xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 151f4e2b)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo-rle";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 				u32 index, int offset, struct bio *bio);
57 
58 
59 static int zram_slot_trylock(struct zram *zram, u32 index)
60 {
61 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
62 }
63 
64 static void zram_slot_lock(struct zram *zram, u32 index)
65 {
66 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68 
69 static void zram_slot_unlock(struct zram *zram, u32 index)
70 {
71 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73 
74 static inline bool init_done(struct zram *zram)
75 {
76 	return zram->disksize;
77 }
78 
79 static inline struct zram *dev_to_zram(struct device *dev)
80 {
81 	return (struct zram *)dev_to_disk(dev)->private_data;
82 }
83 
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 {
86 	return zram->table[index].handle;
87 }
88 
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 {
91 	zram->table[index].handle = handle;
92 }
93 
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 			enum zram_pageflags flag)
97 {
98 	return zram->table[index].flags & BIT(flag);
99 }
100 
101 static void zram_set_flag(struct zram *zram, u32 index,
102 			enum zram_pageflags flag)
103 {
104 	zram->table[index].flags |= BIT(flag);
105 }
106 
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 			enum zram_pageflags flag)
109 {
110 	zram->table[index].flags &= ~BIT(flag);
111 }
112 
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 			unsigned long element)
115 {
116 	zram->table[index].element = element;
117 }
118 
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 {
121 	return zram->table[index].element;
122 }
123 
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 {
126 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
127 }
128 
129 static void zram_set_obj_size(struct zram *zram,
130 					u32 index, size_t size)
131 {
132 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
133 
134 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
135 }
136 
137 static inline bool zram_allocated(struct zram *zram, u32 index)
138 {
139 	return zram_get_obj_size(zram, index) ||
140 			zram_test_flag(zram, index, ZRAM_SAME) ||
141 			zram_test_flag(zram, index, ZRAM_WB);
142 }
143 
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
146 {
147 	return bvec->bv_len != PAGE_SIZE;
148 }
149 #else
150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 	return false;
153 }
154 #endif
155 
156 /*
157  * Check if request is within bounds and aligned on zram logical blocks.
158  */
159 static inline bool valid_io_request(struct zram *zram,
160 		sector_t start, unsigned int size)
161 {
162 	u64 end, bound;
163 
164 	/* unaligned request */
165 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 		return false;
167 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 		return false;
169 
170 	end = start + (size >> SECTOR_SHIFT);
171 	bound = zram->disksize >> SECTOR_SHIFT;
172 	/* out of range range */
173 	if (unlikely(start >= bound || end > bound || start > end))
174 		return false;
175 
176 	/* I/O request is valid */
177 	return true;
178 }
179 
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
181 {
182 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
183 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
184 }
185 
186 static inline void update_used_max(struct zram *zram,
187 					const unsigned long pages)
188 {
189 	unsigned long old_max, cur_max;
190 
191 	old_max = atomic_long_read(&zram->stats.max_used_pages);
192 
193 	do {
194 		cur_max = old_max;
195 		if (pages > cur_max)
196 			old_max = atomic_long_cmpxchg(
197 				&zram->stats.max_used_pages, cur_max, pages);
198 	} while (old_max != cur_max);
199 }
200 
201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 					unsigned long value)
203 {
204 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 	memset_l(ptr, value, len / sizeof(unsigned long));
206 }
207 
208 static bool page_same_filled(void *ptr, unsigned long *element)
209 {
210 	unsigned int pos;
211 	unsigned long *page;
212 	unsigned long val;
213 
214 	page = (unsigned long *)ptr;
215 	val = page[0];
216 
217 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
218 		if (val != page[pos])
219 			return false;
220 	}
221 
222 	*element = val;
223 
224 	return true;
225 }
226 
227 static ssize_t initstate_show(struct device *dev,
228 		struct device_attribute *attr, char *buf)
229 {
230 	u32 val;
231 	struct zram *zram = dev_to_zram(dev);
232 
233 	down_read(&zram->init_lock);
234 	val = init_done(zram);
235 	up_read(&zram->init_lock);
236 
237 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
238 }
239 
240 static ssize_t disksize_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct zram *zram = dev_to_zram(dev);
244 
245 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
246 }
247 
248 static ssize_t mem_limit_store(struct device *dev,
249 		struct device_attribute *attr, const char *buf, size_t len)
250 {
251 	u64 limit;
252 	char *tmp;
253 	struct zram *zram = dev_to_zram(dev);
254 
255 	limit = memparse(buf, &tmp);
256 	if (buf == tmp) /* no chars parsed, invalid input */
257 		return -EINVAL;
258 
259 	down_write(&zram->init_lock);
260 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 	up_write(&zram->init_lock);
262 
263 	return len;
264 }
265 
266 static ssize_t mem_used_max_store(struct device *dev,
267 		struct device_attribute *attr, const char *buf, size_t len)
268 {
269 	int err;
270 	unsigned long val;
271 	struct zram *zram = dev_to_zram(dev);
272 
273 	err = kstrtoul(buf, 10, &val);
274 	if (err || val != 0)
275 		return -EINVAL;
276 
277 	down_read(&zram->init_lock);
278 	if (init_done(zram)) {
279 		atomic_long_set(&zram->stats.max_used_pages,
280 				zs_get_total_pages(zram->mem_pool));
281 	}
282 	up_read(&zram->init_lock);
283 
284 	return len;
285 }
286 
287 static ssize_t idle_store(struct device *dev,
288 		struct device_attribute *attr, const char *buf, size_t len)
289 {
290 	struct zram *zram = dev_to_zram(dev);
291 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
292 	int index;
293 
294 	if (!sysfs_streq(buf, "all"))
295 		return -EINVAL;
296 
297 	down_read(&zram->init_lock);
298 	if (!init_done(zram)) {
299 		up_read(&zram->init_lock);
300 		return -EINVAL;
301 	}
302 
303 	for (index = 0; index < nr_pages; index++) {
304 		/*
305 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
306 		 * See the comment in writeback_store.
