1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 58 u32 index, int offset, struct bio *bio); 59 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 /* 159 * Check if request is within bounds and aligned on zram logical blocks. 160 */ 161 static inline bool valid_io_request(struct zram *zram, 162 sector_t start, unsigned int size) 163 { 164 u64 end, bound; 165 166 /* unaligned request */ 167 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 168 return false; 169 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 170 return false; 171 172 end = start + (size >> SECTOR_SHIFT); 173 bound = zram->disksize >> SECTOR_SHIFT; 174 /* out of range range */ 175 if (unlikely(start >= bound || end > bound || start > end)) 176 return false; 177 178 /* I/O request is valid */ 179 return true; 180 } 181 182 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 183 { 184 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 185 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 186 } 187 188 static inline void update_used_max(struct zram *zram, 189 const unsigned long pages) 190 { 191 unsigned long old_max, cur_max; 192 193 old_max = atomic_long_read(&zram->stats.max_used_pages); 194 195 do { 196 cur_max = old_max; 197 if (pages > cur_max) 198 old_max = atomic_long_cmpxchg( 199 &zram->stats.max_used_pages, cur_max, pages); 200 } while (old_max != cur_max); 201 } 202 203 static inline void zram_fill_page(void *ptr, unsigned long len, 204 unsigned long value) 205 { 206 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 207 memset_l(ptr, value, len / sizeof(unsigned long)); 208 } 209 210 static bool page_same_filled(void *ptr, unsigned long *element) 211 { 212 unsigned long *page; 213 unsigned long val; 214 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 215 216 page = (unsigned long *)ptr; 217 val = page[0]; 218 219 if (val != page[last_pos]) 220 return false; 221 222 for (pos = 1; pos < last_pos; pos++) { 223 if (val != page[pos]) 224 return false; 225 } 226 227 *element = val; 228 229 return true; 230 } 231 232 static ssize_t initstate_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 u32 val; 236 struct zram *zram = dev_to_zram(dev); 237 238 down_read(&zram->init_lock); 239 val = init_done(zram); 240 up_read(&zram->init_lock); 241 242 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 243 } 244 245 static ssize_t disksize_show(struct device *dev, 246 struct device_attribute *attr, char *buf) 247 { 248 struct zram *zram = dev_to_zram(dev); 249 250 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 251 } 252 253 static ssize_t mem_limit_store(struct device *dev, 254 struct device_attribute *attr, const char *buf, size_t len) 255 { 256 u64 limit; 257 char *tmp; 258 struct zram *zram = dev_to_zram(dev); 259 260 limit = memparse(buf, &tmp); 261 if (buf == tmp) /* no chars parsed, invalid input */ 262 return -EINVAL; 263 264 down_write(&zram->init_lock); 265 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 266 up_write(&zram->init_lock); 267 268 return len; 269 } 270 271 static ssize_t mem_used_max_store(struct device *dev, 272 struct device_attribute *attr, const char *buf, size_t len) 273 { 274 int err; 275 unsigned long val; 276 struct zram *zram = dev_to_zram(dev); 277 278 err = kstrtoul(buf, 10, &val); 279 if (err || val != 0) 280 return -EINVAL; 281 282 down_read(&zram->init_lock); 283 if (init_done(zram)) { 284 atomic_long_set(&zram->stats.max_used_pages, 285 zs_get_total_pages(zram->mem_pool)); 286 } 287 up_read(&zram->init_lock); 288 289 return len; 290 } 291 292 /* 293 * Mark all pages which are older than or equal to cutoff as IDLE. 294 * Callers should hold the zram init lock in read mode 295 */ 296 static void mark_idle(struct zram *zram, ktime_t cutoff) 297 { 298 int is_idle = 1; 299 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 300 int index; 301 302 for (index = 0; index < nr_pages; index++) { 303 /* 304 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 305 * See the comment in writeback_store. 306 */ 307 zram_slot_lock(zram, index); 308 if (zram_allocated(zram, index) && 309 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 310 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 311 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); 312 #endif 313 if (is_idle) 314 zram_set_flag(zram, index, ZRAM_IDLE); 315 } 316 zram_slot_unlock(zram, index); 317 } 318 } 319 320 static ssize_t idle_store(struct device *dev, 321 struct device_attribute *attr, const char *buf, size_t len) 322 { 323 struct zram *zram = dev_to_zram(dev); 324 ktime_t cutoff_time = 0; 325 ssize_t rv = -EINVAL; 326 327 if (!sysfs_streq(buf, "all")) { 328 /* 329 * If it did not parse as 'all' try to treat it as an integer 330 * when we have memory tracking enabled. 331 */ 332 u64 age_sec; 333 334 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) 335 cutoff_time = ktime_sub(ktime_get_boottime(), 336 ns_to_ktime(age_sec * NSEC_PER_SEC)); 337 else 338 goto out; 339 } 340 341 down_read(&zram->init_lock); 342 if (!init_done(zram)) 343 goto out_unlock; 344 345 /* 346 * A cutoff_time of 0 marks everything as idle, this is the 347 * "all" behavior. 348 */ 349 mark_idle(zram, cutoff_time); 350 rv = len; 351 352 out_unlock: 353 up_read(&zram->init_lock); 354 out: 355 return rv; 356 } 357 358 #ifdef CONFIG_ZRAM_WRITEBACK 359 static ssize_t writeback_limit_enable_store(struct device *dev, 360 struct device_attribute *attr, const char *buf, size_t len) 361 { 362 struct zram *zram = dev_to_zram(dev); 363 u64 val; 364 ssize_t ret = -EINVAL; 365 366 if (kstrtoull(buf, 10, &val)) 367 return ret; 368 369 down_read(&zram->init_lock); 370 spin_lock(&zram->wb_limit_lock); 371 zram->wb_limit_enable = val; 372 spin_unlock(&zram->wb_limit_lock); 373 up_read(&zram->init_lock); 374 ret = len; 375 376 return ret; 377 } 378 379 static ssize_t writeback_limit_enable_show(struct device *dev, 380 struct device_attribute *attr, char *buf) 381 { 382 bool val; 383 struct zram *zram = dev_to_zram(dev); 384 385 down_read(&zram->init_lock); 386 spin_lock(&zram->wb_limit_lock); 387 val = zram->wb_limit_enable; 388 spin_unlock(&zram->wb_limit_lock); 389 up_read(&zram->init_lock); 390 391 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 392 } 393 394 static ssize_t writeback_limit_store(struct device *dev, 395 struct device_attribute *attr, const char *buf, size_t len) 396 { 397 struct zram *zram = dev_to_zram(dev); 398 u64 val; 399 ssize_t ret = -EINVAL; 400 401 if (kstrtoull(buf, 10, &val)) 402 return ret; 403 404 down_read(&zram->init_lock); 405 spin_lock(&zram->wb_limit_lock); 406 zram->bd_wb_limit = val; 407 spin_unlock(&zram->wb_limit_lock); 408 up_read(&zram->init_lock); 409 ret = len; 410 411 return ret; 412 } 413 414 static ssize_t writeback_limit_show(struct device *dev, 415 struct device_attribute *attr, char *buf) 416 { 417 u64 val; 418 struct zram *zram = dev_to_zram(dev); 419 420 down_read(&zram->init_lock); 421 spin_lock(&zram->wb_limit_lock); 422 val = zram->bd_wb_limit; 423 spin_unlock(&zram->wb_limit_lock); 424 up_read(&zram->init_lock); 425 426 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 427 } 428 429 static void reset_bdev(struct zram *zram) 430 { 431 struct block_device *bdev; 432 433 if (!zram->backing_dev) 434 return; 435 436 bdev = zram->bdev; 437 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 438 /* hope filp_close flush all of IO */ 439 filp_close(zram->backing_dev, NULL); 440 zram->backing_dev = NULL; 441 zram->bdev = NULL; 442 zram->disk->fops = &zram_devops; 443 kvfree(zram->bitmap); 444 zram->bitmap = NULL; 445 } 446 447 static ssize_t backing_dev_show(struct device *dev, 448 struct device_attribute *attr, char *buf) 449 { 450 struct file *file; 451 struct zram *zram = dev_to_zram(dev); 452 char *p; 453 ssize_t ret; 454 455 down_read(&zram->init_lock); 456 file = zram->backing_dev; 457 if (!file) { 458 memcpy(buf, "none\n", 5); 459 up_read(&zram->init_lock); 460 return 5; 461 } 462 463 p = file_path(file, buf, PAGE_SIZE - 1); 464 if (IS_ERR(p)) { 465 ret = PTR_ERR(p); 466 goto out; 467 } 468 469 ret = strlen(p); 470 memmove(buf, p, ret); 471 buf[ret++] = '\n'; 472 out: 473 up_read(&zram->init_lock); 474 return ret; 475 } 476 477 static ssize_t backing_dev_store(struct device *dev, 478 struct device_attribute *attr, const char *buf, size_t len) 479 { 480 char *file_name; 481 size_t sz; 482 struct file *backing_dev = NULL; 483 struct inode *inode; 484 struct address_space *mapping; 485 unsigned int bitmap_sz; 486 unsigned long nr_pages, *bitmap = NULL; 487 struct block_device *bdev = NULL; 488 int err; 489 struct zram *zram = dev_to_zram(dev); 490 491 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 492 if (!file_name) 493 return -ENOMEM; 494 495 down_write(&zram->init_lock); 496 if (init_done(zram)) { 497 pr_info("Can't setup backing device for initialized device\n"); 498 err = -EBUSY; 499 goto out; 500 } 501 502 strscpy(file_name, buf, PATH_MAX); 503 /* ignore trailing newline */ 504 sz = strlen(file_name); 505 if (sz > 0 && file_name[sz - 1] == '\n') 506 file_name[sz - 1] = 0x00; 507 508 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 509 if (IS_ERR(backing_dev)) { 510 err = PTR_ERR(backing_dev); 511 backing_dev = NULL; 512 goto out; 513 } 514 515 mapping = backing_dev->f_mapping; 516 inode = mapping->host; 517 518 /* Support only block device in this moment */ 519 if (!S_ISBLK(inode->i_mode)) { 520 err = -ENOTBLK; 521 goto out; 522 } 523 524 bdev = blkdev_get_by_dev(inode->i_rdev, 525 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 526 if (IS_ERR(bdev)) { 527 err = PTR_ERR(bdev); 528 bdev = NULL; 529 goto out; 530 } 531 532 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 533 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 534 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 535 if (!bitmap) { 536 err = -ENOMEM; 537 goto out; 538 } 539 540 reset_bdev(zram); 541 542 zram->bdev = bdev; 543 zram->backing_dev = backing_dev; 544 zram->bitmap = bitmap; 545 zram->nr_pages = nr_pages; 546 up_write(&zram->init_lock); 547 548 pr_info("setup backing device %s\n", file_name); 549 kfree(file_name); 550 551 return len; 552 out: 553 kvfree(bitmap); 554 555 if (bdev) 556 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 557 558 if (backing_dev) 559 filp_close(backing_dev, NULL); 560 561 up_write(&zram->init_lock); 562 563 kfree(file_name); 564 565 return err; 566 } 567 568 static unsigned long alloc_block_bdev(struct zram *zram) 569 { 570 unsigned long blk_idx = 1; 571 retry: 572 /* skip 0 bit to confuse zram.handle = 0 */ 573 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 574 if (blk_idx == zram->nr_pages) 575 return 0; 576 577 if (test_and_set_bit(blk_idx, zram->bitmap)) 578 goto retry; 579 580 atomic64_inc(&zram->stats.bd_count); 581 return blk_idx; 582 } 583 584 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 585 { 586 int was_set; 587 588 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 589 WARN_ON_ONCE(!was_set); 590 atomic64_dec(&zram->stats.bd_count); 591 } 592 593 static void zram_page_end_io(struct bio *bio) 594 { 595 struct page *page = bio_first_page_all(bio); 596 597 page_endio(page, op_is_write(bio_op(bio)), 598 blk_status_to_errno(bio->bi_status)); 599 bio_put(bio); 600 } 601 602 /* 603 * Returns 1 if the submission is successful. 604 */ 605 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 606 unsigned long entry, struct bio *parent) 607 { 608 struct bio *bio; 609 610 bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ, 611 GFP_NOIO); 612 if (!bio) 613 return -ENOMEM; 614 615 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 616 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 617 bio_put(bio); 618 return -EIO; 619 } 620 621 if (!parent) 622 bio->bi_end_io = zram_page_end_io; 623 else 624 bio_chain(bio, parent); 625 626 submit_bio(bio); 627 return 1; 628 } 629 630 #define PAGE_WB_SIG "page_index=" 631 632 #define PAGE_WRITEBACK 0 633 #define HUGE_WRITEBACK (1<<0) 634 #define IDLE_WRITEBACK (1<<1) 635 636 637 static ssize_t writeback_store(struct device *dev, 638 struct device_attribute *attr, const char *buf, size_t len) 639 { 640 struct zram *zram = dev_to_zram(dev); 641 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 642 unsigned long index = 0; 643 struct bio bio; 644 struct bio_vec bio_vec; 645 struct page *page; 646 ssize_t ret = len; 647 int mode, err; 648 unsigned long blk_idx = 0; 649 650 if (sysfs_streq(buf, "idle")) 651 mode = IDLE_WRITEBACK; 652 else if (sysfs_streq(buf, "huge")) 653 mode = HUGE_WRITEBACK; 654 else if (sysfs_streq(buf, "huge_idle")) 655 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 656 else { 657 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 658 return -EINVAL; 659 660 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 661 index >= nr_pages) 662 return -EINVAL; 663 664 nr_pages = 1; 665 mode = PAGE_WRITEBACK; 666 } 667 668 down_read(&zram->init_lock); 669 if (!init_done(zram)) { 670 ret = -EINVAL; 671 goto release_init_lock; 672 } 673 674 if (!zram->backing_dev) { 675 ret = -ENODEV; 676 goto release_init_lock; 677 } 678 679 page = alloc_page(GFP_KERNEL); 680 if (!page) { 681 ret = -ENOMEM; 682 goto release_init_lock; 683 } 684 685 for (; nr_pages != 0; index++, nr_pages--) { 686 struct bio_vec bvec; 687 688 bvec.bv_page = page; 689 bvec.bv_len = PAGE_SIZE; 690 bvec.bv_offset = 0; 691 692 spin_lock(&zram->wb_limit_lock); 693 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 694 spin_unlock(&zram->wb_limit_lock); 695 ret = -EIO; 696 break; 697 } 698 spin_unlock(&zram->wb_limit_lock); 699 700 if (!blk_idx) { 701 blk_idx = alloc_block_bdev(zram); 702 if (!blk_idx) { 703 ret = -ENOSPC; 704 break; 705 } 706 } 707 708 zram_slot_lock(zram, index); 709 if (!zram_allocated(zram, index)) 710 goto next; 711 712 if (zram_test_flag(zram, index, ZRAM_WB) || 713 zram_test_flag(zram, index, ZRAM_SAME) || 714 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 715 goto next; 716 717 if (mode & IDLE_WRITEBACK && 718 !zram_test_flag(zram, index, ZRAM_IDLE)) 719 goto next; 720 if (mode & HUGE_WRITEBACK && 721 !zram_test_flag(zram, index, ZRAM_HUGE)) 722 goto next; 723 /* 724 * Clearing ZRAM_UNDER_WB is duty of caller. 