xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo-rle";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 				u32 index, int offset, struct bio *bio);
57 
58 
59 static int zram_slot_trylock(struct zram *zram, u32 index)
60 {
61 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
62 }
63 
64 static void zram_slot_lock(struct zram *zram, u32 index)
65 {
66 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68 
69 static void zram_slot_unlock(struct zram *zram, u32 index)
70 {
71 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73 
74 static inline bool init_done(struct zram *zram)
75 {
76 	return zram->disksize;
77 }
78 
79 static inline struct zram *dev_to_zram(struct device *dev)
80 {
81 	return (struct zram *)dev_to_disk(dev)->private_data;
82 }
83 
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 {
86 	return zram->table[index].handle;
87 }
88 
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 {
91 	zram->table[index].handle = handle;
92 }
93 
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 			enum zram_pageflags flag)
97 {
98 	return zram->table[index].flags & BIT(flag);
99 }
100 
101 static void zram_set_flag(struct zram *zram, u32 index,
102 			enum zram_pageflags flag)
103 {
104 	zram->table[index].flags |= BIT(flag);
105 }
106 
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 			enum zram_pageflags flag)
109 {
110 	zram->table[index].flags &= ~BIT(flag);
111 }
112 
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 			unsigned long element)
115 {
116 	zram->table[index].element = element;
117 }
118 
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 {
121 	return zram->table[index].element;
122 }
123 
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 {
126 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
127 }
128 
129 static void zram_set_obj_size(struct zram *zram,
130 					u32 index, size_t size)
131 {
132 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
133 
134 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
135 }
136 
137 static inline bool zram_allocated(struct zram *zram, u32 index)
138 {
139 	return zram_get_obj_size(zram, index) ||
140 			zram_test_flag(zram, index, ZRAM_SAME) ||
141 			zram_test_flag(zram, index, ZRAM_WB);
142 }
143 
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
146 {
147 	return bvec->bv_len != PAGE_SIZE;
148 }
149 #else
150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 	return false;
153 }
154 #endif
155 
156 /*
157  * Check if request is within bounds and aligned on zram logical blocks.
158  */
159 static inline bool valid_io_request(struct zram *zram,
160 		sector_t start, unsigned int size)
161 {
162 	u64 end, bound;
163 
164 	/* unaligned request */
165 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 		return false;
167 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 		return false;
169 
170 	end = start + (size >> SECTOR_SHIFT);
171 	bound = zram->disksize >> SECTOR_SHIFT;
172 	/* out of range range */
173 	if (unlikely(start >= bound || end > bound || start > end))
174 		return false;
175 
176 	/* I/O request is valid */
177 	return true;
178 }
179 
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
181 {
182 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
183 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
184 }
185 
186 static inline void update_used_max(struct zram *zram,
187 					const unsigned long pages)
188 {
189 	unsigned long old_max, cur_max;
190 
191 	old_max = atomic_long_read(&zram->stats.max_used_pages);
192 
193 	do {
194 		cur_max = old_max;
195 		if (pages > cur_max)
196 			old_max = atomic_long_cmpxchg(
197 				&zram->stats.max_used_pages, cur_max, pages);
198 	} while (old_max != cur_max);
199 }
200 
201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 					unsigned long value)
203 {
204 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 	memset_l(ptr, value, len / sizeof(unsigned long));
206 }
207 
208 static bool page_same_filled(void *ptr, unsigned long *element)
209 {
210 	unsigned int pos;
211 	unsigned long *page;
212 	unsigned long val;
213 
214 	page = (unsigned long *)ptr;
215 	val = page[0];
216 
217 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
218 		if (val != page[pos])
219 			return false;
220 	}
221 
222 	*element = val;
223 
224 	return true;
225 }
226 
227 static ssize_t initstate_show(struct device *dev,
228 		struct device_attribute *attr, char *buf)
229 {
230 	u32 val;
231 	struct zram *zram = dev_to_zram(dev);
232 
233 	down_read(&zram->init_lock);
234 	val = init_done(zram);
235 	up_read(&zram->init_lock);
236 
237 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
238 }
239 
240 static ssize_t disksize_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct zram *zram = dev_to_zram(dev);
244 
245 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
246 }
247 
248 static ssize_t mem_limit_store(struct device *dev,
249 		struct device_attribute *attr, const char *buf, size_t len)
250 {
251 	u64 limit;
252 	char *tmp;
253 	struct zram *zram = dev_to_zram(dev);
254 
255 	limit = memparse(buf, &tmp);
256 	if (buf == tmp) /* no chars parsed, invalid input */
257 		return -EINVAL;
258 
259 	down_write(&zram->init_lock);
260 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 	up_write(&zram->init_lock);
262 
263 	return len;
264 }
265 
266 static ssize_t mem_used_max_store(struct device *dev,
267 		struct device_attribute *attr, const char *buf, size_t len)
268 {
269 	int err;
270 	unsigned long val;
271 	struct zram *zram = dev_to_zram(dev);
272 
273 	err = kstrtoul(buf, 10, &val);
274 	if (err || val != 0)
275 		return -EINVAL;
276 
277 	down_read(&zram->init_lock);
278 	if (init_done(zram)) {
279 		atomic_long_set(&zram->stats.max_used_pages,
280 				zs_get_total_pages(zram->mem_pool));
281 	}
282 	up_read(&zram->init_lock);
283 
284 	return len;
285 }
286 
287 static ssize_t idle_store(struct device *dev,
288 		struct device_attribute *attr, const char *buf, size_t len)
289 {
290 	struct zram *zram = dev_to_zram(dev);
291 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
292 	int index;
293 
294 	if (!sysfs_streq(buf, "all"))
295 		return -EINVAL;
296 
297 	down_read(&zram->init_lock);
298 	if (!init_done(zram)) {
299 		up_read(&zram->init_lock);
300 		return -EINVAL;
301 	}
302 
303 	for (index = 0; index < nr_pages; index++) {
304 		/*
305 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
306 		 * See the comment in writeback_store.
