1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 58 struct bio *parent); 59 60 static int zram_slot_trylock(struct zram *zram, u32 index) 61 { 62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 63 } 64 65 static void zram_slot_lock(struct zram *zram, u32 index) 66 { 67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 68 } 69 70 static void zram_slot_unlock(struct zram *zram, u32 index) 71 { 72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 73 } 74 75 static inline bool init_done(struct zram *zram) 76 { 77 return zram->disksize; 78 } 79 80 static inline struct zram *dev_to_zram(struct device *dev) 81 { 82 return (struct zram *)dev_to_disk(dev)->private_data; 83 } 84 85 static unsigned long zram_get_handle(struct zram *zram, u32 index) 86 { 87 return zram->table[index].handle; 88 } 89 90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 91 { 92 zram->table[index].handle = handle; 93 } 94 95 /* flag operations require table entry bit_spin_lock() being held */ 96 static bool zram_test_flag(struct zram *zram, u32 index, 97 enum zram_pageflags flag) 98 { 99 return zram->table[index].flags & BIT(flag); 100 } 101 102 static void zram_set_flag(struct zram *zram, u32 index, 103 enum zram_pageflags flag) 104 { 105 zram->table[index].flags |= BIT(flag); 106 } 107 108 static void zram_clear_flag(struct zram *zram, u32 index, 109 enum zram_pageflags flag) 110 { 111 zram->table[index].flags &= ~BIT(flag); 112 } 113 114 static inline void zram_set_element(struct zram *zram, u32 index, 115 unsigned long element) 116 { 117 zram->table[index].element = element; 118 } 119 120 static unsigned long zram_get_element(struct zram *zram, u32 index) 121 { 122 return zram->table[index].element; 123 } 124 125 static size_t zram_get_obj_size(struct zram *zram, u32 index) 126 { 127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 128 } 129 130 static void zram_set_obj_size(struct zram *zram, 131 u32 index, size_t size) 132 { 133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 134 135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 136 } 137 138 static inline bool zram_allocated(struct zram *zram, u32 index) 139 { 140 return zram_get_obj_size(zram, index) || 141 zram_test_flag(zram, index, ZRAM_SAME) || 142 zram_test_flag(zram, index, ZRAM_WB); 143 } 144 145 #if PAGE_SIZE != 4096 146 static inline bool is_partial_io(struct bio_vec *bvec) 147 { 148 return bvec->bv_len != PAGE_SIZE; 149 } 150 #define ZRAM_PARTIAL_IO 1 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 static void zram_accessed(struct zram *zram, u32 index) 178 { 179 zram_clear_flag(zram, index, ZRAM_IDLE); 180 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 181 zram->table[index].ac_time = ktime_get_boottime(); 182 #endif 183 } 184 185 static inline void update_used_max(struct zram *zram, 186 const unsigned long pages) 187 { 188 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 189 190 do { 191 if (cur_max >= pages) 192 return; 193 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 194 &cur_max, pages)); 195 } 196 197 static inline void zram_fill_page(void *ptr, unsigned long len, 198 unsigned long value) 199 { 200 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 201 memset_l(ptr, value, len / sizeof(unsigned long)); 202 } 203 204 static bool page_same_filled(void *ptr, unsigned long *element) 205 { 206 unsigned long *page; 207 unsigned long val; 208 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 209 210 page = (unsigned long *)ptr; 211 val = page[0]; 212 213 if (val != page[last_pos]) 214 return false; 215 216 for (pos = 1; pos < last_pos; pos++) { 217 if (val != page[pos]) 218 return false; 219 } 220 221 *element = val; 222 223 return true; 224 } 225 226 static ssize_t initstate_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 u32 val; 230 struct zram *zram = dev_to_zram(dev); 231 232 down_read(&zram->init_lock); 233 val = init_done(zram); 234 up_read(&zram->init_lock); 235 236 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 237 } 238 239 static ssize_t disksize_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct zram *zram = dev_to_zram(dev); 243 244 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 245 } 246 247 static ssize_t mem_limit_store(struct device *dev, 248 struct device_attribute *attr, const char *buf, size_t len) 249 { 250 u64 limit; 251 char *tmp; 252 struct zram *zram = dev_to_zram(dev); 253 254 limit = memparse(buf, &tmp); 255 if (buf == tmp) /* no chars parsed, invalid input */ 256 return -EINVAL; 257 258 down_write(&zram->init_lock); 259 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 260 up_write(&zram->init_lock); 261 262 return len; 263 } 264 265 static ssize_t mem_used_max_store(struct device *dev, 266 struct device_attribute *attr, const char *buf, size_t len) 267 { 268 int err; 269 unsigned long val; 270 struct zram *zram = dev_to_zram(dev); 271 272 err = kstrtoul(buf, 10, &val); 273 if (err || val != 0) 274 return -EINVAL; 275 276 down_read(&zram->init_lock); 277 if (init_done(zram)) { 278 atomic_long_set(&zram->stats.max_used_pages, 279 zs_get_total_pages(zram->mem_pool)); 280 } 281 up_read(&zram->init_lock); 282 283 return len; 284 } 285 286 /* 287 * Mark all pages which are older than or equal to cutoff as IDLE. 288 * Callers should hold the zram init lock in read mode 289 */ 290 static void mark_idle(struct zram *zram, ktime_t cutoff) 291 { 292 int is_idle = 1; 293 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 294 int index; 295 296 for (index = 0; index < nr_pages; index++) { 297 /* 298 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 299 * See the comment in writeback_store. 300 * 301 * Also do not mark ZRAM_SAME slots as ZRAM_IDLE, because no 302 * post-processing (recompress, writeback) happens to the 303 * ZRAM_SAME slot. 304 * 305 * And ZRAM_WB slots simply cannot be ZRAM_IDLE. 306 */ 307 zram_slot_lock(zram, index); 308 if (!zram_allocated(zram, index) || 309 zram_test_flag(zram, index, ZRAM_WB) || 310 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 311 zram_test_flag(zram, index, ZRAM_SAME)) { 312 zram_slot_unlock(zram, index); 313 continue; 314 } 315 316 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 317 is_idle = !cutoff || 318 ktime_after(cutoff, zram->table[index].ac_time); 319 #endif 320 if (is_idle) 321 zram_set_flag(zram, index, ZRAM_IDLE); 322 else 323 zram_clear_flag(zram, index, ZRAM_IDLE); 324 zram_slot_unlock(zram, index); 325 } 326 } 327 328 static ssize_t idle_store(struct device *dev, 329 struct device_attribute *attr, const char *buf, size_t len) 330 { 331 struct zram *zram = dev_to_zram(dev); 332 ktime_t cutoff_time = 0; 333 ssize_t rv = -EINVAL; 334 335 if (!sysfs_streq(buf, "all")) { 336 /* 337 * If it did not parse as 'all' try to treat it as an integer 338 * when we have memory tracking enabled. 339 */ 340 u64 age_sec; 341 342 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 343 cutoff_time = ktime_sub(ktime_get_boottime(), 344 ns_to_ktime(age_sec * NSEC_PER_SEC)); 345 else 346 goto out; 347 } 348 349 down_read(&zram->init_lock); 350 if (!init_done(zram)) 351 goto out_unlock; 352 353 /* 354 * A cutoff_time of 0 marks everything as idle, this is the 355 * "all" behavior. 