725 * IOW, zram_free_page never clear it. 726 */ 727 zram_set_flag(zram, index, ZRAM_UNDER_WB); 728 /* Need for hugepage writeback racing */ 729 zram_set_flag(zram, index, ZRAM_IDLE); 730 zram_slot_unlock(zram, index); 731 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 732 zram_slot_lock(zram, index); 733 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 734 zram_clear_flag(zram, index, ZRAM_IDLE); 735 zram_slot_unlock(zram, index); 736 continue; 737 } 738 739 bio_init(&bio, zram->bdev, &bio_vec, 1, 740 REQ_OP_WRITE | REQ_SYNC); 741 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 742 743 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 744 bvec.bv_offset); 745 /* 746 * XXX: A single page IO would be inefficient for write 747 * but it would be not bad as starter. 748 */ 749 err = submit_bio_wait(&bio); 750 if (err) { 751 zram_slot_lock(zram, index); 752 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 753 zram_clear_flag(zram, index, ZRAM_IDLE); 754 zram_slot_unlock(zram, index); 755 /* 756 * Return last IO error unless every IO were 757 * not suceeded. 758 */ 759 ret = err; 760 continue; 761 } 762 763 atomic64_inc(&zram->stats.bd_writes); 764 /* 765 * We released zram_slot_lock so need to check if the slot was 766 * changed. If there is freeing for the slot, we can catch it 767 * easily by zram_allocated. 768 * A subtle case is the slot is freed/reallocated/marked as 769 * ZRAM_IDLE again. To close the race, idle_store doesn't 770 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 771 * Thus, we could close the race by checking ZRAM_IDLE bit. 772 */ 773 zram_slot_lock(zram, index); 774 if (!zram_allocated(zram, index) || 775 !zram_test_flag(zram, index, ZRAM_IDLE)) { 776 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 777 zram_clear_flag(zram, index, ZRAM_IDLE); 778 goto next; 779 } 780 781 zram_free_page(zram, index); 782 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 783 zram_set_flag(zram, index, ZRAM_WB); 784 zram_set_element(zram, index, blk_idx); 785 blk_idx = 0; 786 atomic64_inc(&zram->stats.pages_stored); 787 spin_lock(&zram->wb_limit_lock); 788 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 789 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 790 spin_unlock(&zram->wb_limit_lock); 791 next: 792 zram_slot_unlock(zram, index); 793 } 794 795 if (blk_idx) 796 free_block_bdev(zram, blk_idx); 797 __free_page(page); 798 release_init_lock: 799 up_read(&zram->init_lock); 800 801 return ret; 802 } 803 804 struct zram_work { 805 struct work_struct work; 806 struct zram *zram; 807 unsigned long entry; 808 struct bio *bio; 809 struct bio_vec bvec; 810 }; 811 812 #if PAGE_SIZE != 4096 813 static void zram_sync_read(struct work_struct *work) 814 { 815 struct zram_work *zw = container_of(work, struct zram_work, work); 816 struct zram *zram = zw->zram; 817 unsigned long entry = zw->entry; 818 struct bio *bio = zw->bio; 819 820 read_from_bdev_async(zram, &zw->bvec, entry, bio); 821 } 822 823 /* 824 * Block layer want one ->submit_bio to be active at a time, so if we use 825 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 826 * use a worker thread context. 827 */ 828 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 829 unsigned long entry, struct bio *bio) 830 { 831 struct zram_work work; 832 833 work.bvec = *bvec; 834 work.zram = zram; 835 work.entry = entry; 836 work.bio = bio; 837 838 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 839 queue_work(system_unbound_wq, &work.work); 840 flush_work(&work.work); 841 destroy_work_on_stack(&work.work); 842 843 return 1; 844 } 845 #else 846 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 847 unsigned long entry, struct bio *bio) 848 { 849 WARN_ON(1); 850 return -EIO; 851 } 852 #endif 853 854 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 855 unsigned long entry, struct bio *parent, bool sync) 856 { 857 atomic64_inc(&zram->stats.bd_reads); 858 if (sync) 859 return read_from_bdev_sync(zram, bvec, entry, parent); 860 else 861 return read_from_bdev_async(zram, bvec, entry, parent); 862 } 863 #else 864 static inline void reset_bdev(struct zram *zram) {}; 865 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 866 unsigned long entry, struct bio *parent, bool sync) 867 { 868 return -EIO; 869 } 870 871 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 872 #endif 873 874 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 875 876 static struct dentry *zram_debugfs_root; 877 878 static void zram_debugfs_create(void) 879 { 880 zram_debugfs_root = debugfs_create_dir("zram", NULL); 881 } 882 883 static void zram_debugfs_destroy(void) 884 { 885 debugfs_remove_recursive(zram_debugfs_root); 886 } 887 888 static void zram_accessed(struct zram *zram, u32 index) 889 { 890 zram_clear_flag(zram, index, ZRAM_IDLE); 891 zram->table[index].ac_time = ktime_get_boottime(); 892 } 893 894 static ssize_t read_block_state(struct file *file, char __user *buf, 895 size_t count, loff_t *ppos) 896 { 897 char *kbuf; 898 ssize_t index, written = 0; 899 struct zram *zram = file->private_data; 900 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 901 struct timespec64 ts; 902 903 kbuf = kvmalloc(count, GFP_KERNEL); 904 if (!kbuf) 905 return -ENOMEM; 906 907 down_read(&zram->init_lock); 908 if (!init_done(zram)) { 909 up_read(&zram->init_lock); 910 kvfree(kbuf); 911 return -EINVAL; 912 } 913 914 for (index = *ppos; index < nr_pages; index++) { 915 int copied; 916 917 zram_slot_lock(zram, index); 918 if (!zram_allocated(zram, index)) 919 goto next; 920 921 ts = ktime_to_timespec64(zram->table[index].ac_time); 922 copied = snprintf(kbuf + written, count, 923 "%12zd %12lld.