xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 1bcca2b1)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static const struct block_device_operations zram_devops;
55 static const struct block_device_operations zram_wb_devops;
56 
57 static void zram_free_page(struct zram *zram, size_t index);
58 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
59 				u32 index, int offset, struct bio *bio);
60 
61 
62 static int zram_slot_trylock(struct zram *zram, u32 index)
63 {
64 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
65 }
66 
67 static void zram_slot_lock(struct zram *zram, u32 index)
68 {
69 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
70 }
71 
72 static void zram_slot_unlock(struct zram *zram, u32 index)
73 {
74 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
75 }
76 
77 static inline bool init_done(struct zram *zram)
78 {
79 	return zram->disksize;
80 }
81 
82 static inline struct zram *dev_to_zram(struct device *dev)
83 {
84 	return (struct zram *)dev_to_disk(dev)->private_data;
85 }
86 
87 static unsigned long zram_get_handle(struct zram *zram, u32 index)
88 {
89 	return zram->table[index].handle;
90 }
91 
92 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
93 {
94 	zram->table[index].handle = handle;
95 }
96 
97 /* flag operations require table entry bit_spin_lock() being held */
98 static bool zram_test_flag(struct zram *zram, u32 index,
99 			enum zram_pageflags flag)
100 {
101 	return zram->table[index].flags & BIT(flag);
102 }
103 
104 static void zram_set_flag(struct zram *zram, u32 index,
105 			enum zram_pageflags flag)
106 {
107 	zram->table[index].flags |= BIT(flag);
108 }
109 
110 static void zram_clear_flag(struct zram *zram, u32 index,
111 			enum zram_pageflags flag)
112 {
113 	zram->table[index].flags &= ~BIT(flag);
114 }
115 
116 static inline void zram_set_element(struct zram *zram, u32 index,
117 			unsigned long element)
118 {
119 	zram->table[index].element = element;
120 }
121 
122 static unsigned long zram_get_element(struct zram *zram, u32 index)
123 {
124 	return zram->table[index].element;
125 }
126 
127 static size_t zram_get_obj_size(struct zram *zram, u32 index)
128 {
129 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
130 }
131 
132 static void zram_set_obj_size(struct zram *zram,
133 					u32 index, size_t size)
134 {
135 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
136 
137 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
138 }
139 
140 static inline bool zram_allocated(struct zram *zram, u32 index)
141 {
142 	return zram_get_obj_size(zram, index) ||
143 			zram_test_flag(zram, index, ZRAM_SAME) ||
144 			zram_test_flag(zram, index, ZRAM_WB);
145 }
146 
147 #if PAGE_SIZE != 4096
148 static inline bool is_partial_io(struct bio_vec *bvec)
149 {
150 	return bvec->bv_len != PAGE_SIZE;
151 }
152 #else
153 static inline bool is_partial_io(struct bio_vec *bvec)
154 {
155 	return false;
156 }
157 #endif
158 
159 /*
160  * Check if request is within bounds and aligned on zram logical blocks.
161  */
162 static inline bool valid_io_request(struct zram *zram,
163 		sector_t start, unsigned int size)
164 {
165 	u64 end, bound;
166 
167 	/* unaligned request */
168 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
169 		return false;
170 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
171 		return false;
172 
173 	end = start + (size >> SECTOR_SHIFT);
174 	bound = zram->disksize >> SECTOR_SHIFT;
175 	/* out of range range */
176 	if (unlikely(start >= bound || end > bound || start > end))
177 		return false;
178 
179 	/* I/O request is valid */
180 	return true;
181 }
182 
183 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
184 {
185 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
186 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
187 }
188 
189 static inline void update_used_max(struct zram *zram,
190 					const unsigned long pages)
191 {
192 	unsigned long old_max, cur_max;
193 
194 	old_max = atomic_long_read(&zram->stats.max_used_pages);
195 
196 	do {
197 		cur_max = old_max;
198 		if (pages > cur_max)
199 			old_max = atomic_long_cmpxchg(
200 				&zram->stats.max_used_pages, cur_max, pages);
201 	} while (old_max != cur_max);
202 }
203 
204 static inline void zram_fill_page(void *ptr, unsigned long len,
205 					unsigned long value)
206 {
207 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
208 	memset_l(ptr, value, len / sizeof(unsigned long));
209 }
210 
211 static bool page_same_filled(void *ptr, unsigned long *element)
212 {
213 	unsigned long *page;
214 	unsigned long val;
215 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
216 
217 	page = (unsigned long *)ptr;
218 	val = page[0];
219 
220 	if (val != page[last_pos])
221 		return false;
222 
223 	for (pos = 1; pos < last_pos; pos++) {
224 		if (val != page[pos])
225 			return false;
226 	}
227 
228 	*element = val;
229 
230 	return true;
231 }
232 
233 static ssize_t initstate_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	u32 val;
237 	struct zram *zram = dev_to_zram(dev);
238 
239 	down_read(&zram->init_lock);
240 	val = init_done(zram);
241 	up_read(&zram->init_lock);
242 
243 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
244 }
245 
246 static ssize_t disksize_show(struct device *dev,
247 		struct device_attribute *attr, char *buf)
248 {
249 	struct zram *zram = dev_to_zram(dev);
250 
251 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
252 }
253 
254 static ssize_t mem_limit_store(struct device *dev,
255 		struct device_attribute *attr, const char *buf, size_t len)
256 {
257 	u64 limit;
258 	char *tmp;
259 	struct zram *zram = dev_to_zram(dev);
260 
261 	limit = memparse(buf, &tmp);
262 	if (buf == tmp) /* no chars parsed, invalid input */
263 		return -EINVAL;
264 
265 	down_write(&zram->init_lock);
266 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
267 	up_write(&zram->init_lock);
268 
269 	return len;
270 }
271 
272 static ssize_t mem_used_max_store(struct device *dev,
273 		struct device_attribute *attr, const char *buf, size_t len)
274 {
275 	int err;
276 	unsigned long val;
277 	struct zram *zram = dev_to_zram(dev);
278 
279 	err = kstrtoul(buf, 10, &val);
280 	if (err || val != 0)
281 		return -EINVAL;
282 
283 	down_read(&zram->init_lock);
284 	if (init_done(zram)) {
285 		atomic_long_set(&zram->stats.max_used_pages,
286 				zs_get_total_pages(zram->mem_pool));
287 	}
288 	up_read(&zram->init_lock);
289 
290 	return len;
291 }
292 
293 /*
294  * Mark all pages which are older than or equal to cutoff as IDLE.
295  * Callers should hold the zram init lock in read mode
296  */
297 static void mark_idle(struct zram *zram, ktime_t cutoff)
298 {
299 	int is_idle = 1;
300 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
301 	int index;
302 
303 	for (index = 0; index < nr_pages; index++) {
304 		/*
305 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
306 		 * See the comment in writeback_store.
307 		 */
308 		zram_slot_lock(zram, index);
309 		if (zram_allocated(zram, index) &&
310 				!zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
311 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
312 			is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
313 #endif
314 			if (is_idle)
315 				zram_set_flag(zram, index, ZRAM_IDLE);
316 		}
317 		zram_slot_unlock(zram, index);
318 	}
319 }
320 
321 static ssize_t idle_store(struct device *dev,
322 		struct device_attribute *attr, const char *buf, size_t len)
323 {
324 	struct zram *zram = dev_to_zram(dev);
325 	ktime_t cutoff_time = 0;
326 	ssize_t rv = -EINVAL;
327 
328 	if (!sysfs_streq(buf, "all")) {
329 		/*
330 		 * If it did not parse as 'all' try to treat it as an integer when
331 		 * we have memory tracking enabled.