356 */ 357 mark_idle(zram, cutoff_time); 358 rv = len; 359 360 out_unlock: 361 up_read(&zram->init_lock); 362 out: 363 return rv; 364 } 365 366 #ifdef CONFIG_ZRAM_WRITEBACK 367 static ssize_t writeback_limit_enable_store(struct device *dev, 368 struct device_attribute *attr, const char *buf, size_t len) 369 { 370 struct zram *zram = dev_to_zram(dev); 371 u64 val; 372 ssize_t ret = -EINVAL; 373 374 if (kstrtoull(buf, 10, &val)) 375 return ret; 376 377 down_read(&zram->init_lock); 378 spin_lock(&zram->wb_limit_lock); 379 zram->wb_limit_enable = val; 380 spin_unlock(&zram->wb_limit_lock); 381 up_read(&zram->init_lock); 382 ret = len; 383 384 return ret; 385 } 386 387 static ssize_t writeback_limit_enable_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 bool val; 391 struct zram *zram = dev_to_zram(dev); 392 393 down_read(&zram->init_lock); 394 spin_lock(&zram->wb_limit_lock); 395 val = zram->wb_limit_enable; 396 spin_unlock(&zram->wb_limit_lock); 397 up_read(&zram->init_lock); 398 399 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 400 } 401 402 static ssize_t writeback_limit_store(struct device *dev, 403 struct device_attribute *attr, const char *buf, size_t len) 404 { 405 struct zram *zram = dev_to_zram(dev); 406 u64 val; 407 ssize_t ret = -EINVAL; 408 409 if (kstrtoull(buf, 10, &val)) 410 return ret; 411 412 down_read(&zram->init_lock); 413 spin_lock(&zram->wb_limit_lock); 414 zram->bd_wb_limit = val; 415 spin_unlock(&zram->wb_limit_lock); 416 up_read(&zram->init_lock); 417 ret = len; 418 419 return ret; 420 } 421 422 static ssize_t writeback_limit_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 u64 val; 426 struct zram *zram = dev_to_zram(dev); 427 428 down_read(&zram->init_lock); 429 spin_lock(&zram->wb_limit_lock); 430 val = zram->bd_wb_limit; 431 spin_unlock(&zram->wb_limit_lock); 432 up_read(&zram->init_lock); 433 434 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 435 } 436 437 static void reset_bdev(struct zram *zram) 438 { 439 struct block_device *bdev; 440 441 if (!zram->backing_dev) 442 return; 443 444 bdev = zram->bdev; 445 blkdev_put(bdev, zram); 446 /* hope filp_close flush all of IO */ 447 filp_close(zram->backing_dev, NULL); 448 zram->backing_dev = NULL; 449 zram->bdev = NULL; 450 zram->disk->fops = &zram_devops; 451 kvfree(zram->bitmap); 452 zram->bitmap = NULL; 453 } 454 455 static ssize_t backing_dev_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct file *file; 459 struct zram *zram = dev_to_zram(dev); 460 char *p; 461 ssize_t ret; 462 463 down_read(&zram->init_lock); 464 file = zram->backing_dev; 465 if (!file) { 466 memcpy(buf, "none\n", 5); 467 up_read(&zram->init_lock); 468 return 5; 469 } 470 471 p = file_path(file, buf, PAGE_SIZE - 1); 472 if (IS_ERR(p)) { 473 ret = PTR_ERR(p); 474 goto out; 475 } 476 477 ret = strlen(p); 478 memmove(buf, p, ret); 479 buf[ret++] = '\n'; 480 out: 481 up_read(&zram->init_lock); 482 return ret; 483 } 484 485 static ssize_t backing_dev_store(struct device *dev, 486 struct device_attribute *attr, const char *buf, size_t len) 487 { 488 char *file_name; 489 size_t sz; 490 struct file *backing_dev = NULL; 491 struct inode *inode; 492 struct address_space *mapping; 493 unsigned int bitmap_sz; 494 unsigned long nr_pages, *bitmap = NULL; 495 struct block_device *bdev = NULL; 496 int err; 497 struct zram *zram = dev_to_zram(dev); 498 499 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 500 if (!file_name) 501 return -ENOMEM; 502 503 down_write(&zram->init_lock); 504 if (init_done(zram)) { 505 pr_info("Can't setup backing device for initialized device\n"); 506 err = -EBUSY; 507 goto out; 508 } 509 510 strscpy(file_name, buf, PATH_MAX); 511 /* ignore trailing newline */ 512 sz = strlen(file_name); 513 if (sz > 0 && file_name[sz - 1] == '\n') 514 file_name[sz - 1] = 0x00; 515 516 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 517 if (IS_ERR(backing_dev)) { 518 err = PTR_ERR(backing_dev); 519 backing_dev = NULL; 520 goto out; 521 } 522 523 mapping = backing_dev->f_mapping; 524 inode = mapping->host; 525 526 /* Support only block device in this moment */ 527 if (!S_ISBLK(inode->i_mode)) { 528 err = -ENOTBLK; 529 goto out; 530 } 531 532 bdev = blkdev_get_by_dev(inode->i_rdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 533 zram, NULL); 534 if (IS_ERR(bdev)) { 535 err = PTR_ERR(bdev); 536 bdev = NULL; 537 goto out; 538 } 539 540 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 541 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 542 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 543 if (!bitmap) { 544 err = -ENOMEM; 545 goto out; 546 } 547 548 reset_bdev(zram); 549 550 zram->bdev = bdev; 551 zram->backing_dev = backing_dev; 552 zram->bitmap = bitmap; 553 zram->nr_pages = nr_pages; 554 up_write(&zram->init_lock); 555 556 pr_info("setup backing device %s\n", file_name); 557 kfree(file_name); 558 559 return len; 560 out: 561 kvfree(bitmap); 562 563 if (bdev) 564 blkdev_put(bdev, zram); 565 566 if (backing_dev) 567 filp_close(backing_dev, NULL); 568 569 up_write(&zram->init_lock); 570 571 kfree(file_name); 572 573 return err; 574 } 575 576 static unsigned long alloc_block_bdev(struct zram *zram) 577 { 578 unsigned long blk_idx = 1; 579 retry: 580 /* skip 0 bit to confuse zram.handle = 0 */ 581 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 582 if (blk_idx == zram->nr_pages) 583 return 0; 584 585 if (test_and_set_bit(blk_idx, zram->bitmap)) 586 goto retry; 587 588 atomic64_inc(&zram->stats.bd_count); 589 return blk_idx; 590 } 591 592 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 593 { 594 int was_set; 595 596 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 597 WARN_ON_ONCE(!was_set); 598 atomic64_dec(&zram->stats.bd_count); 599 } 600 601 static void read_from_bdev_async(struct zram *zram, struct page *page, 602 unsigned long entry, struct bio *parent) 603 { 604 struct bio *bio; 605 606 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 607 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 608 __bio_add_page(bio, page, PAGE_SIZE, 0); 609 bio_chain(bio, parent); 610 submit_bio(bio); 611 } 612 613 #define PAGE_WB_SIG "page_index=" 614 615 #define PAGE_WRITEBACK 0 616 #define HUGE_WRITEBACK (1<<0) 617 #define IDLE_WRITEBACK (1<<1) 618 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 619 620 static ssize_t writeback_store(struct device *dev, 621 struct device_attribute *attr, const char *buf, size_t len) 622 { 623 struct zram *zram = dev_to_zram(dev); 624 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 625 unsigned long index = 0; 626 struct bio bio; 627 struct bio_vec bio_vec; 628 struct page *page; 629 ssize_t ret = len; 630 int mode, err; 631 unsigned long blk_idx = 0; 632 633 if (sysfs_streq(buf, "idle")) 634 mode = IDLE_WRITEBACK; 635 else if (sysfs_streq(buf, "huge")) 636 mode = HUGE_WRITEBACK; 637 else if (sysfs_streq(buf, "huge_idle")) 638 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 639 else if (sysfs_streq(buf, "incompressible")) 640 mode = INCOMPRESSIBLE_WRITEBACK; 641 else { 642 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 643 return -EINVAL; 644 645 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 646 index >= nr_pages) 647 return -EINVAL; 648 649 nr_pages = 1; 650 mode = PAGE_WRITEBACK; 651 } 652 653 down_read(&zram->init_lock); 654 if (!init_done(zram)) { 655 ret = -EINVAL; 656 goto release_init_lock; 657 } 658 659 if (!zram->backing_dev) { 660 ret = -ENODEV; 661 goto release_init_lock; 662 } 663 664 page = alloc_page(GFP_KERNEL); 665 if (!page) { 666 ret = -ENOMEM; 667 goto release_init_lock; 668 } 669 670 for (; nr_pages != 0; index++, nr_pages--) { 671 spin_lock(&zram->wb_limit_lock); 672 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 673 spin_unlock(&zram->wb_limit_lock); 674 ret = -EIO; 675 break; 676 } 677 spin_unlock(&zram->wb_limit_lock); 678 679 if (!blk_idx) { 680 blk_idx = alloc_block_bdev(zram); 681 if (!blk_idx) { 682 ret = -ENOSPC; 683 break; 684 } 685 } 686 687 zram_slot_lock(zram, index); 688 if (!zram_allocated(zram, index)) 689 goto next; 690 691 if (zram_test_flag(zram, index, ZRAM_WB) || 692 zram_test_flag(zram, index, ZRAM_SAME) || 693 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 694 goto next; 695 696 if (mode & IDLE_WRITEBACK && 697 !zram_test_flag(zram, index, ZRAM_IDLE)) 698 goto next; 699 if (mode & HUGE_WRITEBACK && 700 !zram_test_flag(zram, index, ZRAM_HUGE)) 701 goto next; 702 if (mode & INCOMPRESSIBLE_WRITEBACK && 703 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 704 goto next; 705 706 /* 707 * Clearing ZRAM_UNDER_WB is duty of caller. 708 * IOW, zram_free_page never clear it. 709 */ 710 zram_set_flag(zram, index, ZRAM_UNDER_WB); 711 /* Need for hugepage writeback racing */ 712 zram_set_flag(zram, index, ZRAM_IDLE); 713 zram_slot_unlock(zram, index); 714 if (zram_read_page(zram, page, index, NULL)) { 715 zram_slot_lock(zram, index); 716 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 717 zram_clear_flag(zram, index, ZRAM_IDLE); 718 zram_slot_unlock(zram, index); 719 continue; 720 } 721 722 bio_init(&bio, zram->bdev, &bio_vec, 1, 723 REQ_OP_WRITE | REQ_SYNC); 724 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 725 __bio_add_page(&bio, page, PAGE_SIZE, 0); 726 727 /* 728 * XXX: A single page IO would be inefficient for write 729 * but it would be not bad as starter. 