%06lu %c%c%c%c\n", 924 index, (s64)ts.tv_sec, 925 ts.tv_nsec / NSEC_PER_USEC, 926 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 927 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 928 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 929 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); 930 931 if (count <= copied) { 932 zram_slot_unlock(zram, index); 933 break; 934 } 935 written += copied; 936 count -= copied; 937 next: 938 zram_slot_unlock(zram, index); 939 *ppos += 1; 940 } 941 942 up_read(&zram->init_lock); 943 if (copy_to_user(buf, kbuf, written)) 944 written = -EFAULT; 945 kvfree(kbuf); 946 947 return written; 948 } 949 950 static const struct file_operations proc_zram_block_state_op = { 951 .open = simple_open, 952 .read = read_block_state, 953 .llseek = default_llseek, 954 }; 955 956 static void zram_debugfs_register(struct zram *zram) 957 { 958 if (!zram_debugfs_root) 959 return; 960 961 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 962 zram_debugfs_root); 963 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 964 zram, &proc_zram_block_state_op); 965 } 966 967 static void zram_debugfs_unregister(struct zram *zram) 968 { 969 debugfs_remove_recursive(zram->debugfs_dir); 970 } 971 #else 972 static void zram_debugfs_create(void) {}; 973 static void zram_debugfs_destroy(void) {}; 974 static void zram_accessed(struct zram *zram, u32 index) 975 { 976 zram_clear_flag(zram, index, ZRAM_IDLE); 977 }; 978 static void zram_debugfs_register(struct zram *zram) {}; 979 static void zram_debugfs_unregister(struct zram *zram) {}; 980 #endif 981 982 /* 983 * We switched to per-cpu streams and this attr is not needed anymore. 984 * However, we will keep it around for some time, because: 985 * a) we may revert per-cpu streams in the future 986 * b) it's visible to user space and we need to follow our 2 years 987 * retirement rule; but we already have a number of 'soon to be 988 * altered' attrs, so max_comp_streams need to wait for the next 989 * layoff cycle. 990 */ 991 static ssize_t max_comp_streams_show(struct device *dev, 992 struct device_attribute *attr, char *buf) 993 { 994 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 995 } 996 997 static ssize_t max_comp_streams_store(struct device *dev, 998 struct device_attribute *attr, const char *buf, size_t len) 999 { 1000 return len; 1001 } 1002 1003 static ssize_t comp_algorithm_show(struct device *dev, 1004 struct device_attribute *attr, char *buf) 1005 { 1006 size_t sz; 1007 struct zram *zram = dev_to_zram(dev); 1008 1009 down_read(&zram->init_lock); 1010 sz = zcomp_available_show(zram->compressor, buf); 1011 up_read(&zram->init_lock); 1012 1013 return sz; 1014 } 1015 1016 static ssize_t comp_algorithm_store(struct device *dev, 1017 struct device_attribute *attr, const char *buf, size_t len) 1018 { 1019 struct zram *zram = dev_to_zram(dev); 1020 char compressor[ARRAY_SIZE(zram->compressor)]; 1021 size_t sz; 1022 1023 strscpy(compressor, buf, sizeof(compressor)); 1024 /* ignore trailing newline */ 1025 sz = strlen(compressor); 1026 if (sz > 0 && compressor[sz - 1] == '\n') 1027 compressor[sz - 1] = 0x00; 1028 1029 if (!zcomp_available_algorithm(compressor)) 1030 return -EINVAL; 1031 1032 down_write(&zram->init_lock); 1033 if (init_done(zram)) { 1034 up_write(&zram->init_lock); 1035 pr_info("Can't change algorithm for initialized device\n"); 1036 return -EBUSY; 1037 } 1038 1039 strcpy(zram->compressor, compressor); 1040 up_write(&zram->init_lock); 1041 return len; 1042 } 1043 1044 static ssize_t compact_store(struct device *dev, 1045 struct device_attribute *attr, const char *buf, size_t len) 1046 { 1047 struct zram *zram = dev_to_zram(dev); 1048 1049 down_read(&zram->init_lock); 1050 if (!init_done(zram)) { 1051 up_read(&zram->init_lock); 1052 return -EINVAL; 1053 } 1054 1055 zs_compact(zram->mem_pool); 1056 up_read(&zram->init_lock); 1057 1058 return len; 1059 } 1060 1061 static ssize_t io_stat_show(struct device *dev, 1062 struct device_attribute *attr, char *buf) 1063 { 1064 struct zram *zram = dev_to_zram(dev); 1065 ssize_t ret; 1066 1067 down_read(&zram->init_lock); 1068 ret = scnprintf(buf, PAGE_SIZE, 1069 "%8llu %8llu %8llu %8llu\n", 1070 (u64)atomic64_read(&zram->stats.failed_reads), 1071 (u64)atomic64_read(&zram->stats.failed_writes), 1072 (u64)atomic64_read(&zram->stats.invalid_io), 1073 (u64)atomic64_read(&zram->stats.notify_free)); 1074 up_read(&zram->init_lock); 1075 1076 return ret; 1077 } 1078 1079 static ssize_t mm_stat_show(struct device *dev, 1080 struct device_attribute *attr, char *buf) 1081 { 1082 struct zram *zram = dev_to_zram(dev); 1083 struct zs_pool_stats pool_stats; 1084 u64 orig_size, mem_used = 0; 1085 long max_used; 1086 ssize_t ret; 1087 1088 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1089 1090 down_read(&zram->init_lock); 1091 if (init_done(zram)) { 1092 mem_used = zs_get_total_pages(zram->mem_pool); 1093 zs_pool_stats(zram->mem_pool, &pool_stats); 1094 } 1095 1096 orig_size = atomic64_read(&zram->stats.pages_stored); 1097 max_used = atomic_long_read(&zram->stats.max_used_pages); 1098 1099 ret = scnprintf(buf, PAGE_SIZE, 1100 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1101 orig_size << PAGE_SHIFT, 1102 (u64)atomic64_read(&zram->stats.compr_data_size), 1103 mem_used << PAGE_SHIFT, 1104 zram->limit_pages << PAGE_SHIFT, 1105 max_used << PAGE_SHIFT, 1106 (u64)atomic64_read(&zram->stats.same_pages), 1107 atomic_long_read(&pool_stats.pages_compacted), 1108 (u64)atomic64_read(&zram->stats.huge_pages), 1109 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1110 up_read(&zram->init_lock); 1111 1112 return ret; 1113 } 1114 1115 #ifdef CONFIG_ZRAM_WRITEBACK 1116 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1117 static ssize_t bd_stat_show(struct device *dev, 1118 struct device_attribute *attr, char *buf) 1119 { 1120 struct zram *zram = dev_to_zram(dev); 1121 ssize_t ret; 1122 1123 down_read(&zram->init_lock); 1124 ret = scnprintf(buf, PAGE_SIZE, 1125 "%8llu %8llu %8llu\n", 1126 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1127 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1128 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1129 up_read(&zram->init_lock); 1130 1131 return ret; 1132 } 1133 #endif 1134 1135 static ssize_t debug_stat_show(struct device *dev, 1136 struct device_attribute *attr, char *buf) 1137 { 1138 int version = 1; 1139 struct zram *zram = dev_to_zram(dev); 1140 ssize_t ret; 1141 1142 down_read(&zram->init_lock); 1143 ret = scnprintf(buf, PAGE_SIZE, 1144 "version: %d\n%8llu %8llu\n", 1145 version, 1146 (u64)atomic64_read(&zram->stats.writestall), 1147 (u64)atomic64_read(&zram->stats.miss_free)); 1148 up_read(&zram->init_lock); 1149 1150 return ret; 1151 } 1152 1153 static DEVICE_ATTR_RO(io_stat); 1154 static DEVICE_ATTR_RO(mm_stat); 1155 #ifdef CONFIG_ZRAM_WRITEBACK 1156 static DEVICE_ATTR_RO(bd_stat); 1157 #endif 1158 static DEVICE_ATTR_RO(debug_stat); 1159 1160 static void zram_meta_free(struct zram *zram, u64 disksize) 1161 { 1162 size_t num_pages = disksize >> PAGE_SHIFT; 1163 size_t index; 1164 1165 /* Free all pages that are still in this zram device */ 1166 for (index = 0; index < num_pages; index++) 1167 zram_free_page(zram, index); 1168 1169 zs_destroy_pool(zram->mem_pool); 1170 vfree(zram->table); 1171 } 1172 1173 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1174 { 1175 size_t num_pages; 1176 1177 num_pages = disksize >> PAGE_SHIFT; 1178 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1179 if (!zram->table) 1180 return false; 1181 1182 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1183 if (!zram->mem_pool) { 1184 vfree(zram->table); 1185 return false; 1186 } 1187 1188 if (!huge_class_size) 1189 huge_class_size = zs_huge_class_size(zram->mem_pool); 1190 return true; 1191 } 1192 1193 /* 1194 * To protect concurrent access to the same index entry, 1195 * caller should hold this table index entry's bit_spinlock to 1196 * indicate this index entry is accessing. 