332 		 */
333 		u64 age_sec;
334 
335 		if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
336 			cutoff_time = ktime_sub(ktime_get_boottime(),
337 					ns_to_ktime(age_sec * NSEC_PER_SEC));
338 		else
339 			goto out;
340 	}
341 
342 	down_read(&zram->init_lock);
343 	if (!init_done(zram))
344 		goto out_unlock;
345 
346 	/* A cutoff_time of 0 marks everything as idle, this is the "all" behavior */
347 	mark_idle(zram, cutoff_time);
348 	rv = len;
349 
350 out_unlock:
351 	up_read(&zram->init_lock);
352 out:
353 	return rv;
354 }
355 
356 #ifdef CONFIG_ZRAM_WRITEBACK
357 static ssize_t writeback_limit_enable_store(struct device *dev,
358 		struct device_attribute *attr, const char *buf, size_t len)
359 {
360 	struct zram *zram = dev_to_zram(dev);
361 	u64 val;
362 	ssize_t ret = -EINVAL;
363 
364 	if (kstrtoull(buf, 10, &val))
365 		return ret;
366 
367 	down_read(&zram->init_lock);
368 	spin_lock(&zram->wb_limit_lock);
369 	zram->wb_limit_enable = val;
370 	spin_unlock(&zram->wb_limit_lock);
371 	up_read(&zram->init_lock);
372 	ret = len;
373 
374 	return ret;
375 }
376 
377 static ssize_t writeback_limit_enable_show(struct device *dev,
378 		struct device_attribute *attr, char *buf)
379 {
380 	bool val;
381 	struct zram *zram = dev_to_zram(dev);
382 
383 	down_read(&zram->init_lock);
384 	spin_lock(&zram->wb_limit_lock);
385 	val = zram->wb_limit_enable;
386 	spin_unlock(&zram->wb_limit_lock);
387 	up_read(&zram->init_lock);
388 
389 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
390 }
391 
392 static ssize_t writeback_limit_store(struct device *dev,
393 		struct device_attribute *attr, const char *buf, size_t len)
394 {
395 	struct zram *zram = dev_to_zram(dev);
396 	u64 val;
397 	ssize_t ret = -EINVAL;
398 
399 	if (kstrtoull(buf, 10, &val))
400 		return ret;
401 
402 	down_read(&zram->init_lock);
403 	spin_lock(&zram->wb_limit_lock);
404 	zram->bd_wb_limit = val;
405 	spin_unlock(&zram->wb_limit_lock);
406 	up_read(&zram->init_lock);
407 	ret = len;
408 
409 	return ret;
410 }
411 
412 static ssize_t writeback_limit_show(struct device *dev,
413 		struct device_attribute *attr, char *buf)
414 {
415 	u64 val;
416 	struct zram *zram = dev_to_zram(dev);
417 
418 	down_read(&zram->init_lock);
419 	spin_lock(&zram->wb_limit_lock);
420 	val = zram->bd_wb_limit;
421 	spin_unlock(&zram->wb_limit_lock);
422 	up_read(&zram->init_lock);
423 
424 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
425 }
426 
427 static void reset_bdev(struct zram *zram)
428 {
429 	struct block_device *bdev;
430 
431 	if (!zram->backing_dev)
432 		return;
433 
434 	bdev = zram->bdev;
435 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
436 	/* hope filp_close flush all of IO */
437 	filp_close(zram->backing_dev, NULL);
438 	zram->backing_dev = NULL;
439 	zram->bdev = NULL;
440 	zram->disk->fops = &zram_devops;
441 	kvfree(zram->bitmap);
442 	zram->bitmap = NULL;
443 }
444 
445 static ssize_t backing_dev_show(struct device *dev,
446 		struct device_attribute *attr, char *buf)
447 {
448 	struct file *file;
449 	struct zram *zram = dev_to_zram(dev);
450 	char *p;
451 	ssize_t ret;
452 
453 	down_read(&zram->init_lock);
454 	file = zram->backing_dev;
455 	if (!file) {
456 		memcpy(buf, "none\n", 5);
457 		up_read(&zram->init_lock);
458 		return 5;
459 	}
460 
461 	p = file_path(file, buf, PAGE_SIZE - 1);
462 	if (IS_ERR(p)) {
463 		ret = PTR_ERR(p);
464 		goto out;
465 	}
466 
467 	ret = strlen(p);
468 	memmove(buf, p, ret);
469 	buf[ret++] = '\n';
470 out:
471 	up_read(&zram->init_lock);
472 	return ret;
473 }
474 
475 static ssize_t backing_dev_store(struct device *dev,
476 		struct device_attribute *attr, const char *buf, size_t len)
477 {
478 	char *file_name;
479 	size_t sz;
480 	struct file *backing_dev = NULL;
481 	struct inode *inode;
482 	struct address_space *mapping;
483 	unsigned int bitmap_sz;
484 	unsigned long nr_pages, *bitmap = NULL;
485 	struct block_device *bdev = NULL;
486 	int err;
487 	struct zram *zram = dev_to_zram(dev);
488 
489 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
490 	if (!file_name)
491 		return -ENOMEM;
492 
493 	down_write(&zram->init_lock);
494 	if (init_done(zram)) {
495 		pr_info("Can't setup backing device for initialized device\n");
496 		err = -EBUSY;
497 		goto out;
498 	}
499 
500 	strlcpy(file_name, buf, PATH_MAX);
501 	/* ignore trailing newline */
502 	sz = strlen(file_name);
503 	if (sz > 0 && file_name[sz - 1] == '\n')
504 		file_name[sz - 1] = 0x00;
505 
506 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
507 	if (IS_ERR(backing_dev)) {
508 		err = PTR_ERR(backing_dev);
509 		backing_dev = NULL;
510 		goto out;
511 	}
512 
513 	mapping = backing_dev->f_mapping;
514 	inode = mapping->host;
515 
516 	/* Support only block device in this moment */
517 	if (!S_ISBLK(inode->i_mode)) {
518 		err = -ENOTBLK;
519 		goto out;
520 	}
521 
522 	bdev = blkdev_get_by_dev(inode->i_rdev,
523 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
524 	if (IS_ERR(bdev)) {
525 		err = PTR_ERR(bdev);
526 		bdev = NULL;
527 		goto out;
528 	}
529 
530 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
531 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
532 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
533 	if (!bitmap) {
534 		err = -ENOMEM;
535 		goto out;
536 	}
537 
538 	reset_bdev(zram);
539 
540 	zram->bdev = bdev;
541 	zram->backing_dev = backing_dev;
542 	zram->bitmap = bitmap;
543 	zram->nr_pages = nr_pages;
544 	/*
545 	 * With writeback feature, zram does asynchronous IO so it's no longer
546 	 * synchronous device so let's remove synchronous io flag. Othewise,
547 	 * upper layer(e.g., swap) could wait IO completion rather than
548 	 * (submit and return), which will cause system sluggish.
549 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
550 	 * upper layer expects IO was done so it could deallocate the page
551 	 * freely but in fact, IO is going on so finally could cause
552 	 * use-after-free when the IO is really done.
553 	 */
554 	zram->disk->fops = &zram_wb_devops;
555 	up_write(&zram->init_lock);
556 
557 	pr_info("setup backing device %s\n", file_name);
558 	kfree(file_name);
559 
560 	return len;
561 out:
562 	kvfree(bitmap);
563 
564 	if (bdev)
565 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
566 
567 	if (backing_dev)
568 		filp_close(backing_dev, NULL);
569 
570 	up_write(&zram->init_lock);
571 
572 	kfree(file_name);
573 
574 	return err;
575 }
576 
577 static unsigned long alloc_block_bdev(struct zram *zram)
578 {
579 	unsigned long blk_idx = 1;
580 retry:
581 	/* skip 0 bit to confuse zram.handle = 0 */
582 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
583 	if (blk_idx == zram->nr_pages)
584 		return 0;
585 
586 	if (test_and_set_bit(blk_idx, zram->bitmap))
587 		goto retry;
588 
589 	atomic64_inc(&zram->stats.bd_count);
590 	return blk_idx;
591 }
592 
593 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
594 {
595 	int was_set;
596 
597 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
598 	WARN_ON_ONCE(!was_set);
599 	atomic64_dec(&zram->stats.bd_count);
600 }
601 
602 static void zram_page_end_io(struct bio *bio)
603 {
604 	struct page *page = bio_first_page_all(bio);
605 
606 	page_endio(page, op_is_write(bio_op(bio)),
607 			blk_status_to_errno(bio->bi_status));
608 	bio_put(bio);
609 }
610 
611 /*
612  * Returns 1 if the submission is successful.
