1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #ifdef CONFIG_ZRAM_DEBUG 19 #define DEBUG 20 #endif 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/bio.h> 25 #include <linux/bitops.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> 28 #include <linux/device.h> 29 #include <linux/genhd.h> 30 #include <linux/highmem.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/vmalloc.h> 34 #include <linux/err.h> 35 36 #include "zram_drv.h" 37 38 /* Globals */ 39 static int zram_major; 40 static struct zram *zram_devices; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 static inline void deprecated_attr_warn(const char *name) 47 { 48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n", 49 task_pid_nr(current), 50 current->comm, 51 name, 52 "See zram documentation."); 53 } 54 55 #define ZRAM_ATTR_RO(name) \ 56 static ssize_t name##_show(struct device *d, \ 57 struct device_attribute *attr, char *b) \ 58 { \ 59 struct zram *zram = dev_to_zram(d); \ 60 \ 61 deprecated_attr_warn(__stringify(name)); \ 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 63 (u64)atomic64_read(&zram->stats.name)); \ 64 } \ 65 static DEVICE_ATTR_RO(name); 66 67 static inline bool init_done(struct zram *zram) 68 { 69 return zram->disksize; 70 } 71 72 static inline struct zram *dev_to_zram(struct device *dev) 73 { 74 return (struct zram *)dev_to_disk(dev)->private_data; 75 } 76 77 static ssize_t disksize_show(struct device *dev, 78 struct device_attribute *attr, char *buf) 79 { 80 struct zram *zram = dev_to_zram(dev); 81 82 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 83 } 84 85 static ssize_t initstate_show(struct device *dev, 86 struct device_attribute *attr, char *buf) 87 { 88 u32 val; 89 struct zram *zram = dev_to_zram(dev); 90 91 down_read(&zram->init_lock); 92 val = init_done(zram); 93 up_read(&zram->init_lock); 94 95 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 96 } 97 98 static ssize_t orig_data_size_show(struct device *dev, 99 struct device_attribute *attr, char *buf) 100 { 101 struct zram *zram = dev_to_zram(dev); 102 103 deprecated_attr_warn("orig_data_size"); 104 return scnprintf(buf, PAGE_SIZE, "%llu\n", 105 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 106 } 107 108 static ssize_t mem_used_total_show(struct device *dev, 109 struct device_attribute *attr, char *buf) 110 { 111 u64 val = 0; 112 struct zram *zram = dev_to_zram(dev); 113 114 deprecated_attr_warn("mem_used_total"); 115 down_read(&zram->init_lock); 116 if (init_done(zram)) { 117 struct zram_meta *meta = zram->meta; 118 val = zs_get_total_pages(meta->mem_pool); 119 } 120 up_read(&zram->init_lock); 121 122 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 123 } 124 125 static ssize_t max_comp_streams_show(struct device *dev, 126 struct device_attribute *attr, char *buf) 127 { 128 int val; 129 struct zram *zram = dev_to_zram(dev); 130 131 down_read(&zram->init_lock); 132 val = zram->max_comp_streams; 133 up_read(&zram->init_lock); 134 135 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 136 } 137 138 static ssize_t mem_limit_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 u64 val; 142 struct zram *zram = dev_to_zram(dev); 143 144 deprecated_attr_warn("mem_limit"); 145 down_read(&zram->init_lock); 146 val = zram->limit_pages; 147 up_read(&zram->init_lock); 148 149 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 150 } 151 152 static ssize_t mem_limit_store(struct device *dev, 153 struct device_attribute *attr, const char *buf, size_t len) 154 { 155 u64 limit; 156 char *tmp; 157 struct zram *zram = dev_to_zram(dev); 158 159 limit = memparse(buf, &tmp); 160 if (buf == tmp) /* no chars parsed, invalid input */ 161 return -EINVAL; 162 163 down_write(&zram->init_lock); 164 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 165 up_write(&zram->init_lock); 166 167 return len; 168 } 169 170 static ssize_t mem_used_max_show(struct device *dev, 171 struct device_attribute *attr, char *buf) 172 { 173 u64 val = 0; 174 struct zram *zram = dev_to_zram(dev); 175 176 deprecated_attr_warn("mem_used_max"); 177 down_read(&zram->init_lock); 178 if (init_done(zram)) 179 val = atomic_long_read(&zram->stats.max_used_pages); 180 up_read(&zram->init_lock); 181 182 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 