730 */ 731 err = submit_bio_wait(&bio); 732 if (err) { 733 zram_slot_lock(zram, index); 734 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 735 zram_clear_flag(zram, index, ZRAM_IDLE); 736 zram_slot_unlock(zram, index); 737 /* 738 * BIO errors are not fatal, we continue and simply 739 * attempt to writeback the remaining objects (pages). 740 * At the same time we need to signal user-space that 741 * some writes (at least one, but also could be all of 742 * them) were not successful and we do so by returning 743 * the most recent BIO error. 744 */ 745 ret = err; 746 continue; 747 } 748 749 atomic64_inc(&zram->stats.bd_writes); 750 /* 751 * We released zram_slot_lock so need to check if the slot was 752 * changed. If there is freeing for the slot, we can catch it 753 * easily by zram_allocated. 754 * A subtle case is the slot is freed/reallocated/marked as 755 * ZRAM_IDLE again. To close the race, idle_store doesn't 756 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 757 * Thus, we could close the race by checking ZRAM_IDLE bit. 758 */ 759 zram_slot_lock(zram, index); 760 if (!zram_allocated(zram, index) || 761 !zram_test_flag(zram, index, ZRAM_IDLE)) { 762 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 763 zram_clear_flag(zram, index, ZRAM_IDLE); 764 goto next; 765 } 766 767 zram_free_page(zram, index); 768 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 769 zram_set_flag(zram, index, ZRAM_WB); 770 zram_set_element(zram, index, blk_idx); 771 blk_idx = 0; 772 atomic64_inc(&zram->stats.pages_stored); 773 spin_lock(&zram->wb_limit_lock); 774 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 775 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 776 spin_unlock(&zram->wb_limit_lock); 777 next: 778 zram_slot_unlock(zram, index); 779 } 780 781 if (blk_idx) 782 free_block_bdev(zram, blk_idx); 783 __free_page(page); 784 release_init_lock: 785 up_read(&zram->init_lock); 786 787 return ret; 788 } 789 790 struct zram_work { 791 struct work_struct work; 792 struct zram *zram; 793 unsigned long entry; 794 struct page *page; 795 int error; 796 }; 797 798 static void zram_sync_read(struct work_struct *work) 799 { 800 struct zram_work *zw = container_of(work, struct zram_work, work); 801 struct bio_vec bv; 802 struct bio bio; 803 804 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 805 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 806 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 807 zw->error = submit_bio_wait(&bio); 808 } 809 810 /* 811 * Block layer want one ->submit_bio to be active at a time, so if we use 812 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 813 * use a worker thread context. 814 */ 815 static int read_from_bdev_sync(struct zram *zram, struct page *page, 816 unsigned long entry) 817 { 818 struct zram_work work; 819 820 work.page = page; 821 work.zram = zram; 822 work.entry = entry; 823 824 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 825 queue_work(system_unbound_wq, &work.work); 826 flush_work(&work.work); 827 destroy_work_on_stack(&work.work); 828 829 return work.error; 830 } 831 832 static int read_from_bdev(struct zram *zram, struct page *page, 833 unsigned long entry, struct bio *parent) 834 { 835 atomic64_inc(&zram->stats.bd_reads); 836 if (!parent) { 837 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 838 return -EIO; 839 return read_from_bdev_sync(zram, page, entry); 840 } 841 read_from_bdev_async(zram, page, entry, parent); 842 return 0; 843 } 844 #else 845 static inline void reset_bdev(struct zram *zram) {}; 846 static int read_from_bdev(struct zram *zram, struct page *page, 847 unsigned long entry, struct bio *parent) 848 { 849 return -EIO; 850 } 851 852 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 853 #endif 854 855 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 856 857 static struct dentry *zram_debugfs_root; 858 859 static void zram_debugfs_create(void) 860 { 861 zram_debugfs_root = debugfs_create_dir("zram", NULL); 862 } 863 864 static void zram_debugfs_destroy(void) 865 { 866 debugfs_remove_recursive(zram_debugfs_root); 867 } 868 869 static ssize_t read_block_state(struct file *file, char __user *buf, 870 size_t count, loff_t *ppos) 871 { 872 char *kbuf; 873 ssize_t index, written = 0; 874 struct zram *zram = file->private_data; 875 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 876 struct timespec64 ts; 877 878 kbuf = kvmalloc(count, GFP_KERNEL); 879 if (!kbuf) 880 return -ENOMEM; 881 882 down_read(&zram->init_lock); 883 if (!init_done(zram)) { 884 up_read(&zram->init_lock); 885 kvfree(kbuf); 886 return -EINVAL; 887 } 888 889 for (index = *ppos; index < nr_pages; index++) { 890 int copied; 891 892 zram_slot_lock(zram, index); 893 if (!zram_allocated(zram, index)) 894 goto next; 895 896 ts = ktime_to_timespec64(zram->table[index].ac_time); 897 copied = snprintf(kbuf + written, count, 898 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 899 index, (s64)ts.tv_sec, 900 ts.tv_nsec / NSEC_PER_USEC, 901 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 902 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 903 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 904 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 905 zram_get_priority(zram, index) ? 'r' : '.', 906 zram_test_flag(zram, index, 907 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 908 909 if (count <= copied) { 910 zram_slot_unlock(zram, index); 911 break; 912 } 913 written += copied; 914 count -= copied; 915 next: 916 zram_slot_unlock(zram, index); 917 *ppos += 1; 918 } 919 920 up_read(&zram->init_lock); 921 if (copy_to_user(buf, kbuf, written)) 922 written = -EFAULT; 923 kvfree(kbuf); 924 925 return written; 926 } 927 928 static const struct file_operations proc_zram_block_state_op = { 929 .open = simple_open, 930 .read = read_block_state, 931 .llseek = default_llseek, 932 }; 933 934 static void zram_debugfs_register(struct zram *zram) 935 { 936 if (!zram_debugfs_root) 937 return; 938 939 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 940 zram_debugfs_root); 941 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 942 zram, &proc_zram_block_state_op); 943 } 944 945 static void zram_debugfs_unregister(struct zram *zram) 946 { 947 debugfs_remove_recursive(zram->debugfs_dir); 948 } 949 #else 950 static void zram_debugfs_create(void) {}; 951 static void zram_debugfs_destroy(void) {}; 952 static void zram_debugfs_register(struct zram *zram) {}; 953 static void zram_debugfs_unregister(struct zram *zram) {}; 954 #endif 955 956 /* 957 * We switched to per-cpu streams and this attr is not needed anymore. 958 * However, we will keep it around for some time, because: 959 * a) we may revert per-cpu streams in the future 960 * b) it's visible to user space and we need to follow our 2 years 961 * retirement rule; but we already have a number of 'soon to be 962 * altered' attrs, so max_comp_streams need to wait for the next 963 * layoff cycle. 