xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 0da85d1e)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 			task_pid_nr(current),
50 			current->comm,
51 			name,
52 			"See zram documentation.");
53 }
54 
55 #define ZRAM_ATTR_RO(name)						\
56 static ssize_t name##_show(struct device *d,		\
57 				struct device_attribute *attr, char *b)	\
58 {									\
59 	struct zram *zram = dev_to_zram(d);				\
60 									\
61 	deprecated_attr_warn(__stringify(name));			\
62 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 		(u64)atomic64_read(&zram->stats.name));			\
64 }									\
65 static DEVICE_ATTR_RO(name);
66 
67 static inline bool init_done(struct zram *zram)
68 {
69 	return zram->disksize;
70 }
71 
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 	return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76 
77 static ssize_t disksize_show(struct device *dev,
78 		struct device_attribute *attr, char *buf)
79 {
80 	struct zram *zram = dev_to_zram(dev);
81 
82 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
83 }
84 
85 static ssize_t initstate_show(struct device *dev,
86 		struct device_attribute *attr, char *buf)
87 {
88 	u32 val;
89 	struct zram *zram = dev_to_zram(dev);
90 
91 	down_read(&zram->init_lock);
92 	val = init_done(zram);
93 	up_read(&zram->init_lock);
94 
95 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
96 }
97 
98 static ssize_t orig_data_size_show(struct device *dev,
99 		struct device_attribute *attr, char *buf)
100 {
101 	struct zram *zram = dev_to_zram(dev);
102 
103 	deprecated_attr_warn("orig_data_size");
104 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
105 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
106 }
107 
108 static ssize_t mem_used_total_show(struct device *dev,
109 		struct device_attribute *attr, char *buf)
110 {
111 	u64 val = 0;
112 	struct zram *zram = dev_to_zram(dev);
113 
114 	deprecated_attr_warn("mem_used_total");
115 	down_read(&zram->init_lock);
116 	if (init_done(zram)) {
117 		struct zram_meta *meta = zram->meta;
118 		val = zs_get_total_pages(meta->mem_pool);
119 	}
120 	up_read(&zram->init_lock);
121 
122 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
123 }
124 
125 static ssize_t max_comp_streams_show(struct device *dev,
126 		struct device_attribute *attr, char *buf)
127 {
128 	int val;
129 	struct zram *zram = dev_to_zram(dev);
130 
131 	down_read(&zram->init_lock);
132 	val = zram->max_comp_streams;
133 	up_read(&zram->init_lock);
134 
135 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
136 }
137 
138 static ssize_t mem_limit_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	u64 val;
142 	struct zram *zram = dev_to_zram(dev);
143 
144 	deprecated_attr_warn("mem_limit");
145 	down_read(&zram->init_lock);
146 	val = zram->limit_pages;
147 	up_read(&zram->init_lock);
148 
149 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
150 }
151 
152 static ssize_t mem_limit_store(struct device *dev,
153 		struct device_attribute *attr, const char *buf, size_t len)
154 {
155 	u64 limit;
156 	char *tmp;
157 	struct zram *zram = dev_to_zram(dev);
158 
159 	limit = memparse(buf, &tmp);
160 	if (buf == tmp) /* no chars parsed, invalid input */
161 		return -EINVAL;
162 
163 	down_write(&zram->init_lock);
164 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
165 	up_write(&zram->init_lock);
166 
167 	return len;
168 }
169 
170 static ssize_t mem_used_max_show(struct device *dev,
171 		struct device_attribute *attr, char *buf)
172 {
173 	u64 val = 0;
174 	struct zram *zram = dev_to_zram(dev);
175 
176 	deprecated_attr_warn("mem_used_max");
177 	down_read(&zram->init_lock);
178 	if (init_done(zram))
179 		val = atomic_long_read(&zram->stats.max_used_pages);
180 	up_read(&zram->init_lock);
181 
182 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
183 }
184 
185 static ssize_t mem_used_max_store(struct device *dev,
186 		struct device_attribute *attr, const char *buf, size_t len)
187 {
188 	int err;
189 	unsigned long val;
190 	struct zram *zram = dev_to_zram(dev);
191 
192 	err = kstrtoul(buf, 10, &val);
193 	if (err || val != 0)
194 		return -EINVAL;
195 
196 	down_read(&zram->init_lock);
197 	if (init_done(zram)) {
198 		struct zram_meta *meta = zram->meta;
199 		atomic_long_set(&zram->stats.max_used_pages,
200 				zs_get_total_pages(meta->mem_pool));
201 	}
202 	up_read(&zram->init_lock);
203 
204 	return len;
205 }
206 
207 static ssize_t max_comp_streams_store(struct device *dev,
208 		struct device_attribute *attr, const char *buf, size_t len)
209 {
210 	int num;
211 	struct zram *zram = dev_to_zram(dev);
212 	int ret;
213 
214 	ret = kstrtoint(buf, 0, &num);
215 	if (ret < 0)
216 		return ret;
217 	if (num < 1)
218 		return -EINVAL;
219 
220 	down_write(&zram->init_lock);
221 	if (init_done(zram)) {
222 		if (!zcomp_set_max_streams(zram->comp, num)) {
223 			pr_info("Cannot change max compression streams\n");
224 			ret = -EINVAL;
225 			goto out;
226 		}
227 	}
228 
229 	zram->max_comp_streams = num;
230 	ret = len;
231 out:
232 	up_write(&zram->init_lock);