183 } 184 185 static ssize_t mem_used_max_store(struct device *dev, 186 struct device_attribute *attr, const char *buf, size_t len) 187 { 188 int err; 189 unsigned long val; 190 struct zram *zram = dev_to_zram(dev); 191 192 err = kstrtoul(buf, 10, &val); 193 if (err || val != 0) 194 return -EINVAL; 195 196 down_read(&zram->init_lock); 197 if (init_done(zram)) { 198 struct zram_meta *meta = zram->meta; 199 atomic_long_set(&zram->stats.max_used_pages, 200 zs_get_total_pages(meta->mem_pool)); 201 } 202 up_read(&zram->init_lock); 203 204 return len; 205 } 206 207 static ssize_t max_comp_streams_store(struct device *dev, 208 struct device_attribute *attr, const char *buf, size_t len) 209 { 210 int num; 211 struct zram *zram = dev_to_zram(dev); 212 int ret; 213 214 ret = kstrtoint(buf, 0, &num); 215 if (ret < 0) 216 return ret; 217 if (num < 1) 218 return -EINVAL; 219 220 down_write(&zram->init_lock); 221 if (init_done(zram)) { 222 if (!zcomp_set_max_streams(zram->comp, num)) { 223 pr_info("Cannot change max compression streams\n"); 224 ret = -EINVAL; 225 goto out; 226 } 227 } 228 229 zram->max_comp_streams = num; 230 ret = len; 231 out: 232 up_write(&zram->init_lock); 233 return ret; 234 } 235 236 static ssize_t comp_algorithm_show(struct device *dev, 237 struct device_attribute *attr, char *buf) 238 { 239 size_t sz; 240 struct zram *zram = dev_to_zram(dev); 241 242 down_read(&zram->init_lock); 243 sz = zcomp_available_show(zram->compressor, buf); 244 up_read(&zram->init_lock); 245 246 return sz; 247 } 248 249 static ssize_t comp_algorithm_store(struct device *dev, 250 struct device_attribute *attr, const char *buf, size_t len) 251 { 252 struct zram *zram = dev_to_zram(dev); 253 down_write(&zram->init_lock); 254 if (init_done(zram)) { 255 up_write(&zram->init_lock); 256 pr_info("Can't change algorithm for initialized device\n"); 257 return -EBUSY; 258 } 259 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 260 up_write(&zram->init_lock); 261 return len; 262 } 263 264 /* flag operations needs meta->tb_lock */ 265 static int zram_test_flag(struct zram_meta *meta, u32 index, 266 enum zram_pageflags flag) 267 { 268 return meta->table[index].value & BIT(flag); 269 } 270 271 static void zram_set_flag(struct zram_meta *meta, u32 index, 272 enum zram_pageflags flag) 273 { 274 meta->table[index].value |= BIT(flag); 275 } 276 277 static void zram_clear_flag(struct zram_meta *meta, u32 index, 278 enum zram_pageflags flag) 279 { 280 meta->table[index].value &= ~BIT(flag); 281 } 282 283 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 284 { 285 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 286 } 287 288 static void zram_set_obj_size(struct zram_meta *meta, 289 u32 index, size_t size) 290 { 291 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 292 293 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 294 } 295 296 static inline int is_partial_io(struct bio_vec *bvec) 297 { 298 return bvec->bv_len != PAGE_SIZE; 299 } 300 301 /* 302 * Check if request is within bounds and aligned on zram logical blocks. 303 */ 304 static inline int valid_io_request(struct zram *zram, 305 sector_t start, unsigned int size) 306 { 307 u64 end, bound; 308 309 /* unaligned request */ 310 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 311 return 0; 312 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 313 return 0; 314 315 end = start + (size >> SECTOR_SHIFT); 316 bound = zram->disksize >> SECTOR_SHIFT; 317 /* out of range range */ 318 if (unlikely(start >= bound || end > bound || start > end)) 319 return 0; 320 321 /* I/O request is valid */ 322 return 1; 323 } 324 325 static void zram_meta_free(struct zram_meta *meta, u64 disksize) 326 { 327 size_t num_pages = disksize >> PAGE_SHIFT; 328 size_t index; 329 330 /* Free all pages that are still in this zram device */ 331 for (index = 0; index < num_pages; index++) { 332 unsigned long handle = meta->table[index].handle; 333 334 if (!handle) 335 continue; 336 337 zs_free(meta->mem_pool, handle); 338 } 339 340 zs_destroy_pool(meta->mem_pool); 341 vfree(meta->table); 342 kfree(meta); 343 } 344 345 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize) 346 { 347 size_t num_pages; 348 char pool_name[8]; 349 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 