1197 */ 1198 static void zram_free_page(struct zram *zram, size_t index) 1199 { 1200 unsigned long handle; 1201 1202 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1203 zram->table[index].ac_time = 0; 1204 #endif 1205 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1206 zram_clear_flag(zram, index, ZRAM_IDLE); 1207 1208 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1209 zram_clear_flag(zram, index, ZRAM_HUGE); 1210 atomic64_dec(&zram->stats.huge_pages); 1211 } 1212 1213 if (zram_test_flag(zram, index, ZRAM_WB)) { 1214 zram_clear_flag(zram, index, ZRAM_WB); 1215 free_block_bdev(zram, zram_get_element(zram, index)); 1216 goto out; 1217 } 1218 1219 /* 1220 * No memory is allocated for same element filled pages. 1221 * Simply clear same page flag. 1222 */ 1223 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1224 zram_clear_flag(zram, index, ZRAM_SAME); 1225 atomic64_dec(&zram->stats.same_pages); 1226 goto out; 1227 } 1228 1229 handle = zram_get_handle(zram, index); 1230 if (!handle) 1231 return; 1232 1233 zs_free(zram->mem_pool, handle); 1234 1235 atomic64_sub(zram_get_obj_size(zram, index), 1236 &zram->stats.compr_data_size); 1237 out: 1238 atomic64_dec(&zram->stats.pages_stored); 1239 zram_set_handle(zram, index, 0); 1240 zram_set_obj_size(zram, index, 0); 1241 WARN_ON_ONCE(zram->table[index].flags & 1242 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1243 } 1244 1245 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1246 struct bio *bio, bool partial_io) 1247 { 1248 struct zcomp_strm *zstrm; 1249 unsigned long handle; 1250 unsigned int size; 1251 void *src, *dst; 1252 int ret; 1253 1254 zram_slot_lock(zram, index); 1255 if (zram_test_flag(zram, index, ZRAM_WB)) { 1256 struct bio_vec bvec; 1257 1258 zram_slot_unlock(zram, index); 1259 /* A null bio means rw_page was used, we must fallback to bio */ 1260 if (!bio) 1261 return -EOPNOTSUPP; 1262 1263 bvec.bv_page = page; 1264 bvec.bv_len = PAGE_SIZE; 1265 bvec.bv_offset = 0; 1266 return read_from_bdev(zram, &bvec, 1267 zram_get_element(zram, index), 1268 bio, partial_io); 1269 } 1270 1271 handle = zram_get_handle(zram, index); 1272 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1273 unsigned long value; 1274 void *mem; 1275 1276 value = handle ? zram_get_element(zram, index) : 0; 1277 mem = kmap_atomic(page); 1278 zram_fill_page(mem, PAGE_SIZE, value); 1279 kunmap_atomic(mem); 1280 zram_slot_unlock(zram, index); 1281 return 0; 1282 } 1283 1284 size = zram_get_obj_size(zram, index); 1285 1286 if (size != PAGE_SIZE) 1287 zstrm = zcomp_stream_get(zram->comp); 1288 1289 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1290 if (size == PAGE_SIZE) { 1291 dst = kmap_atomic(page); 1292 memcpy(dst, src, PAGE_SIZE); 1293 kunmap_atomic(dst); 1294 ret = 0; 1295 } else { 1296 dst = kmap_atomic(page); 1297 ret = zcomp_decompress(zstrm, src, size, dst); 1298 kunmap_atomic(dst); 1299 zcomp_stream_put(zram->comp); 1300 } 1301 zs_unmap_object(zram->mem_pool, handle); 1302 zram_slot_unlock(zram, index); 1303 1304 /* Should NEVER happen. Return bio error if it does. */ 1305 if (WARN_ON(ret)) 1306 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1307 1308 return ret; 1309 } 1310 1311 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1312 u32 index, int offset, struct bio *bio) 1313 { 1314 int ret; 1315 struct page *page; 1316 1317 page = bvec->bv_page; 1318 if (is_partial_io(bvec)) { 1319 /* Use a temporary buffer to decompress the page */ 1320 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1321 if (!page) 1322 return -ENOMEM; 1323 } 1324 1325 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1326 if (unlikely(ret)) 1327 goto out; 1328 1329 if (is_partial_io(bvec)) { 1330 void *src = kmap_atomic(page); 1331 1332 memcpy_to_bvec(bvec, src + offset); 1333 kunmap_atomic(src); 1334 } 1335 out: 1336 if (is_partial_io(bvec)) 1337 __free_page(page); 1338 1339 return ret; 1340 } 1341 1342 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1343 u32 index, struct bio *bio) 1344 { 1345 int ret = 0; 1346 unsigned long alloced_pages; 1347 unsigned long handle = -ENOMEM; 1348 unsigned int comp_len = 0; 1349 void *src, *dst, *mem; 1350 struct zcomp_strm *zstrm; 1351 struct page *page = bvec->bv_page; 1352 unsigned long element = 0; 1353 enum zram_pageflags flags = 0; 1354 1355 mem = kmap_atomic(page); 1356 if (page_same_filled(mem, &element)) { 1357 kunmap_atomic(mem); 1358 /* Free memory associated with this sector now. */ 1359 flags = ZRAM_SAME; 1360 atomic64_inc(&zram->stats.same_pages); 1361 goto out; 1362 } 1363 kunmap_atomic(mem); 1364 1365 compress_again: 1366 zstrm = zcomp_stream_get(zram->comp); 1367 src = kmap_atomic(page); 1368 ret = zcomp_compress(zstrm, src, &comp_len); 1369 kunmap_atomic(src); 1370 1371 if (unlikely(ret)) { 1372 zcomp_stream_put(zram->comp); 1373 pr_err("Compression failed! err=%d\n", ret); 1374 zs_free(zram->mem_pool, handle); 1375 return ret; 1376 } 1377 1378 if (comp_len >= huge_class_size) 1379 comp_len = PAGE_SIZE; 1380 /* 1381 * handle allocation has 2 paths: 1382 * a) fast path is executed with preemption disabled (for 1383 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1384 * since we can't sleep; 1385 * b) slow path enables preemption and attempts to allocate 1386 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1387 * put per-cpu compression stream and, thus, to re-do 1388 * the compression once handle is allocated. 1389 * 1390 * if we have a 'non-null' handle here then we are coming 1391 * from the slow path and handle has already been allocated. 1392 */ 1393 if (IS_ERR((void *)handle)) 1394 handle = zs_malloc(zram->mem_pool, comp_len, 1395 __GFP_KSWAPD_RECLAIM | 1396 __GFP_NOWARN | 1397 __GFP_HIGHMEM | 1398 __GFP_MOVABLE); 1399 if (IS_ERR((void *)handle)) { 1400 zcomp_stream_put(zram->comp); 1401 atomic64_inc(&zram->stats.writestall); 1402 handle = zs_malloc(zram->mem_pool, comp_len, 1403 GFP_NOIO | __GFP_HIGHMEM | 1404 __GFP_MOVABLE); 1405 if (IS_ERR((void *)handle)) 1406 return PTR_ERR((void *)handle); 1407 1408 if (comp_len != PAGE_SIZE) 1409 goto compress_again; 1410 /* 1411 * If the page is not compressible, you need to acquire the 1412 * lock and execute the code below. The zcomp_stream_get() 1413 * call is needed to disable the cpu hotplug and grab the 1414 * zstrm buffer back. It is necessary that the dereferencing 1415 * of the zstrm variable below occurs correctly. 