307 		 */
308 		zram_slot_lock(zram, index);
309 		if (zram_allocated(zram, index) &&
310 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
311 			zram_set_flag(zram, index, ZRAM_IDLE);
312 		zram_slot_unlock(zram, index);
313 	}
314 
315 	up_read(&zram->init_lock);
316 
317 	return len;
318 }
319 
320 #ifdef CONFIG_ZRAM_WRITEBACK
321 static ssize_t writeback_limit_enable_store(struct device *dev,
322 		struct device_attribute *attr, const char *buf, size_t len)
323 {
324 	struct zram *zram = dev_to_zram(dev);
325 	u64 val;
326 	ssize_t ret = -EINVAL;
327 
328 	if (kstrtoull(buf, 10, &val))
329 		return ret;
330 
331 	down_read(&zram->init_lock);
332 	spin_lock(&zram->wb_limit_lock);
333 	zram->wb_limit_enable = val;
334 	spin_unlock(&zram->wb_limit_lock);
335 	up_read(&zram->init_lock);
336 	ret = len;
337 
338 	return ret;
339 }
340 
341 static ssize_t writeback_limit_enable_show(struct device *dev,
342 		struct device_attribute *attr, char *buf)
343 {
344 	bool val;
345 	struct zram *zram = dev_to_zram(dev);
346 
347 	down_read(&zram->init_lock);
348 	spin_lock(&zram->wb_limit_lock);
349 	val = zram->wb_limit_enable;
350 	spin_unlock(&zram->wb_limit_lock);
351 	up_read(&zram->init_lock);
352 
353 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
354 }
355 
356 static ssize_t writeback_limit_store(struct device *dev,
357 		struct device_attribute *attr, const char *buf, size_t len)
358 {
359 	struct zram *zram = dev_to_zram(dev);
360 	u64 val;
361 	ssize_t ret = -EINVAL;
362 
363 	if (kstrtoull(buf, 10, &val))
364 		return ret;
365 
366 	down_read(&zram->init_lock);
367 	spin_lock(&zram->wb_limit_lock);
368 	zram->bd_wb_limit = val;
369 	spin_unlock(&zram->wb_limit_lock);
370 	up_read(&zram->init_lock);
371 	ret = len;
372 
373 	return ret;
374 }
375 
376 static ssize_t writeback_limit_show(struct device *dev,
377 		struct device_attribute *attr, char *buf)
378 {
379 	u64 val;
380 	struct zram *zram = dev_to_zram(dev);
381 
382 	down_read(&zram->init_lock);
383 	spin_lock(&zram->wb_limit_lock);
384 	val = zram->bd_wb_limit;
385 	spin_unlock(&zram->wb_limit_lock);
386 	up_read(&zram->init_lock);
387 
388 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
389 }
390 
391 static void reset_bdev(struct zram *zram)
392 {
393 	struct block_device *bdev;
394 
395 	if (!zram->backing_dev)
396 		return;
397 
398 	bdev = zram->bdev;
399 	if (zram->old_block_size)
400 		set_blocksize(bdev, zram->old_block_size);
401 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
402 	/* hope filp_close flush all of IO */
403 	filp_close(zram->backing_dev, NULL);
404 	zram->backing_dev = NULL;
405 	zram->old_block_size = 0;
406 	zram->bdev = NULL;
407 	zram->disk->queue->backing_dev_info->capabilities |=
408 				BDI_CAP_SYNCHRONOUS_IO;
409 	kvfree(zram->bitmap);
410 	zram->bitmap = NULL;
411 }
412 
413 static ssize_t backing_dev_show(struct device *dev,
414 		struct device_attribute *attr, char *buf)
415 {
416 	struct zram *zram = dev_to_zram(dev);
417 	struct file *file = zram->backing_dev;
418 	char *p;
419 	ssize_t ret;
420 
421 	down_read(&zram->init_lock);
422 	if (!zram->backing_dev) {
423 		memcpy(buf, "none\n", 5);
424 		up_read(&zram->init_lock);
425 		return 5;
426 	}
427 
428 	p = file_path(file, buf, PAGE_SIZE - 1);
429 	if (IS_ERR(p)) {
430 		ret = PTR_ERR(p);
431 		goto out;
432 	}
433 
434 	ret = strlen(p);
435 	memmove(buf, p, ret);
436 	buf[ret++] = '\n';
437 out:
438 	up_read(&zram->init_lock);
439 	return ret;
440 }
441 
442 static ssize_t backing_dev_store(struct device *dev,
443 		struct device_attribute *attr, const char *buf, size_t len)
444 {
445 	char *file_name;
446 	size_t sz;
447 	struct file *backing_dev = NULL;
448 	struct inode *inode;
449 	struct address_space *mapping;
450 	unsigned int bitmap_sz, old_block_size = 0;
451 	unsigned long nr_pages, *bitmap = NULL;
452 	struct block_device *bdev = NULL;
453 	int err;
454 	struct zram *zram = dev_to_zram(dev);
455 
456 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
457 	if (!file_name)
458 		return -ENOMEM;
459 
460 	down_write(&zram->init_lock);
461 	if (init_done(zram)) {
462 		pr_info("Can't setup backing device for initialized device\n");
463 		err = -EBUSY;
464 		goto out;
465 	}
466 
467 	strlcpy(file_name, buf, PATH_MAX);
468 	/* ignore trailing newline */
469 	sz = strlen(file_name);
470 	if (sz > 0 && file_name[sz - 1] == '\n')
471 		file_name[sz - 1] = 0x00;
472 
473 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
474 	if (IS_ERR(backing_dev)) {
475 		err = PTR_ERR(backing_dev);
476 		backing_dev = NULL;
477 		goto out;
478 	}
479 
480 	mapping = backing_dev->f_mapping;
481 	inode = mapping->host;
482 
483 	/* Support only block device in this moment */
484 	if (!S_ISBLK(inode->i_mode)) {
485 		err = -ENOTBLK;
486 		goto out;
487 	}
488 
489 	bdev = bdgrab(I_BDEV(inode));
490 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
491 	if (err < 0) {
492 		bdev = NULL;
493 		goto out;
494 	}
495 
496 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
497 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
498 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
499 	if (!bitmap) {
500 		err = -ENOMEM;
501 		goto out;
502 	}
503 
504 	old_block_size = block_size(bdev);
505 	err = set_blocksize(bdev, PAGE_SIZE);
506 	if (err)
507 		goto out;
508 
509 	reset_bdev(zram);
510 
511 	zram->old_block_size = old_block_size;
512 	zram->bdev = bdev;
513 	zram->backing_dev = backing_dev;
514 	zram->bitmap = bitmap;
515 	zram->nr_pages = nr_pages;
516 	/*
517 	 * With writeback feature, zram does asynchronous IO so it's no longer
518 	 * synchronous device so let's remove synchronous io flag. Othewise,
519 	 * upper layer(e.g., swap) could wait IO completion rather than
520 	 * (submit and return), which will cause system sluggish.
521 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
522 	 * upper layer expects IO was done so it could deallocate the page
523 	 * freely but in fact, IO is going on so finally could cause
524 	 * use-after-free when the IO is really done.
525 	 */
526 	zram->disk->queue->backing_dev_info->capabilities &=
527 			~BDI_CAP_SYNCHRONOUS_IO;
528 	up_write(&zram->init_lock);
529 
530 	pr_info("setup backing device %s\n", file_name);
531 	kfree(file_name);
532 
533 	return len;
534 out:
535 	if (bitmap)
536 		kvfree(bitmap);
537 
538 	if (bdev)
539 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
540 
541 	if (backing_dev)
542 		filp_close(backing_dev, NULL);
543 
544 	up_write(&zram->init_lock);
545 
546 	kfree(file_name);
547 
548 	return err;
549 }
550 
551 static unsigned long alloc_block_bdev(struct zram *zram)
552 {
553 	unsigned long blk_idx = 1;
554 retry:
555 	/* skip 0 bit to confuse zram.handle = 0 */
556 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
557 	if (blk_idx == zram->nr_pages)
558 		return 0;
559 
560 	if (test_and_set_bit(blk_idx, zram->bitmap))
561 		goto retry;
562 
563 	atomic64_inc(&zram->stats.bd_count);
564 	return blk_idx;
565 }
566 
567 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
568 {
569 	int was_set;
570 
571 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
572 	WARN_ON_ONCE(!was_set);
573 	atomic64_dec(&zram->stats.bd_count);
574 }
575 
576 static void zram_page_end_io(struct bio *bio)
577 {
578 	struct page *page = bio_first_page_all(bio);
579 
580 	page_endio(page, op_is_write(bio_op(bio)),
581 			blk_status_to_errno(bio->bi_status));
582 	bio_put(bio);
583 }
584 
585 /*
586  * Returns 1 if the submission is successful.