350 351 if (!meta) 352 return NULL; 353 354 num_pages = disksize >> PAGE_SHIFT; 355 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 356 if (!meta->table) { 357 pr_err("Error allocating zram address table\n"); 358 goto out_error; 359 } 360 361 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id); 362 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM); 363 if (!meta->mem_pool) { 364 pr_err("Error creating memory pool\n"); 365 goto out_error; 366 } 367 368 return meta; 369 370 out_error: 371 vfree(meta->table); 372 kfree(meta); 373 return NULL; 374 } 375 376 static inline bool zram_meta_get(struct zram *zram) 377 { 378 if (atomic_inc_not_zero(&zram->refcount)) 379 return true; 380 return false; 381 } 382 383 static inline void zram_meta_put(struct zram *zram) 384 { 385 atomic_dec(&zram->refcount); 386 } 387 388 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 389 { 390 if (*offset + bvec->bv_len >= PAGE_SIZE) 391 (*index)++; 392 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 393 } 394 395 static int page_zero_filled(void *ptr) 396 { 397 unsigned int pos; 398 unsigned long *page; 399 400 page = (unsigned long *)ptr; 401 402 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 403 if (page[pos]) 404 return 0; 405 } 406 407 return 1; 408 } 409 410 static void handle_zero_page(struct bio_vec *bvec) 411 { 412 struct page *page = bvec->bv_page; 413 void *user_mem; 414 415 user_mem = kmap_atomic(page); 416 if (is_partial_io(bvec)) 417 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 418 else 419 clear_page(user_mem); 420 kunmap_atomic(user_mem); 421 422 flush_dcache_page(page); 423 } 424 425 426 /* 427 * To protect concurrent access to the same index entry, 428 * caller should hold this table index entry's bit_spinlock to 429 * indicate this index entry is accessing. 430 */ 431 static void zram_free_page(struct zram *zram, size_t index) 432 { 433 struct zram_meta *meta = zram->meta; 434 unsigned long handle = meta->table[index].handle; 435 436 if (unlikely(!handle)) { 437 /* 438 * No memory is allocated for zero filled pages. 439 * Simply clear zero page flag. 440 */ 441 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 442 zram_clear_flag(meta, index, ZRAM_ZERO); 443 atomic64_dec(&zram->stats.zero_pages); 444 } 445 return; 446 } 447 448 zs_free(meta->mem_pool, handle); 449 450 atomic64_sub(zram_get_obj_size(meta, index), 451 &zram->stats.compr_data_size); 452 atomic64_dec(&zram->stats.pages_stored); 453 454 meta->table[index].handle = 0; 455 zram_set_obj_size(meta, index, 0); 456 } 457 458 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 459 { 460 int ret = 0; 461 unsigned char *cmem; 462 struct zram_meta *meta = zram->meta; 463 unsigned long handle; 464 size_t size; 465 466 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 467 handle = meta->table[index].handle; 468 size = zram_get_obj_size(meta, index); 469 470 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 471 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 472 clear_page(mem); 473 return 0; 474 } 475 476 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 477 if (size == PAGE_SIZE) 478 copy_page(mem, cmem); 479 else 480 ret = zcomp_decompress(zram->comp, cmem, size, mem); 481 zs_unmap_object(meta->mem_pool, handle); 482 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 483 484 /* Should NEVER happen. Return bio error if it does. */ 485 if (unlikely(ret)) { 486 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 487 return ret; 488 } 489 490 return 0; 491 } 492 493 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 494 u32 index, int offset) 495 { 496 int ret; 497 struct page *page; 498 unsigned char *user_mem, *uncmem = NULL; 499 struct zram_meta *meta = zram->meta; 500 page = bvec->bv_page; 501 502 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 503 if (unlikely(!meta->table[index].handle) || 504 zram_test_flag(meta, index, ZRAM_ZERO)) { 505 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 506 handle_zero_page(bvec); 507 return 0; 508 } 509 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 510 511 if (is_partial_io(bvec)) 512 /* Use a temporary buffer to decompress the page */ 513 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 514 515 user_mem = kmap_atomic(page); 