233 	return ret;
234 }
235 
236 static ssize_t comp_algorithm_show(struct device *dev,
237 		struct device_attribute *attr, char *buf)
238 {
239 	size_t sz;
240 	struct zram *zram = dev_to_zram(dev);
241 
242 	down_read(&zram->init_lock);
243 	sz = zcomp_available_show(zram->compressor, buf);
244 	up_read(&zram->init_lock);
245 
246 	return sz;
247 }
248 
249 static ssize_t comp_algorithm_store(struct device *dev,
250 		struct device_attribute *attr, const char *buf, size_t len)
251 {
252 	struct zram *zram = dev_to_zram(dev);
253 	down_write(&zram->init_lock);
254 	if (init_done(zram)) {
255 		up_write(&zram->init_lock);
256 		pr_info("Can't change algorithm for initialized device\n");
257 		return -EBUSY;
258 	}
259 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
260 	up_write(&zram->init_lock);
261 	return len;
262 }
263 
264 /* flag operations needs meta->tb_lock */
265 static int zram_test_flag(struct zram_meta *meta, u32 index,
266 			enum zram_pageflags flag)
267 {
268 	return meta->table[index].value & BIT(flag);
269 }
270 
271 static void zram_set_flag(struct zram_meta *meta, u32 index,
272 			enum zram_pageflags flag)
273 {
274 	meta->table[index].value |= BIT(flag);
275 }
276 
277 static void zram_clear_flag(struct zram_meta *meta, u32 index,
278 			enum zram_pageflags flag)
279 {
280 	meta->table[index].value &= ~BIT(flag);
281 }
282 
283 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
284 {
285 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
286 }
287 
288 static void zram_set_obj_size(struct zram_meta *meta,
289 					u32 index, size_t size)
290 {
291 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
292 
293 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
294 }
295 
296 static inline int is_partial_io(struct bio_vec *bvec)
297 {
298 	return bvec->bv_len != PAGE_SIZE;
299 }
300 
301 /*
302  * Check if request is within bounds and aligned on zram logical blocks.
303  */
304 static inline int valid_io_request(struct zram *zram,
305 		sector_t start, unsigned int size)
306 {
307 	u64 end, bound;
308 
309 	/* unaligned request */
310 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
311 		return 0;
312 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
313 		return 0;
314 
315 	end = start + (size >> SECTOR_SHIFT);
316 	bound = zram->disksize >> SECTOR_SHIFT;
317 	/* out of range range */
318 	if (unlikely(start >= bound || end > bound || start > end))
319 		return 0;
320 
321 	/* I/O request is valid */
322 	return 1;
323 }
324 
325 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
326 {
327 	size_t num_pages = disksize >> PAGE_SHIFT;
328 	size_t index;
329 
330 	/* Free all pages that are still in this zram device */
331 	for (index = 0; index < num_pages; index++) {
332 		unsigned long handle = meta->table[index].handle;
333 
334 		if (!handle)
335 			continue;
336 
337 		zs_free(meta->mem_pool, handle);
338 	}
339 
340 	zs_destroy_pool(meta->mem_pool);
341 	vfree(meta->table);
342 	kfree(meta);
343 }
344 
345 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
346 {
347 	size_t num_pages;
348 	char pool_name[8];
349 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
350 
351 	if (!meta)
352 		return NULL;
353 
354 	num_pages = disksize >> PAGE_SHIFT;
355 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
356 	if (!meta->table) {
357 		pr_err("Error allocating zram address table\n");
358 		goto out_error;
359 	}
360 
361 	snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
362 	meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
363 	if (!meta->mem_pool) {
364 		pr_err("Error creating memory pool\n");
365 		goto out_error;
366 	}
367 
368 	return meta;
369 
370 out_error:
371 	vfree(meta->table);
372 	kfree(meta);
373 	return NULL;
374 }
375 
376 static inline bool zram_meta_get(struct zram *zram)
377 {
378 	if (atomic_inc_not_zero(&zram->refcount))
379 		return true;
380 	return false;
381 }
382 
383 static inline void zram_meta_put(struct zram *zram)
384 {
385 	atomic_dec(&zram->refcount);
386 }
387 
388 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
389 {
390 	if (*offset + bvec->bv_len >= PAGE_SIZE)
391 		(*index)++;
392 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
393 }
394 
395 static int page_zero_filled(void *ptr)
396 {
397 	unsigned int pos;
398 	unsigned long *page;
399 
400 	page = (unsigned long *)ptr;
401 
402 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
403 		if (page[pos])
404 			return 0;
405 	}
406 
407 	return 1;
408 }
409 
410 static void handle_zero_page(struct bio_vec *bvec)
411 {
412 	struct page *page = bvec->bv_page;
413 	void *user_mem;
414 
415 	user_mem = kmap_atomic(page);
416 	if (is_partial_io(bvec))
417 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
418 	else
419 		clear_page(user_mem);
420 	kunmap_atomic(user_mem);
421 
422 	flush_dcache_page(page);
423 }
424 
425 
426 /*
427  * To protect concurrent access to the same index entry,
428  * caller should hold this table index entry's bit_spinlock to
429  * indicate this index entry is accessing.