307 		 */
308 		zram_slot_lock(zram, index);
309 		if (zram_allocated(zram, index) &&
310 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
311 			zram_set_flag(zram, index, ZRAM_IDLE);
312 		zram_slot_unlock(zram, index);
313 	}
314 
315 	up_read(&zram->init_lock);
316 
317 	return len;
318 }
319 
320 #ifdef CONFIG_ZRAM_WRITEBACK
321 static ssize_t writeback_limit_enable_store(struct device *dev,
322 		struct device_attribute *attr, const char *buf, size_t len)
323 {
324 	struct zram *zram = dev_to_zram(dev);
325 	u64 val;
326 	ssize_t ret = -EINVAL;
327 
328 	if (kstrtoull(buf, 10, &val))
329 		return ret;
330 
331 	down_read(&zram->init_lock);
332 	spin_lock(&zram->wb_limit_lock);
333 	zram->wb_limit_enable = val;
334 	spin_unlock(&zram->wb_limit_lock);
335 	up_read(&zram->init_lock);
336 	ret = len;
337 
338 	return ret;
339 }
340 
341 static ssize_t writeback_limit_enable_show(struct device *dev,
342 		struct device_attribute *attr, char *buf)
343 {
344 	bool val;
345 	struct zram *zram = dev_to_zram(dev);
346 
347 	down_read(&zram->init_lock);
348 	spin_lock(&zram->wb_limit_lock);
349 	val = zram->wb_limit_enable;
350 	spin_unlock(&zram->wb_limit_lock);
351 	up_read(&zram->init_lock);
352 
353 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
354 }
355 
356 static ssize_t writeback_limit_store(struct device *dev,
357 		struct device_attribute *attr, const char *buf, size_t len)
358 {
359 	struct zram *zram = dev_to_zram(dev);
360 	u64 val;
361 	ssize_t ret = -EINVAL;
362 
363 	if (kstrtoull(buf, 10, &val))
364 		return ret;
365 
366 	down_read(&zram->init_lock);
367 	spin_lock(&zram->wb_limit_lock);
368 	zram->bd_wb_limit = val;
369 	spin_unlock(&zram->wb_limit_lock);
370 	up_read(&zram->init_lock);
371 	ret = len;
372 
373 	return ret;
374 }
375 
376 static ssize_t writeback_limit_show(struct device *dev,
377 		struct device_attribute *attr, char *buf)
378 {
379 	u64 val;
380 	struct zram *zram = dev_to_zram(dev);
381 
382 	down_read(&zram->init_lock);
383 	spin_lock(&zram->wb_limit_lock);
384 	val = zram->bd_wb_limit;
385 	spin_unlock(&zram->wb_limit_lock);
386 	up_read(&zram->init_lock);
387 
388 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
389 }
390 
391 static void reset_bdev(struct zram *zram)
392 {
393 	struct block_device *bdev;
394 
395 	if (!zram->backing_dev)
396 		return;
397 
398 	bdev = zram->bdev;
399 	if (zram->old_block_size)
400 		set_blocksize(bdev, zram->old_block_size);
401 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
402 	/* hope filp_close flush all of IO */
403 	filp_close(zram->backing_dev, NULL);
404 	zram->backing_dev = NULL;
405 	zram->old_block_size = 0;
406 	zram->bdev = NULL;
407 	zram->disk->queue->backing_dev_info->capabilities |=
408 				BDI_CAP_SYNCHRONOUS_IO;
409 	kvfree(zram->bitmap);
410 	zram->bitmap = NULL;
411 }
412 
413 static ssize_t backing_dev_show(struct device *dev,
414 		struct device_attribute *attr, char *buf)
415 {
416 	struct zram *zram = dev_to_zram(dev);
417 	struct file *file = zram->backing_dev;
418 	char *p;
419 	ssize_t ret;
420 
421 	down_read(&zram->init_lock);
422 	if (!zram->backing_dev) {
423 		memcpy(buf, "none\n", 5);
424 		up_read(&zram->init_lock);
425 		return 5;
426 	}
427 
428 	p = file_path(file, buf, PAGE_SIZE - 1);
429 	if (IS_ERR(p)) {
430 		ret = PTR_ERR(p);
431 		goto out;
432 	}
433 
434 	ret = strlen(p);
435 	memmove(buf, p, ret);
436 	buf[ret++] = '\n';
437 out:
438 	up_read(&zram->init_lock);
439 	return ret;
440 }
441 
442 static ssize_t backing_dev_store(struct device *dev,
443 		struct device_attribute *attr, const char *buf, size_t len)
444 {
445 	char *file_name;
446 	size_t sz;
447 	struct file *backing_dev = NULL;
448 	struct inode *inode;
449 	struct address_space *mapping;
450 	unsigned int bitmap_sz, old_block_size = 0;
451 	unsigned long nr_pages, *bitmap = NULL;
452 	struct block_device *bdev = NULL;
453 	int err;
454 	struct zram *zram = dev_to_zram(dev);
455 
456 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
457 	if (!file_name)
458 		return -ENOMEM;
459 
460 	down_write(&zram->init_lock);
461 	if (init_done(zram)) {
462 		pr_info("Can't setup backing device for initialized device\n");
463 		err = -EBUSY;
464 		goto out;
465 	}
466 
467 	strlcpy(file_name, buf, PATH_MAX);
468 	/* ignore trailing newline */
469 	sz = strlen(file_name);
470 	if (sz > 0 && file_name[sz - 1] == '\n')
471 		file_name[sz - 1] = 0x00;
472 
473 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
474 	if (IS_ERR(backing_dev)) {
475 		err = PTR_ERR(backing_dev);
476 		backing_dev = NULL;
477 		goto out;
478 	}
479 
480 	mapping = backing_dev->f_mapping;
481 	inode = mapping->host;
482 
483 	/* Support only block device in this moment */
484 	if (!S_ISBLK(inode->i_mode)) {
485 		err = -ENOTBLK;
486 		goto out;
487 	}
488 
489 	bdev = bdgrab(I_BDEV(inode));
490 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
491 	if (err < 0) {
492 		bdev = NULL;
493 		goto out;
494 	}
495 
496 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
497 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
498 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
499 	if (!bitmap) {
500 		err = -ENOMEM;
501 		goto out;
502 	}
503 
504 	old_block_size = block_size(bdev);
505 	err = set_blocksize(bdev, PAGE_SIZE);
506 	if (err)
507 		goto out;
508 
509 	reset_bdev(zram);
510 
511 	zram->old_block_size = old_block_size;
512 	zram->bdev = bdev;
513 	zram->backing_dev = backing_dev;
514 	zram->bitmap = bitmap;
515 	zram->nr_pages = nr_pages;
516 	/*
517 	 * With writeback feature, zram does asynchronous IO so it's no longer
518 	 * synchronous device so let's remove synchronous io flag. Othewise,
519 	 * upper layer(e.g., swap) could wait IO completion rather than
520 	 * (submit and return), which will cause system sluggish.
521 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
522 	 * upper layer expects IO was done so it could deallocate the page
523 	 * freely but in fact, IO is going on so finally could cause
524 	 * use-after-free when the IO is really done.
525 	 */
526 	zram->disk->queue->backing_dev_info->capabilities &=
527 			~BDI_CAP_SYNCHRONOUS_IO;
528 	up_write(&zram->init_lock);
529 
530 	pr_info("setup backing device %s\n", file_name);
531 	kfree(file_name);
532 
533 	return len;
534 out:
535 	if (bitmap)
536 		kvfree(bitmap);
537 
538 	if (bdev)
539 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
540 
541 	if (backing_dev)
542 		filp_close(backing_dev, NULL);
543 
544 	up_write(&zram->init_lock);
545 
546 	kfree(file_name);
547 
548 	return err;
549 }
550 
551 static unsigned long alloc_block_bdev(struct zram *zram)
552 {
553 	unsigned long blk_idx = 1;
554 retry:
555 	/* skip 0 bit to confuse zram.handle = 0 */
556 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
557 	if (blk_idx == zram->nr_pages)
558 		return 0;
559 
560 	if (test_and_set_bit(blk_idx, zram->bitmap))
561 		goto retry;
562 
563 	atomic64_inc(&zram->stats.bd_count);
564 	return blk_idx;
565 }
566 
567 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
568 {
569 	int was_set;
570 
571 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
572 	WARN_ON_ONCE(!was_set);
573 	atomic64_dec(&zram->stats.bd_count);
574 }
575 
576 static void zram_page_end_io(struct bio *bio)
577 {
578 	struct page *page = bio_first_page_all(bio);
579 
580 	page_endio(page, op_is_write(bio_op(bio)),
581 			blk_status_to_errno(bio->bi_status));
582 	bio_put(bio);
583 }
584 
585 /*
586  * Returns 1 if the submission is successful.