516 if (!is_partial_io(bvec)) 517 uncmem = user_mem; 518 519 if (!uncmem) { 520 pr_info("Unable to allocate temp memory\n"); 521 ret = -ENOMEM; 522 goto out_cleanup; 523 } 524 525 ret = zram_decompress_page(zram, uncmem, index); 526 /* Should NEVER happen. Return bio error if it does. */ 527 if (unlikely(ret)) 528 goto out_cleanup; 529 530 if (is_partial_io(bvec)) 531 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 532 bvec->bv_len); 533 534 flush_dcache_page(page); 535 ret = 0; 536 out_cleanup: 537 kunmap_atomic(user_mem); 538 if (is_partial_io(bvec)) 539 kfree(uncmem); 540 return ret; 541 } 542 543 static inline void update_used_max(struct zram *zram, 544 const unsigned long pages) 545 { 546 unsigned long old_max, cur_max; 547 548 old_max = atomic_long_read(&zram->stats.max_used_pages); 549 550 do { 551 cur_max = old_max; 552 if (pages > cur_max) 553 old_max = atomic_long_cmpxchg( 554 &zram->stats.max_used_pages, cur_max, pages); 555 } while (old_max != cur_max); 556 } 557 558 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 559 int offset) 560 { 561 int ret = 0; 562 size_t clen; 563 unsigned long handle; 564 struct page *page; 565 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 566 struct zram_meta *meta = zram->meta; 567 struct zcomp_strm *zstrm; 568 bool locked = false; 569 unsigned long alloced_pages; 570 571 page = bvec->bv_page; 572 if (is_partial_io(bvec)) { 573 /* 574 * This is a partial IO. We need to read the full page 575 * before to write the changes. 576 */ 577 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 578 if (!uncmem) { 579 ret = -ENOMEM; 580 goto out; 581 } 582 ret = zram_decompress_page(zram, uncmem, index); 583 if (ret) 584 goto out; 585 } 586 587 zstrm = zcomp_strm_find(zram->comp); 588 locked = true; 589 user_mem = kmap_atomic(page); 590 591 if (is_partial_io(bvec)) { 592 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 593 bvec->bv_len); 594 kunmap_atomic(user_mem); 595 user_mem = NULL; 596 } else { 597 uncmem = user_mem; 598 } 599 600 if (page_zero_filled(uncmem)) { 601 if (user_mem) 602 kunmap_atomic(user_mem); 603 /* Free memory associated with this sector now. */ 604 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 605 zram_free_page(zram, index); 606 zram_set_flag(meta, index, ZRAM_ZERO); 607 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 608 609 atomic64_inc(&zram->stats.zero_pages); 610 ret = 0; 611 goto out; 612 } 613 614 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 615 if (!is_partial_io(bvec)) { 616 kunmap_atomic(user_mem); 617 user_mem = NULL; 618 uncmem = NULL; 619 } 620 621 if (unlikely(ret)) { 622 pr_err("Compression failed! err=%d\n", ret); 623 goto out; 624 } 625 src = zstrm->buffer; 626 if (unlikely(clen > max_zpage_size)) { 627 clen = PAGE_SIZE; 628 if (is_partial_io(bvec)) 629 src = uncmem; 630 } 631 632 handle = zs_malloc(meta->mem_pool, clen); 633 if (!handle) { 634 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 635 index, clen); 636 ret = -ENOMEM; 637 goto out; 638 } 639 640 alloced_pages = zs_get_total_pages(meta->mem_pool); 641 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 642 zs_free(meta->mem_pool, handle); 643 ret = -ENOMEM; 644 goto out; 645 } 646 647 update_used_max(zram, alloced_pages); 648 649 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 650 651 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 652 src = kmap_atomic(page); 653 copy_page(cmem, src); 654 kunmap_atomic(src); 655 } else { 656 memcpy(cmem, src, clen); 657 } 658 659 zcomp_strm_release(zram->comp, zstrm); 660 locked = false; 661 zs_unmap_object(meta->mem_pool, handle); 662 663 /* 664 * Free memory associated with this sector 665 * before overwriting unused sectors. 