430  */
431 static void zram_free_page(struct zram *zram, size_t index)
432 {
433 	struct zram_meta *meta = zram->meta;
434 	unsigned long handle = meta->table[index].handle;
435 
436 	if (unlikely(!handle)) {
437 		/*
438 		 * No memory is allocated for zero filled pages.
439 		 * Simply clear zero page flag.
440 		 */
441 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
442 			zram_clear_flag(meta, index, ZRAM_ZERO);
443 			atomic64_dec(&zram->stats.zero_pages);
444 		}
445 		return;
446 	}
447 
448 	zs_free(meta->mem_pool, handle);
449 
450 	atomic64_sub(zram_get_obj_size(meta, index),
451 			&zram->stats.compr_data_size);
452 	atomic64_dec(&zram->stats.pages_stored);
453 
454 	meta->table[index].handle = 0;
455 	zram_set_obj_size(meta, index, 0);
456 }
457 
458 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
459 {
460 	int ret = 0;
461 	unsigned char *cmem;
462 	struct zram_meta *meta = zram->meta;
463 	unsigned long handle;
464 	size_t size;
465 
466 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
467 	handle = meta->table[index].handle;
468 	size = zram_get_obj_size(meta, index);
469 
470 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
471 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
472 		clear_page(mem);
473 		return 0;
474 	}
475 
476 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
477 	if (size == PAGE_SIZE)
478 		copy_page(mem, cmem);
479 	else
480 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
481 	zs_unmap_object(meta->mem_pool, handle);
482 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
483 
484 	/* Should NEVER happen. Return bio error if it does. */
485 	if (unlikely(ret)) {
486 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
487 		return ret;
488 	}
489 
490 	return 0;
491 }
492 
493 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
494 			  u32 index, int offset)
495 {
496 	int ret;
497 	struct page *page;
498 	unsigned char *user_mem, *uncmem = NULL;
499 	struct zram_meta *meta = zram->meta;
500 	page = bvec->bv_page;
501 
502 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
503 	if (unlikely(!meta->table[index].handle) ||
504 			zram_test_flag(meta, index, ZRAM_ZERO)) {
505 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
506 		handle_zero_page(bvec);
507 		return 0;
508 	}
509 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
510 
511 	if (is_partial_io(bvec))
512 		/* Use  a temporary buffer to decompress the page */
513 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
514 
515 	user_mem = kmap_atomic(page);
516 	if (!is_partial_io(bvec))
517 		uncmem = user_mem;
518 
519 	if (!uncmem) {
520 		pr_info("Unable to allocate temp memory\n");
521 		ret = -ENOMEM;
522 		goto out_cleanup;
523 	}
524 
525 	ret = zram_decompress_page(zram, uncmem, index);
526 	/* Should NEVER happen. Return bio error if it does. */
527 	if (unlikely(ret))
528 		goto out_cleanup;
529 
530 	if (is_partial_io(bvec))
531 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
532 				bvec->bv_len);
533 
534 	flush_dcache_page(page);
535 	ret = 0;
536 out_cleanup:
537 	kunmap_atomic(user_mem);
538 	if (is_partial_io(bvec))
539 		kfree(uncmem);
540 	return ret;
541 }
542 
543 static inline void update_used_max(struct zram *zram,
544 					const unsigned long pages)
545 {
546 	unsigned long old_max, cur_max;
547 
548 	old_max = atomic_long_read(&zram->stats.max_used_pages);
549 
550 	do {
551 		cur_max = old_max;
552 		if (pages > cur_max)
553 			old_max = atomic_long_cmpxchg(
554 				&zram->stats.max_used_pages, cur_max, pages);
555 	} while (old_max != cur_max);
556 }
557 
558 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
559 			   int offset)
560 {
561 	int ret = 0;
562 	size_t clen;
563 	unsigned long handle;
564 	struct page *page;
565 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
566 	struct zram_meta *meta = zram->meta;
567 	struct zcomp_strm *zstrm;
568 	bool locked = false;
569 	unsigned long alloced_pages;
570 
571 	page = bvec->bv_page;
572 	if (is_partial_io(bvec)) {
573 		/*
574 		 * This is a partial IO. We need to read the full page
575 		 * before to write the changes.