613  */
614 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
615 			unsigned long entry, struct bio *parent)
616 {
617 	struct bio *bio;
618 
619 	bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ,
620 			GFP_NOIO);
621 	if (!bio)
622 		return -ENOMEM;
623 
624 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
625 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
626 		bio_put(bio);
627 		return -EIO;
628 	}
629 
630 	if (!parent)
631 		bio->bi_end_io = zram_page_end_io;
632 	else
633 		bio_chain(bio, parent);
634 
635 	submit_bio(bio);
636 	return 1;
637 }
638 
639 #define PAGE_WB_SIG "page_index="
640 
641 #define PAGE_WRITEBACK 0
642 #define HUGE_WRITEBACK (1<<0)
643 #define IDLE_WRITEBACK (1<<1)
644 
645 
646 static ssize_t writeback_store(struct device *dev,
647 		struct device_attribute *attr, const char *buf, size_t len)
648 {
649 	struct zram *zram = dev_to_zram(dev);
650 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
651 	unsigned long index = 0;
652 	struct bio bio;
653 	struct bio_vec bio_vec;
654 	struct page *page;
655 	ssize_t ret = len;
656 	int mode, err;
657 	unsigned long blk_idx = 0;
658 
659 	if (sysfs_streq(buf, "idle"))
660 		mode = IDLE_WRITEBACK;
661 	else if (sysfs_streq(buf, "huge"))
662 		mode = HUGE_WRITEBACK;
663 	else if (sysfs_streq(buf, "huge_idle"))
664 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
665 	else {
666 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
667 			return -EINVAL;
668 
669 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
670 				index >= nr_pages)
671 			return -EINVAL;
672 
673 		nr_pages = 1;
674 		mode = PAGE_WRITEBACK;
675 	}
676 
677 	down_read(&zram->init_lock);
678 	if (!init_done(zram)) {
679 		ret = -EINVAL;
680 		goto release_init_lock;
681 	}
682 
683 	if (!zram->backing_dev) {
684 		ret = -ENODEV;
685 		goto release_init_lock;
686 	}
687 
688 	page = alloc_page(GFP_KERNEL);
689 	if (!page) {
690 		ret = -ENOMEM;
691 		goto release_init_lock;
692 	}
693 
694 	for (; nr_pages != 0; index++, nr_pages--) {
695 		struct bio_vec bvec;
696 
697 		bvec.bv_page = page;
698 		bvec.bv_len = PAGE_SIZE;
699 		bvec.bv_offset = 0;
700 
701 		spin_lock(&zram->wb_limit_lock);
702 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
703 			spin_unlock(&zram->wb_limit_lock);
704 			ret = -EIO;
705 			break;
706 		}
707 		spin_unlock(&zram->wb_limit_lock);
708 
709 		if (!blk_idx) {
710 			blk_idx = alloc_block_bdev(zram);
711 			if (!blk_idx) {
712 				ret = -ENOSPC;
713 				break;
714 			}
715 		}
716 
717 		zram_slot_lock(zram, index);
718 		if (!zram_allocated(zram, index))
719 			goto next;
720 
721 		if (zram_test_flag(zram, index, ZRAM_WB) ||
722 				zram_test_flag(zram, index, ZRAM_SAME) ||
723 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
724 			goto next;
725 
726 		if (mode & IDLE_WRITEBACK &&
727 			  !zram_test_flag(zram, index, ZRAM_IDLE))
728 			goto next;
729 		if (mode & HUGE_WRITEBACK &&
730 			  !zram_test_flag(zram, index, ZRAM_HUGE))
731 			goto next;
732 		/*
733 		 * Clearing ZRAM_UNDER_WB is duty of caller.
734 		 * IOW, zram_free_page never clear it.
735 		 */
736 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
737 		/* Need for hugepage writeback racing */
738 		zram_set_flag(zram, index, ZRAM_IDLE);
739 		zram_slot_unlock(zram, index);
740 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
741 			zram_slot_lock(zram, index);
742 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
743 			zram_clear_flag(zram, index, ZRAM_IDLE);
744 			zram_slot_unlock(zram, index);
745 			continue;
746 		}
747 
748 		bio_init(&bio, zram->bdev, &bio_vec, 1,
749 			 REQ_OP_WRITE | REQ_SYNC);
750 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
751 
752 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
753 				bvec.bv_offset);
754 		/*
755 		 * XXX: A single page IO would be inefficient for write
756 		 * but it would be not bad as starter.
757 		 */
758 		err = submit_bio_wait(&bio);
759 		if (err) {
760 			zram_slot_lock(zram, index);
761 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
762 			zram_clear_flag(zram, index, ZRAM_IDLE);
763 			zram_slot_unlock(zram, index);
764 			/*
765 			 * Return last IO error unless every IO were
766 			 * not suceeded.
767 			 */
768 			ret = err;
769 			continue;
770 		}
771 
772 		atomic64_inc(&zram->stats.bd_writes);
773 		/*
774 		 * We released zram_slot_lock so need to check if the slot was
775 		 * changed. If there is freeing for the slot, we can catch it
776 		 * easily by zram_allocated.
777 		 * A subtle case is the slot is freed/reallocated/marked as
778 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
779 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
780 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
781 		 */
782 		zram_slot_lock(zram, index);
783 		if (!zram_allocated(zram, index) ||
784 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
785 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
786 			zram_clear_flag(zram, index, ZRAM_IDLE);
787 			goto next;
788 		}
789 
790 		zram_free_page(zram, index);
791 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
792 		zram_set_flag(zram, index, ZRAM_WB);
793 		zram_set_element(zram, index, blk_idx);
794 		blk_idx = 0;
795 		atomic64_inc(&zram->stats.pages_stored);
796 		spin_lock(&zram->wb_limit_lock);
797 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
798 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
799 		spin_unlock(&zram->wb_limit_lock);
800 next:
801 		zram_slot_unlock(zram, index);
802 	}
803 
804 	if (blk_idx)
805 		free_block_bdev(zram, blk_idx);
806 	__free_page(page);
807 release_init_lock:
808 	up_read(&zram->init_lock);
809 
810 	return ret;
811 }
812 
813 struct zram_work {
814 	struct work_struct work;
815 	struct zram *zram;
816 	unsigned long entry;
817 	struct bio *bio;
818 	struct bio_vec bvec;
819 };
820 
821 #if PAGE_SIZE != 4096
822 static void zram_sync_read(struct work_struct *work)
823 {
824 	struct zram_work *zw = container_of(work, struct zram_work, work);
825 	struct zram *zram = zw->zram;
826 	unsigned long entry = zw->entry;
827 	struct bio *bio = zw->bio;
828 
829 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
830 }
831 
832 /*
833  * Block layer want one ->submit_bio to be active at a time, so if we use
834  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
835  * use a worker thread context.