587  */
588 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
589 			unsigned long entry, struct bio *parent)
590 {
591 	struct bio *bio;
592 
593 	bio = bio_alloc(GFP_ATOMIC, 1);
594 	if (!bio)
595 		return -ENOMEM;
596 
597 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
598 	bio_set_dev(bio, zram->bdev);
599 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
600 		bio_put(bio);
601 		return -EIO;
602 	}
603 
604 	if (!parent) {
605 		bio->bi_opf = REQ_OP_READ;
606 		bio->bi_end_io = zram_page_end_io;
607 	} else {
608 		bio->bi_opf = parent->bi_opf;
609 		bio_chain(bio, parent);
610 	}
611 
612 	submit_bio(bio);
613 	return 1;
614 }
615 
616 #define HUGE_WRITEBACK 1
617 #define IDLE_WRITEBACK 2
618 
619 static ssize_t writeback_store(struct device *dev,
620 		struct device_attribute *attr, const char *buf, size_t len)
621 {
622 	struct zram *zram = dev_to_zram(dev);
623 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
624 	unsigned long index;
625 	struct bio bio;
626 	struct bio_vec bio_vec;
627 	struct page *page;
628 	ssize_t ret;
629 	int mode;
630 	unsigned long blk_idx = 0;
631 
632 	if (sysfs_streq(buf, "idle"))
633 		mode = IDLE_WRITEBACK;
634 	else if (sysfs_streq(buf, "huge"))
635 		mode = HUGE_WRITEBACK;
636 	else
637 		return -EINVAL;
638 
639 	down_read(&zram->init_lock);
640 	if (!init_done(zram)) {
641 		ret = -EINVAL;
642 		goto release_init_lock;
643 	}
644 
645 	if (!zram->backing_dev) {
646 		ret = -ENODEV;
647 		goto release_init_lock;
648 	}
649 
650 	page = alloc_page(GFP_KERNEL);
651 	if (!page) {
652 		ret = -ENOMEM;
653 		goto release_init_lock;
654 	}
655 
656 	for (index = 0; index < nr_pages; index++) {
657 		struct bio_vec bvec;
658 
659 		bvec.bv_page = page;
660 		bvec.bv_len = PAGE_SIZE;
661 		bvec.bv_offset = 0;
662 
663 		spin_lock(&zram->wb_limit_lock);
664 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
665 			spin_unlock(&zram->wb_limit_lock);
666 			ret = -EIO;
667 			break;
668 		}
669 		spin_unlock(&zram->wb_limit_lock);
670 
671 		if (!blk_idx) {
672 			blk_idx = alloc_block_bdev(zram);
673 			if (!blk_idx) {
674 				ret = -ENOSPC;
675 				break;
676 			}
677 		}
678 
679 		zram_slot_lock(zram, index);
680 		if (!zram_allocated(zram, index))
681 			goto next;
682 
683 		if (zram_test_flag(zram, index, ZRAM_WB) ||
684 				zram_test_flag(zram, index, ZRAM_SAME) ||
685 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
686 			goto next;
687 
688 		if (mode == IDLE_WRITEBACK &&
689 			  !zram_test_flag(zram, index, ZRAM_IDLE))
690 			goto next;
691 		if (mode == HUGE_WRITEBACK &&
692 			  !zram_test_flag(zram, index, ZRAM_HUGE))
693 			goto next;
694 		/*
695 		 * Clearing ZRAM_UNDER_WB is duty of caller.
696 		 * IOW, zram_free_page never clear it.
697 		 */
698 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
699 		/* Need for hugepage writeback racing */
700 		zram_set_flag(zram, index, ZRAM_IDLE);
701 		zram_slot_unlock(zram, index);
702 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
703 			zram_slot_lock(zram, index);
704 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
705 			zram_clear_flag(zram, index, ZRAM_IDLE);
706 			zram_slot_unlock(zram, index);
707 			continue;
708 		}
709 
710 		bio_init(&bio, &bio_vec, 1);
711 		bio_set_dev(&bio, zram->bdev);
712 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
713 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
714 
715 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
716 				bvec.bv_offset);
717 		/*
718 		 * XXX: A single page IO would be inefficient for write
719 		 * but it would be not bad as starter.
720 		 */
721 		ret = submit_bio_wait(&bio);
722 		if (ret) {
723 			zram_slot_lock(zram, index);
724 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
725 			zram_clear_flag(zram, index, ZRAM_IDLE);
726 			zram_slot_unlock(zram, index);
727 			continue;
728 		}
729 
730 		atomic64_inc(&zram->stats.bd_writes);
731 		/*
732 		 * We released zram_slot_lock so need to check if the slot was
733 		 * changed. If there is freeing for the slot, we can catch it
734 		 * easily by zram_allocated.
735 		 * A subtle case is the slot is freed/reallocated/marked as
736 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
737 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
738 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
739 		 */
740 		zram_slot_lock(zram, index);
741 		if (!zram_allocated(zram, index) ||
742 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
743 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
744 			zram_clear_flag(zram, index, ZRAM_IDLE);
745 			goto next;
746 		}
747 
748 		zram_free_page(zram, index);
749 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
750 		zram_set_flag(zram, index, ZRAM_WB);
751 		zram_set_element(zram, index, blk_idx);
752 		blk_idx = 0;
753 		atomic64_inc(&zram->stats.pages_stored);
754 		spin_lock(&zram->wb_limit_lock);
755 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
756 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
757 		spin_unlock(&zram->wb_limit_lock);
758 next:
759 		zram_slot_unlock(zram, index);
760 	}
761 
762 	if (blk_idx)
763 		free_block_bdev(zram, blk_idx);
764 	ret = len;
765 	__free_page(page);
766 release_init_lock:
767 	up_read(&zram->init_lock);
768 
769 	return ret;
770 }
771 
772 struct zram_work {
773 	struct work_struct work;
774 	struct zram *zram;
775 	unsigned long entry;
776 	struct bio *bio;
777 	struct bio_vec bvec;
778 };
779 
780 #if PAGE_SIZE != 4096
781 static void zram_sync_read(struct work_struct *work)
782 {
783 	struct zram_work *zw = container_of(work, struct zram_work, work);
784 	struct zram *zram = zw->zram;
785 	unsigned long entry = zw->entry;
786 	struct bio *bio = zw->bio;
787 
788 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
789 }
790 
791 /*
792  * Block layer want one ->make_request_fn to be active at a time
793  * so if we use chained IO with parent IO in same context,
794  * it's a deadlock. To avoid, it, it uses worker thread context.
795  */
796 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
797 				unsigned long entry, struct bio *bio)
798 {
799 	struct zram_work work;
800 
801 	work.bvec = *bvec;
802 	work.zram = zram;
803 	work.entry = entry;
804 	work.bio = bio;
805 
806 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
807 	queue_work(system_unbound_wq, &work.work);
808 	flush_work(&work.work);
809 	destroy_work_on_stack(&work.work);
810 
811 	return 1;
812 }
813 #else
814 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
815 				unsigned long entry, struct bio *bio)
816 {
817 	WARN_ON(1);
818 	return -EIO;
819 }
820 #endif
821 
822 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
823 			unsigned long entry, struct bio *parent, bool sync)
824 {
825 	atomic64_inc(&zram->stats.bd_reads);
826 	if (sync)
827 		return read_from_bdev_sync(zram, bvec, entry, parent);
828 	else
829 		return read_from_bdev_async(zram, bvec, entry, parent);
830 }
831 #else
832 static inline void reset_bdev(struct zram *zram) {};
833 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
834 			unsigned long entry, struct bio *parent, bool sync)
835 {
836 	return -EIO;
837 }
838 
839 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
840 #endif
841 
842 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
843 
844 static struct dentry *zram_debugfs_root;
845 
846 static void zram_debugfs_create(void)
847 {
848 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
849 }
850 
851 static void zram_debugfs_destroy(void)
852 {
853 	debugfs_remove_recursive(zram_debugfs_root);
854 }
855 
856 static void zram_accessed(struct zram *zram, u32 index)
857 {
858 	zram_clear_flag(zram, index, ZRAM_IDLE);
859 	zram->table[index].ac_time = ktime_get_boottime();
860 }
861 
862 static ssize_t read_block_state(struct file *file, char __user *buf,
863 				size_t count, loff_t *ppos)
864 {
865 	char *kbuf;
866 	ssize_t index, written = 0;
867 	struct zram *zram = file->private_data;
868 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
869 	struct timespec64 ts;
870 
871 	kbuf = kvmalloc(count, GFP_KERNEL);
872 	if (!kbuf)
873 		return -ENOMEM;
874 
875 	down_read(&zram->init_lock);
876 	if (!init_done(zram)) {
877 		up_read(&zram->init_lock);
878 		kvfree(kbuf);
879 		return -EINVAL;
880 	}
881 
882 	for (index = *ppos; index < nr_pages; index++) {
883 		int copied;
884 
885 		zram_slot_lock(zram, index);
886 		if (!zram_allocated(zram, index))
887 			goto next;
888 
889 		ts = ktime_to_timespec64(zram->table[index].ac_time);
890 		copied = snprintf(kbuf + written, count,
891 			"%12zd %12lld.%06lu %c%c%c%c\n",
892 			index, (s64)ts.tv_sec,
893 			ts.tv_nsec / NSEC_PER_USEC,
894 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
895 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
896 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
897 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
898 
899 		if (count < copied) {
900 			zram_slot_unlock(zram, index);
901 			break;
902 		}
903 		written += copied;
904 		count -= copied;
905 next:
906 		zram_slot_unlock(zram, index);
907 		*ppos += 1;
908 	}
909 
910 	up_read(&zram->init_lock);
911 	if (copy_to_user(buf, kbuf, written))
912 		written = -EFAULT;
913 	kvfree(kbuf);
914 
915 	return written;
916 }
917 
918 static const struct file_operations proc_zram_block_state_op = {
919 	.open = simple_open,
920 	.read = read_block_state,
921 	.llseek = default_llseek,
922 };
923 
924 static void zram_debugfs_register(struct zram *zram)
925 {
926 	if (!zram_debugfs_root)
927 		return;
928 
929 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
930 						zram_debugfs_root);
931 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
932 				zram, &proc_zram_block_state_op);
933 }
934 
935 static void zram_debugfs_unregister(struct zram *zram)
936 {
937 	debugfs_remove_recursive(zram->debugfs_dir);
938 }
939 #else
940 static void zram_debugfs_create(void) {};
941 static void zram_debugfs_destroy(void) {};
942 static void zram_accessed(struct zram *zram, u32 index)
943 {
944 	zram_clear_flag(zram, index, ZRAM_IDLE);
945 };
946 static void zram_debugfs_register(struct zram *zram) {};
947 static void zram_debugfs_unregister(struct zram *zram) {};
948 #endif
949 
950 /*
951  * We switched to per-cpu streams and this attr is not needed anymore.