964 */ 965 static ssize_t max_comp_streams_show(struct device *dev, 966 struct device_attribute *attr, char *buf) 967 { 968 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 969 } 970 971 static ssize_t max_comp_streams_store(struct device *dev, 972 struct device_attribute *attr, const char *buf, size_t len) 973 { 974 return len; 975 } 976 977 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 978 { 979 /* Do not free statically defined compression algorithms */ 980 if (zram->comp_algs[prio] != default_compressor) 981 kfree(zram->comp_algs[prio]); 982 983 zram->comp_algs[prio] = alg; 984 } 985 986 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 987 { 988 ssize_t sz; 989 990 down_read(&zram->init_lock); 991 sz = zcomp_available_show(zram->comp_algs[prio], buf); 992 up_read(&zram->init_lock); 993 994 return sz; 995 } 996 997 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 998 { 999 char *compressor; 1000 size_t sz; 1001 1002 sz = strlen(buf); 1003 if (sz >= CRYPTO_MAX_ALG_NAME) 1004 return -E2BIG; 1005 1006 compressor = kstrdup(buf, GFP_KERNEL); 1007 if (!compressor) 1008 return -ENOMEM; 1009 1010 /* ignore trailing newline */ 1011 if (sz > 0 && compressor[sz - 1] == '\n') 1012 compressor[sz - 1] = 0x00; 1013 1014 if (!zcomp_available_algorithm(compressor)) { 1015 kfree(compressor); 1016 return -EINVAL; 1017 } 1018 1019 down_write(&zram->init_lock); 1020 if (init_done(zram)) { 1021 up_write(&zram->init_lock); 1022 kfree(compressor); 1023 pr_info("Can't change algorithm for initialized device\n"); 1024 return -EBUSY; 1025 } 1026 1027 comp_algorithm_set(zram, prio, compressor); 1028 up_write(&zram->init_lock); 1029 return 0; 1030 } 1031 1032 static ssize_t comp_algorithm_show(struct device *dev, 1033 struct device_attribute *attr, 1034 char *buf) 1035 { 1036 struct zram *zram = dev_to_zram(dev); 1037 1038 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1039 } 1040 1041 static ssize_t comp_algorithm_store(struct device *dev, 1042 struct device_attribute *attr, 1043 const char *buf, 1044 size_t len) 1045 { 1046 struct zram *zram = dev_to_zram(dev); 1047 int ret; 1048 1049 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1050 return ret ? ret : len; 1051 } 1052 1053 #ifdef CONFIG_ZRAM_MULTI_COMP 1054 static ssize_t recomp_algorithm_show(struct device *dev, 1055 struct device_attribute *attr, 1056 char *buf) 1057 { 1058 struct zram *zram = dev_to_zram(dev); 1059 ssize_t sz = 0; 1060 u32 prio; 1061 1062 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1063 if (!zram->comp_algs[prio]) 1064 continue; 1065 1066 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1067 sz += __comp_algorithm_show(zram, prio, buf + sz); 1068 } 1069 1070 return sz; 1071 } 1072 1073 static ssize_t recomp_algorithm_store(struct device *dev, 1074 struct device_attribute *attr, 1075 const char *buf, 1076 size_t len) 1077 { 1078 struct zram *zram = dev_to_zram(dev); 1079 int prio = ZRAM_SECONDARY_COMP; 1080 char *args, *param, *val; 1081 char *alg = NULL; 1082 int ret; 1083 1084 args = skip_spaces(buf); 1085 while (*args) { 1086 args = next_arg(args, ¶m, &val); 1087 1088 if (!val || !*val) 1089 return -EINVAL; 1090 1091 if (!strcmp(param, "algo")) { 1092 alg = val; 1093 continue; 1094 } 1095 1096 if (!strcmp(param, "priority")) { 1097 ret = kstrtoint(val, 10, &prio); 1098 if (ret) 1099 return ret; 1100 continue; 1101 } 1102 } 1103 1104 if (!alg) 1105 return -EINVAL; 1106 1107 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1108 return -EINVAL; 1109 1110 ret = __comp_algorithm_store(zram, prio, alg); 1111 return ret ? ret : len; 1112 } 1113 #endif 1114 1115 static ssize_t compact_store(struct device *dev, 1116 struct device_attribute *attr, const char *buf, size_t len) 1117 { 1118 struct zram *zram = dev_to_zram(dev); 1119 1120 down_read(&zram->init_lock); 1121 if (!init_done(zram)) { 1122 up_read(&zram->init_lock); 1123 return -EINVAL; 1124 } 1125 1126 zs_compact(zram->mem_pool); 1127 up_read(&zram->init_lock); 1128 1129 return len; 1130 } 1131 1132 static ssize_t io_stat_show(struct device *dev, 1133 struct device_attribute *attr, char *buf) 1134 { 1135 struct zram *zram = dev_to_zram(dev); 1136 ssize_t ret; 1137 1138 down_read(&zram->init_lock); 1139 ret = scnprintf(buf, PAGE_SIZE, 1140 "%8llu %8llu 0 %8llu\n", 1141 (u64)atomic64_read(&zram->stats.failed_reads), 1142 (u64)atomic64_read(&zram->stats.failed_writes), 1143 (u64)atomic64_read(&zram->stats.notify_free)); 1144 up_read(&zram->init_lock); 1145 1146 return ret; 1147 } 1148 1149 static ssize_t mm_stat_show(struct device *dev, 1150 struct device_attribute *attr, char *buf) 1151 { 1152 struct zram *zram = dev_to_zram(dev); 1153 struct zs_pool_stats pool_stats; 1154 u64 orig_size, mem_used = 0; 1155 long max_used; 1156 ssize_t ret; 1157 1158 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1159 1160 down_read(&zram->init_lock); 1161 if (init_done(zram)) { 1162 mem_used = zs_get_total_pages(zram->mem_pool); 1163 zs_pool_stats(zram->mem_pool, &pool_stats); 1164 } 1165 1166 orig_size = atomic64_read(&zram->stats.pages_stored); 1167 max_used = atomic_long_read(&zram->stats.max_used_pages); 1168 1169 ret = scnprintf(buf, PAGE_SIZE, 1170 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1171 orig_size << PAGE_SHIFT, 1172 (u64)atomic64_read(&zram->stats.compr_data_size), 1173 mem_used << PAGE_SHIFT, 1174 zram->limit_pages << PAGE_SHIFT, 1175 max_used << PAGE_SHIFT, 1176 (u64)atomic64_read(&zram->stats.same_pages), 1177 atomic_long_read(&pool_stats.pages_compacted), 1178 (u64)atomic64_read(&zram->stats.huge_pages), 1179 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1180 up_read(&zram->init_lock); 1181 1182 return ret; 1183 } 1184 1185 #ifdef CONFIG_ZRAM_WRITEBACK 1186 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1187 static ssize_t bd_stat_show(struct device *dev, 1188 struct device_attribute *attr, char *buf) 1189 { 1190 struct zram *zram = dev_to_zram(dev); 1191 ssize_t ret; 1192 1193 down_read(&zram->init_lock); 1194 ret = scnprintf(buf, PAGE_SIZE, 1195 "%8llu %8llu %8llu\n", 1196 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1197 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1198 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1199 up_read(&zram->init_lock); 1200 1201 return ret; 1202 } 1203 #endif 1204 1205 static ssize_t debug_stat_show(struct device *dev, 1206 struct device_attribute *attr, char *buf) 1207 { 1208 int version = 1; 1209 struct zram *zram = dev_to_zram(dev); 1210 ssize_t ret; 1211 1212 down_read(&zram->init_lock); 1213 ret = scnprintf(buf, PAGE_SIZE, 1214 "version: %d\n%8llu %8llu\n", 1215 version, 1216 (u64)atomic64_read(&zram->stats.writestall), 1217 (u64)atomic64_read(&zram->stats.miss_free)); 1218 up_read(&zram->init_lock); 1219 1220 return ret; 1221 } 1222 1223 static DEVICE_ATTR_RO(io_stat); 1224 static DEVICE_ATTR_RO(mm_stat); 1225 #ifdef CONFIG_ZRAM_WRITEBACK 1226 static DEVICE_ATTR_RO(bd_stat); 1227 #endif 1228 static DEVICE_ATTR_RO(debug_stat); 1229 1230 static void zram_meta_free(struct zram *zram, u64 disksize) 1231 { 1232 size_t num_pages = disksize >> PAGE_SHIFT; 1233 size_t index; 1234 1235 /* Free all pages that are still in this zram device */ 1236 for (index = 0; index < num_pages; index++) 1237 zram_free_page(zram, index); 1238 1239 zs_destroy_pool(zram->mem_pool); 1240 vfree(zram->table); 1241 } 1242 1243 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1244 { 1245 size_t num_pages; 1246 1247 num_pages = disksize >> PAGE_SHIFT; 1248 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1249 if (!zram->table) 1250 return false; 1251 1252 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1253 if (!zram->mem_pool) { 1254 vfree(zram->table); 1255 return false; 1256 } 1257 1258 if (!huge_class_size) 1259 huge_class_size = zs_huge_class_size(zram->mem_pool); 1260 return true; 1261 } 1262 1263 /* 1264 * To protect concurrent access to the same index entry, 1265 * caller should hold this table index entry's bit_spinlock to 1266 * indicate this index entry is accessing. 1267 */ 1268 static void zram_free_page(struct zram *zram, size_t index) 1269 { 1270 unsigned long handle; 1271 1272 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1273 zram->table[index].ac_time = 0; 1274 #endif 1275 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1276 zram_clear_flag(zram, index, ZRAM_IDLE); 1277 1278 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1279 zram_clear_flag(zram, index, ZRAM_HUGE); 1280 atomic64_dec(&zram->stats.huge_pages); 1281 } 1282 1283 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1284 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1285 1286 zram_set_priority(zram, index, 0); 1287 1288 if (zram_test_flag(zram, index, ZRAM_WB)) { 1289 zram_clear_flag(zram, index, ZRAM_WB); 1290 free_block_bdev(zram, zram_get_element(zram, index)); 1291 goto out; 1292 } 1293 1294 /* 1295 * No memory is allocated for same element filled pages. 1296 * Simply clear same page flag. 1297 */ 1298 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1299 zram_clear_flag(zram, index, ZRAM_SAME); 1300 atomic64_dec(&zram->stats.same_pages); 1301 goto out; 1302 } 1303 1304 handle = zram_get_handle(zram, index); 1305 if (!handle) 1306 return; 1307 1308 zs_free(zram->mem_pool, handle); 1309 1310 atomic64_sub(zram_get_obj_size(zram, index), 1311 &zram->stats.compr_data_size); 1312 out: 1313 atomic64_dec(&zram->stats.pages_stored); 1314 zram_set_handle(zram, index, 0); 1315 zram_set_obj_size(zram, index, 0); 1316 WARN_ON_ONCE(zram->table[index].flags & 1317 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1318 } 1319 1320 /* 1321 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1322 * Corresponding ZRAM slot should be locked. 