;
1789 	unsigned short do_reset;
1790 	struct zram *zram;
1791 	struct block_device *bdev;
1792 
1793 	ret = kstrtou16(buf, 10, &do_reset);
1794 	if (ret)
1795 		return ret;
1796 
1797 	if (!do_reset)
1798 		return -EINVAL;
1799 
1800 	zram = dev_to_zram(dev);
1801 	bdev = zram->disk->part0;
1802 
1803 	mutex_lock(&bdev->bd_disk->open_mutex);
1804 	/* Do not reset an active device or claimed device */
1805 	if (bdev->bd_openers || zram->claim) {
1806 		mutex_unlock(&bdev->bd_disk->open_mutex);
1807 		return -EBUSY;
1808 	}
1809 
1810 	/* From now on, anyone can't open /dev/zram[0-9] */
1811 	zram->claim = true;
1812 	mutex_unlock(&bdev->bd_disk->open_mutex);
1813 
1814 	/* Make sure all the pending I/O are finished */
1815 	sync_blockdev(bdev);
1816 	zram_reset_device(zram);
1817 
1818 	mutex_lock(&bdev->bd_disk->open_mutex);
1819 	zram->claim = false;
1820 	mutex_unlock(&bdev->bd_disk->open_mutex);
1821 
1822 	return len;
1823 }
1824 
1825 static int zram_open(struct block_device *bdev, fmode_t mode)
1826 {
1827 	int ret = 0;
1828 	struct zram *zram;
1829 
1830 	WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex));
1831 
1832 	zram = bdev->bd_disk->private_data;
1833 	/* zram was claimed to reset so open request fails */
1834 	if (zram->claim)
1835 		ret = -EBUSY;
1836 
1837 	return ret;
1838 }
1839 
1840 static const struct block_device_operations zram_devops = {
1841 	.open = zram_open,
1842 	.submit_bio = zram_submit_bio,
1843 	.swap_slot_free_notify = zram_slot_free_notify,
1844 	.rw_page = zram_rw_page,
1845 	.owner = THIS_MODULE
1846 };
1847 
1848 #ifdef CONFIG_ZRAM_WRITEBACK
1849 static const struct block_device_operations zram_wb_devops = {
1850 	.open = zram_open,
1851 	.submit_bio = zram_submit_bio,
1852 	.swap_slot_free_notify = zram_slot_free_notify,
1853 	.owner = THIS_MODULE
1854 };
1855 #endif
1856 
1857 static DEVICE_ATTR_WO(compact);
1858 static DEVICE_ATTR_RW(disksize);
1859 static DEVICE_ATTR_RO(initstate);
1860 static DEVICE_ATTR_WO(reset);
1861 static DEVICE_ATTR_WO(mem_limit);
1862 static DEVICE_ATTR_WO(mem_used_max);
1863 static DEVICE_ATTR_WO(idle);
1864 static DEVICE_ATTR_RW(max_comp_streams);
1865 static DEVICE_ATTR_RW(comp_algorithm);
1866 #ifdef CONFIG_ZRAM_WRITEBACK
1867 static DEVICE_ATTR_RW(backing_dev);
1868 static DEVICE_ATTR_WO(writeback);
1869 static DEVICE_ATTR_RW(writeback_limit);
1870 static DEVICE_ATTR_RW(writeback_limit_enable);
1871 #endif
1872 
1873 static struct attribute *zram_disk_attrs[] = {
1874 	&dev_attr_disksize.attr,
1875 	&dev_attr_initstate.attr,
1876 	&dev_attr_reset.attr,
1877 	&dev_attr_compact.attr,
1878 	&dev_attr_mem_limit.attr,
1879 	&dev_attr_mem_used_max.attr,
1880 	&dev_attr_idle.attr,
1881 	&dev_attr_max_comp_streams.attr,
1882 	&dev_attr_comp_algorithm.attr,
1883 #ifdef CONFIG_ZRAM_WRITEBACK
1884 	&dev_attr_backing_dev.attr,
1885 	&dev_attr_writeback.attr,
1886 	&dev_attr_writeback_limit.attr,
1887 	&dev_attr_writeback_limit_enable.attr,
1888 #endif
1889 	&dev_attr_io_stat.attr,
1890 	&dev_attr_mm_stat.attr,
1891 #ifdef CONFIG_ZRAM_WRITEBACK
1892 	&dev_attr_bd_stat.attr,
1893 #endif
1894 	&dev_attr_debug_stat.attr,
1895 	NULL,
1896 };
1897 
1898 ATTRIBUTE_GROUPS(zram_disk);
1899 
1900 /*
1901  * Allocate and initialize new zram device. the function returns
1902  * '>= 0' device_id upon success, and negative value otherwise.