952  * However, we will keep it around for some time, because:
953  * a) we may revert per-cpu streams in the future
954  * b) it's visible to user space and we need to follow our 2 years
955  *    retirement rule; but we already have a number of 'soon to be
956  *    altered' attrs, so max_comp_streams need to wait for the next
957  *    layoff cycle.
958  */
959 static ssize_t max_comp_streams_show(struct device *dev,
960 		struct device_attribute *attr, char *buf)
961 {
962 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
963 }
964 
965 static ssize_t max_comp_streams_store(struct device *dev,
966 		struct device_attribute *attr, const char *buf, size_t len)
967 {
968 	return len;
969 }
970 
971 static ssize_t comp_algorithm_show(struct device *dev,
972 		struct device_attribute *attr, char *buf)
973 {
974 	size_t sz;
975 	struct zram *zram = dev_to_zram(dev);
976 
977 	down_read(&zram->init_lock);
978 	sz = zcomp_available_show(zram->compressor, buf);
979 	up_read(&zram->init_lock);
980 
981 	return sz;
982 }
983 
984 static ssize_t comp_algorithm_store(struct device *dev,
985 		struct device_attribute *attr, const char *buf, size_t len)
986 {
987 	struct zram *zram = dev_to_zram(dev);
988 	char compressor[ARRAY_SIZE(zram->compressor)];
989 	size_t sz;
990 
991 	strlcpy(compressor, buf, sizeof(compressor));
992 	/* ignore trailing newline */
993 	sz = strlen(compressor);
994 	if (sz > 0 && compressor[sz - 1] == '\n')
995 		compressor[sz - 1] = 0x00;
996 
997 	if (!zcomp_available_algorithm(compressor))
998 		return -EINVAL;
999 
1000 	down_write(&zram->init_lock);
1001 	if (init_done(zram)) {
1002 		up_write(&zram->init_lock);
1003 		pr_info("Can't change algorithm for initialized device\n");
1004 		return -EBUSY;
1005 	}
1006 
1007 	strcpy(zram->compressor, compressor);
1008 	up_write(&zram->init_lock);
1009 	return len;
1010 }
1011 
1012 static ssize_t compact_store(struct device *dev,
1013 		struct device_attribute *attr, const char *buf, size_t len)
1014 {
1015 	struct zram *zram = dev_to_zram(dev);
1016 
1017 	down_read(&zram->init_lock);
1018 	if (!init_done(zram)) {
1019 		up_read(&zram->init_lock);
1020 		return -EINVAL;
1021 	}
1022 
1023 	zs_compact(zram->mem_pool);
1024 	up_read(&zram->init_lock);
1025 
1026 	return len;
1027 }
1028 
1029 static ssize_t io_stat_show(struct device *dev,
1030 		struct device_attribute *attr, char *buf)
1031 {
1032 	struct zram *zram = dev_to_zram(dev);
1033 	ssize_t ret;
1034 
1035 	down_read(&zram->init_lock);
1036 	ret = scnprintf(buf, PAGE_SIZE,
1037 			"%8llu %8llu %8llu %8llu\n",
1038 			(u64)atomic64_read(&zram->stats.failed_reads),
1039 			(u64)atomic64_read(&zram->stats.failed_writes),
1040 			(u64)atomic64_read(&zram->stats.invalid_io),
1041 			(u64)atomic64_read(&zram->stats.notify_free));
1042 	up_read(&zram->init_lock);
1043 
1044 	return ret;
1045 }
1046 
1047 static ssize_t mm_stat_show(struct device *dev,
1048 		struct device_attribute *attr, char *buf)
1049 {
1050 	struct zram *zram = dev_to_zram(dev);
1051 	struct zs_pool_stats pool_stats;
1052 	u64 orig_size, mem_used = 0;
1053 	long max_used;
1054 	ssize_t ret;
1055 
1056 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1057 
1058 	down_read(&zram->init_lock);
1059 	if (init_done(zram)) {
1060 		mem_used = zs_get_total_pages(zram->mem_pool);
1061 		zs_pool_stats(zram->mem_pool, &pool_stats);
1062 	}
1063 
1064 	orig_size = atomic64_read(&zram->stats.pages_stored);
1065 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1066 
1067 	ret = scnprintf(buf, PAGE_SIZE,
1068 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1069 			orig_size << PAGE_SHIFT,
1070 			(u64)atomic64_read(&zram->stats.compr_data_size),
1071 			mem_used << PAGE_SHIFT,
1072 			zram->limit_pages << PAGE_SHIFT,
1073 			max_used << PAGE_SHIFT,
1074 			(u64)atomic64_read(&zram->stats.same_pages),
1075 			pool_stats.pages_compacted,
1076 			(u64)atomic64_read(&zram->stats.huge_pages));
1077 	up_read(&zram->init_lock);
1078 
1079 	return ret;
1080 }
1081 
1082 #ifdef CONFIG_ZRAM_WRITEBACK
1083 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1084 static ssize_t bd_stat_show(struct device *dev,
1085 		struct device_attribute *attr, char *buf)
1086 {
1087 	struct zram *zram = dev_to_zram(dev);
1088 	ssize_t ret;
1089 
1090 	down_read(&zram->init_lock);
1091 	ret = scnprintf(buf, PAGE_SIZE,
1092 		"%8llu %8llu %8llu\n",
1093 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1094 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1095 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1096 	up_read(&zram->init_lock);
1097 
1098 	return ret;
1099 }
1100 #endif
1101 
1102 static ssize_t debug_stat_show(struct device *dev,
1103 		struct device_attribute *attr, char *buf)
1104 {
1105 	int version = 1;
1106 	struct zram *zram = dev_to_zram(dev);
1107 	ssize_t ret;
1108 
1109 	down_read(&zram->init_lock);
1110 	ret = scnprintf(buf, PAGE_SIZE,
1111 			"version: %d\n%8llu %8llu\n",
1112 			version,
1113 			(u64)atomic64_read(&zram->stats.writestall),
1114 			(u64)atomic64_read(&zram->stats.miss_free));
1115 	up_read(&zram->init_lock);
1116 
1117 	return ret;
1118 }
1119 
1120 static DEVICE_ATTR_RO(io_stat);
1121 static DEVICE_ATTR_RO(mm_stat);
1122 #ifdef CONFIG_ZRAM_WRITEBACK
1123 static DEVICE_ATTR_RO(bd_stat);
1124 #endif
1125 static DEVICE_ATTR_RO(debug_stat);
1126 
1127 static void zram_meta_free(struct zram *zram, u64 disksize)
1128 {
1129 	size_t num_pages = disksize >> PAGE_SHIFT;
1130 	size_t index;
1131 
1132 	/* Free all pages that are still in this zram device */
1133 	for (index = 0; index < num_pages; index++)
1134 		zram_free_page(zram, index);
1135 
1136 	zs_destroy_pool(zram->mem_pool);
1137 	vfree(zram->table);
1138 }
1139 
1140 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1141 {
1142 	size_t num_pages;
1143 
1144 	num_pages = disksize >> PAGE_SHIFT;
1145 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1146 	if (!zram->table)
1147 		return false;
1148 
1149 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1150 	if (!zram->mem_pool) {
1151 		vfree(zram->table);
1152 		return false;
1153 	}
1154 
1155 	if (!huge_class_size)
1156 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1157 	return true;
1158 }
1159 
1160 /*
1161  * To protect concurrent access to the same index entry,
1162  * caller should hold this table index entry's bit_spinlock to
1163  * indicate this index entry is accessing.