1323 */ 1324 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1325 u32 index) 1326 { 1327 struct zcomp_strm *zstrm; 1328 unsigned long handle; 1329 unsigned int size; 1330 void *src, *dst; 1331 u32 prio; 1332 int ret; 1333 1334 handle = zram_get_handle(zram, index); 1335 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1336 unsigned long value; 1337 void *mem; 1338 1339 value = handle ? zram_get_element(zram, index) : 0; 1340 mem = kmap_atomic(page); 1341 zram_fill_page(mem, PAGE_SIZE, value); 1342 kunmap_atomic(mem); 1343 return 0; 1344 } 1345 1346 size = zram_get_obj_size(zram, index); 1347 1348 if (size != PAGE_SIZE) { 1349 prio = zram_get_priority(zram, index); 1350 zstrm = zcomp_stream_get(zram->comps[prio]); 1351 } 1352 1353 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1354 if (size == PAGE_SIZE) { 1355 dst = kmap_atomic(page); 1356 memcpy(dst, src, PAGE_SIZE); 1357 kunmap_atomic(dst); 1358 ret = 0; 1359 } else { 1360 dst = kmap_atomic(page); 1361 ret = zcomp_decompress(zstrm, src, size, dst); 1362 kunmap_atomic(dst); 1363 zcomp_stream_put(zram->comps[prio]); 1364 } 1365 zs_unmap_object(zram->mem_pool, handle); 1366 return ret; 1367 } 1368 1369 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1370 struct bio *parent) 1371 { 1372 int ret; 1373 1374 zram_slot_lock(zram, index); 1375 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1376 /* Slot should be locked through out the function call */ 1377 ret = zram_read_from_zspool(zram, page, index); 1378 zram_slot_unlock(zram, index); 1379 } else { 1380 /* 1381 * The slot should be unlocked before reading from the backing 1382 * device. 1383 */ 1384 zram_slot_unlock(zram, index); 1385 1386 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1387 parent); 1388 } 1389 1390 /* Should NEVER happen. Return bio error if it does. */ 1391 if (WARN_ON(ret < 0)) 1392 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * Use a temporary buffer to decompress the page, as the decompressor 1399 * always expects a full page for the output. 1400 */ 1401 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1402 u32 index, int offset) 1403 { 1404 struct page *page = alloc_page(GFP_NOIO); 1405 int ret; 1406 1407 if (!page) 1408 return -ENOMEM; 1409 ret = zram_read_page(zram, page, index, NULL); 1410 if (likely(!ret)) 1411 memcpy_to_bvec(bvec, page_address(page) + offset); 1412 __free_page(page); 1413 return ret; 1414 } 1415 1416 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1417 u32 index, int offset, struct bio *bio) 1418 { 1419 if (is_partial_io(bvec)) 1420 return zram_bvec_read_partial(zram, bvec, index, offset); 1421 return zram_read_page(zram, bvec->bv_page, index, bio); 1422 } 1423 1424 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1425 { 1426 int ret = 0; 1427 unsigned long alloced_pages; 1428 unsigned long handle = -ENOMEM; 1429 unsigned int comp_len = 0; 1430 void *src, *dst, *mem; 1431 struct zcomp_strm *zstrm; 1432 unsigned long element = 0; 1433 enum zram_pageflags flags = 0; 1434 1435 mem = kmap_atomic(page); 1436 if (page_same_filled(mem, &element)) { 1437 kunmap_atomic(mem); 1438 /* Free memory associated with this sector now. */ 1439 flags = ZRAM_SAME; 1440 atomic64_inc(&zram->stats.same_pages); 1441 goto out; 1442 } 1443 kunmap_atomic(mem); 1444 1445 compress_again: 1446 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1447 src = kmap_atomic(page); 1448 ret = zcomp_compress(zstrm, src, &comp_len); 1449 kunmap_atomic(src); 1450 1451 if (unlikely(ret)) { 1452 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1453 pr_err("Compression failed! err=%d\n", ret); 1454 zs_free(zram->mem_pool, handle); 1455 return ret; 1456 } 1457 1458 if (comp_len >= huge_class_size) 1459 comp_len = PAGE_SIZE; 1460 /* 1461 * handle allocation has 2 paths: 1462 * a) fast path is executed with preemption disabled (for 1463 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1464 * since we can't sleep; 1465 * b) slow path enables preemption and attempts to allocate 1466 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1467 * put per-cpu compression stream and, thus, to re-do 1468 * the compression once handle is allocated. 1469 * 1470 * if we have a 'non-null' handle here then we are coming 1471 * from the slow path and handle has already been allocated. 1472 */ 1473 if (IS_ERR_VALUE(handle)) 1474 handle = zs_malloc(zram->mem_pool, comp_len, 1475 __GFP_KSWAPD_RECLAIM | 1476 __GFP_NOWARN | 1477 __GFP_HIGHMEM | 1478 __GFP_MOVABLE); 1479 if (IS_ERR_VALUE(handle)) { 1480 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1481 atomic64_inc(&zram->stats.writestall); 1482 handle = zs_malloc(zram->mem_pool, comp_len, 1483 GFP_NOIO | __GFP_HIGHMEM | 1484 __GFP_MOVABLE); 1485 if (IS_ERR_VALUE(handle)) 1486 return PTR_ERR((void *)handle); 1487 1488 if (comp_len != PAGE_SIZE) 1489 goto compress_again; 1490 /* 1491 * If the page is not compressible, you need to acquire the 1492 * lock and execute the code below. The zcomp_stream_get() 1493 * call is needed to disable the cpu hotplug and grab the 1494 * zstrm buffer back. It is necessary that the dereferencing 1495 * of the zstrm variable below occurs correctly. 1496 */ 1497 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1498 } 1499 1500 alloced_pages = zs_get_total_pages(zram->mem_pool); 1501 update_used_max(zram, alloced_pages); 1502 1503 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1504 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1505 zs_free(zram->mem_pool, handle); 1506 return -ENOMEM; 1507 } 1508 1509 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1510 1511 src = zstrm->buffer; 1512 if (comp_len == PAGE_SIZE) 1513 src = kmap_atomic(page); 1514 memcpy(dst, src, comp_len); 1515 if (comp_len == PAGE_SIZE) 1516 kunmap_atomic(src); 1517 1518 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1519 zs_unmap_object(zram->mem_pool, handle); 1520 atomic64_add(comp_len, &zram->stats.compr_data_size); 1521 out: 1522 /* 1523 * Free memory associated with this sector 1524 * before overwriting unused sectors. 1525 */ 1526 zram_slot_lock(zram, index); 1527 zram_free_page(zram, index); 1528 1529 if (comp_len == PAGE_SIZE) { 1530 zram_set_flag(zram, index, ZRAM_HUGE); 1531 atomic64_inc(&zram->stats.huge_pages); 1532 atomic64_inc(&zram->stats.huge_pages_since); 1533 } 1534 1535 if (flags) { 1536 zram_set_flag(zram, index, flags); 1537 zram_set_element(zram, index, element); 1538 } else { 1539 zram_set_handle(zram, index, handle); 1540 zram_set_obj_size(zram, index, comp_len); 1541 } 1542 zram_slot_unlock(zram, index); 1543 1544 /* Update stats */ 1545 atomic64_inc(&zram->stats.pages_stored); 1546 return ret; 1547 } 1548 1549 /* 1550 * This is a partial IO. Read the full page before writing the changes. 1551 */ 1552 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1553 u32 index, int offset, struct bio *bio) 1554 { 1555 struct page *page = alloc_page(GFP_NOIO); 1556 int ret; 1557 1558 if (!page) 1559 return -ENOMEM; 1560 1561 ret = zram_read_page(zram, page, index, bio); 1562 if (!ret) { 1563 memcpy_from_bvec(page_address(page) + offset, bvec); 1564 ret = zram_write_page(zram, page, index); 1565 } 1566 __free_page(page); 1567 return ret; 1568 } 1569 1570 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1571 u32 index, int offset, struct bio *bio) 1572 { 1573 if (is_partial_io(bvec)) 1574 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1575 return zram_write_page(zram, bvec->bv_page, index); 1576 } 1577 1578 #ifdef CONFIG_ZRAM_MULTI_COMP 1579 /* 1580 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1581 * attempt to compress it using provided compression algorithm priority 1582 * (which is potentially more effective). 1583 * 1584 * Corresponding ZRAM slot should be locked. 