666 */ 667 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 668 zram_free_page(zram, index); 669 670 meta->table[index].handle = handle; 671 zram_set_obj_size(meta, index, clen); 672 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 673 674 /* Update stats */ 675 atomic64_add(clen, &zram->stats.compr_data_size); 676 atomic64_inc(&zram->stats.pages_stored); 677 out: 678 if (locked) 679 zcomp_strm_release(zram->comp, zstrm); 680 if (is_partial_io(bvec)) 681 kfree(uncmem); 682 return ret; 683 } 684 685 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 686 int offset, int rw) 687 { 688 unsigned long start_time = jiffies; 689 int ret; 690 691 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT, 692 &zram->disk->part0); 693 694 if (rw == READ) { 695 atomic64_inc(&zram->stats.num_reads); 696 ret = zram_bvec_read(zram, bvec, index, offset); 697 } else { 698 atomic64_inc(&zram->stats.num_writes); 699 ret = zram_bvec_write(zram, bvec, index, offset); 700 } 701 702 generic_end_io_acct(rw, &zram->disk->part0, start_time); 703 704 if (unlikely(ret)) { 705 if (rw == READ) 706 atomic64_inc(&zram->stats.failed_reads); 707 else 708 atomic64_inc(&zram->stats.failed_writes); 709 } 710 711 return ret; 712 } 713 714 /* 715 * zram_bio_discard - handler on discard request 716 * @index: physical block index in PAGE_SIZE units 717 * @offset: byte offset within physical block 718 */ 719 static void zram_bio_discard(struct zram *zram, u32 index, 720 int offset, struct bio *bio) 721 { 722 size_t n = bio->bi_iter.bi_size; 723 struct zram_meta *meta = zram->meta; 724 725 /* 726 * zram manages data in physical block size units. Because logical block 727 * size isn't identical with physical block size on some arch, we 728 * could get a discard request pointing to a specific offset within a 729 * certain physical block. Although we can handle this request by 730 * reading that physiclal block and decompressing and partially zeroing 731 * and re-compressing and then re-storing it, this isn't reasonable 732 * because our intent with a discard request is to save memory. So 733 * skipping this logical block is appropriate here. 734 */ 735 if (offset) { 736 if (n <= (PAGE_SIZE - offset)) 737 return; 738 739 n -= (PAGE_SIZE - offset); 740 index++; 741 } 742 743 while (n >= PAGE_SIZE) { 744 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 745 zram_free_page(zram, index); 746 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 747 atomic64_inc(&zram->stats.notify_free); 748 index++; 749 n -= PAGE_SIZE; 750 } 751 } 752 753 static void zram_reset_device(struct zram *zram) 754 { 755 struct zram_meta *meta; 756 struct zcomp *comp; 757 u64 disksize; 758 759 down_write(&zram->init_lock); 760 761 zram->limit_pages = 0; 762 763 if (!init_done(zram)) { 764 up_write(&zram->init_lock); 765 return; 766 } 767 768 meta = zram->meta; 769 comp = zram->comp; 770 disksize = zram->disksize; 771 /* 772 * Refcount will go down to 0 eventually and r/w handler 773 * cannot handle further I/O so it will bail out by 774 * check zram_meta_get. 775 */ 776 zram_meta_put(zram); 777 /* 778 * We want to free zram_meta in process context to avoid 779 * deadlock between reclaim path and any other locks. 780 */ 781 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0); 782 783 /* Reset stats */ 784 memset(&zram->stats, 0, sizeof(zram->stats)); 785 zram->disksize = 0; 786 zram->max_comp_streams = 1; 787 set_capacity(zram->disk, 0); 788 789 up_write(&zram->init_lock); 790 /* I/O operation under all of CPU are done so let's free */ 791 zram_meta_free(meta, disksize); 792 zcomp_destroy(comp); 793 } 794 795 static ssize_t disksize_store(struct device *dev, 796 struct device_attribute *attr, const char *buf, size_t len) 797 { 798 u64 disksize; 799 struct zcomp *comp; 800 struct zram_meta *meta; 801 struct zram *zram = dev_to_zram(dev); 802 int err; 803 804 disksize = memparse(buf, NULL); 805 if (!disksize) 806 return -EINVAL; 807 808 disksize = PAGE_ALIGN(disksize); 809 meta = zram_meta_alloc(zram->disk->first_minor, disksize); 810 if (!meta) 811 return -ENOMEM; 812 813 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 814 if (IS_ERR(comp)) { 815 pr_info("Cannot initialise %s compressing backend\n", 816 zram->compressor); 817 err = PTR_ERR(comp); 818 goto out_free_meta; 819 } 820 821 down_write(&zram->init_lock); 822 if (init_done(zram)) { 823 pr_info("Cannot change disksize for initialized device\n"); 824 err = -EBUSY; 825 goto out_destroy_comp; 826 } 827 828 init_waitqueue_head(&zram->io_done); 829 atomic_set(&zram->refcount, 1); 830 zram->meta = meta; 831 zram->comp = comp; 832 zram->disksize = disksize; 833 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 834 up_write(&zram->init_lock); 835 836 /* 837 * Revalidate disk out of the init_lock to avoid lockdep splat. 