836  */
837 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
838 				unsigned long entry, struct bio *bio)
839 {
840 	struct zram_work work;
841 
842 	work.bvec = *bvec;
843 	work.zram = zram;
844 	work.entry = entry;
845 	work.bio = bio;
846 
847 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
848 	queue_work(system_unbound_wq, &work.work);
849 	flush_work(&work.work);
850 	destroy_work_on_stack(&work.work);
851 
852 	return 1;
853 }
854 #else
855 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
856 				unsigned long entry, struct bio *bio)
857 {
858 	WARN_ON(1);
859 	return -EIO;
860 }
861 #endif
862 
863 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
864 			unsigned long entry, struct bio *parent, bool sync)
865 {
866 	atomic64_inc(&zram->stats.bd_reads);
867 	if (sync)
868 		return read_from_bdev_sync(zram, bvec, entry, parent);
869 	else
870 		return read_from_bdev_async(zram, bvec, entry, parent);
871 }
872 #else
873 static inline void reset_bdev(struct zram *zram) {};
874 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
875 			unsigned long entry, struct bio *parent, bool sync)
876 {
877 	return -EIO;
878 }
879 
880 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
881 #endif
882 
883 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
884 
885 static struct dentry *zram_debugfs_root;
886 
887 static void zram_debugfs_create(void)
888 {
889 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
890 }
891 
892 static void zram_debugfs_destroy(void)
893 {
894 	debugfs_remove_recursive(zram_debugfs_root);
895 }
896 
897 static void zram_accessed(struct zram *zram, u32 index)
898 {
899 	zram_clear_flag(zram, index, ZRAM_IDLE);
900 	zram->table[index].ac_time = ktime_get_boottime();
901 }
902 
903 static ssize_t read_block_state(struct file *file, char __user *buf,
904 				size_t count, loff_t *ppos)
905 {
906 	char *kbuf;
907 	ssize_t index, written = 0;
908 	struct zram *zram = file->private_data;
909 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
910 	struct timespec64 ts;
911 
912 	kbuf = kvmalloc(count, GFP_KERNEL);
913 	if (!kbuf)
914 		return -ENOMEM;
915 
916 	down_read(&zram->init_lock);
917 	if (!init_done(zram)) {
918 		up_read(&zram->init_lock);
919 		kvfree(kbuf);
920 		return -EINVAL;
921 	}
922 
923 	for (index = *ppos; index < nr_pages; index++) {
924 		int copied;
925 
926 		zram_slot_lock(zram, index);
927 		if (!zram_allocated(zram, index))
928 			goto next;
929 
930 		ts = ktime_to_timespec64(zram->table[index].ac_time);
931 		copied = snprintf(kbuf + written, count,
932 			"%12zd %12lld.%06lu %c%c%c%c\n",
933 			index, (s64)ts.tv_sec,
934 			ts.tv_nsec / NSEC_PER_USEC,
935 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
936 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
937 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
938 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
939 
940 		if (count <= copied) {
941 			zram_slot_unlock(zram, index);
942 			break;
943 		}
944 		written += copied;
945 		count -= copied;
946 next:
947 		zram_slot_unlock(zram, index);
948 		*ppos += 1;
949 	}
950 
951 	up_read(&zram->init_lock);
952 	if (copy_to_user(buf, kbuf, written))
953 		written = -EFAULT;
954 	kvfree(kbuf);
955 
956 	return written;
957 }
958 
959 static const struct file_operations proc_zram_block_state_op = {
960 	.open = simple_open,
961 	.read = read_block_state,
962 	.llseek = default_llseek,
963 };
964 
965 static void zram_debugfs_register(struct zram *zram)
966 {
967 	if (!zram_debugfs_root)
968 		return;
969 
970 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
971 						zram_debugfs_root);
972 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
973 				zram, &proc_zram_block_state_op);
974 }
975 
976 static void zram_debugfs_unregister(struct zram *zram)
977 {
978 	debugfs_remove_recursive(zram->debugfs_dir);
979 }
980 #else
981 static void zram_debugfs_create(void) {};
982 static void zram_debugfs_destroy(void) {};
983 static void zram_accessed(struct zram *zram, u32 index)
984 {
985 	zram_clear_flag(zram, index, ZRAM_IDLE);
986 };
987 static void zram_debugfs_register(struct zram *zram) {};
988 static void zram_debugfs_unregister(struct zram *zram) {};
989 #endif
990 
991 /*
992  * We switched to per-cpu streams and this attr is not needed anymore.
993  * However, we will keep it around for some time, because:
994  * a) we may revert per-cpu streams in the future
995  * b) it's visible to user space and we need to follow our 2 years
996  *    retirement rule; but we already have a number of 'soon to be
997  *    altered' attrs, so max_comp_streams need to wait for the next
998  *    layoff cycle.
999  */
1000 static ssize_t max_comp_streams_show(struct device *dev,
1001 		struct device_attribute *attr, char *buf)
1002 {
1003 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
1004 }
1005 
1006 static ssize_t max_comp_streams_store(struct device *dev,
1007 		struct device_attribute *attr, const char *buf, size_t len)
1008 {
1009 	return len;
1010 }
1011 
1012 static ssize_t comp_algorithm_show(struct device *dev,
1013 		struct device_attribute *attr, char *buf)
1014 {
1015 	size_t sz;
1016 	struct zram *zram = dev_to_zram(dev);
1017 
1018 	down_read(&zram->init_lock);
1019 	sz = zcomp_available_show(zram->compressor, buf);
1020 	up_read(&zram->init_lock);
1021 
1022 	return sz;
1023 }
1024 
1025 static ssize_t comp_algorithm_store(struct device *dev,
1026 		struct device_attribute *attr, const char *buf, size_t len)
1027 {
1028 	struct zram *zram = dev_to_zram(dev);
1029 	char compressor[ARRAY_SIZE(zram->compressor)];
1030 	size_t sz;
1031 
1032 	strlcpy(compressor, buf, sizeof(compressor));
1033 	/* ignore trailing newline */
1034 	sz = strlen(compressor);
1035 	if (sz > 0 && compressor[sz - 1] == '\n')
1036 		compressor[sz - 1] = 0x00;
1037 
1038 	if (!zcomp_available_algorithm(compressor))
1039 		return -EINVAL;
1040 
1041 	down_write(&zram->init_lock);
1042 	if (init_done(zram)) {
1043 		up_write(&zram->init_lock);
1044 		pr_info("Can't change algorithm for initialized device\n");
1045 		return -EBUSY;
1046 	}
1047 
1048 	strcpy(zram->compressor, compressor);
1049 	up_write(&zram->init_lock);
1050 	return len;
1051 }
1052 
1053 static ssize_t compact_store(struct device *dev,
1054 		struct device_attribute *attr, const char *buf, size_t len)
1055 {
1056 	struct zram *zram = dev_to_zram(dev);
1057 
1058 	down_read(&zram->init_lock);
1059 	if (!init_done(zram)) {
1060 		up_read(&zram->init_lock);
1061 		return -EINVAL;
1062 	}
1063 
1064 	zs_compact(zram->mem_pool);
1065 	up_read(&zram->init_lock);
1066 
1067 	return len;
1068 }
1069 
1070 static ssize_t io_stat_show(struct device *dev,
1071 		struct device_attribute *attr, char *buf)
1072 {
1073 	struct zram *zram = dev_to_zram(dev);
1074 	ssize_t ret;
1075 
1076 	down_read(&zram->init_lock);
1077 	ret = scnprintf(buf, PAGE_SIZE,
1078 			"%8llu %8llu %8llu %8llu\n",
1079 			(u64)atomic64_read(&zram->stats.failed_reads),
1080 			(u64)atomic64_read(&zram->stats.failed_writes),
1081 			(u64)atomic64_read(&zram->stats.invalid_io),
1082 			(u64)atomic64_read(&zram->stats.notify_free));
1083 	up_read(&zram->init_lock);
1084 
1085 	return ret;
1086 }
1087 
1088 static ssize_t mm_stat_show(struct device *dev,
1089 		struct device_attribute *attr, char *buf)
1090 {
1091 	struct zram *zram = dev_to_zram(dev);
1092 	struct zs_pool_stats pool_stats;
1093 	u64 orig_size, mem_used = 0;
1094 	long max_used;
1095 	ssize_t ret;
1096 
1097 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1098 
1099 	down_read(&zram->init_lock);
1100 	if (init_done(zram)) {
1101 		mem_used = zs_get_total_pages(zram->mem_pool);
1102 		zs_pool_stats(zram->mem_pool, &pool_stats);
1103 	}
1104 
1105 	orig_size = atomic64_read(&zram->stats.pages_stored);
1106 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1107 
1108 	ret = scnprintf(buf, PAGE_SIZE,
1109 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1110 			orig_size << PAGE_SHIFT,
1111 			(u64)atomic64_read(&zram->stats.compr_data_size),
1112 			mem_used << PAGE_SHIFT,
1113 			zram->limit_pages << PAGE_SHIFT,
1114 			max_used << PAGE_SHIFT,
1115 			(u64)atomic64_read(&zram->stats.same_pages),
1116 			atomic_long_read(&pool_stats.pages_compacted),
1117 			(u64)atomic64_read(&zram->stats.huge_pages),
1118 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1119 	up_read(&zram->init_lock);
1120 
1121 	return ret;
1122 }
1123 
1124 #ifdef CONFIG_ZRAM_WRITEBACK
1125 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1126 static ssize_t bd_stat_show(struct device *dev,
1127 		struct device_attribute *attr, char *buf)
1128 {
1129 	struct zram *zram = dev_to_zram(dev);
1130 	ssize_t ret;
1131 
1132 	down_read(&zram->init_lock);
1133 	ret = scnprintf(buf, PAGE_SIZE,
1134 		"%8llu %8llu %8llu\n",
1135 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1136 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1137 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1138 	up_read(&zram->init_lock);
1139 
1140 	return ret;
1141 }
1142 #endif
1143 
1144 static ssize_t debug_stat_show(struct device *dev,
1145 		struct device_attribute *attr, char *buf)
1146 {
1147 	int version = 2;
1148 	struct zram *zram = dev_to_zram(dev);
1149 	ssize_t ret;
1150 
1151 	down_read(&zram->init_lock);
1152 	ret = scnprintf(buf, PAGE_SIZE,
1153 			"version: %d\n%8llu\n",
1154 			version,
1155 			(u64)atomic64_read(&zram->stats.miss_free));
1156 	up_read(&zram->init_lock);
1157 
1158 	return ret;
1159 }
1160 
1161 static DEVICE_ATTR_RO(io_stat);
1162 static DEVICE_ATTR_RO(mm_stat);
1163 #ifdef CONFIG_ZRAM_WRITEBACK
1164 static DEVICE_ATTR_RO(bd_stat);
1165 #endif
1166 static DEVICE_ATTR_RO(debug_stat);
1167 
1168 static void zram_meta_free(struct zram *zram, u64 disksize)
1169 {
1170 	size_t num_pages = disksize >> PAGE_SHIFT;
1171 	size_t index;
1172 
1173 	/* Free all pages that are still in this zram device */
1174 	for (index = 0; index < num_pages; index++)
1175 		zram_free_page(zram, index);
1176 
1177 	zs_destroy_pool(zram->mem_pool);
1178 	vfree(zram->table);
1179 }
1180 
1181 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1182 {
1183 	size_t num_pages;
1184 
1185 	num_pages = disksize >> PAGE_SHIFT;
1186 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1187 	if (!zram->table)
1188 		return false;
1189 
1190 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1191 	if (!zram->mem_pool) {
1192 		vfree(zram->table);
1193 		return false;
1194 	}
1195 
1196 	if (!huge_class_size)
1197 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1198 	return true;
1199 }
1200 
1201 /*
1202  * To protect concurrent access to the same index entry,
1203  * caller should hold this table index entry's bit_spinlock to
1204  * indicate this index entry is accessing.