1585 */ 1586 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1587 u32 threshold, u32 prio, u32 prio_max) 1588 { 1589 struct zcomp_strm *zstrm = NULL; 1590 unsigned long handle_old; 1591 unsigned long handle_new; 1592 unsigned int comp_len_old; 1593 unsigned int comp_len_new; 1594 unsigned int class_index_old; 1595 unsigned int class_index_new; 1596 u32 num_recomps = 0; 1597 void *src, *dst; 1598 int ret; 1599 1600 handle_old = zram_get_handle(zram, index); 1601 if (!handle_old) 1602 return -EINVAL; 1603 1604 comp_len_old = zram_get_obj_size(zram, index); 1605 /* 1606 * Do not recompress objects that are already "small enough". 1607 */ 1608 if (comp_len_old < threshold) 1609 return 0; 1610 1611 ret = zram_read_from_zspool(zram, page, index); 1612 if (ret) 1613 return ret; 1614 1615 /* 1616 * We touched this entry so mark it as non-IDLE. This makes sure that 1617 * we don't preserve IDLE flag and don't incorrectly pick this entry 1618 * for different post-processing type (e.g. writeback). 1619 */ 1620 zram_clear_flag(zram, index, ZRAM_IDLE); 1621 1622 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1623 /* 1624 * Iterate the secondary comp algorithms list (in order of priority) 1625 * and try to recompress the page. 1626 */ 1627 for (; prio < prio_max; prio++) { 1628 if (!zram->comps[prio]) 1629 continue; 1630 1631 /* 1632 * Skip if the object is already re-compressed with a higher 1633 * priority algorithm (or same algorithm). 1634 */ 1635 if (prio <= zram_get_priority(zram, index)) 1636 continue; 1637 1638 num_recomps++; 1639 zstrm = zcomp_stream_get(zram->comps[prio]); 1640 src = kmap_atomic(page); 1641 ret = zcomp_compress(zstrm, src, &comp_len_new); 1642 kunmap_atomic(src); 1643 1644 if (ret) { 1645 zcomp_stream_put(zram->comps[prio]); 1646 return ret; 1647 } 1648 1649 class_index_new = zs_lookup_class_index(zram->mem_pool, 1650 comp_len_new); 1651 1652 /* Continue until we make progress */ 1653 if (class_index_new >= class_index_old || 1654 (threshold && comp_len_new >= threshold)) { 1655 zcomp_stream_put(zram->comps[prio]); 1656 continue; 1657 } 1658 1659 /* Recompression was successful so break out */ 1660 break; 1661 } 1662 1663 /* 1664 * We did not try to recompress, e.g. when we have only one 1665 * secondary algorithm and the page is already recompressed 1666 * using that algorithm 1667 */ 1668 if (!zstrm) 1669 return 0; 1670 1671 if (class_index_new >= class_index_old) { 1672 /* 1673 * Secondary algorithms failed to re-compress the page 1674 * in a way that would save memory, mark the object as 1675 * incompressible so that we will not try to compress 1676 * it again. 1677 * 1678 * We need to make sure that all secondary algorithms have 1679 * failed, so we test if the number of recompressions matches 1680 * the number of active secondary algorithms. 1681 */ 1682 if (num_recomps == zram->num_active_comps - 1) 1683 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1684 return 0; 1685 } 1686 1687 /* Successful recompression but above threshold */ 1688 if (threshold && comp_len_new >= threshold) 1689 return 0; 1690 1691 /* 1692 * No direct reclaim (slow path) for handle allocation and no 1693 * re-compression attempt (unlike in zram_write_bvec()) since 1694 * we already have stored that object in zsmalloc. If we cannot 1695 * alloc memory for recompressed object then we bail out and 1696 * simply keep the old (existing) object in zsmalloc. 1697 */ 1698 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1699 __GFP_KSWAPD_RECLAIM | 1700 __GFP_NOWARN | 1701 __GFP_HIGHMEM | 1702 __GFP_MOVABLE); 1703 if (IS_ERR_VALUE(handle_new)) { 1704 zcomp_stream_put(zram->comps[prio]); 1705 return PTR_ERR((void *)handle_new); 1706 } 1707 1708 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1709 memcpy(dst, zstrm->buffer, comp_len_new); 1710 zcomp_stream_put(zram->comps[prio]); 1711 1712 zs_unmap_object(zram->mem_pool, handle_new); 1713 1714 zram_free_page(zram, index); 1715 zram_set_handle(zram, index, handle_new); 1716 zram_set_obj_size(zram, index, comp_len_new); 1717 zram_set_priority(zram, index, prio); 1718 1719 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1720 atomic64_inc(&zram->stats.pages_stored); 1721 1722 return 0; 1723 } 1724 1725 #define RECOMPRESS_IDLE (1 << 0) 1726 #define RECOMPRESS_HUGE (1 << 1) 1727 1728 static ssize_t recompress_store(struct device *dev, 1729 struct device_attribute *attr, 1730 const char *buf, size_t len) 1731 { 1732 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1733 struct zram *zram = dev_to_zram(dev); 1734 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1735 char *args, *param, *val, *algo = NULL; 1736 u32 mode = 0, threshold = 0; 1737 unsigned long index; 1738 struct page *page; 1739 ssize_t ret; 1740 1741 args = skip_spaces(buf); 1742 while (*args) { 1743 args = next_arg(args, ¶m, &val); 1744 1745 if (!val || !*val) 1746 return -EINVAL; 1747 1748 if (!strcmp(param, "type")) { 1749 if (!strcmp(val, "idle")) 1750 mode = RECOMPRESS_IDLE; 1751 if (!strcmp(val, "huge")) 1752 mode = RECOMPRESS_HUGE; 1753 if (!strcmp(val, "huge_idle")) 1754 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1755 continue; 1756 } 1757 1758 if (!strcmp(param, "threshold")) { 1759 /* 1760 * We will re-compress only idle objects equal or 1761 * greater in size than watermark. 1762 */ 1763 ret = kstrtouint(val, 10, &threshold); 1764 if (ret) 1765 return ret; 1766 continue; 1767 } 1768 1769 if (!strcmp(param, "algo")) { 1770 algo = val; 1771 continue; 1772 } 1773 } 1774 1775 if (threshold >= huge_class_size) 1776 return -EINVAL; 1777 1778 down_read(&zram->init_lock); 1779 if (!init_done(zram)) { 1780 ret = -EINVAL; 1781 goto release_init_lock; 1782 } 1783 1784 if (algo) { 1785 bool found = false; 1786 1787 for (; prio < ZRAM_MAX_COMPS; prio++) { 1788 if (!zram->comp_algs[prio]) 1789 continue; 1790 1791 if (!strcmp(zram->comp_algs[prio], algo)) { 1792 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1793 found = true; 1794 break; 1795 } 1796 } 1797 1798 if (!found) { 1799 ret = -EINVAL; 1800 goto release_init_lock; 1801 } 1802 } 1803 1804 page = alloc_page(GFP_KERNEL); 1805 if (!page) { 1806 ret = -ENOMEM; 1807 goto release_init_lock; 1808 } 1809 1810 ret = len; 1811 for (index = 0; index < nr_pages; index++) { 1812 int err = 0; 1813 1814 zram_slot_lock(zram, index); 1815 1816 if (!zram_allocated(zram, index)) 1817 goto next; 1818 1819 if (mode & RECOMPRESS_IDLE && 1820 !zram_test_flag(zram, index, ZRAM_IDLE)) 1821 goto next; 1822 1823 if (mode & RECOMPRESS_HUGE && 1824 !zram_test_flag(zram, index, ZRAM_HUGE)) 1825 goto next; 1826 1827 if (zram_test_flag(zram, index, ZRAM_WB) || 1828 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1829 zram_test_flag(zram, index, ZRAM_SAME) || 1830 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1831 goto next; 1832 1833 err = zram_recompress(zram, index, page, threshold, 1834 prio, prio_max); 1835 next: 1836 zram_slot_unlock(zram, index); 1837 if (err) { 1838 ret = err; 1839 break; 1840 } 1841 1842 cond_resched(); 1843 } 1844 1845 __free_page(page); 1846 1847 release_init_lock: 1848 up_read(&zram->init_lock); 1849 return ret; 1850 } 1851 #endif 1852 1853 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1854 { 1855 size_t n = bio->bi_iter.bi_size; 1856 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1857 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1858 SECTOR_SHIFT; 1859 1860 /* 1861 * zram manages data in physical block size units. Because logical block 1862 * size isn't identical with physical block size on some arch, we 1863 * could get a discard request pointing to a specific offset within a 1864 * certain physical block. Although we can handle this request by 1865 * reading that physiclal block and decompressing and partially zeroing 1866 * and re-compressing and then re-storing it, this isn't reasonable 1867 * because our intent with a discard request is to save memory. So 1868 * skipping this logical block is appropriate here. 1869 */ 1870 if (offset) { 1871 if (n <= (PAGE_SIZE - offset)) 1872 return; 1873 1874 n -= (PAGE_SIZE - offset); 1875 index++; 1876 } 1877 1878 while (n >= PAGE_SIZE) { 1879 zram_slot_lock(zram, index); 1880 zram_free_page(zram, index); 1881 zram_slot_unlock(zram, index); 1882 atomic64_inc(&zram->stats.notify_free); 1883 index++; 1884 n -= PAGE_SIZE; 1885 } 1886 1887 bio_endio(bio); 1888 } 1889 1890 