1416 */ 1417 zstrm = zcomp_stream_get(zram->comp); 1418 } 1419 1420 alloced_pages = zs_get_total_pages(zram->mem_pool); 1421 update_used_max(zram, alloced_pages); 1422 1423 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1424 zcomp_stream_put(zram->comp); 1425 zs_free(zram->mem_pool, handle); 1426 return -ENOMEM; 1427 } 1428 1429 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1430 1431 src = zstrm->buffer; 1432 if (comp_len == PAGE_SIZE) 1433 src = kmap_atomic(page); 1434 memcpy(dst, src, comp_len); 1435 if (comp_len == PAGE_SIZE) 1436 kunmap_atomic(src); 1437 1438 zcomp_stream_put(zram->comp); 1439 zs_unmap_object(zram->mem_pool, handle); 1440 atomic64_add(comp_len, &zram->stats.compr_data_size); 1441 out: 1442 /* 1443 * Free memory associated with this sector 1444 * before overwriting unused sectors. 1445 */ 1446 zram_slot_lock(zram, index); 1447 zram_free_page(zram, index); 1448 1449 if (comp_len == PAGE_SIZE) { 1450 zram_set_flag(zram, index, ZRAM_HUGE); 1451 atomic64_inc(&zram->stats.huge_pages); 1452 atomic64_inc(&zram->stats.huge_pages_since); 1453 } 1454 1455 if (flags) { 1456 zram_set_flag(zram, index, flags); 1457 zram_set_element(zram, index, element); 1458 } else { 1459 zram_set_handle(zram, index, handle); 1460 zram_set_obj_size(zram, index, comp_len); 1461 } 1462 zram_slot_unlock(zram, index); 1463 1464 /* Update stats */ 1465 atomic64_inc(&zram->stats.pages_stored); 1466 return ret; 1467 } 1468 1469 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1470 u32 index, int offset, struct bio *bio) 1471 { 1472 int ret; 1473 struct page *page = NULL; 1474 struct bio_vec vec; 1475 1476 vec = *bvec; 1477 if (is_partial_io(bvec)) { 1478 void *dst; 1479 /* 1480 * This is a partial IO. We need to read the full page 1481 * before to write the changes. 1482 */ 1483 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1484 if (!page) 1485 return -ENOMEM; 1486 1487 ret = __zram_bvec_read(zram, page, index, bio, true); 1488 if (ret) 1489 goto out; 1490 1491 dst = kmap_atomic(page); 1492 memcpy_from_bvec(dst + offset, bvec); 1493 kunmap_atomic(dst); 1494 1495 vec.bv_page = page; 1496 vec.bv_len = PAGE_SIZE; 1497 vec.bv_offset = 0; 1498 } 1499 1500 ret = __zram_bvec_write(zram, &vec, index, bio); 1501 out: 1502 if (is_partial_io(bvec)) 1503 __free_page(page); 1504 return ret; 1505 } 1506 1507 /* 1508 * zram_bio_discard - handler on discard request 1509 * @index: physical block index in PAGE_SIZE units 1510 * @offset: byte offset within physical block 1511 */ 1512 static void zram_bio_discard(struct zram *zram, u32 index, 1513 int offset, struct bio *bio) 1514 { 1515 size_t n = bio->bi_iter.bi_size; 1516 1517 /* 1518 * zram manages data in physical block size units. Because logical block 1519 * size isn't identical with physical block size on some arch, we 1520 * could get a discard request pointing to a specific offset within a 1521 * certain physical block. Although we can handle this request by 1522 * reading that physiclal block and decompressing and partially zeroing 1523 * and re-compressing and then re-storing it, this isn't reasonable 1524 * because our intent with a discard request is to save memory. So 1525 * skipping this logical block is appropriate here. 1526 */ 1527 if (offset) { 1528 if (n <= (PAGE_SIZE - offset)) 1529 return; 1530 1531 n -= (PAGE_SIZE - offset); 1532 index++; 1533 } 1534 1535 while (n >= PAGE_SIZE) { 1536 zram_slot_lock(zram, index); 1537 zram_free_page(zram, index); 1538 zram_slot_unlock(zram, index); 1539 atomic64_inc(&zram->stats.notify_free); 1540 index++; 1541 n -= PAGE_SIZE; 1542 } 1543 } 1544 1545 /* 1546 * Returns errno if it has some problem. Otherwise return 0 or 1. 1547 * Returns 0 if IO request was done synchronously 1548 * Returns 1 if IO request was successfully submitted. 1549 */ 1550 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1551 int offset, enum req_op op, struct bio *bio) 1552 { 1553 int ret; 1554 1555 if (!op_is_write(op)) { 1556 atomic64_inc(&zram->stats.num_reads); 1557 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1558 flush_dcache_page(bvec->bv_page); 1559 } else { 1560 atomic64_inc(&zram->stats.num_writes); 1561 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1562 } 1563 1564 zram_slot_lock(zram, index); 1565 zram_accessed(zram, index); 1566 zram_slot_unlock(zram, index); 1567 1568 if (unlikely(ret < 0)) { 1569 if (!op_is_write(op)) 1570 atomic64_inc(&zram->stats.failed_reads); 1571 else 1572 atomic64_inc(&zram->stats.failed_writes); 1573 } 1574 1575 return ret; 1576 } 1577 1578 static void __zram_make_request(struct zram *zram, struct bio *bio) 1579 { 1580 int offset; 1581 u32 index; 1582 struct bio_vec bvec; 1583 struct bvec_iter iter; 1584 unsigned long start_time; 1585 1586 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1587 offset = (bio->bi_iter.bi_sector & 1588 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1589 1590 switch (bio_op(bio)) { 1591 case REQ_OP_DISCARD: 1592 case REQ_OP_WRITE_ZEROES: 1593 zram_bio_discard(zram, index, offset, bio); 1594 bio_endio(bio); 1595 return; 1596 default: 1597 break; 1598 } 1599 1600 start_time = bio_start_io_acct(bio); 1601 bio_for_each_segment(bvec, bio, iter) { 1602 struct bio_vec bv = bvec; 1603 unsigned int unwritten = bvec.bv_len; 1604 1605 do { 1606 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1607 unwritten); 1608 if (zram_bvec_rw(zram, &bv, index, offset, 1609 bio_op(bio), bio) < 0) { 1610 bio->bi_status = BLK_STS_IOERR; 1611 break; 1612 } 1613 1614 bv.bv_offset += bv.bv_len; 1615 unwritten -= bv.bv_len; 1616 1617 update_position(&index, &offset, &bv); 1618 } while (unwritten); 1619 } 1620 bio_end_io_acct(bio, start_time); 1621 bio_endio(bio); 1622 } 1623 1624 /* 1625 * Handler function for all zram I/O requests. 1626 */ 1627 static void zram_submit_bio(struct bio *bio) 1628 { 1629 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1630 1631 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1632 bio->bi_iter.bi_size)) { 1633 atomic64_inc(&zram->stats.invalid_io); 1634 bio_io_error(bio); 1635 return; 1636 } 1637 1638 __zram_make_request(zram, bio); 1639 } 1640 1641 static void zram_slot_free_notify(struct block_device *bdev, 1642 unsigned long index) 1643 { 1644 struct zram *zram; 1645 1646 zram = bdev->bd_disk->private_data; 1647 1648 atomic64_inc(&zram->stats.notify_free); 1649 if (!zram_slot_trylock(zram, index)) { 1650 atomic64_inc(&zram->stats.miss_free); 1651 return; 1652 } 1653 1654 zram_free_page(zram, index); 1655 zram_slot_unlock(zram, index); 1656 } 1657 1658 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1659 struct page *page, enum req_op op) 1660 { 1661 int offset, ret; 1662 u32 index; 1663 struct zram *zram; 1664 struct bio_vec bv; 1665 unsigned long start_time; 1666 1667 if (PageTransHuge(page)) 1668 return -ENOTSUPP; 1669 zram = bdev->bd_disk->private_data; 1670 1671 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1672 atomic64_inc(&zram->stats.invalid_io); 1673 ret = -EINVAL; 1674 goto out; 1675 } 1676 1677 index = sector >> SECTORS_PER_PAGE_SHIFT; 1678 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1679 1680 bv.bv_page = page; 1681 bv.bv_len = PAGE_SIZE; 1682 bv.bv_offset = 0; 1683 1684 start_time = bdev_start_io_acct(bdev->bd_disk->part0, 1685 SECTORS_PER_PAGE, op, jiffies); 1686 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1687 bdev_end_io_acct(bdev->bd_disk->part0, op, start_time); 1688 out: 1689 /* 1690 * If I/O fails, just return error(ie, non-zero) without 1691 * calling page_endio. 