1164  */
1165 static void zram_free_page(struct zram *zram, size_t index)
1166 {
1167 	unsigned long handle;
1168 
1169 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1170 	zram->table[index].ac_time = 0;
1171 #endif
1172 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1173 		zram_clear_flag(zram, index, ZRAM_IDLE);
1174 
1175 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1176 		zram_clear_flag(zram, index, ZRAM_HUGE);
1177 		atomic64_dec(&zram->stats.huge_pages);
1178 	}
1179 
1180 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1181 		zram_clear_flag(zram, index, ZRAM_WB);
1182 		free_block_bdev(zram, zram_get_element(zram, index));
1183 		goto out;
1184 	}
1185 
1186 	/*
1187 	 * No memory is allocated for same element filled pages.
1188 	 * Simply clear same page flag.
1189 	 */
1190 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1191 		zram_clear_flag(zram, index, ZRAM_SAME);
1192 		atomic64_dec(&zram->stats.same_pages);
1193 		goto out;
1194 	}
1195 
1196 	handle = zram_get_handle(zram, index);
1197 	if (!handle)
1198 		return;
1199 
1200 	zs_free(zram->mem_pool, handle);
1201 
1202 	atomic64_sub(zram_get_obj_size(zram, index),
1203 			&zram->stats.compr_data_size);
1204 out:
1205 	atomic64_dec(&zram->stats.pages_stored);
1206 	zram_set_handle(zram, index, 0);
1207 	zram_set_obj_size(zram, index, 0);
1208 	WARN_ON_ONCE(zram->table[index].flags &
1209 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1210 }
1211 
1212 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1213 				struct bio *bio, bool partial_io)
1214 {
1215 	int ret;
1216 	unsigned long handle;
1217 	unsigned int size;
1218 	void *src, *dst;
1219 
1220 	zram_slot_lock(zram, index);
1221 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1222 		struct bio_vec bvec;
1223 
1224 		zram_slot_unlock(zram, index);
1225 
1226 		bvec.bv_page = page;
1227 		bvec.bv_len = PAGE_SIZE;
1228 		bvec.bv_offset = 0;
1229 		return read_from_bdev(zram, &bvec,
1230 				zram_get_element(zram, index),
1231 				bio, partial_io);
1232 	}
1233 
1234 	handle = zram_get_handle(zram, index);
1235 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1236 		unsigned long value;
1237 		void *mem;
1238 
1239 		value = handle ? zram_get_element(zram, index) : 0;
1240 		mem = kmap_atomic(page);
1241 		zram_fill_page(mem, PAGE_SIZE, value);
1242 		kunmap_atomic(mem);
1243 		zram_slot_unlock(zram, index);
1244 		return 0;
1245 	}
1246 
1247 	size = zram_get_obj_size(zram, index);
1248 
1249 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1250 	if (size == PAGE_SIZE) {
1251 		dst = kmap_atomic(page);
1252 		memcpy(dst, src, PAGE_SIZE);
1253 		kunmap_atomic(dst);
1254 		ret = 0;
1255 	} else {
1256 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1257 
1258 		dst = kmap_atomic(page);
1259 		ret = zcomp_decompress(zstrm, src, size, dst);
1260 		kunmap_atomic(dst);
1261 		zcomp_stream_put(zram->comp);
1262 	}
1263 	zs_unmap_object(zram->mem_pool, handle);
1264 	zram_slot_unlock(zram, index);
1265 
1266 	/* Should NEVER happen. Return bio error if it does. */
1267 	if (unlikely(ret))
1268 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1269 
1270 	return ret;
1271 }
1272 
1273 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1274 				u32 index, int offset, struct bio *bio)
1275 {
1276 	int ret;
1277 	struct page *page;
1278 
1279 	page = bvec->bv_page;
1280 	if (is_partial_io(bvec)) {
1281 		/* Use a temporary buffer to decompress the page */
1282 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1283 		if (!page)
1284 			return -ENOMEM;
1285 	}
1286 
1287 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1288 	if (unlikely(ret))
1289 		goto out;
1290 
1291 	if (is_partial_io(bvec)) {
1292 		void *dst = kmap_atomic(bvec->bv_page);
1293 		void *src = kmap_atomic(page);
1294 
1295 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1296 		kunmap_atomic(src);
1297 		kunmap_atomic(dst);
1298 	}
1299 out:
1300 	if (is_partial_io(bvec))
1301 		__free_page(page);
1302 
1303 	return ret;
1304 }
1305 
1306 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1307 				u32 index, struct bio *bio)
1308 {
1309 	int ret = 0;
1310 	unsigned long alloced_pages;
1311 	unsigned long handle = 0;
1312 	unsigned int comp_len = 0;
1313 	void *src, *dst, *mem;
1314 	struct zcomp_strm *zstrm;
1315 	struct page *page = bvec->bv_page;
1316 	unsigned long element = 0;
1317 	enum zram_pageflags flags = 0;
1318 
1319 	mem = kmap_atomic(page);
1320 	if (page_same_filled(mem, &element)) {
1321 		kunmap_atomic(mem);
1322 		/* Free memory associated with this sector now. */
1323 		flags = ZRAM_SAME;
1324 		atomic64_inc(&zram->stats.same_pages);
1325 		goto out;
1326 	}
1327 	kunmap_atomic(mem);
1328 
1329 compress_again:
1330 	zstrm = zcomp_stream_get(zram->comp);
1331 	src = kmap_atomic(page);
1332 	ret = zcomp_compress(zstrm, src, &comp_len);
1333 	kunmap_atomic(src);
1334 
1335 	if (unlikely(ret)) {
1336 		zcomp_stream_put(zram->comp);
1337 		pr_err("Compression failed! err=%d\n", ret);
1338 		zs_free(zram->mem_pool, handle);
1339 		return ret;
1340 	}
1341 
1342 	if (comp_len >= huge_class_size)
1343 		comp_len = PAGE_SIZE;
1344 	/*
1345 	 * handle allocation has 2 paths:
1346 	 * a) fast path is executed with preemption disabled (for
1347 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1348 	 *  since we can't sleep;
1349 	 * b) slow path enables preemption and attempts to allocate
1350 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1351 	 *  put per-cpu compression stream and, thus, to re-do
1352 	 *  the compression once handle is allocated.
1353 	 *
1354 	 * if we have a 'non-null' handle here then we are coming
1355 	 * from the slow path and handle has already been allocated.
1356 	 */
1357 	if (!handle)
1358 		handle = zs_malloc(zram->mem_pool, comp_len,
1359 				__GFP_KSWAPD_RECLAIM |
1360 				__GFP_NOWARN |
1361 				__GFP_HIGHMEM |
1362 				__GFP_MOVABLE);
1363 	if (!handle) {
1364 		zcomp_stream_put(zram->comp);
1365 		atomic64_inc(&zram->stats.writestall);
1366 		handle = zs_malloc(zram->mem_pool, comp_len,
1367 				GFP_NOIO | __GFP_HIGHMEM |
1368 				__GFP_MOVABLE);
1369 		if (handle)
1370 			goto compress_again;
1371 		return -ENOMEM;
1372 	}
1373 
1374 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1375 	update_used_max(zram, alloced_pages);
1376 
1377 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1378 		zcomp_stream_put(zram->comp);
1379 		zs_free(zram->mem_pool, handle);
1380 		return -ENOMEM;
1381 	}
1382 
1383 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1384 
1385 	src = zstrm->buffer;
1386 	if (comp_len == PAGE_SIZE)
1387 		src = kmap_atomic(page);
1388 	memcpy(dst, src, comp_len);
1389 	if (comp_len == PAGE_SIZE)
1390 		kunmap_atomic(src);
1391 
1392 	zcomp_stream_put(zram->comp);
1393 	zs_unmap_object(zram->mem_pool, handle);
1394 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1395 out:
1396 	/*
1397 	 * Free memory associated with this sector
1398 	 * before overwriting unused sectors.