587  */
588 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
589 			unsigned long entry, struct bio *parent)
590 {
591 	struct bio *bio;
592 
593 	bio = bio_alloc(GFP_ATOMIC, 1);
594 	if (!bio)
595 		return -ENOMEM;
596 
597 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
598 	bio_set_dev(bio, zram->bdev);
599 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
600 		bio_put(bio);
601 		return -EIO;
602 	}
603 
604 	if (!parent) {
605 		bio->bi_opf = REQ_OP_READ;
606 		bio->bi_end_io = zram_page_end_io;
607 	} else {
608 		bio->bi_opf = parent->bi_opf;
609 		bio_chain(bio, parent);
610 	}
611 
612 	submit_bio(bio);
613 	return 1;
614 }
615 
616 #define HUGE_WRITEBACK 1
617 #define IDLE_WRITEBACK 2
618 
619 static ssize_t writeback_store(struct device *dev,
620 		struct device_attribute *attr, const char *buf, size_t len)
621 {
622 	struct zram *zram = dev_to_zram(dev);
623 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
624 	unsigned long index;
625 	struct bio bio;
626 	struct bio_vec bio_vec;
627 	struct page *page;
628 	ssize_t ret;
629 	int mode;
630 	unsigned long blk_idx = 0;
631 
632 	if (sysfs_streq(buf, "idle"))
633 		mode = IDLE_WRITEBACK;
634 	else if (sysfs_streq(buf, "huge"))
635 		mode = HUGE_WRITEBACK;
636 	else
637 		return -EINVAL;
638 
639 	down_read(&zram->init_lock);
640 	if (!init_done(zram)) {
641 		ret = -EINVAL;
642 		goto release_init_lock;
643 	}
644 
645 	if (!zram->backing_dev) {
646 		ret = -ENODEV;
647 		goto release_init_lock;
648 	}
649 
650 	page = alloc_page(GFP_KERNEL);
651 	if (!page) {
652 		ret = -ENOMEM;
653 		goto release_init_lock;
654 	}
655 
656 	for (index = 0; index < nr_pages; index++) {
657 		struct bio_vec bvec;
658 
659 		bvec.bv_page = page;
660 		bvec.bv_len = PAGE_SIZE;
661 		bvec.bv_offset = 0;
662 
663 		spin_lock(&zram->wb_limit_lock);
664 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
665 			spin_unlock(&zram->wb_limit_lock);
666 			ret = -EIO;
667 			break;
668 		}
669 		spin_unlock(&zram->wb_limit_lock);
670 
671 		if (!blk_idx) {
672 			blk_idx = alloc_block_bdev(zram);
673 			if (!blk_idx) {
674 				ret = -ENOSPC;
675 				break;
676 			}
677 		}
678 
679 		zram_slot_lock(zram, index);
680 		if (!zram_allocated(zram, index))
681 			goto next;
682 
683 		if (zram_test_flag(zram, index, ZRAM_WB) ||
684 				zram_test_flag(zram, index, ZRAM_SAME) ||
685 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
686 			goto next;
687 
688 		if (mode == IDLE_WRITEBACK &&
689 			  !zram_test_flag(zram, index, ZRAM_IDLE))
690 			goto next;
691 		if (mode == HUGE_WRITEBACK &&
692 			  !zram_test_flag(zram, index, ZRAM_HUGE))
693 			goto next;
694 		/*
695 		 * Clearing ZRAM_UNDER_WB is duty of caller.
696 		 * IOW, zram_free_page never clear it.
697 		 */
698 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
699 		/* Need for hugepage writeback racing */
700 		zram_set_flag(zram, index, ZRAM_IDLE);
701 		zram_slot_unlock(zram, index);
702 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
703 			zram_slot_lock(zram, index);
704 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
705 			zram_clear_flag(zram, index, ZRAM_IDLE);
706 			zram_slot_unlock(zram, index);
707 			continue;
708 		}
709 
710 		bio_init(&bio, &bio_vec, 1);
711 		bio_set_dev(&bio, zram->bdev);
712 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
713 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
714 
715 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
716 				bvec.bv_offset);
717 		/*
718 		 * XXX: A single page IO would be inefficient for write
719 		 * but it would be not bad as starter.
720 		 */
721 		ret = submit_bio_wait(&bio);
722 		if (ret) {
723 			zram_slot_lock(zram, index);
724 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
725 			zram_clear_flag(zram, index, ZRAM_IDLE);
726 			zram_slot_unlock(zram, index);
727 			continue;
728 		}
729 
730 		atomic64_inc(&zram->stats.bd_writes);
731 		/*
732 		 * We released zram_slot_lock so need to check if the slot was
733 		 * changed. If there is freeing for the slot, we can catch it
734 		 * easily by zram_allocated.
735 		 * A subtle case is the slot is freed/reallocated/marked as
736 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
737 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
738 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
739 		 */
740 		zram_slot_lock(zram, index);
741 		if (!zram_allocated(zram, index) ||
742 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
743 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
744 			zram_clear_flag(zram, index, ZRAM_IDLE);
745 			goto next;
746 		}
747 
748 		zram_free_page(zram, index);
749 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
750 		zram_set_flag(zram, index, ZRAM_WB);
751 		zram_set_element(zram, index, blk_idx);
752 		blk_idx = 0;
753 		atomic64_inc(&zram->stats.pages_stored);
754 		spin_lock(&zram->wb_limit_lock);
755 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
756 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
757 		spin_unlock(&zram->wb_limit_lock);
758 next:
759 		zram_slot_unlock(zram, index);
760 	}
761 
762 	if (blk_idx)
763 		free_block_bdev(zram, blk_idx);
764 	ret = len;
765 	__free_page(page);
766 release_init_lock:
767 	up_read(&zram->init_lock);
768 
769 	return ret;
770 }
771 
772 struct zram_work {
773 	struct work_struct work;
774 	struct zram *zram;
775 	unsigned long entry;
776 	struct bio *bio;
777 };
778 
779 #if PAGE_SIZE != 4096
780 static void zram_sync_read(struct work_struct *work)
781 {
782 	struct bio_vec bvec;
783 	struct zram_work *zw = container_of(work, struct zram_work, work);
784 	struct zram *zram = zw->zram;
785 	unsigned long entry = zw->entry;
786 	struct bio *bio = zw->bio;
787 
788 	read_from_bdev_async(zram, &bvec, entry, bio);
789 }
790 
791 /*
792  * Block layer want one ->make_request_fn to be active at a time
793  * so if we use chained IO with parent IO in same context,
794  * it's a deadlock. To avoid, it, it uses worker thread context.
795  */
796 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
797 				unsigned long entry, struct bio *bio)
798 {
799 	struct zram_work work;
800 
801 	work.zram = zram;
802 	work.entry = entry;
803 	work.bio = bio;
804 
805 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
806 	queue_work(system_unbound_wq, &work.work);
807 	flush_work(&work.work);
808 	destroy_work_on_stack(&work.work);
809 
810 	return 1;
811 }
812 #else
813 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
814 				unsigned long entry, struct bio *bio)
815 {
816 	WARN_ON(1);
817 	return -EIO;
818 }
819 #endif
820 
821 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
822 			unsigned long entry, struct bio *parent, bool sync)
823 {
824 	atomic64_inc(&zram->stats.bd_reads);
825 	if (sync)
826 		return read_from_bdev_sync(zram, bvec, entry, parent);
827 	else
828 		return read_from_bdev_async(zram, bvec, entry, parent);
829 }
830 #else
831 static inline void reset_bdev(struct zram *zram) {};
832 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
833 			unsigned long entry, struct bio *parent, bool sync)
834 {
835 	return -EIO;
836 }
837 
838 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
839 #endif
840 
841 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
842 
843 static struct dentry *zram_debugfs_root;
844 
845 static void zram_debugfs_create(void)
846 {
847 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
848 }
849 
850 static void zram_debugfs_destroy(void)
851 {
852 	debugfs_remove_recursive(zram_debugfs_root);
853 }
854 
855 static void zram_accessed(struct zram *zram, u32 index)
856 {
857 	zram_clear_flag(zram, index, ZRAM_IDLE);
858 	zram->table[index].ac_time = ktime_get_boottime();
859 }
860 
861 static ssize_t read_block_state(struct file *file, char __user *buf,
862 				size_t count, loff_t *ppos)
863 {
864 	char *kbuf;
865 	ssize_t index, written = 0;
866 	struct zram *zram = file->private_data;
867 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
868 	struct timespec64 ts;
869 
870 	kbuf = kvmalloc(count, GFP_KERNEL);
871 	if (!kbuf)
872 		return -ENOMEM;
873 
874 	down_read(&zram->init_lock);
875 	if (!init_done(zram)) {
876 		up_read(&zram->init_lock);
877 		kvfree(kbuf);
878 		return -EINVAL;
879 	}
880 
881 	for (index = *ppos; index < nr_pages; index++) {
882 		int copied;
883 
884 		zram_slot_lock(zram, index);
885 		if (!zram_allocated(zram, index))
886 			goto next;
887 
888 		ts = ktime_to_timespec64(zram->table[index].ac_time);
889 		copied = snprintf(kbuf + written, count,
890 			"%12zd %12lld.%06lu %c%c%c%c\n",
891 			index, (s64)ts.tv_sec,
892 			ts.tv_nsec / NSEC_PER_USEC,
893 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
894 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
895 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
896 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
897 
898 		if (count < copied) {
899 			zram_slot_unlock(zram, index);
900 			break;
901 		}
902 		written += copied;
903 		count -= copied;
904 next:
905 		zram_slot_unlock(zram, index);
906 		*ppos += 1;
907 	}
908 
909 	up_read(&zram->init_lock);
910 	if (copy_to_user(buf, kbuf, written))
911 		written = -EFAULT;
912 	kvfree(kbuf);
913 
914 	return written;
915 }
916 
917 static const struct file_operations proc_zram_block_state_op = {
918 	.open = simple_open,
919 	.read = read_block_state,
920 	.llseek = default_llseek,
921 };
922 
923 static void zram_debugfs_register(struct zram *zram)
924 {
925 	if (!zram_debugfs_root)
926 		return;
927 
928 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
929 						zram_debugfs_root);
930 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
931 				zram, &proc_zram_block_state_op);
932 }
933 
934 static void zram_debugfs_unregister(struct zram *zram)
935 {
936 	debugfs_remove_recursive(zram->debugfs_dir);
937 }
938 #else
939 static void zram_debugfs_create(void) {};
940 static void zram_debugfs_destroy(void) {};
941 static void zram_accessed(struct zram *zram, u32 index)
942 {
943 	zram_clear_flag(zram, index, ZRAM_IDLE);
944 };
945 static void zram_debugfs_register(struct zram *zram) {};
946 static void zram_debugfs_unregister(struct zram *zram) {};
947 #endif
948 
949 /*
950  * We switched to per-cpu streams and this attr is not needed anymore.