576 		 */
577 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
578 		if (!uncmem) {
579 			ret = -ENOMEM;
580 			goto out;
581 		}
582 		ret = zram_decompress_page(zram, uncmem, index);
583 		if (ret)
584 			goto out;
585 	}
586 
587 	zstrm = zcomp_strm_find(zram->comp);
588 	locked = true;
589 	user_mem = kmap_atomic(page);
590 
591 	if (is_partial_io(bvec)) {
592 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
593 		       bvec->bv_len);
594 		kunmap_atomic(user_mem);
595 		user_mem = NULL;
596 	} else {
597 		uncmem = user_mem;
598 	}
599 
600 	if (page_zero_filled(uncmem)) {
601 		if (user_mem)
602 			kunmap_atomic(user_mem);
603 		/* Free memory associated with this sector now. */
604 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
605 		zram_free_page(zram, index);
606 		zram_set_flag(meta, index, ZRAM_ZERO);
607 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
608 
609 		atomic64_inc(&zram->stats.zero_pages);
610 		ret = 0;
611 		goto out;
612 	}
613 
614 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
615 	if (!is_partial_io(bvec)) {
616 		kunmap_atomic(user_mem);
617 		user_mem = NULL;
618 		uncmem = NULL;
619 	}
620 
621 	if (unlikely(ret)) {
622 		pr_err("Compression failed! err=%d\n", ret);
623 		goto out;
624 	}
625 	src = zstrm->buffer;
626 	if (unlikely(clen > max_zpage_size)) {
627 		clen = PAGE_SIZE;
628 		if (is_partial_io(bvec))
629 			src = uncmem;
630 	}
631 
632 	handle = zs_malloc(meta->mem_pool, clen);
633 	if (!handle) {
634 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
635 			index, clen);
636 		ret = -ENOMEM;
637 		goto out;
638 	}
639 
640 	alloced_pages = zs_get_total_pages(meta->mem_pool);
641 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
642 		zs_free(meta->mem_pool, handle);
643 		ret = -ENOMEM;
644 		goto out;
645 	}
646 
647 	update_used_max(zram, alloced_pages);
648 
649 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
650 
651 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
652 		src = kmap_atomic(page);
653 		copy_page(cmem, src);
654 		kunmap_atomic(src);
655 	} else {
656 		memcpy(cmem, src, clen);
657 	}
658 
659 	zcomp_strm_release(zram->comp, zstrm);
660 	locked = false;
661 	zs_unmap_object(meta->mem_pool, handle);
662 
663 	/*
664 	 * Free memory associated with this sector
665 	 * before overwriting unused sectors.
666 	 */
667 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
668 	zram_free_page(zram, index);
669 
670 	meta->table[index].handle = handle;
671 	zram_set_obj_size(meta, index, clen);
672 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
673 
674 	/* Update stats */
675 	atomic64_add(clen, &zram->stats.compr_data_size);
676 	atomic64_inc(&zram->stats.pages_stored);
677 out:
678 	if (locked)
679 		zcomp_strm_release(zram->comp, zstrm);
680 	if (is_partial_io(bvec))
681 		kfree(uncmem);
682 	return ret;
683 }
684 
685 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
686 			int offset, int rw)
687 {
688 	unsigned long start_time = jiffies;
689 	int ret;
690 
691 	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
692 			&zram->disk->part0);
693 
694 	if (rw == READ) {
695 		atomic64_inc(&zram->stats.num_reads);
696 		ret = zram_bvec_read(zram, bvec, index, offset);
697 	} else {
698 		atomic64_inc(&zram->stats.num_writes);
699 		ret = zram_bvec_write(zram, bvec, index, offset);
700 	}
701 
702 	generic_end_io_acct(rw, &zram->disk->part0, start_time);
703 
704 	if (unlikely(ret)) {
705 		if (rw == READ)
706 			atomic64_inc(&zram->stats.failed_reads);
707 		else
708 			atomic64_inc(&zram->stats.failed_writes);
709 	}
710 
711 	return ret;
712 }
713 
714 /*
715  * zram_bio_discard - handler on discard request
716  * @index: physical block index in PAGE_SIZE units
717  * @offset: byte offset within physical block
718  */
719 static void zram_bio_discard(struct zram *zram, u32 index,
720 			     int offset, struct bio *bio)
721 {
722 	size_t n = bio->bi_iter.bi_size;
723 	struct zram_meta *meta = zram->meta;
724 
725 	/*
726 	 * zram manages data in physical block size units. Because logical block
727 	 * size isn't identical with physical block size on some arch, we
728 	 * could get a discard request pointing to a specific offset within a
729 	 * certain physical block.  Although we can handle this request by
730 	 * reading that physiclal block and decompressing and partially zeroing
731 	 * and re-compressing and then re-storing it, this isn't reasonable
732 	 * because our intent with a discard request is to save memory.  So
733 	 * skipping this logical block is appropriate here.