1903  */
1904 static int zram_add(void)
1905 {
1906 	struct zram *zram;
1907 	int ret, device_id;
1908 
1909 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1910 	if (!zram)
1911 		return -ENOMEM;
1912 
1913 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1914 	if (ret < 0)
1915 		goto out_free_dev;
1916 	device_id = ret;
1917 
1918 	init_rwsem(&zram->init_lock);
1919 #ifdef CONFIG_ZRAM_WRITEBACK
1920 	spin_lock_init(&zram->wb_limit_lock);
1921 #endif
1922 
1923 	/* gendisk structure */
1924 	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
1925 	if (!zram->disk) {
1926 		pr_err("Error allocating disk structure for device %d\n",
1927 			device_id);
1928 		ret = -ENOMEM;
1929 		goto out_free_idr;
1930 	}
1931 
1932 	zram->disk->major = zram_major;
1933 	zram->disk->first_minor = device_id;
1934 	zram->disk->minors = 1;
1935 	zram->disk->flags |= GENHD_FL_NO_PART;
1936 	zram->disk->fops = &zram_devops;
1937 	zram->disk->private_data = zram;
1938 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1939 
1940 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1941 	set_capacity(zram->disk, 0);
1942 	/* zram devices sort of resembles non-rotational disks */
1943 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1944 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1945 
1946 	/*
1947 	 * To ensure that we always get PAGE_SIZE aligned
1948 	 * and n*PAGE_SIZED sized I/O requests.
1949 	 */
1950 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1951 	blk_queue_logical_block_size(zram->disk->queue,
1952 					ZRAM_LOGICAL_BLOCK_SIZE);
1953 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1954 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1955 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1956 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1957 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1958 
1959 	/*
1960 	 * zram_bio_discard() will clear all logical blocks if logical block
1961 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1962 	 * different, we will skip discarding some parts of logical blocks in
1963 	 * the part of the request range which isn't aligned to physical block
1964 	 * size.  So we can't ensure that all discarded logical blocks are
1965 	 * zeroed.
1966 	 */
1967 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1968 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1969 
1970 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1971 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
1972 	if (ret)
1973 		goto out_cleanup_disk;
1974 
1975 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1976 
1977 	zram_debugfs_register(zram);
1978 	pr_info("Added device: %s\n", zram->disk->disk_name);
1979 	return device_id;
1980 
1981 out_cleanup_disk:
1982 	blk_cleanup_disk(zram->disk);
1983 out_free_idr:
1984 	idr_remove(&zram_index_idr, device_id);
1985 out_free_dev:
1986 	kfree(zram);
1987 	return ret;
1988 }
1989 
1990 static int zram_remove(struct zram *zram)
1991 {
1992 	struct block_device *bdev = zram->disk->part0;
1993 	bool claimed;
1994 
1995 	mutex_lock(&bdev->bd_disk->open_mutex);
1996 	if (bdev->bd_openers) {
1997 		mutex_unlock(&bdev->bd_disk->open_mutex);
1998 		return -EBUSY;
1999 	}
2000 
2001 	claimed = zram->claim;
2002 	if (!claimed)
2003 		zram->claim = true;
2004 	mutex_unlock(&bdev->bd_disk->open_mutex);
2005 
2006 	zram_debugfs_unregister(zram);
2007 
2008 	if (claimed) {
2009 		/*
2010 		 * If we were claimed by reset_store(), del_gendisk() will
2011 		 * wait until reset_store() is done, so nothing need to do.
2012 		 */
2013 		;
2014 	} else {
2015 		/* Make sure all the pending I/O are finished */
2016 		sync_blockdev(bdev);
2017 		zram_reset_device(zram);
2018 	}
2019 
2020 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2021 
2022 	del_gendisk(zram->disk);
2023 
2024 	/* del_gendisk drains pending reset_store */
2025 	WARN_ON_ONCE(claimed && zram->claim);
2026 
2027 	/*
2028 	 * disksize_store() may be called in between zram_reset_device()
2029 	 * and del_gendisk(), so run the last reset to avoid leaking
2030 	 * anything allocated with disksize_store()
2031 	 */
2032 	zram_reset_device(zram);
2033 
2034 	blk_cleanup_disk(zram->disk);
2035 	kfree(zram);
2036 	return 0;
2037 }
2038 
2039 /* zram-control sysfs attributes */
2040 
2041 /*
2042  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2043  * sense that reading from this file does alter the state of your system -- it
2044  * creates a new un-initialized zram device and returns back this device's
2045  * device_id (or an error code if it fails to create a new device).