1692 * It causes resubmit the I/O with bio request by upper functions 1693 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1694 * bio->bi_end_io does things to handle the error 1695 * (e.g., SetPageError, set_page_dirty and extra works). 1696 */ 1697 if (unlikely(ret < 0)) 1698 return ret; 1699 1700 switch (ret) { 1701 case 0: 1702 page_endio(page, op_is_write(op), 0); 1703 break; 1704 case 1: 1705 ret = 0; 1706 break; 1707 default: 1708 WARN_ON(1); 1709 } 1710 return ret; 1711 } 1712 1713 static void zram_reset_device(struct zram *zram) 1714 { 1715 down_write(&zram->init_lock); 1716 1717 zram->limit_pages = 0; 1718 1719 if (!init_done(zram)) { 1720 up_write(&zram->init_lock); 1721 return; 1722 } 1723 1724 set_capacity_and_notify(zram->disk, 0); 1725 part_stat_set_all(zram->disk->part0, 0); 1726 1727 /* I/O operation under all of CPU are done so let's free */ 1728 zram_meta_free(zram, zram->disksize); 1729 zram->disksize = 0; 1730 memset(&zram->stats, 0, sizeof(zram->stats)); 1731 zcomp_destroy(zram->comp); 1732 zram->comp = NULL; 1733 reset_bdev(zram); 1734 1735 up_write(&zram->init_lock); 1736 } 1737 1738 static ssize_t disksize_store(struct device *dev, 1739 struct device_attribute *attr, const char *buf, size_t len) 1740 { 1741 u64 disksize; 1742 struct zcomp *comp; 1743 struct zram *zram = dev_to_zram(dev); 1744 int err; 1745 1746 disksize = memparse(buf, NULL); 1747 if (!disksize) 1748 return -EINVAL; 1749 1750 down_write(&zram->init_lock); 1751 if (init_done(zram)) { 1752 pr_info("Cannot change disksize for initialized device\n"); 1753 err = -EBUSY; 1754 goto out_unlock; 1755 } 1756 1757 disksize = PAGE_ALIGN(disksize); 1758 if (!zram_meta_alloc(zram, disksize)) { 1759 err = -ENOMEM; 1760 goto out_unlock; 1761 } 1762 1763 comp = zcomp_create(zram->compressor); 1764 if (IS_ERR(comp)) { 1765 pr_err("Cannot initialise %s compressing backend\n", 1766 zram->compressor); 1767 err = PTR_ERR(comp); 1768 goto out_free_meta; 1769 } 1770 1771 zram->comp = comp; 1772 zram->disksize = disksize; 1773 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 1774 up_write(&zram->init_lock); 1775 1776 return len; 1777 1778 out_free_meta: 1779 zram_meta_free(zram, disksize); 1780 out_unlock: 1781 up_write(&zram->init_lock); 1782 return err; 1783 } 1784 1785 static ssize_t reset_store(struct device *dev, 1786 struct device_attribute *attr, const char *buf, size_t len) 1787 { 1788 int ret; 1789 unsigned short do_reset; 1790 struct zram *zram; 1791 struct gendisk *disk; 1792 1793 ret = kstrtou16(buf, 10, &do_reset); 1794 if (ret) 1795 return ret; 1796 1797 if (!do_reset) 1798 return -EINVAL; 1799 1800 zram = dev_to_zram(dev); 1801 disk = zram->disk; 1802 1803 mutex_lock(&disk->open_mutex); 1804 /* Do not reset an active device or claimed device */ 1805 if (disk_openers(disk) || zram->claim) { 1806 mutex_unlock(&disk->open_mutex); 1807 return -EBUSY; 1808 } 1809 1810 /* From now on, anyone can't open /dev/zram[0-9] */ 1811 zram->claim = true; 1812 mutex_unlock(&disk->open_mutex); 1813 1814 /* Make sure all the pending I/O are finished */ 1815 sync_blockdev(disk->part0); 1816 zram_reset_device(zram); 1817 1818 mutex_lock(&disk->open_mutex); 1819 zram->claim = false; 1820 mutex_unlock(&disk->open_mutex); 1821 1822 return len; 1823 } 1824 1825 static int zram_open(struct block_device *bdev, fmode_t mode) 1826 { 1827 int ret = 0; 1828 struct zram *zram; 1829 1830 WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex)); 1831 1832 zram = bdev->bd_disk->private_data; 1833 /* zram was claimed to reset so open request fails */ 1834 if (zram->claim) 1835 ret = -EBUSY; 1836 1837 return ret; 1838 } 1839 1840 static const struct block_device_operations zram_devops = { 1841 .open = zram_open, 1842 .submit_bio = zram_submit_bio, 1843 .swap_slot_free_notify = zram_slot_free_notify, 1844 .rw_page = zram_rw_page, 1845 .owner = THIS_MODULE 1846 }; 1847 1848 static DEVICE_ATTR_WO(compact); 1849 static DEVICE_ATTR_RW(disksize); 1850 static DEVICE_ATTR_RO(initstate); 1851 static DEVICE_ATTR_WO(reset); 1852 static DEVICE_ATTR_WO(mem_limit); 1853 static DEVICE_ATTR_WO(mem_used_max); 1854 static DEVICE_ATTR_WO(idle); 1855 static DEVICE_ATTR_RW(max_comp_streams); 1856 static DEVICE_ATTR_RW(comp_algorithm); 1857 #ifdef CONFIG_ZRAM_WRITEBACK 1858 static DEVICE_ATTR_RW(backing_dev); 1859 static DEVICE_ATTR_WO(writeback); 1860 static DEVICE_ATTR_RW(writeback_limit); 1861 static DEVICE_ATTR_RW(writeback_limit_enable); 1862 #endif 1863 1864 static struct attribute *zram_disk_attrs[] = { 1865 &dev_attr_disksize.attr, 1866 &dev_attr_initstate.attr, 1867 &dev_attr_reset.attr, 1868 &dev_attr_compact.attr, 1869 &dev_attr_mem_limit.attr, 1870 &dev_attr_mem_used_max.attr, 1871 &dev_attr_idle.attr, 1872 &dev_attr_max_comp_streams.attr, 1873 &dev_attr_comp_algorithm.attr, 1874 #ifdef CONFIG_ZRAM_WRITEBACK 1875 &dev_attr_backing_dev.attr, 1876 &dev_attr_writeback.attr, 1877 &dev_attr_writeback_limit.attr, 1878 &dev_attr_writeback_limit_enable.attr, 1879 #endif 1880 &dev_attr_io_stat.attr, 1881 &dev_attr_mm_stat.attr, 1882 #ifdef CONFIG_ZRAM_WRITEBACK 1883 &dev_attr_bd_stat.attr, 1884 #endif 1885 &dev_attr_debug_stat.attr, 1886 NULL, 1887 }; 1888 1889 ATTRIBUTE_GROUPS(zram_disk); 1890 1891 /* 1892 * Allocate and initialize new zram device. the function returns 1893 * '>= 0' device_id upon success, and negative value otherwise. 1894 */ 1895 static int zram_add(void) 1896 { 1897 struct zram *zram; 1898 int ret, device_id; 1899 1900 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1901 if (!zram) 1902 return -ENOMEM; 1903 1904 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1905 if (ret < 0) 1906 goto out_free_dev; 1907 device_id = ret; 1908 1909 init_rwsem(&zram->init_lock); 1910 #ifdef CONFIG_ZRAM_WRITEBACK 1911 spin_lock_init(&zram->wb_limit_lock); 1912 #endif 1913 1914 /* gendisk structure */ 1915 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 1916 if (!zram->disk) { 1917 pr_err("Error allocating disk structure for device %d\n", 1918 device_id); 1919 ret = -ENOMEM; 1920 goto out_free_idr; 1921 } 1922 1923 zram->disk->major = zram_major; 1924 zram->disk->first_minor = device_id; 1925 zram->disk->minors = 1; 1926 zram->disk->flags |= GENHD_FL_NO_PART; 1927 zram->disk->fops = &zram_devops; 1928 zram->disk->private_data = zram; 1929 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1930 1931 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1932 set_capacity(zram->disk, 0); 1933 /* zram devices sort of resembles non-rotational disks */ 1934 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1935 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1936 1937 /* 1938 * To ensure that we always get PAGE_SIZE aligned 1939 * and n*PAGE_SIZED sized I/O requests. 