734 	 */
735 	if (offset) {
736 		if (n <= (PAGE_SIZE - offset))
737 			return;
738 
739 		n -= (PAGE_SIZE - offset);
740 		index++;
741 	}
742 
743 	while (n >= PAGE_SIZE) {
744 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
745 		zram_free_page(zram, index);
746 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
747 		atomic64_inc(&zram->stats.notify_free);
748 		index++;
749 		n -= PAGE_SIZE;
750 	}
751 }
752 
753 static void zram_reset_device(struct zram *zram)
754 {
755 	struct zram_meta *meta;
756 	struct zcomp *comp;
757 	u64 disksize;
758 
759 	down_write(&zram->init_lock);
760 
761 	zram->limit_pages = 0;
762 
763 	if (!init_done(zram)) {
764 		up_write(&zram->init_lock);
765 		return;
766 	}
767 
768 	meta = zram->meta;
769 	comp = zram->comp;
770 	disksize = zram->disksize;
771 	/*
772 	 * Refcount will go down to 0 eventually and r/w handler
773 	 * cannot handle further I/O so it will bail out by
774 	 * check zram_meta_get.
775 	 */
776 	zram_meta_put(zram);
777 	/*
778 	 * We want to free zram_meta in process context to avoid
779 	 * deadlock between reclaim path and any other locks.
780 	 */
781 	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
782 
783 	/* Reset stats */
784 	memset(&zram->stats, 0, sizeof(zram->stats));
785 	zram->disksize = 0;
786 	zram->max_comp_streams = 1;
787 	set_capacity(zram->disk, 0);
788 
789 	up_write(&zram->init_lock);
790 	/* I/O operation under all of CPU are done so let's free */
791 	zram_meta_free(meta, disksize);
792 	zcomp_destroy(comp);
793 }
794 
795 static ssize_t disksize_store(struct device *dev,
796 		struct device_attribute *attr, const char *buf, size_t len)
797 {
798 	u64 disksize;
799 	struct zcomp *comp;
800 	struct zram_meta *meta;
801 	struct zram *zram = dev_to_zram(dev);
802 	int err;
803 
804 	disksize = memparse(buf, NULL);
805 	if (!disksize)
806 		return -EINVAL;
807 
808 	disksize = PAGE_ALIGN(disksize);
809 	meta = zram_meta_alloc(zram->disk->first_minor, disksize);
810 	if (!meta)
811 		return -ENOMEM;
812 
813 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
814 	if (IS_ERR(comp)) {
815 		pr_info("Cannot initialise %s compressing backend\n",
816 				zram->compressor);
817 		err = PTR_ERR(comp);
818 		goto out_free_meta;
819 	}
820 
821 	down_write(&zram->init_lock);
822 	if (init_done(zram)) {
823 		pr_info("Cannot change disksize for initialized device\n");
824 		err = -EBUSY;
825 		goto out_destroy_comp;
826 	}
827 
828 	init_waitqueue_head(&zram->io_done);
829 	atomic_set(&zram->refcount, 1);
830 	zram->meta = meta;
831 	zram->comp = comp;
832 	zram->disksize = disksize;
833 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
834 	up_write(&zram->init_lock);
835 
836 	/*
837 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
838 	 * It's okay because disk's capacity is protected by init_lock
839 	 * so that revalidate_disk always sees up-to-date capacity.