1399 	 */
1400 	zram_slot_lock(zram, index);
1401 	zram_free_page(zram, index);
1402 
1403 	if (comp_len == PAGE_SIZE) {
1404 		zram_set_flag(zram, index, ZRAM_HUGE);
1405 		atomic64_inc(&zram->stats.huge_pages);
1406 	}
1407 
1408 	if (flags) {
1409 		zram_set_flag(zram, index, flags);
1410 		zram_set_element(zram, index, element);
1411 	}  else {
1412 		zram_set_handle(zram, index, handle);
1413 		zram_set_obj_size(zram, index, comp_len);
1414 	}
1415 	zram_slot_unlock(zram, index);
1416 
1417 	/* Update stats */
1418 	atomic64_inc(&zram->stats.pages_stored);
1419 	return ret;
1420 }
1421 
1422 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1423 				u32 index, int offset, struct bio *bio)
1424 {
1425 	int ret;
1426 	struct page *page = NULL;
1427 	void *src;
1428 	struct bio_vec vec;
1429 
1430 	vec = *bvec;
1431 	if (is_partial_io(bvec)) {
1432 		void *dst;
1433 		/*
1434 		 * This is a partial IO. We need to read the full page
1435 		 * before to write the changes.
1436 		 */
1437 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1438 		if (!page)
1439 			return -ENOMEM;
1440 
1441 		ret = __zram_bvec_read(zram, page, index, bio, true);
1442 		if (ret)
1443 			goto out;
1444 
1445 		src = kmap_atomic(bvec->bv_page);
1446 		dst = kmap_atomic(page);
1447 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1448 		kunmap_atomic(dst);
1449 		kunmap_atomic(src);
1450 
1451 		vec.bv_page = page;
1452 		vec.bv_len = PAGE_SIZE;
1453 		vec.bv_offset = 0;
1454 	}
1455 
1456 	ret = __zram_bvec_write(zram, &vec, index, bio);
1457 out:
1458 	if (is_partial_io(bvec))
1459 		__free_page(page);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * zram_bio_discard - handler on discard request
1465  * @index: physical block index in PAGE_SIZE units
1466  * @offset: byte offset within physical block
1467  */
1468 static void zram_bio_discard(struct zram *zram, u32 index,
1469 			     int offset, struct bio *bio)
1470 {
1471 	size_t n = bio->bi_iter.bi_size;
1472 
1473 	/*
1474 	 * zram manages data in physical block size units. Because logical block
1475 	 * size isn't identical with physical block size on some arch, we
1476 	 * could get a discard request pointing to a specific offset within a
1477 	 * certain physical block.  Although we can handle this request by
1478 	 * reading that physiclal block and decompressing and partially zeroing
1479 	 * and re-compressing and then re-storing it, this isn't reasonable
1480 	 * because our intent with a discard request is to save memory.  So
1481 	 * skipping this logical block is appropriate here.
1482 	 */
1483 	if (offset) {
1484 		if (n <= (PAGE_SIZE - offset))
1485 			return;
1486 
1487 		n -= (PAGE_SIZE - offset);
1488 		index++;
1489 	}
1490 
1491 	while (n >= PAGE_SIZE) {
1492 		zram_slot_lock(zram, index);
1493 		zram_free_page(zram, index);
1494 		zram_slot_unlock(zram, index);
1495 		atomic64_inc(&zram->stats.notify_free);
1496 		index++;
1497 		n -= PAGE_SIZE;
1498 	}
1499 }
1500 
1501 /*
1502  * Returns errno if it has some problem. Otherwise return 0 or 1.
1503  * Returns 0 if IO request was done synchronously
1504  * Returns 1 if IO request was successfully submitted.
1505  */
1506 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1507 			int offset, unsigned int op, struct bio *bio)
1508 {
1509 	unsigned long start_time = jiffies;
1510 	struct request_queue *q = zram->disk->queue;
1511 	int ret;
1512 
1513 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1514 			&zram->disk->part0);
1515 
1516 	if (!op_is_write(op)) {
1517 		atomic64_inc(&zram->stats.num_reads);
1518 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1519 		flush_dcache_page(bvec->bv_page);
1520 	} else {
1521 		atomic64_inc(&zram->stats.num_writes);
1522 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1523 	}
1524 
1525 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1526 
1527 	zram_slot_lock(zram, index);
1528 	zram_accessed(zram, index);
1529 	zram_slot_unlock(zram, index);
1530 
1531 	if (unlikely(ret < 0)) {
1532 		if (!op_is_write(op))
1533 			atomic64_inc(&zram->stats.failed_reads);
1534 		else
1535 			atomic64_inc(&zram->stats.failed_writes);
1536 	}
1537 
1538 	return ret;
1539 }
1540 
1541 static void __zram_make_request(struct zram *zram, struct bio *bio)
1542 {
1543 	int offset;
1544 	u32 index;
1545 	struct bio_vec bvec;
1546 	struct bvec_iter iter;
1547 
1548 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1549 	offset = (bio->bi_iter.bi_sector &
1550 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1551 
1552 	switch (bio_op(bio)) {
1553 	case REQ_OP_DISCARD:
1554 	case REQ_OP_WRITE_ZEROES:
1555 		zram_bio_discard(zram, index, offset, bio);
1556 		bio_endio(bio);
1557 		return;
1558 	default:
1559 		break;
1560 	}
1561 
1562 	bio_for_each_segment(bvec, bio, iter) {
1563 		struct bio_vec bv = bvec;
1564 		unsigned int unwritten = bvec.bv_len;
1565 
1566 		do {
1567 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1568 							unwritten);
1569 			if (zram_bvec_rw(zram, &bv, index, offset,
1570 					 bio_op(bio), bio) < 0)
1571 				goto out;
1572 
1573 			bv.bv_offset += bv.bv_len;
1574 			unwritten -= bv.bv_len;
1575 
1576 			update_position(&index, &offset, &bv);
1577 		} while (unwritten);
1578 	}
1579 
1580 	bio_endio(bio);
1581 	return;
1582 
1583 out:
1584 	bio_io_error(bio);
1585 }
1586 
1587 /*
1588  * Handler function for all zram I/O requests.
1589  */
1590 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1591 {
1592 	struct zram *zram = queue->queuedata;
1593 
1594 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1595 					bio->bi_iter.bi_size)) {
1596 		atomic64_inc(&zram->stats.invalid_io);
1597 		goto error;
1598 	}
1599 
1600 	__zram_make_request(zram, bio);
1601 	return BLK_QC_T_NONE;
1602 
1603 error:
1604 	bio_io_error(bio);
1605 	return BLK_QC_T_NONE;
1606 }
1607 
1608 static void zram_slot_free_notify(struct block_device *bdev,
1609 				unsigned long index)
1610 {
1611 	struct zram *zram;
1612 
1613 	zram = bdev->bd_disk->private_data;
1614 
1615 	atomic64_inc(&zram->stats.notify_free);
1616 	if (!zram_slot_trylock(zram, index)) {
1617 		atomic64_inc(&zram->stats.miss_free);
1618 		return;
1619 	}
1620 
1621 	zram_free_page(zram, index);
1622 	zram_slot_unlock(zram, index);
1623 }
1624 
1625 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1626 		       struct page *page, unsigned int op)
1627 {
1628 	int offset, ret;
1629 	u32 index;
1630 	struct zram *zram;
1631 	struct bio_vec bv;
1632 
1633 	if (PageTransHuge(page))
1634 		return -ENOTSUPP;
1635 	zram = bdev->bd_disk->private_data;
1636 
1637 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1638 		atomic64_inc(&zram->stats.invalid_io);
1639 		ret = -EINVAL;
1640 		goto out;
1641 	}
1642 
1643 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1644 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1645 
1646 	bv.bv_page = page;
1647 	bv.bv_len = PAGE_SIZE;
1648 	bv.bv_offset = 0;
1649 
1650 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1651 out:
1652 	/*
1653 	 * If I/O fails, just return error(ie, non-zero) without
1654 	 * calling page_endio.