951  * However, we will keep it around for some time, because:
952  * a) we may revert per-cpu streams in the future
953  * b) it's visible to user space and we need to follow our 2 years
954  *    retirement rule; but we already have a number of 'soon to be
955  *    altered' attrs, so max_comp_streams need to wait for the next
956  *    layoff cycle.
957  */
958 static ssize_t max_comp_streams_show(struct device *dev,
959 		struct device_attribute *attr, char *buf)
960 {
961 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
962 }
963 
964 static ssize_t max_comp_streams_store(struct device *dev,
965 		struct device_attribute *attr, const char *buf, size_t len)
966 {
967 	return len;
968 }
969 
970 static ssize_t comp_algorithm_show(struct device *dev,
971 		struct device_attribute *attr, char *buf)
972 {
973 	size_t sz;
974 	struct zram *zram = dev_to_zram(dev);
975 
976 	down_read(&zram->init_lock);
977 	sz = zcomp_available_show(zram->compressor, buf);
978 	up_read(&zram->init_lock);
979 
980 	return sz;
981 }
982 
983 static ssize_t comp_algorithm_store(struct device *dev,
984 		struct device_attribute *attr, const char *buf, size_t len)
985 {
986 	struct zram *zram = dev_to_zram(dev);
987 	char compressor[ARRAY_SIZE(zram->compressor)];
988 	size_t sz;
989 
990 	strlcpy(compressor, buf, sizeof(compressor));
991 	/* ignore trailing newline */
992 	sz = strlen(compressor);
993 	if (sz > 0 && compressor[sz - 1] == '\n')
994 		compressor[sz - 1] = 0x00;
995 
996 	if (!zcomp_available_algorithm(compressor))
997 		return -EINVAL;
998 
999 	down_write(&zram->init_lock);
1000 	if (init_done(zram)) {
1001 		up_write(&zram->init_lock);
1002 		pr_info("Can't change algorithm for initialized device\n");
1003 		return -EBUSY;
1004 	}
1005 
1006 	strcpy(zram->compressor, compressor);
1007 	up_write(&zram->init_lock);
1008 	return len;
1009 }
1010 
1011 static ssize_t compact_store(struct device *dev,
1012 		struct device_attribute *attr, const char *buf, size_t len)
1013 {
1014 	struct zram *zram = dev_to_zram(dev);
1015 
1016 	down_read(&zram->init_lock);
1017 	if (!init_done(zram)) {
1018 		up_read(&zram->init_lock);
1019 		return -EINVAL;
1020 	}
1021 
1022 	zs_compact(zram->mem_pool);
1023 	up_read(&zram->init_lock);
1024 
1025 	return len;
1026 }
1027 
1028 static ssize_t io_stat_show(struct device *dev,
1029 		struct device_attribute *attr, char *buf)
1030 {
1031 	struct zram *zram = dev_to_zram(dev);
1032 	ssize_t ret;
1033 
1034 	down_read(&zram->init_lock);
1035 	ret = scnprintf(buf, PAGE_SIZE,
1036 			"%8llu %8llu %8llu %8llu\n",
1037 			(u64)atomic64_read(&zram->stats.failed_reads),
1038 			(u64)atomic64_read(&zram->stats.failed_writes),
1039 			(u64)atomic64_read(&zram->stats.invalid_io),
1040 			(u64)atomic64_read(&zram->stats.notify_free));
1041 	up_read(&zram->init_lock);
1042 
1043 	return ret;
1044 }
1045 
1046 static ssize_t mm_stat_show(struct device *dev,
1047 		struct device_attribute *attr, char *buf)
1048 {
1049 	struct zram *zram = dev_to_zram(dev);
1050 	struct zs_pool_stats pool_stats;
1051 	u64 orig_size, mem_used = 0;
1052 	long max_used;
1053 	ssize_t ret;
1054 
1055 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1056 
1057 	down_read(&zram->init_lock);
1058 	if (init_done(zram)) {
1059 		mem_used = zs_get_total_pages(zram->mem_pool);
1060 		zs_pool_stats(zram->mem_pool, &pool_stats);
1061 	}
1062 
1063 	orig_size = atomic64_read(&zram->stats.pages_stored);
1064 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1065 
1066 	ret = scnprintf(buf, PAGE_SIZE,
1067 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1068 			orig_size << PAGE_SHIFT,
1069 			(u64)atomic64_read(&zram->stats.compr_data_size),
1070 			mem_used << PAGE_SHIFT,
1071 			zram->limit_pages << PAGE_SHIFT,
1072 			max_used << PAGE_SHIFT,
1073 			(u64)atomic64_read(&zram->stats.same_pages),
1074 			pool_stats.pages_compacted,
1075 			(u64)atomic64_read(&zram->stats.huge_pages));
1076 	up_read(&zram->init_lock);
1077 
1078 	return ret;
1079 }
1080 
1081 #ifdef CONFIG_ZRAM_WRITEBACK
1082 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1083 static ssize_t bd_stat_show(struct device *dev,
1084 		struct device_attribute *attr, char *buf)
1085 {
1086 	struct zram *zram = dev_to_zram(dev);
1087 	ssize_t ret;
1088 
1089 	down_read(&zram->init_lock);
1090 	ret = scnprintf(buf, PAGE_SIZE,
1091 		"%8llu %8llu %8llu\n",
1092 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1093 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1094 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1095 	up_read(&zram->init_lock);
1096 
1097 	return ret;
1098 }
1099 #endif
1100 
1101 static ssize_t debug_stat_show(struct device *dev,
1102 		struct device_attribute *attr, char *buf)
1103 {
1104 	int version = 1;
1105 	struct zram *zram = dev_to_zram(dev);
1106 	ssize_t ret;
1107 
1108 	down_read(&zram->init_lock);
1109 	ret = scnprintf(buf, PAGE_SIZE,
1110 			"version: %d\n%8llu %8llu\n",
1111 			version,
1112 			(u64)atomic64_read(&zram->stats.writestall),
1113 			(u64)atomic64_read(&zram->stats.miss_free));
1114 	up_read(&zram->init_lock);
1115 
1116 	return ret;
1117 }
1118 
1119 static DEVICE_ATTR_RO(io_stat);
1120 static DEVICE_ATTR_RO(mm_stat);
1121 #ifdef CONFIG_ZRAM_WRITEBACK
1122 static DEVICE_ATTR_RO(bd_stat);
1123 #endif
1124 static DEVICE_ATTR_RO(debug_stat);
1125 
1126 static void zram_meta_free(struct zram *zram, u64 disksize)
1127 {
1128 	size_t num_pages = disksize >> PAGE_SHIFT;
1129 	size_t index;
1130 
1131 	/* Free all pages that are still in this zram device */
1132 	for (index = 0; index < num_pages; index++)
1133 		zram_free_page(zram, index);
1134 
1135 	zs_destroy_pool(zram->mem_pool);
1136 	vfree(zram->table);
1137 }
1138 
1139 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1140 {
1141 	size_t num_pages;
1142 
1143 	num_pages = disksize >> PAGE_SHIFT;
1144 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1145 	if (!zram->table)
1146 		return false;
1147 
1148 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1149 	if (!zram->mem_pool) {
1150 		vfree(zram->table);
1151 		return false;
1152 	}
1153 
1154 	if (!huge_class_size)
1155 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1156 	return true;
1157 }
1158 
1159 /*
1160  * To protect concurrent access to the same index entry,
1161  * caller should hold this table index entry's bit_spinlock to
1162  * indicate this index entry is accessing.