840 	 */
841 	revalidate_disk(zram->disk);
842 
843 	return len;
844 
845 out_destroy_comp:
846 	up_write(&zram->init_lock);
847 	zcomp_destroy(comp);
848 out_free_meta:
849 	zram_meta_free(meta, disksize);
850 	return err;
851 }
852 
853 static ssize_t reset_store(struct device *dev,
854 		struct device_attribute *attr, const char *buf, size_t len)
855 {
856 	int ret;
857 	unsigned short do_reset;
858 	struct zram *zram;
859 	struct block_device *bdev;
860 
861 	zram = dev_to_zram(dev);
862 	bdev = bdget_disk(zram->disk, 0);
863 
864 	if (!bdev)
865 		return -ENOMEM;
866 
867 	mutex_lock(&bdev->bd_mutex);
868 	/* Do not reset an active device! */
869 	if (bdev->bd_openers) {
870 		ret = -EBUSY;
871 		goto out;
872 	}
873 
874 	ret = kstrtou16(buf, 10, &do_reset);
875 	if (ret)
876 		goto out;
877 
878 	if (!do_reset) {
879 		ret = -EINVAL;
880 		goto out;
881 	}
882 
883 	/* Make sure all pending I/O is finished */
884 	fsync_bdev(bdev);
885 	zram_reset_device(zram);
886 
887 	mutex_unlock(&bdev->bd_mutex);
888 	revalidate_disk(zram->disk);
889 	bdput(bdev);
890 
891 	return len;
892 
893 out:
894 	mutex_unlock(&bdev->bd_mutex);
895 	bdput(bdev);
896 	return ret;
897 }
898 
899 static void __zram_make_request(struct zram *zram, struct bio *bio)
900 {
901 	int offset, rw;
902 	u32 index;
903 	struct bio_vec bvec;
904 	struct bvec_iter iter;
905 
906 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
907 	offset = (bio->bi_iter.bi_sector &
908 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
909 
910 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
911 		zram_bio_discard(zram, index, offset, bio);
912 		bio_endio(bio, 0);
913 		return;
914 	}
915 
916 	rw = bio_data_dir(bio);
917 	bio_for_each_segment(bvec, bio, iter) {
918 		int max_transfer_size = PAGE_SIZE - offset;
919 
920 		if (bvec.bv_len > max_transfer_size) {
921 			/*
922 			 * zram_bvec_rw() can only make operation on a single
923 			 * zram page. Split the bio vector.
924 			 */
925 			struct bio_vec bv;
926 
927 			bv.bv_page = bvec.bv_page;
928 			bv.bv_len = max_transfer_size;
929 			bv.bv_offset = bvec.bv_offset;
930 
931 			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
932 				goto out;
933 
934 			bv.bv_len = bvec.bv_len - max_transfer_size;
935 			bv.bv_offset += max_transfer_size;
936 			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
937 				goto out;
938 		} else
939 			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
940 				goto out;
941 
942 		update_position(&index, &offset, &bvec);
943 	}
944 
945 	set_bit(BIO_UPTODATE, &bio->bi_flags);
946 	bio_endio(bio, 0);
947 	return;
948 
949 out:
950 	bio_io_error(bio);
951 }
952 
953 /*
954  * Handler function for all zram I/O requests.
955  */
956 static void zram_make_request(struct request_queue *queue, struct bio *bio)
957 {
958 	struct zram *zram = queue->queuedata;
959 
960 	if (unlikely(!zram_meta_get(zram)))
961 		goto error;
962 
963 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
964 					bio->bi_iter.bi_size)) {
965 		atomic64_inc(&zram->stats.invalid_io);
966 		goto put_zram;
967 	}
968 
969 	__zram_make_request(zram, bio);
970 	zram_meta_put(zram);
971 	return;
972 put_zram:
973 	zram_meta_put(zram);
974 error:
975 	bio_io_error(bio);
976 }
977 
978 static void zram_slot_free_notify(struct block_device *bdev,
979 				unsigned long index)
980 {
981 	struct zram *zram;
982 	struct zram_meta *meta;
983 
984 	zram = bdev->bd_disk->private_data;
985 	meta = zram->meta;
986 
987 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
988 	zram_free_page(zram, index);
989 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
990 	atomic64_inc(&zram->stats.notify_free);
991 }
992 
993 static int zram_rw_page(struct block_device *bdev, sector_t sector,
994 		       struct page *page, int rw)
995 {
996 	int offset, err = -EIO;
997 	u32 index;
998 	struct zram *zram;
999 	struct bio_vec bv;
1000 
1001 	zram = bdev->bd_disk->private_data;
1002 	if (unlikely(!zram_meta_get(zram)))
1003 		goto out;
1004 
1005 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1006 		atomic64_inc(&zram->stats.invalid_io);
1007 		err = -EINVAL;
1008 		goto put_zram;
1009 	}
1010 
1011 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1012 	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
1013 
1014 	bv.bv_page = page;
1015 	bv.bv_len = PAGE_SIZE;
1016 	bv.bv_offset = 0;
1017 
1018 	err = zram_bvec_rw(zram, &bv, index, offset, rw);
1019 put_zram:
1020 	zram_meta_put(zram);
1021 out:
1022 	/*
1023 	 * If I/O fails, just return error(ie, non-zero) without
1024 	 * calling page_endio.
1025 	 * It causes resubmit the I/O with bio request by upper functions
1026 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1027 	 * bio->bi_end_io does things to handle the error
1028 	 * (e.g., SetPageError, set_page_dirty and extra works).