1205  */
1206 static void zram_free_page(struct zram *zram, size_t index)
1207 {
1208 	unsigned long handle;
1209 
1210 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1211 	zram->table[index].ac_time = 0;
1212 #endif
1213 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1214 		zram_clear_flag(zram, index, ZRAM_IDLE);
1215 
1216 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1217 		zram_clear_flag(zram, index, ZRAM_HUGE);
1218 		atomic64_dec(&zram->stats.huge_pages);
1219 	}
1220 
1221 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1222 		zram_clear_flag(zram, index, ZRAM_WB);
1223 		free_block_bdev(zram, zram_get_element(zram, index));
1224 		goto out;
1225 	}
1226 
1227 	/*
1228 	 * No memory is allocated for same element filled pages.
1229 	 * Simply clear same page flag.
1230 	 */
1231 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1232 		zram_clear_flag(zram, index, ZRAM_SAME);
1233 		atomic64_dec(&zram->stats.same_pages);
1234 		goto out;
1235 	}
1236 
1237 	handle = zram_get_handle(zram, index);
1238 	if (!handle)
1239 		return;
1240 
1241 	zs_free(zram->mem_pool, handle);
1242 
1243 	atomic64_sub(zram_get_obj_size(zram, index),
1244 			&zram->stats.compr_data_size);
1245 out:
1246 	atomic64_dec(&zram->stats.pages_stored);
1247 	zram_set_handle(zram, index, 0);
1248 	zram_set_obj_size(zram, index, 0);
1249 	WARN_ON_ONCE(zram->table[index].flags &
1250 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1251 }
1252 
1253 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1254 				struct bio *bio, bool partial_io)
1255 {
1256 	struct zcomp_strm *zstrm;
1257 	unsigned long handle;
1258 	unsigned int size;
1259 	void *src, *dst;
1260 	int ret;
1261 
1262 	zram_slot_lock(zram, index);
1263 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1264 		struct bio_vec bvec;
1265 
1266 		zram_slot_unlock(zram, index);
1267 
1268 		bvec.bv_page = page;
1269 		bvec.bv_len = PAGE_SIZE;
1270 		bvec.bv_offset = 0;
1271 		return read_from_bdev(zram, &bvec,
1272 				zram_get_element(zram, index),
1273 				bio, partial_io);
1274 	}
1275 
1276 	handle = zram_get_handle(zram, index);
1277 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1278 		unsigned long value;
1279 		void *mem;
1280 
1281 		value = handle ? zram_get_element(zram, index) : 0;
1282 		mem = kmap_atomic(page);
1283 		zram_fill_page(mem, PAGE_SIZE, value);
1284 		kunmap_atomic(mem);
1285 		zram_slot_unlock(zram, index);
1286 		return 0;
1287 	}
1288 
1289 	size = zram_get_obj_size(zram, index);
1290 
1291 	if (size != PAGE_SIZE)
1292 		zstrm = zcomp_stream_get(zram->comp);
1293 
1294 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1295 	if (size == PAGE_SIZE) {
1296 		dst = kmap_atomic(page);
1297 		memcpy(dst, src, PAGE_SIZE);
1298 		kunmap_atomic(dst);
1299 		ret = 0;
1300 	} else {
1301 		dst = kmap_atomic(page);
1302 		ret = zcomp_decompress(zstrm, src, size, dst);
1303 		kunmap_atomic(dst);
1304 		zcomp_stream_put(zram->comp);
1305 	}
1306 	zs_unmap_object(zram->mem_pool, handle);
1307 	zram_slot_unlock(zram, index);
1308 
1309 	/* Should NEVER happen. Return bio error if it does. */
1310 	if (WARN_ON(ret))
1311 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1312 
1313 	return ret;
1314 }
1315 
1316 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1317 				u32 index, int offset, struct bio *bio)
1318 {
1319 	int ret;
1320 	struct page *page;
1321 
1322 	page = bvec->bv_page;
1323 	if (is_partial_io(bvec)) {
1324 		/* Use a temporary buffer to decompress the page */
1325 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1326 		if (!page)
1327 			return -ENOMEM;
1328 	}
1329 
1330 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1331 	if (unlikely(ret))
1332 		goto out;
1333 
1334 	if (is_partial_io(bvec)) {
1335 		void *src = kmap_atomic(page);
1336 
1337 		memcpy_to_bvec(bvec, src + offset);
1338 		kunmap_atomic(src);
1339 	}
1340 out:
1341 	if (is_partial_io(bvec))
1342 		__free_page(page);
1343 
1344 	return ret;
1345 }
1346 
1347 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1348 				u32 index, struct bio *bio)
1349 {
1350 	int ret = 0;
1351 	unsigned long alloced_pages;
1352 	unsigned long handle = 0;
1353 	unsigned int comp_len = 0;
1354 	void *src, *dst, *mem;
1355 	struct zcomp_strm *zstrm;
1356 	struct page *page = bvec->bv_page;
1357 	unsigned long element = 0;
1358 	enum zram_pageflags flags = 0;
1359 
1360 	mem = kmap_atomic(page);
1361 	if (page_same_filled(mem, &element)) {
1362 		kunmap_atomic(mem);
1363 		/* Free memory associated with this sector now. */
1364 		flags = ZRAM_SAME;
1365 		atomic64_inc(&zram->stats.same_pages);
1366 		goto out;
1367 	}
1368 	kunmap_atomic(mem);
1369 
1370 	zstrm = zcomp_stream_get(zram->comp);
1371 	src = kmap_atomic(page);
1372 	ret = zcomp_compress(zstrm, src, &comp_len);
1373 	kunmap_atomic(src);
1374 
1375 	if (unlikely(ret)) {
1376 		zcomp_stream_put(zram->comp);
1377 		pr_err("Compression failed! err=%d\n", ret);
1378 		return ret;
1379 	}
1380 
1381 	if (comp_len >= huge_class_size)
1382 		comp_len = PAGE_SIZE;
1383 
1384 	handle = zs_malloc(zram->mem_pool, comp_len,
1385 			__GFP_KSWAPD_RECLAIM |
1386 			__GFP_NOWARN |
1387 			__GFP_HIGHMEM |
1388 			__GFP_MOVABLE);
1389 
1390 	if (unlikely(!handle)) {
1391 		zcomp_stream_put(zram->comp);
1392 		return -ENOMEM;
1393 	}
1394 
1395 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1396 	update_used_max(zram, alloced_pages);
1397 
1398 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1399 		zcomp_stream_put(zram->comp);
1400 		zs_free(zram->mem_pool, handle);
1401 		return -ENOMEM;
1402 	}
1403 
1404 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1405 
1406 	src = zstrm->buffer;
1407 	if (comp_len == PAGE_SIZE)
1408 		src = kmap_atomic(page);
1409 	memcpy(dst, src, comp_len);
1410 	if (comp_len == PAGE_SIZE)
1411 		kunmap_atomic(src);
1412 
1413 	zcomp_stream_put(zram->comp);
1414 	zs_unmap_object(zram->mem_pool, handle);
1415 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1416 out:
1417 	/*
1418 	 * Free memory associated with this sector
1419 	 * before overwriting unused sectors.