838 * It's okay because disk's capacity is protected by init_lock 839 * so that revalidate_disk always sees up-to-date capacity. 840 */ 841 revalidate_disk(zram->disk); 842 843 return len; 844 845 out_destroy_comp: 846 up_write(&zram->init_lock); 847 zcomp_destroy(comp); 848 out_free_meta: 849 zram_meta_free(meta, disksize); 850 return err; 851 } 852 853 static ssize_t reset_store(struct device *dev, 854 struct device_attribute *attr, const char *buf, size_t len) 855 { 856 int ret; 857 unsigned short do_reset; 858 struct zram *zram; 859 struct block_device *bdev; 860 861 zram = dev_to_zram(dev); 862 bdev = bdget_disk(zram->disk, 0); 863 864 if (!bdev) 865 return -ENOMEM; 866 867 mutex_lock(&bdev->bd_mutex); 868 /* Do not reset an active device! */ 869 if (bdev->bd_openers) { 870 ret = -EBUSY; 871 goto out; 872 } 873 874 ret = kstrtou16(buf, 10, &do_reset); 875 if (ret) 876 goto out; 877 878 if (!do_reset) { 879 ret = -EINVAL; 880 goto out; 881 } 882 883 /* Make sure all pending I/O is finished */ 884 fsync_bdev(bdev); 885 zram_reset_device(zram); 886 887 mutex_unlock(&bdev->bd_mutex); 888 revalidate_disk(zram->disk); 889 bdput(bdev); 890 891 return len; 892 893 out: 894 mutex_unlock(&bdev->bd_mutex); 895 bdput(bdev); 896 return ret; 897 } 898 899 static void __zram_make_request(struct zram *zram, struct bio *bio) 900 { 901 int offset, rw; 902 u32 index; 903 struct bio_vec bvec; 904 struct bvec_iter iter; 905 906 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 907 offset = (bio->bi_iter.bi_sector & 908 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 909 910 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 911 zram_bio_discard(zram, index, offset, bio); 912 bio_endio(bio, 0); 913 return; 914 } 915 916 rw = bio_data_dir(bio); 917 bio_for_each_segment(bvec, bio, iter) { 918 int max_transfer_size = PAGE_SIZE - offset; 919 920 if (bvec.bv_len > max_transfer_size) { 921 /* 922 * zram_bvec_rw() can only make operation on a single 923 * zram page. Split the bio vector. 924 */ 925 struct bio_vec bv; 926 927 bv.bv_page = bvec.bv_page; 928 bv.bv_len = max_transfer_size; 929 bv.bv_offset = bvec.bv_offset; 930 931 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0) 932 goto out; 933 934 bv.bv_len = bvec.bv_len - max_transfer_size; 935 bv.bv_offset += max_transfer_size; 936 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0) 937 goto out; 938 } else 939 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0) 940 goto out; 941 942 update_position(&index, &offset, &bvec); 943 } 944 945 set_bit(BIO_UPTODATE, &bio->bi_flags); 946 bio_endio(bio, 0); 947 return; 948 949 out: 950 bio_io_error(bio); 951 } 952 953 /* 954 * Handler function for all zram I/O requests. 955 */ 956 static void zram_make_request(struct request_queue *queue, struct bio *bio) 957 { 958 struct zram *zram = queue->queuedata; 959 960 if (unlikely(!zram_meta_get(zram))) 961 goto error; 962 963 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 964 bio->bi_iter.bi_size)) { 965 atomic64_inc(&zram->stats.invalid_io); 966 goto put_zram; 967 } 968 969 __zram_make_request(zram, bio); 970 zram_meta_put(zram); 971 return; 972 put_zram: 973 zram_meta_put(zram); 974 error: 975 bio_io_error(bio); 976 } 977 978 static void zram_slot_free_notify(struct block_device *bdev, 979 unsigned long index) 980 { 981 struct zram *zram; 982 struct zram_meta *meta; 983 984 zram = bdev->bd_disk->private_data; 985 meta = zram->meta; 986 987 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 988 zram_free_page(zram, index); 989 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 990 atomic64_inc(&zram->stats.notify_free); 991 } 992 993 static int zram_rw_page(struct block_device *bdev, sector_t sector, 994 struct page *page, int rw) 995 { 996 int offset, err = -EIO; 997 u32 index; 998 struct zram *zram; 999 struct bio_vec bv; 1000 1001 zram = bdev->bd_disk->private_data; 1002 if (unlikely(!zram_meta_get(zram))) 1003 goto out; 1004 1005 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1006 atomic64_inc(&zram->stats.invalid_io); 1007 err = -EINVAL; 1008 goto put_zram; 1009 } 1010 1011 index = sector >> SECTORS_PER_PAGE_SHIFT; 1012 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; 1013 1014 bv.bv_page = page; 1015 bv.bv_len = PAGE_SIZE; 1016 bv.bv_offset = 0; 1017 1018 err = zram_bvec_rw(zram, &bv, index, offset, rw); 1019 put_zram: 1020 zram_meta_put(zram); 1021 out: 1022 /* 1023 * If I/O fails, just return error(ie, non-zero) without 1024 * calling page_endio. 