1163  */
1164 static void zram_free_page(struct zram *zram, size_t index)
1165 {
1166 	unsigned long handle;
1167 
1168 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1169 	zram->table[index].ac_time = 0;
1170 #endif
1171 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1172 		zram_clear_flag(zram, index, ZRAM_IDLE);
1173 
1174 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1175 		zram_clear_flag(zram, index, ZRAM_HUGE);
1176 		atomic64_dec(&zram->stats.huge_pages);
1177 	}
1178 
1179 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1180 		zram_clear_flag(zram, index, ZRAM_WB);
1181 		free_block_bdev(zram, zram_get_element(zram, index));
1182 		goto out;
1183 	}
1184 
1185 	/*
1186 	 * No memory is allocated for same element filled pages.
1187 	 * Simply clear same page flag.
1188 	 */
1189 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1190 		zram_clear_flag(zram, index, ZRAM_SAME);
1191 		atomic64_dec(&zram->stats.same_pages);
1192 		goto out;
1193 	}
1194 
1195 	handle = zram_get_handle(zram, index);
1196 	if (!handle)
1197 		return;
1198 
1199 	zs_free(zram->mem_pool, handle);
1200 
1201 	atomic64_sub(zram_get_obj_size(zram, index),
1202 			&zram->stats.compr_data_size);
1203 out:
1204 	atomic64_dec(&zram->stats.pages_stored);
1205 	zram_set_handle(zram, index, 0);
1206 	zram_set_obj_size(zram, index, 0);
1207 	WARN_ON_ONCE(zram->table[index].flags &
1208 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1209 }
1210 
1211 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1212 				struct bio *bio, bool partial_io)
1213 {
1214 	int ret;
1215 	unsigned long handle;
1216 	unsigned int size;
1217 	void *src, *dst;
1218 
1219 	zram_slot_lock(zram, index);
1220 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1221 		struct bio_vec bvec;
1222 
1223 		zram_slot_unlock(zram, index);
1224 
1225 		bvec.bv_page = page;
1226 		bvec.bv_len = PAGE_SIZE;
1227 		bvec.bv_offset = 0;
1228 		return read_from_bdev(zram, &bvec,
1229 				zram_get_element(zram, index),
1230 				bio, partial_io);
1231 	}
1232 
1233 	handle = zram_get_handle(zram, index);
1234 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1235 		unsigned long value;
1236 		void *mem;
1237 
1238 		value = handle ? zram_get_element(zram, index) : 0;
1239 		mem = kmap_atomic(page);
1240 		zram_fill_page(mem, PAGE_SIZE, value);
1241 		kunmap_atomic(mem);
1242 		zram_slot_unlock(zram, index);
1243 		return 0;
1244 	}
1245 
1246 	size = zram_get_obj_size(zram, index);
1247 
1248 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1249 	if (size == PAGE_SIZE) {
1250 		dst = kmap_atomic(page);
1251 		memcpy(dst, src, PAGE_SIZE);
1252 		kunmap_atomic(dst);
1253 		ret = 0;
1254 	} else {
1255 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1256 
1257 		dst = kmap_atomic(page);
1258 		ret = zcomp_decompress(zstrm, src, size, dst);
1259 		kunmap_atomic(dst);
1260 		zcomp_stream_put(zram->comp);
1261 	}
1262 	zs_unmap_object(zram->mem_pool, handle);
1263 	zram_slot_unlock(zram, index);
1264 
1265 	/* Should NEVER happen. Return bio error if it does. */
1266 	if (unlikely(ret))
1267 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1268 
1269 	return ret;
1270 }
1271 
1272 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1273 				u32 index, int offset, struct bio *bio)
1274 {
1275 	int ret;
1276 	struct page *page;
1277 
1278 	page = bvec->bv_page;
1279 	if (is_partial_io(bvec)) {
1280 		/* Use a temporary buffer to decompress the page */
1281 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1282 		if (!page)
1283 			return -ENOMEM;
1284 	}
1285 
1286 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1287 	if (unlikely(ret))
1288 		goto out;
1289 
1290 	if (is_partial_io(bvec)) {
1291 		void *dst = kmap_atomic(bvec->bv_page);
1292 		void *src = kmap_atomic(page);
1293 
1294 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1295 		kunmap_atomic(src);
1296 		kunmap_atomic(dst);
1297 	}
1298 out:
1299 	if (is_partial_io(bvec))
1300 		__free_page(page);
1301 
1302 	return ret;
1303 }
1304 
1305 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1306 				u32 index, struct bio *bio)
1307 {
1308 	int ret = 0;
1309 	unsigned long alloced_pages;
1310 	unsigned long handle = 0;
1311 	unsigned int comp_len = 0;
1312 	void *src, *dst, *mem;
1313 	struct zcomp_strm *zstrm;
1314 	struct page *page = bvec->bv_page;
1315 	unsigned long element = 0;
1316 	enum zram_pageflags flags = 0;
1317 
1318 	mem = kmap_atomic(page);
1319 	if (page_same_filled(mem, &element)) {
1320 		kunmap_atomic(mem);
1321 		/* Free memory associated with this sector now. */
1322 		flags = ZRAM_SAME;
1323 		atomic64_inc(&zram->stats.same_pages);
1324 		goto out;
1325 	}
1326 	kunmap_atomic(mem);
1327 
1328 compress_again:
1329 	zstrm = zcomp_stream_get(zram->comp);
1330 	src = kmap_atomic(page);
1331 	ret = zcomp_compress(zstrm, src, &comp_len);
1332 	kunmap_atomic(src);
1333 
1334 	if (unlikely(ret)) {
1335 		zcomp_stream_put(zram->comp);
1336 		pr_err("Compression failed! err=%d\n", ret);
1337 		zs_free(zram->mem_pool, handle);
1338 		return ret;
1339 	}
1340 
1341 	if (comp_len >= huge_class_size)
1342 		comp_len = PAGE_SIZE;
1343 	/*
1344 	 * handle allocation has 2 paths:
1345 	 * a) fast path is executed with preemption disabled (for
1346 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1347 	 *  since we can't sleep;
1348 	 * b) slow path enables preemption and attempts to allocate
1349 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1350 	 *  put per-cpu compression stream and, thus, to re-do
1351 	 *  the compression once handle is allocated.
1352 	 *
1353 	 * if we have a 'non-null' handle here then we are coming
1354 	 * from the slow path and handle has already been allocated.
1355 	 */
1356 	if (!handle)
1357 		handle = zs_malloc(zram->mem_pool, comp_len,
1358 				__GFP_KSWAPD_RECLAIM |
1359 				__GFP_NOWARN |
1360 				__GFP_HIGHMEM |
1361 				__GFP_MOVABLE);
1362 	if (!handle) {
1363 		zcomp_stream_put(zram->comp);
1364 		atomic64_inc(&zram->stats.writestall);
1365 		handle = zs_malloc(zram->mem_pool, comp_len,
1366 				GFP_NOIO | __GFP_HIGHMEM |
1367 				__GFP_MOVABLE);
1368 		if (handle)
1369 			goto compress_again;
1370 		return -ENOMEM;
1371 	}
1372 
1373 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1374 	update_used_max(zram, alloced_pages);
1375 
1376 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1377 		zcomp_stream_put(zram->comp);
1378 		zs_free(zram->mem_pool, handle);
1379 		return -ENOMEM;
1380 	}
1381 
1382 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1383 
1384 	src = zstrm->buffer;
1385 	if (comp_len == PAGE_SIZE)
1386 		src = kmap_atomic(page);
1387 	memcpy(dst, src, comp_len);
1388 	if (comp_len == PAGE_SIZE)
1389 		kunmap_atomic(src);
1390 
1391 	zcomp_stream_put(zram->comp);
1392 	zs_unmap_object(zram->mem_pool, handle);
1393 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1394 out:
1395 	/*
1396 	 * Free memory associated with this sector
1397 	 * before overwriting unused sectors.