2046  */
2047 static ssize_t hot_add_show(struct class *class,
2048 			struct class_attribute *attr,
2049 			char *buf)
2050 {
2051 	int ret;
2052 
2053 	mutex_lock(&zram_index_mutex);
2054 	ret = zram_add();
2055 	mutex_unlock(&zram_index_mutex);
2056 
2057 	if (ret < 0)
2058 		return ret;
2059 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2060 }
2061 static struct class_attribute class_attr_hot_add =
2062 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2063 
2064 static ssize_t hot_remove_store(struct class *class,
2065 			struct class_attribute *attr,
2066 			const char *buf,
2067 			size_t count)
2068 {
2069 	struct zram *zram;
2070 	int ret, dev_id;
2071 
2072 	/* dev_id is gendisk->first_minor, which is `int' */
2073 	ret = kstrtoint(buf, 10, &dev_id);
2074 	if (ret)
2075 		return ret;
2076 	if (dev_id < 0)
2077 		return -EINVAL;
2078 
2079 	mutex_lock(&zram_index_mutex);
2080 
2081 	zram = idr_find(&zram_index_idr, dev_id);
2082 	if (zram) {
2083 		ret = zram_remove(zram);
2084 		if (!ret)
2085 			idr_remove(&zram_index_idr, dev_id);
2086 	} else {
2087 		ret = -ENODEV;
2088 	}
2089 
2090 	mutex_unlock(&zram_index_mutex);
2091 	return ret ? ret : count;
2092 }
2093 static CLASS_ATTR_WO(hot_remove);
2094 
2095 static struct attribute *zram_control_class_attrs[] = {
2096 	&class_attr_hot_add.attr,
2097 	&class_attr_hot_remove.attr,
2098 	NULL,
2099 };
2100 ATTRIBUTE_GROUPS(zram_control_class);
2101 
2102 static struct class zram_control_class = {
2103 	.name		= "zram-control",
2104 	.owner		= THIS_MODULE,
2105 	.class_groups	= zram_control_class_groups,
2106 };
2107 
2108 static int zram_remove_cb(int id, void *ptr, void *data)
2109 {
2110 	WARN_ON_ONCE(zram_remove(ptr));
2111 	return 0;
2112 }
2113 
2114 static void destroy_devices(void)
2115 {
2116 	class_unregister(&zram_control_class);
2117 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2118 	zram_debugfs_destroy();
2119 	idr_destroy(&zram_index_idr);
2120 	unregister_blkdev(zram_major, "zram");
2121 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2122 }
2123 
2124 static int __init zram_init(void)
2125 {
2126 	int ret;
2127 
2128 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2129 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2130 	if (ret < 0)
2131 		return ret;
2132 
2133 	ret = class_register(&zram_control_class);
2134 	if (ret) {
2135 		pr_err("Unable to register zram-control class\n");
2136 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2137 		return ret;
2138 	}
2139 
2140 	zram_debugfs_create();
2141 	zram_major = register_blkdev(0, "zram");
2142 	if (zram_major <= 0) {
2143 		pr_err("Unable to get major number\n");
2144 		class_unregister(&zram_control_class);
2145 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2146 		return -EBUSY;
2147 	}
2148 
2149 	while (num_devices != 0) {
2150 		mutex_lock(&zram_index_mutex);
2151 		ret = zram_add();
2152 		mutex_unlock(&zram_index_mutex);
2153 		if (ret < 0)
2154 			goto out_error;
2155 		num_devices--;
2156 	}
2157 
2158 	return 0;
2159 
2160 out_error:
2161 	destroy_devices();
2162 	return ret;
2163 }
2164 
2165 static void __exit zram_exit(void)
2166 {
2167 	destroy_devices();
2168 }
2169 
2170 module_init(zram_init);
2171 module_exit(zram_exit);
2172 
2173 module_param(num_devices, uint, 0);
2174 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2175 
2176 MODULE_LICENSE("Dual BSD/GPL");
2177 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2178 MODULE_DESCRIPTION("Compressed RAM Block Device");
2179