static void zram_bio_read(struct zram *zram, struct bio *bio) 1891 { 1892 unsigned long start_time = bio_start_io_acct(bio); 1893 struct bvec_iter iter = bio->bi_iter; 1894 1895 do { 1896 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1897 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1898 SECTOR_SHIFT; 1899 struct bio_vec bv = bio_iter_iovec(bio, iter); 1900 1901 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1902 1903 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 1904 atomic64_inc(&zram->stats.failed_reads); 1905 bio->bi_status = BLK_STS_IOERR; 1906 break; 1907 } 1908 flush_dcache_page(bv.bv_page); 1909 1910 zram_slot_lock(zram, index); 1911 zram_accessed(zram, index); 1912 zram_slot_unlock(zram, index); 1913 1914 bio_advance_iter_single(bio, &iter, bv.bv_len); 1915 } while (iter.bi_size); 1916 1917 bio_end_io_acct(bio, start_time); 1918 bio_endio(bio); 1919 } 1920 1921 static void zram_bio_write(struct zram *zram, struct bio *bio) 1922 { 1923 unsigned long start_time = bio_start_io_acct(bio); 1924 struct bvec_iter iter = bio->bi_iter; 1925 1926 do { 1927 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1928 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1929 SECTOR_SHIFT; 1930 struct bio_vec bv = bio_iter_iovec(bio, iter); 1931 1932 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1933 1934 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 1935 atomic64_inc(&zram->stats.failed_writes); 1936 bio->bi_status = BLK_STS_IOERR; 1937 break; 1938 } 1939 1940 zram_slot_lock(zram, index); 1941 zram_accessed(zram, index); 1942 zram_slot_unlock(zram, index); 1943 1944 bio_advance_iter_single(bio, &iter, bv.bv_len); 1945 } while (iter.bi_size); 1946 1947 bio_end_io_acct(bio, start_time); 1948 bio_endio(bio); 1949 } 1950 1951 /* 1952 * Handler function for all zram I/O requests. 1953 */ 1954 static void zram_submit_bio(struct bio *bio) 1955 { 1956 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1957 1958 switch (bio_op(bio)) { 1959 case REQ_OP_READ: 1960 zram_bio_read(zram, bio); 1961 break; 1962 case REQ_OP_WRITE: 1963 zram_bio_write(zram, bio); 1964 break; 1965 case REQ_OP_DISCARD: 1966 case REQ_OP_WRITE_ZEROES: 1967 zram_bio_discard(zram, bio); 1968 break; 1969 default: 1970 WARN_ON_ONCE(1); 1971 bio_endio(bio); 1972 } 1973 } 1974 1975 static void zram_slot_free_notify(struct block_device *bdev, 1976 unsigned long index) 1977 { 1978 struct zram *zram; 1979 1980 zram = bdev->bd_disk->private_data; 1981 1982 atomic64_inc(&zram->stats.notify_free); 1983 if (!zram_slot_trylock(zram, index)) { 1984 atomic64_inc(&zram->stats.miss_free); 1985 return; 1986 } 1987 1988 zram_free_page(zram, index); 1989 zram_slot_unlock(zram, index); 1990 } 1991 1992 static void zram_destroy_comps(struct zram *zram) 1993 { 1994 u32 prio; 1995 1996 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 1997 struct zcomp *comp = zram->comps[prio]; 1998 1999 zram->comps[prio] = NULL; 2000 if (!comp) 2001 continue; 2002 zcomp_destroy(comp); 2003 zram->num_active_comps--; 2004 } 2005 2006 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2007 /* Do not free statically defined compression algorithms */ 2008 if (zram->comp_algs[prio] != default_compressor) 2009 kfree(zram->comp_algs[prio]); 2010 zram->comp_algs[prio] = NULL; 2011 } 2012 } 2013 2014 static void zram_reset_device(struct zram *zram) 2015 { 2016 down_write(&zram->init_lock); 2017 2018 zram->limit_pages = 0; 2019 2020 if (!init_done(zram)) { 2021 up_write(&zram->init_lock); 2022 return; 2023 } 2024 2025 set_capacity_and_notify(zram->disk, 0); 2026 part_stat_set_all(zram->disk->part0, 0); 2027 2028 /* I/O operation under all of CPU are done so let's free */ 2029 zram_meta_free(zram, zram->disksize); 2030 zram->disksize = 0; 2031 zram_destroy_comps(zram); 2032 memset(&zram->stats, 0, sizeof(zram->stats)); 2033 reset_bdev(zram); 2034 2035 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2036 up_write(&zram->init_lock); 2037 } 2038 2039 static ssize_t disksize_store(struct device *dev, 2040 struct device_attribute *attr, const char *buf, size_t len) 2041 { 2042 u64 disksize; 2043 struct zcomp *comp; 2044 struct zram *zram = dev_to_zram(dev); 2045 int err; 2046 u32 prio; 2047 2048 disksize = memparse(buf, NULL); 2049 if (!disksize) 2050 return -EINVAL; 2051 2052 down_write(&zram->init_lock); 2053 if (init_done(zram)) { 2054 pr_info("Cannot change disksize for initialized device\n"); 2055 err = -EBUSY; 2056 goto out_unlock; 2057 } 2058 2059 disksize = PAGE_ALIGN(disksize); 2060 if (!zram_meta_alloc(zram, disksize)) { 2061 err = -ENOMEM; 2062 goto out_unlock; 2063 } 2064 2065 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2066 if (!zram->comp_algs[prio]) 2067 continue; 2068 2069 comp = zcomp_create(zram->comp_algs[prio]); 2070 if (IS_ERR(comp)) { 2071 pr_err("Cannot initialise %s compressing backend\n", 2072 zram->comp_algs[prio]); 2073 err = PTR_ERR(comp); 2074 goto out_free_comps; 2075 } 2076 2077 zram->comps[prio] = comp; 2078 zram->num_active_comps++; 2079 } 2080 zram->disksize = disksize; 2081 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2082 up_write(&zram->init_lock); 2083 2084 return len; 2085 2086 out_free_comps: 2087 zram_destroy_comps(zram); 2088 zram_meta_free(zram, disksize); 2089 out_unlock: 2090 up_write(&zram->init_lock); 2091 return err; 2092 } 2093 2094 static ssize_t reset_store(struct device *dev, 2095 struct device_attribute *attr, const char *buf, size_t len) 2096 { 2097 int ret; 2098 unsigned short do_reset; 2099 struct zram *zram; 2100 struct gendisk *disk; 2101 2102 ret = kstrtou16(buf, 10, &do_reset); 2103 if (ret) 2104 return ret; 2105 2106 if (!do_reset) 2107 return -EINVAL; 2108 2109 zram = dev_to_zram(dev); 2110 disk = zram->disk; 2111 2112 mutex_lock(&disk->open_mutex); 2113 /* Do not reset an active device or claimed device */ 2114 if (disk_openers(disk) || zram->claim) { 2115 mutex_unlock(&disk->open_mutex); 2116 return -EBUSY; 2117 } 2118 2119 /* From now on, anyone can't open /dev/zram[0-9] */ 2120 zram->claim = true; 2121 mutex_unlock(&disk->open_mutex); 2122 2123 /* Make sure all the pending I/O are finished */ 2124 sync_blockdev(disk->part0); 2125 zram_reset_device(zram); 2126 2127 mutex_lock(&disk->open_mutex); 2128 zram->claim = false; 2129 mutex_unlock(&disk->open_mutex); 2130 2131 return len; 2132 } 2133 2134 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2135 { 2136 struct zram *zram = disk->private_data; 2137 2138 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2139 2140 /* zram was claimed to reset so open request fails */ 2141 if (zram->claim) 2142 return -EBUSY; 2143 return 0; 2144 } 2145 2146 static const struct block_device_operations zram_devops = { 2147 .open = zram_open, 2148 .submit_bio = zram_submit_bio, 2149 .swap_slot_free_notify = zram_slot_free_notify, 2150 .owner = THIS_MODULE 2151 }; 2152 2153 static DEVICE_ATTR_WO(compact); 2154 static DEVICE_ATTR_RW(disksize); 2155 static DEVICE_ATTR_RO(initstate); 2156 static DEVICE_ATTR_WO(reset); 2157 static DEVICE_ATTR_WO(mem_limit); 2158 static DEVICE_ATTR_WO(mem_used_max); 2159 static DEVICE_ATTR_WO(idle); 2160 static DEVICE_ATTR_RW(max_comp_streams); 2161 static DEVICE_ATTR_RW(comp_algorithm); 2162 #ifdef CONFIG_ZRAM_WRITEBACK 2163 static DEVICE_ATTR_RW(backing_dev); 2164 static DEVICE_ATTR_WO(writeback); 2165 static DEVICE_ATTR_RW(writeback_limit); 2166 static DEVICE_ATTR_RW(writeback_limit_enable); 2167 #endif 2168 #ifdef CONFIG_ZRAM_MULTI_COMP 2169 static DEVICE_ATTR_RW(recomp_algorithm); 2170 static DEVICE_ATTR_WO(recompress); 2171 #endif 2172 2173 static struct attribute *zram_disk_attrs[] = { 2174 &dev_attr_disksize.attr, 2175 &dev_attr_initstate.attr, 2176 &dev_attr_reset.attr, 2177 &dev_attr_compact.attr, 2178 &dev_attr_mem_limit.attr, 2179 &dev_attr_mem_used_max.attr, 2180 &dev_attr_idle.attr, 2181 &dev_attr_max_comp_streams.attr, 2182 &dev_attr_comp_algorithm.attr, 2183 #ifdef CONFIG_ZRAM_WRITEBACK 2184 &dev_attr_backing_dev.attr, 2185 &dev_attr_writeback.attr, 2186 &dev_attr_writeback_limit.attr, 2187 &dev_attr_writeback_limit_enable.attr, 2188 #endif 2189 &dev_attr_io_stat.attr, 2190 &dev_attr_mm_stat.attr, 2191 #ifdef CONFIG_ZRAM_WRITEBACK 2192 &dev_attr_bd_stat.attr, 2193 #endif 2194 &dev_attr_debug_stat.attr, 2195 #ifdef CONFIG_ZRAM_MULTI_COMP 2196 &dev_attr_recomp_algorithm.attr, 2197 &dev_attr_recompress.attr, 2198 #endif 2199 NULL, 2200 }; 2201 2202 ATTRIBUTE_GROUPS(zram_disk); 2203 2204 /* 2205 * Allocate and initialize new zram device. the function returns 2206 * '>= 0' device_id upon success, and negative value otherwise. 