1398 	 */
1399 	zram_slot_lock(zram, index);
1400 	zram_free_page(zram, index);
1401 
1402 	if (comp_len == PAGE_SIZE) {
1403 		zram_set_flag(zram, index, ZRAM_HUGE);
1404 		atomic64_inc(&zram->stats.huge_pages);
1405 	}
1406 
1407 	if (flags) {
1408 		zram_set_flag(zram, index, flags);
1409 		zram_set_element(zram, index, element);
1410 	}  else {
1411 		zram_set_handle(zram, index, handle);
1412 		zram_set_obj_size(zram, index, comp_len);
1413 	}
1414 	zram_slot_unlock(zram, index);
1415 
1416 	/* Update stats */
1417 	atomic64_inc(&zram->stats.pages_stored);
1418 	return ret;
1419 }
1420 
1421 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1422 				u32 index, int offset, struct bio *bio)
1423 {
1424 	int ret;
1425 	struct page *page = NULL;
1426 	void *src;
1427 	struct bio_vec vec;
1428 
1429 	vec = *bvec;
1430 	if (is_partial_io(bvec)) {
1431 		void *dst;
1432 		/*
1433 		 * This is a partial IO. We need to read the full page
1434 		 * before to write the changes.
1435 		 */
1436 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1437 		if (!page)
1438 			return -ENOMEM;
1439 
1440 		ret = __zram_bvec_read(zram, page, index, bio, true);
1441 		if (ret)
1442 			goto out;
1443 
1444 		src = kmap_atomic(bvec->bv_page);
1445 		dst = kmap_atomic(page);
1446 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1447 		kunmap_atomic(dst);
1448 		kunmap_atomic(src);
1449 
1450 		vec.bv_page = page;
1451 		vec.bv_len = PAGE_SIZE;
1452 		vec.bv_offset = 0;
1453 	}
1454 
1455 	ret = __zram_bvec_write(zram, &vec, index, bio);
1456 out:
1457 	if (is_partial_io(bvec))
1458 		__free_page(page);
1459 	return ret;
1460 }
1461 
1462 /*
1463  * zram_bio_discard - handler on discard request
1464  * @index: physical block index in PAGE_SIZE units
1465  * @offset: byte offset within physical block
1466  */
1467 static void zram_bio_discard(struct zram *zram, u32 index,
1468 			     int offset, struct bio *bio)
1469 {
1470 	size_t n = bio->bi_iter.bi_size;
1471 
1472 	/*
1473 	 * zram manages data in physical block size units. Because logical block
1474 	 * size isn't identical with physical block size on some arch, we
1475 	 * could get a discard request pointing to a specific offset within a
1476 	 * certain physical block.  Although we can handle this request by
1477 	 * reading that physiclal block and decompressing and partially zeroing
1478 	 * and re-compressing and then re-storing it, this isn't reasonable
1479 	 * because our intent with a discard request is to save memory.  So
1480 	 * skipping this logical block is appropriate here.
1481 	 */
1482 	if (offset) {
1483 		if (n <= (PAGE_SIZE - offset))
1484 			return;
1485 
1486 		n -= (PAGE_SIZE - offset);
1487 		index++;
1488 	}
1489 
1490 	while (n >= PAGE_SIZE) {
1491 		zram_slot_lock(zram, index);
1492 		zram_free_page(zram, index);
1493 		zram_slot_unlock(zram, index);
1494 		atomic64_inc(&zram->stats.notify_free);
1495 		index++;
1496 		n -= PAGE_SIZE;
1497 	}
1498 }
1499 
1500 /*
1501  * Returns errno if it has some problem. Otherwise return 0 or 1.
1502  * Returns 0 if IO request was done synchronously
1503  * Returns 1 if IO request was successfully submitted.
1504  */
1505 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1506 			int offset, unsigned int op, struct bio *bio)
1507 {
1508 	unsigned long start_time = jiffies;
1509 	struct request_queue *q = zram->disk->queue;
1510 	int ret;
1511 
1512 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1513 			&zram->disk->part0);
1514 
1515 	if (!op_is_write(op)) {
1516 		atomic64_inc(&zram->stats.num_reads);
1517 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1518 		flush_dcache_page(bvec->bv_page);
1519 	} else {
1520 		atomic64_inc(&zram->stats.num_writes);
1521 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1522 	}
1523 
1524 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1525 
1526 	zram_slot_lock(zram, index);
1527 	zram_accessed(zram, index);
1528 	zram_slot_unlock(zram, index);
1529 
1530 	if (unlikely(ret < 0)) {
1531 		if (!op_is_write(op))
1532 			atomic64_inc(&zram->stats.failed_reads);
1533 		else
1534 			atomic64_inc(&zram->stats.failed_writes);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
1540 static void __zram_make_request(struct zram *zram, struct bio *bio)
1541 {
1542 	int offset;
1543 	u32 index;
1544 	struct bio_vec bvec;
1545 	struct bvec_iter iter;
1546 
1547 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1548 	offset = (bio->bi_iter.bi_sector &
1549 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1550 
1551 	switch (bio_op(bio)) {
1552 	case REQ_OP_DISCARD:
1553 	case REQ_OP_WRITE_ZEROES:
1554 		zram_bio_discard(zram, index, offset, bio);
1555 		bio_endio(bio);
1556 		return;
1557 	default:
1558 		break;
1559 	}
1560 
1561 	bio_for_each_segment(bvec, bio, iter) {
1562 		struct bio_vec bv = bvec;
1563 		unsigned int unwritten = bvec.bv_len;
1564 
1565 		do {
1566 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1567 							unwritten);
1568 			if (zram_bvec_rw(zram, &bv, index, offset,
1569 					 bio_op(bio), bio) < 0)
1570 				goto out;
1571 
1572 			bv.bv_offset += bv.bv_len;
1573 			unwritten -= bv.bv_len;
1574 
1575 			update_position(&index, &offset, &bv);
1576 		} while (unwritten);
1577 	}
1578 
1579 	bio_endio(bio);
1580 	return;
1581 
1582 out:
1583 	bio_io_error(bio);
1584 }
1585 
1586 /*
1587  * Handler function for all zram I/O requests.
1588  */
1589 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1590 {
1591 	struct zram *zram = queue->queuedata;
1592 
1593 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1594 					bio->bi_iter.bi_size)) {
1595 		atomic64_inc(&zram->stats.invalid_io);
1596 		goto error;
1597 	}
1598 
1599 	__zram_make_request(zram, bio);
1600 	return BLK_QC_T_NONE;
1601 
1602 error:
1603 	bio_io_error(bio);
1604 	return BLK_QC_T_NONE;
1605 }
1606 
1607 static void zram_slot_free_notify(struct block_device *bdev,
1608 				unsigned long index)
1609 {
1610 	struct zram *zram;
1611 
1612 	zram = bdev->bd_disk->private_data;
1613 
1614 	atomic64_inc(&zram->stats.notify_free);
1615 	if (!zram_slot_trylock(zram, index)) {
1616 		atomic64_inc(&zram->stats.miss_free);
1617 		return;
1618 	}
1619 
1620 	zram_free_page(zram, index);
1621 	zram_slot_unlock(zram, index);
1622 }
1623 
1624 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1625 		       struct page *page, unsigned int op)
1626 {
1627 	int offset, ret;
1628 	u32 index;
1629 	struct zram *zram;
1630 	struct bio_vec bv;
1631 
1632 	if (PageTransHuge(page))
1633 		return -ENOTSUPP;
1634 	zram = bdev->bd_disk->private_data;
1635 
1636 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1637 		atomic64_inc(&zram->stats.invalid_io);
1638 		ret = -EINVAL;
1639 		goto out;
1640 	}
1641 
1642 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1643 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1644 
1645 	bv.bv_page = page;
1646 	bv.bv_len = PAGE_SIZE;
1647 	bv.bv_offset = 0;
1648 
1649 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1650 out:
1651 	/*
1652 	 * If I/O fails, just return error(ie, non-zero) without
1653 	 * calling page_endio.