1940 */ 1941 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1942 blk_queue_logical_block_size(zram->disk->queue, 1943 ZRAM_LOGICAL_BLOCK_SIZE); 1944 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1945 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1946 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1947 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1948 1949 /* 1950 * zram_bio_discard() will clear all logical blocks if logical block 1951 * size is identical with physical block size(PAGE_SIZE). But if it is 1952 * different, we will skip discarding some parts of logical blocks in 1953 * the part of the request range which isn't aligned to physical block 1954 * size. So we can't ensure that all discarded logical blocks are 1955 * zeroed. 1956 */ 1957 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1958 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1959 1960 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 1961 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 1962 if (ret) 1963 goto out_cleanup_disk; 1964 1965 strscpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1966 1967 zram_debugfs_register(zram); 1968 pr_info("Added device: %s\n", zram->disk->disk_name); 1969 return device_id; 1970 1971 out_cleanup_disk: 1972 put_disk(zram->disk); 1973 out_free_idr: 1974 idr_remove(&zram_index_idr, device_id); 1975 out_free_dev: 1976 kfree(zram); 1977 return ret; 1978 } 1979 1980 static int zram_remove(struct zram *zram) 1981 { 1982 bool claimed; 1983 1984 mutex_lock(&zram->disk->open_mutex); 1985 if (disk_openers(zram->disk)) { 1986 mutex_unlock(&zram->disk->open_mutex); 1987 return -EBUSY; 1988 } 1989 1990 claimed = zram->claim; 1991 if (!claimed) 1992 zram->claim = true; 1993 mutex_unlock(&zram->disk->open_mutex); 1994 1995 zram_debugfs_unregister(zram); 1996 1997 if (claimed) { 1998 /* 1999 * If we were claimed by reset_store(), del_gendisk() will 2000 * wait until reset_store() is done, so nothing need to do. 2001 */ 2002 ; 2003 } else { 2004 /* Make sure all the pending I/O are finished */ 2005 sync_blockdev(zram->disk->part0); 2006 zram_reset_device(zram); 2007 } 2008 2009 pr_info("Removed device: %s\n", zram->disk->disk_name); 2010 2011 del_gendisk(zram->disk); 2012 2013 /* del_gendisk drains pending reset_store */ 2014 WARN_ON_ONCE(claimed && zram->claim); 2015 2016 /* 2017 * disksize_store() may be called in between zram_reset_device() 2018 * and del_gendisk(), so run the last reset to avoid leaking 2019 * anything allocated with disksize_store() 2020 */ 2021 zram_reset_device(zram); 2022 2023 put_disk(zram->disk); 2024 kfree(zram); 2025 return 0; 2026 } 2027 2028 /* zram-control sysfs attributes */ 2029 2030 /* 2031 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2032 * sense that reading from this file does alter the state of your system -- it 2033 * creates a new un-initialized zram device and returns back this device's 2034 * device_id (or an error code if it fails to create a new device). 2035 */ 2036 static ssize_t hot_add_show(struct class *class, 2037 struct class_attribute *attr, 2038 char *buf) 2039 { 2040 int ret; 2041 2042 mutex_lock(&zram_index_mutex); 2043 ret = zram_add(); 2044 mutex_unlock(&zram_index_mutex); 2045 2046 if (ret < 0) 2047 return ret; 2048 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2049 } 2050 static struct class_attribute class_attr_hot_add = 2051 __ATTR(hot_add, 0400, hot_add_show, NULL); 2052 2053 static ssize_t hot_remove_store(struct class *class, 2054 struct class_attribute *attr, 2055 const char *buf, 2056 size_t count) 2057 { 2058 struct zram *zram; 2059 int ret, dev_id; 2060 2061 /* dev_id is gendisk->first_minor, which is `int' */ 2062 ret = kstrtoint(buf, 10, &dev_id); 2063 if (ret) 2064 return ret; 2065 if (dev_id < 0) 2066 return -EINVAL; 2067 2068 mutex_lock(&zram_index_mutex); 2069 2070 zram = idr_find(&zram_index_idr, dev_id); 2071 if (zram) { 2072 ret = zram_remove(zram); 2073 if (!ret) 2074 idr_remove(&zram_index_idr, dev_id); 2075 } else { 2076 ret = -ENODEV; 2077 } 2078 2079 mutex_unlock(&zram_index_mutex); 2080 return ret ? ret : count; 2081 } 2082 static CLASS_ATTR_WO(hot_remove); 2083 2084 static struct attribute *zram_control_class_attrs[] = { 2085 &class_attr_hot_add.attr, 2086 &class_attr_hot_remove.attr, 2087 NULL, 2088 }; 2089 ATTRIBUTE_GROUPS(zram_control_class); 2090 2091 static struct class zram_control_class = { 2092 .name = "zram-control", 2093 .owner = THIS_MODULE, 2094 .class_groups = zram_control_class_groups, 2095 }; 2096 2097 static int zram_remove_cb(int id, void *ptr, void *data) 2098 { 2099 WARN_ON_ONCE(zram_remove(ptr)); 2100 return 0; 2101 } 2102 2103 static void destroy_devices(void) 2104 { 2105 class_unregister(&zram_control_class); 2106 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2107 zram_debugfs_destroy(); 2108 idr_destroy(&zram_index_idr); 2109 unregister_blkdev(zram_major, "zram"); 2110 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2111 } 2112 2113 static int __init zram_init(void) 2114 { 2115 int ret; 2116 2117 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2118 2119 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2120 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2121 if (ret < 0) 2122 return ret; 2123 2124 ret = class_register(&zram_control_class); 2125 if (ret) { 2126 pr_err("Unable to register zram-control class\n"); 2127 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2128 return ret; 2129 } 2130 2131 zram_debugfs_create(); 2132 zram_major = register_blkdev(0, "zram"); 2133 if (zram_major <= 0) { 2134 pr_err("Unable to get major number\n"); 2135 class_unregister(&zram_control_class); 2136 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2137 return -EBUSY; 2138 } 2139 2140 while (num_devices != 0) { 2141 mutex_lock(&zram_index_mutex); 2142 ret = zram_add(); 2143 mutex_unlock(&zram_index_mutex); 2144 if (ret < 0) 2145 goto out_error; 2146 num_devices--; 2147 } 2148 2149 return 0; 2150 2151 out_error: 2152 destroy_devices(); 2153 return ret; 2154 } 2155 2156 static void __exit zram_exit(void) 2157 { 2158 destroy_devices(); 2159 } 2160 2161 module_init(zram_init); 2162 module_exit(zram_exit); 2163 2164 module_param(num_devices, uint, 0); 2165 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2166 2167 MODULE_LICENSE("Dual BSD/GPL"); 2168 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2169 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2170