1029 	 */
1030 	if (err == 0)
1031 		page_endio(page, rw, 0);
1032 	return err;
1033 }
1034 
1035 static const struct block_device_operations zram_devops = {
1036 	.swap_slot_free_notify = zram_slot_free_notify,
1037 	.rw_page = zram_rw_page,
1038 	.owner = THIS_MODULE
1039 };
1040 
1041 static DEVICE_ATTR_RW(disksize);
1042 static DEVICE_ATTR_RO(initstate);
1043 static DEVICE_ATTR_WO(reset);
1044 static DEVICE_ATTR_RO(orig_data_size);
1045 static DEVICE_ATTR_RO(mem_used_total);
1046 static DEVICE_ATTR_RW(mem_limit);
1047 static DEVICE_ATTR_RW(mem_used_max);
1048 static DEVICE_ATTR_RW(max_comp_streams);
1049 static DEVICE_ATTR_RW(comp_algorithm);
1050 
1051 static ssize_t io_stat_show(struct device *dev,
1052 		struct device_attribute *attr, char *buf)
1053 {
1054 	struct zram *zram = dev_to_zram(dev);
1055 	ssize_t ret;
1056 
1057 	down_read(&zram->init_lock);
1058 	ret = scnprintf(buf, PAGE_SIZE,
1059 			"%8llu %8llu %8llu %8llu\n",
1060 			(u64)atomic64_read(&zram->stats.failed_reads),
1061 			(u64)atomic64_read(&zram->stats.failed_writes),
1062 			(u64)atomic64_read(&zram->stats.invalid_io),
1063 			(u64)atomic64_read(&zram->stats.notify_free));
1064 	up_read(&zram->init_lock);
1065 
1066 	return ret;
1067 }
1068 
1069 static ssize_t mm_stat_show(struct device *dev,
1070 		struct device_attribute *attr, char *buf)
1071 {
1072 	struct zram *zram = dev_to_zram(dev);
1073 	u64 orig_size, mem_used = 0;
1074 	long max_used;
1075 	ssize_t ret;
1076 
1077 	down_read(&zram->init_lock);
1078 	if (init_done(zram))
1079 		mem_used = zs_get_total_pages(zram->meta->mem_pool);
1080 
1081 	orig_size = atomic64_read(&zram->stats.pages_stored);
1082 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1083 
1084 	ret = scnprintf(buf, PAGE_SIZE,
1085 			"%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
1086 			orig_size << PAGE_SHIFT,
1087 			(u64)atomic64_read(&zram->stats.compr_data_size),
1088 			mem_used << PAGE_SHIFT,
1089 			zram->limit_pages << PAGE_SHIFT,
1090 			max_used << PAGE_SHIFT,
1091 			(u64)atomic64_read(&zram->stats.zero_pages),
1092 			(u64)atomic64_read(&zram->stats.num_migrated));
1093 	up_read(&zram->init_lock);
1094 
1095 	return ret;
1096 }
1097 
1098 static DEVICE_ATTR_RO(io_stat);
1099 static DEVICE_ATTR_RO(mm_stat);
1100 ZRAM_ATTR_RO(num_reads);
1101 ZRAM_ATTR_RO(num_writes);
1102 ZRAM_ATTR_RO(failed_reads);
1103 ZRAM_ATTR_RO(failed_writes);
1104 ZRAM_ATTR_RO(invalid_io);
1105 ZRAM_ATTR_RO(notify_free);
1106 ZRAM_ATTR_RO(zero_pages);
1107 ZRAM_ATTR_RO(compr_data_size);
1108 
1109 static struct attribute *zram_disk_attrs[] = {
1110 	&dev_attr_disksize.attr,
1111 	&dev_attr_initstate.attr,
1112 	&dev_attr_reset.attr,
1113 	&dev_attr_num_reads.attr,
1114 	&dev_attr_num_writes.attr,
1115 	&dev_attr_failed_reads.attr,
1116 	&dev_attr_failed_writes.attr,
1117 	&dev_attr_invalid_io.attr,
1118 	&dev_attr_notify_free.attr,
1119 	&dev_attr_zero_pages.attr,
1120 	&dev_attr_orig_data_size.attr,
1121 	&dev_attr_compr_data_size.attr,
1122 	&dev_attr_mem_used_total.attr,
1123 	&dev_attr_mem_limit.attr,
1124 	&dev_attr_mem_used_max.attr,
1125 	&dev_attr_max_comp_streams.attr,
1126 	&dev_attr_comp_algorithm.attr,
1127 	&dev_attr_io_stat.attr,
1128 	&dev_attr_mm_stat.attr,
1129 	NULL,
1130 };
1131 
1132 static struct attribute_group zram_disk_attr_group = {
1133 	.attrs = zram_disk_attrs,
1134 };
1135 
1136 static int create_device(struct zram *zram, int device_id)
1137 {
1138 	struct request_queue *queue;
1139 	int ret = -ENOMEM;
1140 
1141 	init_rwsem(&zram->init_lock);
1142 
1143 	queue = blk_alloc_queue(GFP_KERNEL);
1144 	if (!queue) {
1145 		pr_err("Error allocating disk queue for device %d\n",
1146 			device_id);
1147 		goto out;
1148 	}
1149 
1150 	blk_queue_make_request(queue, zram_make_request);
1151 
1152 	 /* gendisk structure */
1153 	zram->disk = alloc_disk(1);
1154 	if (!zram->disk) {
1155 		pr_warn("Error allocating disk structure for device %d\n",
1156 			device_id);
1157 		ret = -ENOMEM;
1158 		goto out_free_queue;
1159 	}
1160 
1161 	zram->disk->major = zram_major;
1162 	zram->disk->first_minor = device_id;
1163 	zram->disk->fops = &zram_devops;
1164 	zram->disk->queue = queue;
1165 	zram->disk->queue->queuedata = zram;
1166 	zram->disk->private_data = zram;
1167 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1168 
1169 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1170 	set_capacity(zram->disk, 0);
1171 	/* zram devices sort of resembles non-rotational disks */
1172 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1173 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1174 	/*
1175 	 * To ensure that we always get PAGE_SIZE aligned
1176 	 * and n*PAGE_SIZED sized I/O requests.