1655 	 * It causes resubmit the I/O with bio request by upper functions
1656 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1657 	 * bio->bi_end_io does things to handle the error
1658 	 * (e.g., SetPageError, set_page_dirty and extra works).
1659 	 */
1660 	if (unlikely(ret < 0))
1661 		return ret;
1662 
1663 	switch (ret) {
1664 	case 0:
1665 		page_endio(page, op_is_write(op), 0);
1666 		break;
1667 	case 1:
1668 		ret = 0;
1669 		break;
1670 	default:
1671 		WARN_ON(1);
1672 	}
1673 	return ret;
1674 }
1675 
1676 static void zram_reset_device(struct zram *zram)
1677 {
1678 	struct zcomp *comp;
1679 	u64 disksize;
1680 
1681 	down_write(&zram->init_lock);
1682 
1683 	zram->limit_pages = 0;
1684 
1685 	if (!init_done(zram)) {
1686 		up_write(&zram->init_lock);
1687 		return;
1688 	}
1689 
1690 	comp = zram->comp;
1691 	disksize = zram->disksize;
1692 	zram->disksize = 0;
1693 
1694 	set_capacity(zram->disk, 0);
1695 	part_stat_set_all(&zram->disk->part0, 0);
1696 
1697 	up_write(&zram->init_lock);
1698 	/* I/O operation under all of CPU are done so let's free */
1699 	zram_meta_free(zram, disksize);
1700 	memset(&zram->stats, 0, sizeof(zram->stats));
1701 	zcomp_destroy(comp);
1702 	reset_bdev(zram);
1703 }
1704 
1705 static ssize_t disksize_store(struct device *dev,
1706 		struct device_attribute *attr, const char *buf, size_t len)
1707 {
1708 	u64 disksize;
1709 	struct zcomp *comp;
1710 	struct zram *zram = dev_to_zram(dev);
1711 	int err;
1712 
1713 	disksize = memparse(buf, NULL);
1714 	if (!disksize)
1715 		return -EINVAL;
1716 
1717 	down_write(&zram->init_lock);
1718 	if (init_done(zram)) {
1719 		pr_info("Cannot change disksize for initialized device\n");
1720 		err = -EBUSY;
1721 		goto out_unlock;
1722 	}
1723 
1724 	disksize = PAGE_ALIGN(disksize);
1725 	if (!zram_meta_alloc(zram, disksize)) {
1726 		err = -ENOMEM;
1727 		goto out_unlock;
1728 	}
1729 
1730 	comp = zcomp_create(zram->compressor);
1731 	if (IS_ERR(comp)) {
1732 		pr_err("Cannot initialise %s compressing backend\n",
1733 				zram->compressor);
1734 		err = PTR_ERR(comp);
1735 		goto out_free_meta;
1736 	}
1737 
1738 	zram->comp = comp;
1739 	zram->disksize = disksize;
1740 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1741 
1742 	revalidate_disk(zram->disk);
1743 	up_write(&zram->init_lock);
1744 
1745 	return len;
1746 
1747 out_free_meta:
1748 	zram_meta_free(zram, disksize);
1749 out_unlock:
1750 	up_write(&zram->init_lock);
1751 	return err;
1752 }
1753 
1754 static ssize_t reset_store(struct device *dev,
1755 		struct device_attribute *attr, const char *buf, size_t len)
1756 {
1757 	int ret;
1758 	unsigned short do_reset;
1759 	struct zram *zram;
1760 	struct block_device *bdev;
1761 
1762 	ret = kstrtou16(buf, 10, &do_reset);
1763 	if (ret)
1764 		return ret;
1765 
1766 	if (!do_reset)
1767 		return -EINVAL;
1768 
1769 	zram = dev_to_zram(dev);
1770 	bdev = bdget_disk(zram->disk, 0);
1771 	if (!bdev)
1772 		return -ENOMEM;
1773 
1774 	mutex_lock(&bdev->bd_mutex);
1775 	/* Do not reset an active device or claimed device */
1776 	if (bdev->bd_openers || zram->claim) {
1777 		mutex_unlock(&bdev->bd_mutex);
1778 		bdput(bdev);
1779 		return -EBUSY;
1780 	}
1781 
1782 	/* From now on, anyone can't open /dev/zram[0-9] */
1783 	zram->claim = true;
1784 	mutex_unlock(&bdev->bd_mutex);
1785 
1786 	/* Make sure all the pending I/O are finished */
1787 	fsync_bdev(bdev);
1788 	zram_reset_device(zram);
1789 	revalidate_disk(zram->disk);
1790 	bdput(bdev);
1791 
1792 	mutex_lock(&bdev->bd_mutex);
1793 	zram->claim = false;
1794 	mutex_unlock(&bdev->bd_mutex);
1795 
1796 	return len;
1797 }
1798 
1799 static int zram_open(struct block_device *bdev, fmode_t mode)
1800 {
1801 	int ret = 0;
1802 	struct zram *zram;
1803 
1804 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1805 
1806 	zram = bdev->bd_disk->private_data;
1807 	/* zram was claimed to reset so open request fails */
1808 	if (zram->claim)
1809 		ret = -EBUSY;
1810 
1811 	return ret;
1812 }
1813 
1814 static const struct block_device_operations zram_devops = {
1815 	.open = zram_open,
1816 	.swap_slot_free_notify = zram_slot_free_notify,
1817 	.rw_page = zram_rw_page,
1818 	.owner = THIS_MODULE
1819 };
1820 
1821 static DEVICE_ATTR_WO(compact);
1822 static DEVICE_ATTR_RW(disksize);
1823 static DEVICE_ATTR_RO(initstate);
1824 static DEVICE_ATTR_WO(reset);
1825 static DEVICE_ATTR_WO(mem_limit);
1826 static DEVICE_ATTR_WO(mem_used_max);
1827 static DEVICE_ATTR_WO(idle);
1828 static DEVICE_ATTR_RW(max_comp_streams);
1829 static DEVICE_ATTR_RW(comp_algorithm);
1830 #ifdef CONFIG_ZRAM_WRITEBACK
1831 static DEVICE_ATTR_RW(backing_dev);
1832 static DEVICE_ATTR_WO(writeback);
1833 static DEVICE_ATTR_RW(writeback_limit);
1834 static DEVICE_ATTR_RW(writeback_limit_enable);
1835 #endif
1836 
1837 static struct attribute *zram_disk_attrs[] = {
1838 	&dev_attr_disksize.attr,
1839 	&dev_attr_initstate.attr,
1840 	&dev_attr_reset.attr,
1841 	&dev_attr_compact.attr,
1842 	&dev_attr_mem_limit.attr,
1843 	&dev_attr_mem_used_max.attr,
1844 	&dev_attr_idle.attr,
1845 	&dev_attr_max_comp_streams.attr,
1846 	&dev_attr_comp_algorithm.attr,
1847 #ifdef CONFIG_ZRAM_WRITEBACK
1848 	&dev_attr_backing_dev.attr,
1849 	&dev_attr_writeback.attr,
1850 	&dev_attr_writeback_limit.attr,
1851 	&dev_attr_writeback_limit_enable.attr,
1852 #endif
1853 	&dev_attr_io_stat.attr,
1854 	&dev_attr_mm_stat.attr,
1855 #ifdef CONFIG_ZRAM_WRITEBACK
1856 	&dev_attr_bd_stat.attr,
1857 #endif
1858 	&dev_attr_debug_stat.attr,
1859 	NULL,
1860 };
1861 
1862 static const struct attribute_group zram_disk_attr_group = {
1863 	.attrs = zram_disk_attrs,
1864 };
1865 
1866 static const struct attribute_group *zram_disk_attr_groups[] = {
1867 	&zram_disk_attr_group,
1868 	NULL,
1869 };
1870 
1871 /*
1872  * Allocate and initialize new zram device. the function returns
1873  * '>= 0' device_id upon success, and negative value otherwise.