1654 	 * It causes resubmit the I/O with bio request by upper functions
1655 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1656 	 * bio->bi_end_io does things to handle the error
1657 	 * (e.g., SetPageError, set_page_dirty and extra works).
1658 	 */
1659 	if (unlikely(ret < 0))
1660 		return ret;
1661 
1662 	switch (ret) {
1663 	case 0:
1664 		page_endio(page, op_is_write(op), 0);
1665 		break;
1666 	case 1:
1667 		ret = 0;
1668 		break;
1669 	default:
1670 		WARN_ON(1);
1671 	}
1672 	return ret;
1673 }
1674 
1675 static void zram_reset_device(struct zram *zram)
1676 {
1677 	struct zcomp *comp;
1678 	u64 disksize;
1679 
1680 	down_write(&zram->init_lock);
1681 
1682 	zram->limit_pages = 0;
1683 
1684 	if (!init_done(zram)) {
1685 		up_write(&zram->init_lock);
1686 		return;
1687 	}
1688 
1689 	comp = zram->comp;
1690 	disksize = zram->disksize;
1691 	zram->disksize = 0;
1692 
1693 	set_capacity(zram->disk, 0);
1694 	part_stat_set_all(&zram->disk->part0, 0);
1695 
1696 	up_write(&zram->init_lock);
1697 	/* I/O operation under all of CPU are done so let's free */
1698 	zram_meta_free(zram, disksize);
1699 	memset(&zram->stats, 0, sizeof(zram->stats));
1700 	zcomp_destroy(comp);
1701 	reset_bdev(zram);
1702 }
1703 
1704 static ssize_t disksize_store(struct device *dev,
1705 		struct device_attribute *attr, const char *buf, size_t len)
1706 {
1707 	u64 disksize;
1708 	struct zcomp *comp;
1709 	struct zram *zram = dev_to_zram(dev);
1710 	int err;
1711 
1712 	disksize = memparse(buf, NULL);
1713 	if (!disksize)
1714 		return -EINVAL;
1715 
1716 	down_write(&zram->init_lock);
1717 	if (init_done(zram)) {
1718 		pr_info("Cannot change disksize for initialized device\n");
1719 		err = -EBUSY;
1720 		goto out_unlock;
1721 	}
1722 
1723 	disksize = PAGE_ALIGN(disksize);
1724 	if (!zram_meta_alloc(zram, disksize)) {
1725 		err = -ENOMEM;
1726 		goto out_unlock;
1727 	}
1728 
1729 	comp = zcomp_create(zram->compressor);
1730 	if (IS_ERR(comp)) {
1731 		pr_err("Cannot initialise %s compressing backend\n",
1732 				zram->compressor);
1733 		err = PTR_ERR(comp);
1734 		goto out_free_meta;
1735 	}
1736 
1737 	zram->comp = comp;
1738 	zram->disksize = disksize;
1739 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1740 
1741 	revalidate_disk(zram->disk);
1742 	up_write(&zram->init_lock);
1743 
1744 	return len;
1745 
1746 out_free_meta:
1747 	zram_meta_free(zram, disksize);
1748 out_unlock:
1749 	up_write(&zram->init_lock);
1750 	return err;
1751 }
1752 
1753 static ssize_t reset_store(struct device *dev,
1754 		struct device_attribute *attr, const char *buf, size_t len)
1755 {
1756 	int ret;
1757 	unsigned short do_reset;
1758 	struct zram *zram;
1759 	struct block_device *bdev;
1760 
1761 	ret = kstrtou16(buf, 10, &do_reset);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (!do_reset)
1766 		return -EINVAL;
1767 
1768 	zram = dev_to_zram(dev);
1769 	bdev = bdget_disk(zram->disk, 0);
1770 	if (!bdev)
1771 		return -ENOMEM;
1772 
1773 	mutex_lock(&bdev->bd_mutex);
1774 	/* Do not reset an active device or claimed device */
1775 	if (bdev->bd_openers || zram->claim) {
1776 		mutex_unlock(&bdev->bd_mutex);
1777 		bdput(bdev);
1778 		return -EBUSY;
1779 	}
1780 
1781 	/* From now on, anyone can't open /dev/zram[0-9] */
1782 	zram->claim = true;
1783 	mutex_unlock(&bdev->bd_mutex);
1784 
1785 	/* Make sure all the pending I/O are finished */
1786 	fsync_bdev(bdev);
1787 	zram_reset_device(zram);
1788 	revalidate_disk(zram->disk);
1789 	bdput(bdev);
1790 
1791 	mutex_lock(&bdev->bd_mutex);
1792 	zram->claim = false;
1793 	mutex_unlock(&bdev->bd_mutex);
1794 
1795 	return len;
1796 }
1797 
1798 static int zram_open(struct block_device *bdev, fmode_t mode)
1799 {
1800 	int ret = 0;
1801 	struct zram *zram;
1802 
1803 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1804 
1805 	zram = bdev->bd_disk->private_data;
1806 	/* zram was claimed to reset so open request fails */
1807 	if (zram->claim)
1808 		ret = -EBUSY;
1809 
1810 	return ret;
1811 }
1812 
1813 static const struct block_device_operations zram_devops = {
1814 	.open = zram_open,
1815 	.swap_slot_free_notify = zram_slot_free_notify,
1816 	.rw_page = zram_rw_page,
1817 	.owner = THIS_MODULE
1818 };
1819 
1820 static DEVICE_ATTR_WO(compact);
1821 static DEVICE_ATTR_RW(disksize);
1822 static DEVICE_ATTR_RO(initstate);
1823 static DEVICE_ATTR_WO(reset);
1824 static DEVICE_ATTR_WO(mem_limit);
1825 static DEVICE_ATTR_WO(mem_used_max);
1826 static DEVICE_ATTR_WO(idle);
1827 static DEVICE_ATTR_RW(max_comp_streams);
1828 static DEVICE_ATTR_RW(comp_algorithm);
1829 #ifdef CONFIG_ZRAM_WRITEBACK
1830 static DEVICE_ATTR_RW(backing_dev);
1831 static DEVICE_ATTR_WO(writeback);
1832 static DEVICE_ATTR_RW(writeback_limit);
1833 static DEVICE_ATTR_RW(writeback_limit_enable);
1834 #endif
1835 
1836 static struct attribute *zram_disk_attrs[] = {
1837 	&dev_attr_disksize.attr,
1838 	&dev_attr_initstate.attr,
1839 	&dev_attr_reset.attr,
1840 	&dev_attr_compact.attr,
1841 	&dev_attr_mem_limit.attr,
1842 	&dev_attr_mem_used_max.attr,
1843 	&dev_attr_idle.attr,
1844 	&dev_attr_max_comp_streams.attr,
1845 	&dev_attr_comp_algorithm.attr,
1846 #ifdef CONFIG_ZRAM_WRITEBACK
1847 	&dev_attr_backing_dev.attr,
1848 	&dev_attr_writeback.attr,
1849 	&dev_attr_writeback_limit.attr,
1850 	&dev_attr_writeback_limit_enable.attr,
1851 #endif
1852 	&dev_attr_io_stat.attr,
1853 	&dev_attr_mm_stat.attr,
1854 #ifdef CONFIG_ZRAM_WRITEBACK
1855 	&dev_attr_bd_stat.attr,
1856 #endif
1857 	&dev_attr_debug_stat.attr,
1858 	NULL,
1859 };
1860 
1861 static const struct attribute_group zram_disk_attr_group = {
1862 	.attrs = zram_disk_attrs,
1863 };
1864 
1865 static const struct attribute_group *zram_disk_attr_groups[] = {
1866 	&zram_disk_attr_group,
1867 	NULL,
1868 };
1869 
1870 /*
1871  * Allocate and initialize new zram device. the function returns
1872  * '>= 0' device_id upon success, and negative value otherwise.