1420 	 */
1421 	zram_slot_lock(zram, index);
1422 	zram_free_page(zram, index);
1423 
1424 	if (comp_len == PAGE_SIZE) {
1425 		zram_set_flag(zram, index, ZRAM_HUGE);
1426 		atomic64_inc(&zram->stats.huge_pages);
1427 		atomic64_inc(&zram->stats.huge_pages_since);
1428 	}
1429 
1430 	if (flags) {
1431 		zram_set_flag(zram, index, flags);
1432 		zram_set_element(zram, index, element);
1433 	}  else {
1434 		zram_set_handle(zram, index, handle);
1435 		zram_set_obj_size(zram, index, comp_len);
1436 	}
1437 	zram_slot_unlock(zram, index);
1438 
1439 	/* Update stats */
1440 	atomic64_inc(&zram->stats.pages_stored);
1441 	return ret;
1442 }
1443 
1444 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1445 				u32 index, int offset, struct bio *bio)
1446 {
1447 	int ret;
1448 	struct page *page = NULL;
1449 	struct bio_vec vec;
1450 
1451 	vec = *bvec;
1452 	if (is_partial_io(bvec)) {
1453 		void *dst;
1454 		/*
1455 		 * This is a partial IO. We need to read the full page
1456 		 * before to write the changes.
1457 		 */
1458 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1459 		if (!page)
1460 			return -ENOMEM;
1461 
1462 		ret = __zram_bvec_read(zram, page, index, bio, true);
1463 		if (ret)
1464 			goto out;
1465 
1466 		dst = kmap_atomic(page);
1467 		memcpy_from_bvec(dst + offset, bvec);
1468 		kunmap_atomic(dst);
1469 
1470 		vec.bv_page = page;
1471 		vec.bv_len = PAGE_SIZE;
1472 		vec.bv_offset = 0;
1473 	}
1474 
1475 	ret = __zram_bvec_write(zram, &vec, index, bio);
1476 out:
1477 	if (is_partial_io(bvec))
1478 		__free_page(page);
1479 	return ret;
1480 }
1481 
1482 /*
1483  * zram_bio_discard - handler on discard request
1484  * @index: physical block index in PAGE_SIZE units
1485  * @offset: byte offset within physical block
1486  */
1487 static void zram_bio_discard(struct zram *zram, u32 index,
1488 			     int offset, struct bio *bio)
1489 {
1490 	size_t n = bio->bi_iter.bi_size;
1491 
1492 	/*
1493 	 * zram manages data in physical block size units. Because logical block
1494 	 * size isn't identical with physical block size on some arch, we
1495 	 * could get a discard request pointing to a specific offset within a
1496 	 * certain physical block.  Although we can handle this request by
1497 	 * reading that physiclal block and decompressing and partially zeroing
1498 	 * and re-compressing and then re-storing it, this isn't reasonable
1499 	 * because our intent with a discard request is to save memory.  So
1500 	 * skipping this logical block is appropriate here.
1501 	 */
1502 	if (offset) {
1503 		if (n <= (PAGE_SIZE - offset))
1504 			return;
1505 
1506 		n -= (PAGE_SIZE - offset);
1507 		index++;
1508 	}
1509 
1510 	while (n >= PAGE_SIZE) {
1511 		zram_slot_lock(zram, index);
1512 		zram_free_page(zram, index);
1513 		zram_slot_unlock(zram, index);
1514 		atomic64_inc(&zram->stats.notify_free);
1515 		index++;
1516 		n -= PAGE_SIZE;
1517 	}
1518 }
1519 
1520 /*
1521  * Returns errno if it has some problem. Otherwise return 0 or 1.
1522  * Returns 0 if IO request was done synchronously
1523  * Returns 1 if IO request was successfully submitted.
1524  */
1525 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1526 			int offset, unsigned int op, struct bio *bio)
1527 {
1528 	int ret;
1529 
1530 	if (!op_is_write(op)) {
1531 		atomic64_inc(&zram->stats.num_reads);
1532 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1533 		flush_dcache_page(bvec->bv_page);
1534 	} else {
1535 		atomic64_inc(&zram->stats.num_writes);
1536 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1537 	}
1538 
1539 	zram_slot_lock(zram, index);
1540 	zram_accessed(zram, index);
1541 	zram_slot_unlock(zram, index);
1542 
1543 	if (unlikely(ret < 0)) {
1544 		if (!op_is_write(op))
1545 			atomic64_inc(&zram->stats.failed_reads);
1546 		else
1547 			atomic64_inc(&zram->stats.failed_writes);
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 static void __zram_make_request(struct zram *zram, struct bio *bio)
1554 {
1555 	int offset;
1556 	u32 index;
1557 	struct bio_vec bvec;
1558 	struct bvec_iter iter;
1559 	unsigned long start_time;
1560 
1561 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1562 	offset = (bio->bi_iter.bi_sector &
1563 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1564 
1565 	switch (bio_op(bio)) {
1566 	case REQ_OP_DISCARD:
1567 	case REQ_OP_WRITE_ZEROES:
1568 		zram_bio_discard(zram, index, offset, bio);
1569 		bio_endio(bio);
1570 		return;
1571 	default:
1572 		break;
1573 	}
1574 
1575 	start_time = bio_start_io_acct(bio);
1576 	bio_for_each_segment(bvec, bio, iter) {
1577 		struct bio_vec bv = bvec;
1578 		unsigned int unwritten = bvec.bv_len;
1579 
1580 		do {
1581 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1582 							unwritten);
1583 			if (zram_bvec_rw(zram, &bv, index, offset,
1584 					 bio_op(bio), bio) < 0) {
1585 				bio->bi_status = BLK_STS_IOERR;
1586 				break;
1587 			}
1588 
1589 			bv.bv_offset += bv.bv_len;
1590 			unwritten -= bv.bv_len;
1591 
1592 			update_position(&index, &offset, &bv);
1593 		} while (unwritten);
1594 	}
1595 	bio_end_io_acct(bio, start_time);
1596 	bio_endio(bio);
1597 }
1598 
1599 /*
1600  * Handler function for all zram I/O requests.
1601  */
1602 static void zram_submit_bio(struct bio *bio)
1603 {
1604 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1605 
1606 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1607 					bio->bi_iter.bi_size)) {
1608 		atomic64_inc(&zram->stats.invalid_io);
1609 		bio_io_error(bio);
1610 		return;
1611 	}
1612 
1613 	__zram_make_request(zram, bio);
1614 }
1615 
1616 static void zram_slot_free_notify(struct block_device *bdev,
1617 				unsigned long index)
1618 {
1619 	struct zram *zram;
1620 
1621 	zram = bdev->bd_disk->private_data;
1622 
1623 	atomic64_inc(&zram->stats.notify_free);
1624 	if (!zram_slot_trylock(zram, index)) {
1625 		atomic64_inc(&zram->stats.miss_free);
1626 		return;
1627 	}
1628 
1629 	zram_free_page(zram, index);
1630 	zram_slot_unlock(zram, index);
1631 }
1632 
1633 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1634 		       struct page *page, unsigned int op)
1635 {
1636 	int offset, ret;
1637 	u32 index;
1638 	struct zram *zram;
1639 	struct bio_vec bv;
1640 	unsigned long start_time;
1641 
1642 	if (PageTransHuge(page))
1643 		return -ENOTSUPP;
1644 	zram = bdev->bd_disk->private_data;
1645 
1646 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1647 		atomic64_inc(&zram->stats.invalid_io);
1648 		ret = -EINVAL;
1649 		goto out;
1650 	}
1651 
1652 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1653 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1654 
1655 	bv.bv_page = page;
1656 	bv.bv_len = PAGE_SIZE;
1657 	bv.bv_offset = 0;
1658 
1659 	start_time = bdev_start_io_acct(bdev->bd_disk->part0,
1660 			SECTORS_PER_PAGE, op, jiffies);
1661 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1662 	bdev_end_io_acct(bdev->bd_disk->part0, op, start_time);
1663 out:
1664 	/*
1665 	 * If I/O fails, just return error(ie, non-zero) without
1666 	 * calling page_endio.