1874  */
1875 static int zram_add(void)
1876 {
1877 	struct zram *zram;
1878 	struct request_queue *queue;
1879 	int ret, device_id;
1880 
1881 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1882 	if (!zram)
1883 		return -ENOMEM;
1884 
1885 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1886 	if (ret < 0)
1887 		goto out_free_dev;
1888 	device_id = ret;
1889 
1890 	init_rwsem(&zram->init_lock);
1891 #ifdef CONFIG_ZRAM_WRITEBACK
1892 	spin_lock_init(&zram->wb_limit_lock);
1893 #endif
1894 	queue = blk_alloc_queue(GFP_KERNEL);
1895 	if (!queue) {
1896 		pr_err("Error allocating disk queue for device %d\n",
1897 			device_id);
1898 		ret = -ENOMEM;
1899 		goto out_free_idr;
1900 	}
1901 
1902 	blk_queue_make_request(queue, zram_make_request);
1903 
1904 	/* gendisk structure */
1905 	zram->disk = alloc_disk(1);
1906 	if (!zram->disk) {
1907 		pr_err("Error allocating disk structure for device %d\n",
1908 			device_id);
1909 		ret = -ENOMEM;
1910 		goto out_free_queue;
1911 	}
1912 
1913 	zram->disk->major = zram_major;
1914 	zram->disk->first_minor = device_id;
1915 	zram->disk->fops = &zram_devops;
1916 	zram->disk->queue = queue;
1917 	zram->disk->queue->queuedata = zram;
1918 	zram->disk->private_data = zram;
1919 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1920 
1921 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1922 	set_capacity(zram->disk, 0);
1923 	/* zram devices sort of resembles non-rotational disks */
1924 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1925 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1926 
1927 	/*
1928 	 * To ensure that we always get PAGE_SIZE aligned
1929 	 * and n*PAGE_SIZED sized I/O requests.
1930 	 */
1931 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1932 	blk_queue_logical_block_size(zram->disk->queue,
1933 					ZRAM_LOGICAL_BLOCK_SIZE);
1934 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1935 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1936 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1937 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1938 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1939 
1940 	/*
1941 	 * zram_bio_discard() will clear all logical blocks if logical block
1942 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1943 	 * different, we will skip discarding some parts of logical blocks in
1944 	 * the part of the request range which isn't aligned to physical block
1945 	 * size.  So we can't ensure that all discarded logical blocks are
1946 	 * zeroed.
1947 	 */
1948 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1949 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1950 
1951 	zram->disk->queue->backing_dev_info->capabilities |=
1952 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1953 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1954 
1955 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1956 
1957 	zram_debugfs_register(zram);
1958 	pr_info("Added device: %s\n", zram->disk->disk_name);
1959 	return device_id;
1960 
1961 out_free_queue:
1962 	blk_cleanup_queue(queue);
1963 out_free_idr:
1964 	idr_remove(&zram_index_idr, device_id);
1965 out_free_dev:
1966 	kfree(zram);
1967 	return ret;
1968 }
1969 
1970 static int zram_remove(struct zram *zram)
1971 {
1972 	struct block_device *bdev;
1973 
1974 	bdev = bdget_disk(zram->disk, 0);
1975 	if (!bdev)
1976 		return -ENOMEM;
1977 
1978 	mutex_lock(&bdev->bd_mutex);
1979 	if (bdev->bd_openers || zram->claim) {
1980 		mutex_unlock(&bdev->bd_mutex);
1981 		bdput(bdev);
1982 		return -EBUSY;
1983 	}
1984 
1985 	zram->claim = true;
1986 	mutex_unlock(&bdev->bd_mutex);
1987 
1988 	zram_debugfs_unregister(zram);
1989 
1990 	/* Make sure all the pending I/O are finished */
1991 	fsync_bdev(bdev);
1992 	zram_reset_device(zram);
1993 	bdput(bdev);
1994 
1995 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1996 
1997 	del_gendisk(zram->disk);
1998 	blk_cleanup_queue(zram->disk->queue);
1999 	put_disk(zram->disk);
2000 	kfree(zram);
2001 	return 0;
2002 }
2003 
2004 /* zram-control sysfs attributes */
2005 
2006 /*
2007  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2008  * sense that reading from this file does alter the state of your system -- it
2009  * creates a new un-initialized zram device and returns back this device's
2010  * device_id (or an error code if it fails to create a new device).
2011  */
2012 static ssize_t hot_add_show(struct class *class,
2013 			struct class_attribute *attr,
2014 			char *buf)
2015 {
2016 	int ret;
2017 
2018 	mutex_lock(&zram_index_mutex);
2019 	ret = zram_add();
2020 	mutex_unlock(&zram_index_mutex);
2021 
2022 	if (ret < 0)
2023 		return ret;
2024 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2025 }
2026 static CLASS_ATTR_RO(hot_add);
2027 
2028 static ssize_t hot_remove_store(struct class *class,
2029 			struct class_attribute *attr,
2030 			const char *buf,
2031 			size_t count)
2032 {
2033 	struct zram *zram;
2034 	int ret, dev_id;
2035 
2036 	/* dev_id is gendisk->first_minor, which is `int' */
2037 	ret = kstrtoint(buf, 10, &dev_id);
2038 	if (ret)
2039 		return ret;
2040 	if (dev_id < 0)
2041 		return -EINVAL;
2042 
2043 	mutex_lock(&zram_index_mutex);
2044 
2045 	zram = idr_find(&zram_index_idr, dev_id);
2046 	if (zram) {
2047 		ret = zram_remove(zram);
2048 		if (!ret)
2049 			idr_remove(&zram_index_idr, dev_id);
2050 	} else {
2051 		ret = -ENODEV;
2052 	}
2053 
2054 	mutex_unlock(&zram_index_mutex);
2055 	return ret ? ret : count;
2056 }
2057 static CLASS_ATTR_WO(hot_remove);
2058 
2059 static struct attribute *zram_control_class_attrs[] = {
2060 	&class_attr_hot_add.attr,
2061 	&class_attr_hot_remove.attr,
2062 	NULL,
2063 };
2064 ATTRIBUTE_GROUPS(zram_control_class);
2065 
2066 static struct class zram_control_class = {
2067 	.name		= "zram-control",
2068 	.owner		= THIS_MODULE,
2069 	.class_groups	= zram_control_class_groups,
2070 };
2071 
2072 static int zram_remove_cb(int id, void *ptr, void *data)
2073 {
2074 	zram_remove(ptr);
2075 	return 0;
2076 }
2077 
2078 static void destroy_devices(void)
2079 {
2080 	class_unregister(&zram_control_class);
2081 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2082 	zram_debugfs_destroy();
2083 	idr_destroy(&zram_index_idr);
2084 	unregister_blkdev(zram_major, "zram");
2085 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2086 }
2087 
2088 static int __init zram_init(void)
2089 {
2090 	int ret;
2091 
2092 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2093 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2094 	if (ret < 0)
2095 		return ret;
2096 
2097 	ret = class_register(&zram_control_class);
2098 	if (ret) {
2099 		pr_err("Unable to register zram-control class\n");
2100 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2101 		return ret;
2102 	}
2103 
2104 	zram_debugfs_create();
2105 	zram_major = register_blkdev(0, "zram");
2106 	if (zram_major <= 0) {
2107 		pr_err("Unable to get major number\n");
2108 		class_unregister(&zram_control_class);
2109 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2110 		return -EBUSY;
2111 	}
2112 
2113 	while (num_devices != 0) {
2114 		mutex_lock(&zram_index_mutex);
2115 		ret = zram_add();
2116 		mutex_unlock(&zram_index_mutex);
2117 		if (ret < 0)
2118 			goto out_error;
2119 		num_devices--;
2120 	}
2121 
2122 	return 0;
2123 
2124 out_error:
2125 	destroy_devices();
2126 	return ret;
2127 }
2128 
2129 static void __exit zram_exit(void)
2130 {
2131 	destroy_devices();
2132 }
2133 
2134 module_init(zram_init);
2135 module_exit(zram_exit);
2136 
2137 module_param(num_devices, uint, 0);
2138 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2139 
2140 MODULE_LICENSE("Dual BSD/GPL");
2141 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2142 MODULE_DESCRIPTION("Compressed RAM Block Device");
2143