1177 	 */
1178 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1179 	blk_queue_logical_block_size(zram->disk->queue,
1180 					ZRAM_LOGICAL_BLOCK_SIZE);
1181 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1182 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1183 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1184 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1185 	/*
1186 	 * zram_bio_discard() will clear all logical blocks if logical block
1187 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1188 	 * different, we will skip discarding some parts of logical blocks in
1189 	 * the part of the request range which isn't aligned to physical block
1190 	 * size.  So we can't ensure that all discarded logical blocks are
1191 	 * zeroed.
1192 	 */
1193 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1194 		zram->disk->queue->limits.discard_zeroes_data = 1;
1195 	else
1196 		zram->disk->queue->limits.discard_zeroes_data = 0;
1197 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1198 
1199 	add_disk(zram->disk);
1200 
1201 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1202 				&zram_disk_attr_group);
1203 	if (ret < 0) {
1204 		pr_warn("Error creating sysfs group");
1205 		goto out_free_disk;
1206 	}
1207 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1208 	zram->meta = NULL;
1209 	zram->max_comp_streams = 1;
1210 	return 0;
1211 
1212 out_free_disk:
1213 	del_gendisk(zram->disk);
1214 	put_disk(zram->disk);
1215 out_free_queue:
1216 	blk_cleanup_queue(queue);
1217 out:
1218 	return ret;
1219 }
1220 
1221 static void destroy_devices(unsigned int nr)
1222 {
1223 	struct zram *zram;
1224 	unsigned int i;
1225 
1226 	for (i = 0; i < nr; i++) {
1227 		zram = &zram_devices[i];
1228 		/*
1229 		 * Remove sysfs first, so no one will perform a disksize
1230 		 * store while we destroy the devices
1231 		 */
1232 		sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1233 				&zram_disk_attr_group);
1234 
1235 		zram_reset_device(zram);
1236 
1237 		blk_cleanup_queue(zram->disk->queue);
1238 		del_gendisk(zram->disk);
1239 		put_disk(zram->disk);
1240 	}
1241 
1242 	kfree(zram_devices);
1243 	unregister_blkdev(zram_major, "zram");
1244 	pr_info("Destroyed %u device(s)\n", nr);
1245 }
1246 
1247 static int __init zram_init(void)
1248 {
1249 	int ret, dev_id;
1250 
1251 	if (num_devices > max_num_devices) {
1252 		pr_warn("Invalid value for num_devices: %u\n",
1253 				num_devices);
1254 		return -EINVAL;
1255 	}
1256 
1257 	zram_major = register_blkdev(0, "zram");
1258 	if (zram_major <= 0) {
1259 		pr_warn("Unable to get major number\n");
1260 		return -EBUSY;
1261 	}
1262 
1263 	/* Allocate the device array and initialize each one */
1264 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1265 	if (!zram_devices) {
1266 		unregister_blkdev(zram_major, "zram");
1267 		return -ENOMEM;
1268 	}
1269 
1270 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
1271 		ret = create_device(&zram_devices[dev_id], dev_id);
1272 		if (ret)
1273 			goto out_error;
1274 	}
1275 
1276 	pr_info("Created %u device(s)\n", num_devices);
1277 	return 0;
1278 
1279 out_error:
1280 	destroy_devices(dev_id);
1281 	return ret;
1282 }
1283 
1284 static void __exit zram_exit(void)
1285 {
1286 	destroy_devices(num_devices);
1287 }
1288 
1289 module_init(zram_init);
1290 module_exit(zram_exit);
1291 
1292 module_param(num_devices, uint, 0);
1293 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1294 
1295 MODULE_LICENSE("Dual BSD/GPL");
1296 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1297 MODULE_DESCRIPTION("Compressed RAM Block Device");
1298