2207 */ 2208 static int zram_add(void) 2209 { 2210 struct zram *zram; 2211 int ret, device_id; 2212 2213 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2214 if (!zram) 2215 return -ENOMEM; 2216 2217 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2218 if (ret < 0) 2219 goto out_free_dev; 2220 device_id = ret; 2221 2222 init_rwsem(&zram->init_lock); 2223 #ifdef CONFIG_ZRAM_WRITEBACK 2224 spin_lock_init(&zram->wb_limit_lock); 2225 #endif 2226 2227 /* gendisk structure */ 2228 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2229 if (!zram->disk) { 2230 pr_err("Error allocating disk structure for device %d\n", 2231 device_id); 2232 ret = -ENOMEM; 2233 goto out_free_idr; 2234 } 2235 2236 zram->disk->major = zram_major; 2237 zram->disk->first_minor = device_id; 2238 zram->disk->minors = 1; 2239 zram->disk->flags |= GENHD_FL_NO_PART; 2240 zram->disk->fops = &zram_devops; 2241 zram->disk->private_data = zram; 2242 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2243 2244 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2245 set_capacity(zram->disk, 0); 2246 /* zram devices sort of resembles non-rotational disks */ 2247 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2248 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2249 2250 /* 2251 * To ensure that we always get PAGE_SIZE aligned 2252 * and n*PAGE_SIZED sized I/O requests. 2253 */ 2254 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2255 blk_queue_logical_block_size(zram->disk->queue, 2256 ZRAM_LOGICAL_BLOCK_SIZE); 2257 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2258 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2259 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2260 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2261 2262 /* 2263 * zram_bio_discard() will clear all logical blocks if logical block 2264 * size is identical with physical block size(PAGE_SIZE). But if it is 2265 * different, we will skip discarding some parts of logical blocks in 2266 * the part of the request range which isn't aligned to physical block 2267 * size. So we can't ensure that all discarded logical blocks are 2268 * zeroed. 2269 */ 2270 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2271 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2272 2273 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2274 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2275 if (ret) 2276 goto out_cleanup_disk; 2277 2278 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2279 2280 zram_debugfs_register(zram); 2281 pr_info("Added device: %s\n", zram->disk->disk_name); 2282 return device_id; 2283 2284 out_cleanup_disk: 2285 put_disk(zram->disk); 2286 out_free_idr: 2287 idr_remove(&zram_index_idr, device_id); 2288 out_free_dev: 2289 kfree(zram); 2290 return ret; 2291 } 2292 2293 static int zram_remove(struct zram *zram) 2294 { 2295 bool claimed; 2296 2297 mutex_lock(&zram->disk->open_mutex); 2298 if (disk_openers(zram->disk)) { 2299 mutex_unlock(&zram->disk->open_mutex); 2300 return -EBUSY; 2301 } 2302 2303 claimed = zram->claim; 2304 if (!claimed) 2305 zram->claim = true; 2306 mutex_unlock(&zram->disk->open_mutex); 2307 2308 zram_debugfs_unregister(zram); 2309 2310 if (claimed) { 2311 /* 2312 * If we were claimed by reset_store(), del_gendisk() will 2313 * wait until reset_store() is done, so nothing need to do. 2314 */ 2315 ; 2316 } else { 2317 /* Make sure all the pending I/O are finished */ 2318 sync_blockdev(zram->disk->part0); 2319 zram_reset_device(zram); 2320 } 2321 2322 pr_info("Removed device: %s\n", zram->disk->disk_name); 2323 2324 del_gendisk(zram->disk); 2325 2326 /* del_gendisk drains pending reset_store */ 2327 WARN_ON_ONCE(claimed && zram->claim); 2328 2329 /* 2330 * disksize_store() may be called in between zram_reset_device() 2331 * and del_gendisk(), so run the last reset to avoid leaking 2332 * anything allocated with disksize_store() 2333 */ 2334 zram_reset_device(zram); 2335 2336 put_disk(zram->disk); 2337 kfree(zram); 2338 return 0; 2339 } 2340 2341 /* zram-control sysfs attributes */ 2342 2343 /* 2344 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2345 * sense that reading from this file does alter the state of your system -- it 2346 * creates a new un-initialized zram device and returns back this device's 2347 * device_id (or an error code if it fails to create a new device). 2348 */ 2349 static ssize_t hot_add_show(const struct class *class, 2350 const struct class_attribute *attr, 2351 char *buf) 2352 { 2353 int ret; 2354 2355 mutex_lock(&zram_index_mutex); 2356 ret = zram_add(); 2357 mutex_unlock(&zram_index_mutex); 2358 2359 if (ret < 0) 2360 return ret; 2361 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2362 } 2363 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2364 static struct class_attribute class_attr_hot_add = 2365 __ATTR(hot_add, 0400, hot_add_show, NULL); 2366 2367 static ssize_t hot_remove_store(const struct class *class, 2368 const struct class_attribute *attr, 2369 const char *buf, 2370 size_t count) 2371 { 2372 struct zram *zram; 2373 int ret, dev_id; 2374 2375 /* dev_id is gendisk->first_minor, which is `int' */ 2376 ret = kstrtoint(buf, 10, &dev_id); 2377 if (ret) 2378 return ret; 2379 if (dev_id < 0) 2380 return -EINVAL; 2381 2382 mutex_lock(&zram_index_mutex); 2383 2384 zram = idr_find(&zram_index_idr, dev_id); 2385 if (zram) { 2386 ret = zram_remove(zram); 2387 if (!ret) 2388 idr_remove(&zram_index_idr, dev_id); 2389 } else { 2390 ret = -ENODEV; 2391 } 2392 2393 mutex_unlock(&zram_index_mutex); 2394 return ret ? ret : count; 2395 } 2396 static CLASS_ATTR_WO(hot_remove); 2397 2398 static struct attribute *zram_control_class_attrs[] = { 2399 &class_attr_hot_add.attr, 2400 &class_attr_hot_remove.attr, 2401 NULL, 2402 }; 2403 ATTRIBUTE_GROUPS(zram_control_class); 2404 2405 static struct class zram_control_class = { 2406 .name = "zram-control", 2407 .class_groups = zram_control_class_groups, 2408 }; 2409 2410 static int zram_remove_cb(int id, void *ptr, void *data) 2411 { 2412 WARN_ON_ONCE(zram_remove(ptr)); 2413 return 0; 2414 } 2415 2416 static void destroy_devices(void) 2417 { 2418 class_unregister(&zram_control_class); 2419 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2420 zram_debugfs_destroy(); 2421 idr_destroy(&zram_index_idr); 2422 unregister_blkdev(zram_major, "zram"); 2423 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2424 } 2425 2426 static int __init zram_init(void) 2427 { 2428 int ret; 2429 2430 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2431 2432 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2433 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2434 if (ret < 0) 2435 return ret; 2436 2437 ret = class_register(&zram_control_class); 2438 if (ret) { 2439 pr_err("Unable to register zram-control class\n"); 2440 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2441 return ret; 2442 } 2443 2444 zram_debugfs_create(); 2445 zram_major = register_blkdev(0, "zram"); 2446 if (zram_major <= 0) { 2447 pr_err("Unable to get major number\n"); 2448 class_unregister(&zram_control_class); 2449 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2450 return -EBUSY; 2451 } 2452 2453 while (num_devices != 0) { 2454 mutex_lock(&zram_index_mutex); 2455 ret = zram_add(); 2456 mutex_unlock(&zram_index_mutex); 2457 if (ret < 0) 2458 goto out_error; 2459 num_devices--; 2460 } 2461 2462 return 0; 2463 2464 out_error: 2465 destroy_devices(); 2466 return ret; 2467 } 2468 2469 static void __exit zram_exit(void) 2470 { 2471 destroy_devices(); 2472 } 2473 2474 module_init(zram_init); 2475 module_exit(zram_exit); 2476 2477 module_param(num_devices, uint, 0); 2478 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2479 2480 MODULE_LICENSE("Dual BSD/GPL"); 2481 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2482 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2483