1025 * It causes resubmit the I/O with bio request by upper functions 1026 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1027 * bio->bi_end_io does things to handle the error 1028 * (e.g., SetPageError, set_page_dirty and extra works). 1029 */ 1030 if (err == 0) 1031 page_endio(page, rw, 0); 1032 return err; 1033 } 1034 1035 static const struct block_device_operations zram_devops = { 1036 .swap_slot_free_notify = zram_slot_free_notify, 1037 .rw_page = zram_rw_page, 1038 .owner = THIS_MODULE 1039 }; 1040 1041 static DEVICE_ATTR_RW(disksize); 1042 static DEVICE_ATTR_RO(initstate); 1043 static DEVICE_ATTR_WO(reset); 1044 static DEVICE_ATTR_RO(orig_data_size); 1045 static DEVICE_ATTR_RO(mem_used_total); 1046 static DEVICE_ATTR_RW(mem_limit); 1047 static DEVICE_ATTR_RW(mem_used_max); 1048 static DEVICE_ATTR_RW(max_comp_streams); 1049 static DEVICE_ATTR_RW(comp_algorithm); 1050 1051 static ssize_t io_stat_show(struct device *dev, 1052 struct device_attribute *attr, char *buf) 1053 { 1054 struct zram *zram = dev_to_zram(dev); 1055 ssize_t ret; 1056 1057 down_read(&zram->init_lock); 1058 ret = scnprintf(buf, PAGE_SIZE, 1059 "%8llu %8llu %8llu %8llu\n", 1060 (u64)atomic64_read(&zram->stats.failed_reads), 1061 (u64)atomic64_read(&zram->stats.failed_writes), 1062 (u64)atomic64_read(&zram->stats.invalid_io), 1063 (u64)atomic64_read(&zram->stats.notify_free)); 1064 up_read(&zram->init_lock); 1065 1066 return ret; 1067 } 1068 1069 static ssize_t mm_stat_show(struct device *dev, 1070 struct device_attribute *attr, char *buf) 1071 { 1072 struct zram *zram = dev_to_zram(dev); 1073 u64 orig_size, mem_used = 0; 1074 long max_used; 1075 ssize_t ret; 1076 1077 down_read(&zram->init_lock); 1078 if (init_done(zram)) 1079 mem_used = zs_get_total_pages(zram->meta->mem_pool); 1080 1081 orig_size = atomic64_read(&zram->stats.pages_stored); 1082 max_used = atomic_long_read(&zram->stats.max_used_pages); 1083 1084 ret = scnprintf(buf, PAGE_SIZE, 1085 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n", 1086 orig_size << PAGE_SHIFT, 1087 (u64)atomic64_read(&zram->stats.compr_data_size), 1088 mem_used << PAGE_SHIFT, 1089 zram->limit_pages << PAGE_SHIFT, 1090 max_used << PAGE_SHIFT, 1091 (u64)atomic64_read(&zram->stats.zero_pages), 1092 (u64)atomic64_read(&zram->stats.num_migrated)); 1093 up_read(&zram->init_lock); 1094 1095 return ret; 1096 } 1097 1098 static DEVICE_ATTR_RO(io_stat); 1099 static DEVICE_ATTR_RO(mm_stat); 1100 ZRAM_ATTR_RO(num_reads); 1101 ZRAM_ATTR_RO(num_writes); 1102 ZRAM_ATTR_RO(failed_reads); 1103 ZRAM_ATTR_RO(failed_writes); 1104 ZRAM_ATTR_RO(invalid_io); 1105 ZRAM_ATTR_RO(notify_free); 1106 ZRAM_ATTR_RO(zero_pages); 1107 ZRAM_ATTR_RO(compr_data_size); 1108 1109 static struct attribute *zram_disk_attrs[] = { 1110 &dev_attr_disksize.attr, 1111 &dev_attr_initstate.attr, 1112 &dev_attr_reset.attr, 1113 &dev_attr_num_reads.attr, 1114 &dev_attr_num_writes.attr, 1115 &dev_attr_failed_reads.attr, 1116 &dev_attr_failed_writes.attr, 1117 &dev_attr_invalid_io.attr, 1118 &dev_attr_notify_free.attr, 1119 &dev_attr_zero_pages.attr, 1120 &dev_attr_orig_data_size.attr, 1121 &dev_attr_compr_data_size.attr, 1122 &dev_attr_mem_used_total.attr, 1123 &dev_attr_mem_limit.attr, 1124 &dev_attr_mem_used_max.attr, 1125 &dev_attr_max_comp_streams.attr, 1126 &dev_attr_comp_algorithm.attr, 1127 &dev_attr_io_stat.attr, 1128 &dev_attr_mm_stat.attr, 1129 NULL, 1130 }; 1131 1132 static struct attribute_group zram_disk_attr_group = { 1133 .attrs = zram_disk_attrs, 1134 }; 1135 1136 static int create_device(struct zram *zram, int device_id) 1137 { 1138 struct request_queue *queue; 1139 int ret = -ENOMEM; 1140 1141 init_rwsem(&zram->init_lock); 1142 1143 queue = blk_alloc_queue(GFP_KERNEL); 1144 if (!queue) { 1145 pr_err("Error allocating disk queue for device %d\n", 1146 device_id); 1147 goto out; 1148 } 1149 1150 blk_queue_make_request(queue, zram_make_request); 1151 1152 /* gendisk structure */ 1153 zram->disk = alloc_disk(1); 1154 if (!zram->disk) { 1155 pr_warn("Error allocating disk structure for device %d\n", 1156 device_id); 1157 ret = -ENOMEM; 1158 goto out_free_queue; 1159 } 1160 1161 zram->disk->major = zram_major; 1162 zram->disk->first_minor = device_id; 1163 zram->disk->fops = &zram_devops; 1164 zram->disk->queue = queue; 1165 zram->disk->queue->queuedata = zram; 1166 zram->disk->private_data = zram; 1167 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1168 1169 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1170 set_capacity(zram->disk, 0); 1171 /* zram devices sort of resembles non-rotational disks */ 1172 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1173 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1174 /* 1175 * To ensure that we always get PAGE_SIZE aligned 1176 * and n*PAGE_SIZED sized I/O requests. 1177 */ 1178 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1179 blk_queue_logical_block_size(zram->disk->queue, 1180 ZRAM_LOGICAL_BLOCK_SIZE); 1181 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1182 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1183 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1184 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 1185 /* 1186 * zram_bio_discard() will clear all logical blocks if logical block 1187 * size is identical with physical block size(PAGE_SIZE). But if it is 1188 * different, we will skip discarding some parts of logical blocks in 1189 * the part of the request range which isn't aligned to physical block 1190 * size. So we can't ensure that all discarded logical blocks are 1191 * zeroed. 1192 */ 1193 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1194 zram->disk->queue->limits.discard_zeroes_data = 1; 1195 else 1196 zram->disk->queue->limits.discard_zeroes_data = 0; 1197 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1198 1199 add_disk(zram->disk); 1200 1201 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1202 &zram_disk_attr_group); 1203 if (ret < 0) { 1204 pr_warn("Error creating sysfs group"); 1205 goto out_free_disk; 1206 } 1207 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1208 zram->meta = NULL; 1209 zram->max_comp_streams = 1; 1210 return 0; 1211 1212 out_free_disk: 1213 del_gendisk(zram->disk); 1214 put_disk(zram->disk); 1215 out_free_queue: 1216 blk_cleanup_queue(queue); 1217 out: 1218 return ret; 1219 } 1220 1221 static void destroy_devices(unsigned int nr) 1222 { 1223 struct zram *zram; 1224 unsigned int i; 1225 1226 for (i = 0; i < nr; i++) { 1227 zram = &zram_devices[i]; 1228 /* 1229 * Remove sysfs first, so no one will perform a disksize 1230 * store while we destroy the devices 1231 */ 1232 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1233 &zram_disk_attr_group); 1234 1235 zram_reset_device(zram); 1236 1237 blk_cleanup_queue(zram->disk->queue); 1238 del_gendisk(zram->disk); 1239 put_disk(zram->disk); 1240 } 1241 1242 kfree(zram_devices); 1243 unregister_blkdev(zram_major, "zram"); 1244 pr_info("Destroyed %u device(s)\n", nr); 1245 } 1246 1247 static int __init zram_init(void) 1248 { 1249 int ret, dev_id; 1250 1251 if (num_devices > max_num_devices) { 1252 pr_warn("Invalid value for num_devices: %u\n", 1253 num_devices); 1254 return -EINVAL; 1255 } 1256 1257 zram_major = register_blkdev(0, "zram"); 1258 if (zram_major <= 0) { 1259 pr_warn("Unable to get major number\n"); 1260 return -EBUSY; 1261 } 1262 1263 /* Allocate the device array and initialize each one */ 1264 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL); 1265 if (!zram_devices) { 1266 unregister_blkdev(zram_major, "zram"); 1267 return -ENOMEM; 1268 } 1269 1270 for (dev_id = 0; dev_id < num_devices; dev_id++) { 1271 ret = create_device(&zram_devices[dev_id], dev_id); 1272 if (ret) 1273 goto out_error; 1274 } 1275 1276 pr_info("Created %u device(s)\n", num_devices); 1277 return 0; 1278 1279 out_error: 1280 destroy_devices(dev_id); 1281 return ret; 1282 } 1283 1284 static void __exit zram_exit(void) 1285 { 1286 destroy_devices(num_devices); 1287 } 1288 1289 module_init(zram_init); 1290 module_exit(zram_exit); 1291 1292 module_param(num_devices, uint, 0); 1293 MODULE_PARM_DESC(num_devices, "Number of zram devices"); 1294 1295 MODULE_LICENSE("Dual BSD/GPL"); 1296 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1297 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1298