1667 	 * It causes resubmit the I/O with bio request by upper functions
1668 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1669 	 * bio->bi_end_io does things to handle the error
1670 	 * (e.g., SetPageError, set_page_dirty and extra works).
1671 	 */
1672 	if (unlikely(ret < 0))
1673 		return ret;
1674 
1675 	switch (ret) {
1676 	case 0:
1677 		page_endio(page, op_is_write(op), 0);
1678 		break;
1679 	case 1:
1680 		ret = 0;
1681 		break;
1682 	default:
1683 		WARN_ON(1);
1684 	}
1685 	return ret;
1686 }
1687 
1688 static void zram_reset_device(struct zram *zram)
1689 {
1690 	struct zcomp *comp;
1691 	u64 disksize;
1692 
1693 	down_write(&zram->init_lock);
1694 
1695 	zram->limit_pages = 0;
1696 
1697 	if (!init_done(zram)) {
1698 		up_write(&zram->init_lock);
1699 		return;
1700 	}
1701 
1702 	comp = zram->comp;
1703 	disksize = zram->disksize;
1704 	zram->disksize = 0;
1705 
1706 	set_capacity_and_notify(zram->disk, 0);
1707 	part_stat_set_all(zram->disk->part0, 0);
1708 
1709 	/* I/O operation under all of CPU are done so let's free */
1710 	zram_meta_free(zram, disksize);
1711 	memset(&zram->stats, 0, sizeof(zram->stats));
1712 	zcomp_destroy(comp);
1713 	reset_bdev(zram);
1714 
1715 	up_write(&zram->init_lock);
1716 }
1717 
1718 static ssize_t disksize_store(struct device *dev,
1719 		struct device_attribute *attr, const char *buf, size_t len)
1720 {
1721 	u64 disksize;
1722 	struct zcomp *comp;
1723 	struct zram *zram = dev_to_zram(dev);
1724 	int err;
1725 
1726 	disksize = memparse(buf, NULL);
1727 	if (!disksize)
1728 		return -EINVAL;
1729 
1730 	down_write(&zram->init_lock);
1731 	if (init_done(zram)) {
1732 		pr_info("Cannot change disksize for initialized device\n");
1733 		err = -EBUSY;
1734 		goto out_unlock;
1735 	}
1736 
1737 	disksize = PAGE_ALIGN(disksize);
1738 	if (!zram_meta_alloc(zram, disksize)) {
1739 		err = -ENOMEM;
1740 		goto out_unlock;
1741 	}
1742 
1743 	comp = zcomp_create(zram->compressor);
1744 	if (IS_ERR(comp)) {
1745 		pr_err("Cannot initialise %s compressing backend\n",
1746 				zram->compressor);
1747 		err = PTR_ERR(comp);
1748 		goto out_free_meta;
1749 	}
1750 
1751 	zram->comp = comp;
1752 	zram->disksize = disksize;
1753 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1754 	up_write(&zram->init_lock);
1755 
1756 	return len;
1757 
1758 out_free_meta:
1759 	zram_meta_free(zram, disksize);
1760 out_unlock:
1761 	up_write(&zram->init_lock);
1762 	return err;
1763 }
1764 
1765 static ssize_t reset_store(struct device *dev,
1766 		struct device_attribute *attr, const char *buf, size_t len)
1767 {
1768 	int ret;
1769 	unsigned short do_reset;
1770 	struct zram *zram;
1771 	struct gendisk *disk;
1772 
1773 	ret = kstrtou16(buf, 10, &do_reset);
1774 	if (ret)
1775 		return ret;
1776 
1777 	if (!do_reset)
1778 		return -EINVAL;
1779 
1780 	zram = dev_to_zram(dev);
1781 	disk = zram->disk;
1782 
1783 	mutex_lock(&disk->open_mutex);
1784 	/* Do not reset an active device or claimed device */
1785 	if (disk_openers(disk) || zram->claim) {
1786 		mutex_unlock(&disk->open_mutex);
1787 		return -EBUSY;
1788 	}
1789 
1790 	/* From now on, anyone can't open /dev/zram[0-9] */
1791 	zram->claim = true;
1792 	mutex_unlock(&disk->open_mutex);
1793 
1794 	/* Make sure all the pending I/O are finished */
1795 	sync_blockdev(disk->part0);
1796 	zram_reset_device(zram);
1797 
1798 	mutex_lock(&disk->open_mutex);
1799 	zram->claim = false;
1800 	mutex_unlock(&disk->open_mutex);
1801 
1802 	return len;
1803 }
1804 
1805 static int zram_open(struct block_device *bdev, fmode_t mode)
1806 {
1807 	int ret = 0;
1808 	struct zram *zram;
1809 
1810 	WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex));
1811 
1812 	zram = bdev->bd_disk->private_data;
1813 	/* zram was claimed to reset so open request fails */
1814 	if (zram->claim)
1815 		ret = -EBUSY;
1816 
1817 	return ret;
1818 }
1819 
1820 static const struct block_device_operations zram_devops = {
1821 	.open = zram_open,
1822 	.submit_bio = zram_submit_bio,
1823 	.swap_slot_free_notify = zram_slot_free_notify,
1824 	.rw_page = zram_rw_page,
1825 	.owner = THIS_MODULE
1826 };
1827 
1828 #ifdef CONFIG_ZRAM_WRITEBACK
1829 static const struct block_device_operations zram_wb_devops = {
1830 	.open = zram_open,
1831 	.submit_bio = zram_submit_bio,
1832 	.swap_slot_free_notify = zram_slot_free_notify,
1833 	.owner = THIS_MODULE
1834 };
1835 #endif
1836 
1837 static DEVICE_ATTR_WO(compact);
1838 static DEVICE_ATTR_RW(disksize);
1839 static DEVICE_ATTR_RO(initstate);
1840 static DEVICE_ATTR_WO(reset);
1841 static DEVICE_ATTR_WO(mem_limit);
1842 static DEVICE_ATTR_WO(mem_used_max);
1843 static DEVICE_ATTR_WO(idle);
1844 static DEVICE_ATTR_RW(max_comp_streams);
1845 static DEVICE_ATTR_RW(comp_algorithm);
1846 #ifdef CONFIG_ZRAM_WRITEBACK
1847 static DEVICE_ATTR_RW(backing_dev);
1848 static DEVICE_ATTR_WO(writeback);
1849 static DEVICE_ATTR_RW(writeback_limit);
1850 static DEVICE_ATTR_RW(writeback_limit_enable);
1851 #endif
1852 
1853 static struct attribute *zram_disk_attrs[] = {
1854 	&dev_attr_disksize.attr,
1855 	&dev_attr_initstate.attr,
1856 	&dev_attr_reset.attr,
1857 	&dev_attr_compact.attr,
1858 	&dev_attr_mem_limit.attr,
1859 	&dev_attr_mem_used_max.attr,
1860 	&dev_attr_idle.attr,
1861 	&dev_attr_max_comp_streams.attr,
1862 	&dev_attr_comp_algorithm.attr,
1863 #ifdef CONFIG_ZRAM_WRITEBACK
1864 	&dev_attr_backing_dev.attr,
1865 	&dev_attr_writeback.attr,
1866 	&dev_attr_writeback_limit.attr,
1867 	&dev_attr_writeback_limit_enable.attr,
1868 #endif
1869 	&dev_attr_io_stat.attr,
1870 	&dev_attr_mm_stat.attr,
1871 #ifdef CONFIG_ZRAM_WRITEBACK
1872 	&dev_attr_bd_stat.attr,
1873 #endif
1874 	&dev_attr_debug_stat.attr,
1875 	NULL,
1876 };
1877 
1878 ATTRIBUTE_GROUPS(zram_disk);
1879 
1880 /*
1881  * Allocate and initialize new zram device. the function returns
1882  * '>= 0' device_id upon success, and negative value otherwise.
1883  */
1884 static int zram_add(void)
1885 {
1886 	struct zram *zram;
1887 	int ret, device_id;
1888 
1889 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1890 	if (!zram)
1891 		return -ENOMEM;
1892 
1893 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1894 	if (ret < 0)
1895 		goto out_free_dev;
1896 	device_id = ret;
1897 
1898 	init_rwsem(&zram->init_lock);
1899 #ifdef CONFIG_ZRAM_WRITEBACK
1900 	spin_lock_init(&zram->wb_limit_lock);
1901 #endif
1902 
1903 	/* gendisk structure */
1904 	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
1905 	if (!zram->disk) {
1906 		pr_err("Error allocating disk structure for device %d\n",
1907 			device_id);
1908 		ret = -ENOMEM;
1909 		goto out_free_idr;
1910 	}
1911 
1912 	zram->disk->major = zram_major;
1913 	zram->disk->first_minor = device_id;
1914 	zram->disk->minors = 1;
1915 	zram->disk->flags |= GENHD_FL_NO_PART;
1916 	zram->disk->fops = &zram_devops;
1917 	zram->disk->private_data = zram;
1918 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1919 
1920 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1921 	set_capacity(zram->disk, 0);
1922 	/* zram devices sort of resembles non-rotational disks */
1923 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1924 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1925 
1926 	/*
1927 	 * To ensure that we always get PAGE_SIZE aligned
1928 	 * and n*PAGE_SIZED sized I/O requests.
1929 	 */
1930 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1931 	blk_queue_logical_block_size(zram->disk->queue,
1932 					ZRAM_LOGICAL_BLOCK_SIZE);
1933 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1934 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1935 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1936 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1937 
1938 	/*
1939 	 * zram_bio_discard() will clear all logical blocks if logical block
1940 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1941 	 * different, we will skip discarding some parts of logical blocks in
1942 	 * the part of the request range which isn't aligned to physical block
1943 	 * size.  So we can't ensure that all discarded logical blocks are
1944 	 * zeroed.
1945 	 */
1946 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1947 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1948 
1949 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
1950 	if (ret)
1951 		goto out_cleanup_disk;
1952 
1953 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1954 
1955 	zram_debugfs_register(zram);
1956 	pr_info("Added device: %s\n", zram->disk->disk_name);
1957 	return device_id;
1958 
1959 out_cleanup_disk:
1960 	blk_cleanup_disk(zram->disk);
1961 out_free_idr:
1962 	idr_remove(&zram_index_idr, device_id);
1963 out_free_dev:
1964 	kfree(zram);
1965 	return ret;
1966 }
1967 
1968 static int zram_remove(struct zram *zram)
1969 {
1970 	bool claimed;
1971 
1972 	mutex_lock(&zram->disk->open_mutex);
1973 	if (disk_openers(zram->disk)) {
1974 		mutex_unlock(&zram->disk->open_mutex);
1975 		return -EBUSY;
1976 	}
1977 
1978 	claimed = zram->claim;
1979 	if (!claimed)
1980 		zram->claim = true;
1981 	mutex_unlock(&zram->disk->open_mutex);
1982 
1983 	zram_debugfs_unregister(zram);
1984 
1985 	if (claimed) {
1986 		/*
1987 		 * If we were claimed by reset_store(), del_gendisk() will
1988 		 * wait until reset_store() is done, so nothing need to do.
1989 		 */
1990 		;
1991 	} else {
1992 		/* Make sure all the pending I/O are finished */
1993 		sync_blockdev(zram->disk->part0);
1994 		zram_reset_device(zram);
1995 	}
1996 
1997 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1998 
1999 	del_gendisk(zram->disk);
2000 
2001 	/* del_gendisk drains pending reset_store */
2002 	WARN_ON_ONCE(claimed && zram->claim);
2003 
2004 	/*
2005 	 * disksize_store() may be called in between zram_reset_device()
2006 	 * and del_gendisk(), so run the last reset to avoid leaking
2007 	 * anything allocated with disksize_store()
2008 	 */
2009 	zram_reset_device(zram);
2010 
2011 	blk_cleanup_disk(zram->disk);
2012 	kfree(zram);
2013 	return 0;
2014 }
2015 
2016 /* zram-control sysfs attributes */
2017 
2018 /*
2019  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2020  * sense that reading from this file does alter the state of your system -- it
2021  * creates a new un-initialized zram device and returns back this device's
2022  * device_id (or an error code if it fails to create a new device).
2023  */
2024 static ssize_t hot_add_show(struct class *class,
2025 			struct class_attribute *attr,
2026 			char *buf)
2027 {
2028 	int ret;
2029 
2030 	mutex_lock(&zram_index_mutex);
2031 	ret = zram_add();
2032 	mutex_unlock(&zram_index_mutex);
2033 
2034 	if (ret < 0)
2035 		return ret;
2036 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2037 }
2038 static struct class_attribute class_attr_hot_add =
2039 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2040 
2041 static ssize_t hot_remove_store(struct class *class,
2042 			struct class_attribute *attr,
2043 			const char *buf,
2044 			size_t count)
2045 {
2046 	struct zram *zram;
2047 	int ret, dev_id;
2048 
2049 	/* dev_id is gendisk->first_minor, which is `int' */
2050 	ret = kstrtoint(buf, 10, &dev_id);
2051 	if (ret)
2052 		return ret;
2053 	if (dev_id < 0)
2054 		return -EINVAL;
2055 
2056 	mutex_lock(&zram_index_mutex);
2057 
2058 	zram = idr_find(&zram_index_idr, dev_id);
2059 	if (zram) {
2060 		ret = zram_remove(zram);
2061 		if (!ret)
2062 			idr_remove(&zram_index_idr, dev_id);
2063 	} else {
2064 		ret = -ENODEV;
2065 	}
2066 
2067 	mutex_unlock(&zram_index_mutex);
2068 	return ret ? ret : count;
2069 }
2070 static CLASS_ATTR_WO(hot_remove);
2071 
2072 static struct attribute *zram_control_class_attrs[] = {
2073 	&class_attr_hot_add.attr,
2074 	&class_attr_hot_remove.attr,
2075 	NULL,
2076 };
2077 ATTRIBUTE_GROUPS(zram_control_class);
2078 
2079 static struct class zram_control_class = {
2080 	.name		= "zram-control",
2081 	.owner		= THIS_MODULE,
2082 	.class_groups	= zram_control_class_groups,
2083 };
2084 
2085 static int zram_remove_cb(int id, void *ptr, void *data)
2086 {
2087 	WARN_ON_ONCE(zram_remove(ptr));
2088 	return 0;
2089 }
2090 
2091 static void destroy_devices(void)
2092 {
2093 	class_unregister(&zram_control_class);
2094 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2095 	zram_debugfs_destroy();
2096 	idr_destroy(&zram_index_idr);
2097 	unregister_blkdev(zram_major, "zram");
2098 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2099 }
2100 
2101 static int __init zram_init(void)
2102 {
2103 	int ret;
2104 
2105 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2106 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2107 	if (ret < 0)
2108 		return ret;
2109 
2110 	ret = class_register(&zram_control_class);
2111 	if (ret) {
2112 		pr_err("Unable to register zram-control class\n");
2113 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2114 		return ret;
2115 	}
2116 
2117 	zram_debugfs_create();
2118 	zram_major = register_blkdev(0, "zram");
2119 	if (zram_major <= 0) {
2120 		pr_err("Unable to get major number\n");
2121 		class_unregister(&zram_control_class);
2122 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2123 		return -EBUSY;
2124 	}
2125 
2126 	while (num_devices != 0) {
2127 		mutex_lock(&zram_index_mutex);
2128 		ret = zram_add();
2129 		mutex_unlock(&zram_index_mutex);
2130 		if (ret < 0)
2131 			goto out_error;
2132 		num_devices--;
2133 	}
2134 
2135 	return 0;
2136 
2137 out_error:
2138 	destroy_devices();
2139 	return ret;
2140 }
2141 
2142 static void __exit zram_exit(void)
2143 {
2144 	destroy_devices();
2145 }
2146 
2147 module_init(zram_init);
2148 module_exit(zram_exit);
2149 
2150 module_param(num_devices, uint, 0);
2151 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2152 
2153 MODULE_LICENSE("Dual BSD/GPL");
2154 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2155 MODULE_DESCRIPTION("Compressed RAM Block Device");
2156