1873  */
1874 static int zram_add(void)
1875 {
1876 	struct zram *zram;
1877 	struct request_queue *queue;
1878 	int ret, device_id;
1879 
1880 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1881 	if (!zram)
1882 		return -ENOMEM;
1883 
1884 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1885 	if (ret < 0)
1886 		goto out_free_dev;
1887 	device_id = ret;
1888 
1889 	init_rwsem(&zram->init_lock);
1890 #ifdef CONFIG_ZRAM_WRITEBACK
1891 	spin_lock_init(&zram->wb_limit_lock);
1892 #endif
1893 	queue = blk_alloc_queue(GFP_KERNEL);
1894 	if (!queue) {
1895 		pr_err("Error allocating disk queue for device %d\n",
1896 			device_id);
1897 		ret = -ENOMEM;
1898 		goto out_free_idr;
1899 	}
1900 
1901 	blk_queue_make_request(queue, zram_make_request);
1902 
1903 	/* gendisk structure */
1904 	zram->disk = alloc_disk(1);
1905 	if (!zram->disk) {
1906 		pr_err("Error allocating disk structure for device %d\n",
1907 			device_id);
1908 		ret = -ENOMEM;
1909 		goto out_free_queue;
1910 	}
1911 
1912 	zram->disk->major = zram_major;
1913 	zram->disk->first_minor = device_id;
1914 	zram->disk->fops = &zram_devops;
1915 	zram->disk->queue = queue;
1916 	zram->disk->queue->queuedata = zram;
1917 	zram->disk->private_data = zram;
1918 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1919 
1920 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1921 	set_capacity(zram->disk, 0);
1922 	/* zram devices sort of resembles non-rotational disks */
1923 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1924 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1925 
1926 	/*
1927 	 * To ensure that we always get PAGE_SIZE aligned
1928 	 * and n*PAGE_SIZED sized I/O requests.
1929 	 */
1930 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1931 	blk_queue_logical_block_size(zram->disk->queue,
1932 					ZRAM_LOGICAL_BLOCK_SIZE);
1933 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1934 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1935 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1936 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1937 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1938 
1939 	/*
1940 	 * zram_bio_discard() will clear all logical blocks if logical block
1941 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1942 	 * different, we will skip discarding some parts of logical blocks in
1943 	 * the part of the request range which isn't aligned to physical block
1944 	 * size.  So we can't ensure that all discarded logical blocks are
1945 	 * zeroed.
1946 	 */
1947 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1948 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1949 
1950 	zram->disk->queue->backing_dev_info->capabilities |=
1951 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1952 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1953 
1954 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1955 
1956 	zram_debugfs_register(zram);
1957 	pr_info("Added device: %s\n", zram->disk->disk_name);
1958 	return device_id;
1959 
1960 out_free_queue:
1961 	blk_cleanup_queue(queue);
1962 out_free_idr:
1963 	idr_remove(&zram_index_idr, device_id);
1964 out_free_dev:
1965 	kfree(zram);
1966 	return ret;
1967 }
1968 
1969 static int zram_remove(struct zram *zram)
1970 {
1971 	struct block_device *bdev;
1972 
1973 	bdev = bdget_disk(zram->disk, 0);
1974 	if (!bdev)
1975 		return -ENOMEM;
1976 
1977 	mutex_lock(&bdev->bd_mutex);
1978 	if (bdev->bd_openers || zram->claim) {
1979 		mutex_unlock(&bdev->bd_mutex);
1980 		bdput(bdev);
1981 		return -EBUSY;
1982 	}
1983 
1984 	zram->claim = true;
1985 	mutex_unlock(&bdev->bd_mutex);
1986 
1987 	zram_debugfs_unregister(zram);
1988 
1989 	/* Make sure all the pending I/O are finished */
1990 	fsync_bdev(bdev);
1991 	zram_reset_device(zram);
1992 	bdput(bdev);
1993 
1994 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1995 
1996 	del_gendisk(zram->disk);
1997 	blk_cleanup_queue(zram->disk->queue);
1998 	put_disk(zram->disk);
1999 	kfree(zram);
2000 	return 0;
2001 }
2002 
2003 /* zram-control sysfs attributes */
2004 
2005 /*
2006  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2007  * sense that reading from this file does alter the state of your system -- it
2008  * creates a new un-initialized zram device and returns back this device's
2009  * device_id (or an error code if it fails to create a new device).
2010  */
2011 static ssize_t hot_add_show(struct class *class,
2012 			struct class_attribute *attr,
2013 			char *buf)
2014 {
2015 	int ret;
2016 
2017 	mutex_lock(&zram_index_mutex);
2018 	ret = zram_add();
2019 	mutex_unlock(&zram_index_mutex);
2020 
2021 	if (ret < 0)
2022 		return ret;
2023 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2024 }
2025 static CLASS_ATTR_RO(hot_add);
2026 
2027 static ssize_t hot_remove_store(struct class *class,
2028 			struct class_attribute *attr,
2029 			const char *buf,
2030 			size_t count)
2031 {
2032 	struct zram *zram;
2033 	int ret, dev_id;
2034 
2035 	/* dev_id is gendisk->first_minor, which is `int' */
2036 	ret = kstrtoint(buf, 10, &dev_id);
2037 	if (ret)
2038 		return ret;
2039 	if (dev_id < 0)
2040 		return -EINVAL;
2041 
2042 	mutex_lock(&zram_index_mutex);
2043 
2044 	zram = idr_find(&zram_index_idr, dev_id);
2045 	if (zram) {
2046 		ret = zram_remove(zram);
2047 		if (!ret)
2048 			idr_remove(&zram_index_idr, dev_id);
2049 	} else {
2050 		ret = -ENODEV;
2051 	}
2052 
2053 	mutex_unlock(&zram_index_mutex);
2054 	return ret ? ret : count;
2055 }
2056 static CLASS_ATTR_WO(hot_remove);
2057 
2058 static struct attribute *zram_control_class_attrs[] = {
2059 	&class_attr_hot_add.attr,
2060 	&class_attr_hot_remove.attr,
2061 	NULL,
2062 };
2063 ATTRIBUTE_GROUPS(zram_control_class);
2064 
2065 static struct class zram_control_class = {
2066 	.name		= "zram-control",
2067 	.owner		= THIS_MODULE,
2068 	.class_groups	= zram_control_class_groups,
2069 };
2070 
2071 static int zram_remove_cb(int id, void *ptr, void *data)
2072 {
2073 	zram_remove(ptr);
2074 	return 0;
2075 }
2076 
2077 static void destroy_devices(void)
2078 {
2079 	class_unregister(&zram_control_class);
2080 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2081 	zram_debugfs_destroy();
2082 	idr_destroy(&zram_index_idr);
2083 	unregister_blkdev(zram_major, "zram");
2084 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2085 }
2086 
2087 static int __init zram_init(void)
2088 {
2089 	int ret;
2090 
2091 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2092 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2093 	if (ret < 0)
2094 		return ret;
2095 
2096 	ret = class_register(&zram_control_class);
2097 	if (ret) {
2098 		pr_err("Unable to register zram-control class\n");
2099 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2100 		return ret;
2101 	}
2102 
2103 	zram_debugfs_create();
2104 	zram_major = register_blkdev(0, "zram");
2105 	if (zram_major <= 0) {
2106 		pr_err("Unable to get major number\n");
2107 		class_unregister(&zram_control_class);
2108 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2109 		return -EBUSY;
2110 	}
2111 
2112 	while (num_devices != 0) {
2113 		mutex_lock(&zram_index_mutex);
2114 		ret = zram_add();
2115 		mutex_unlock(&zram_index_mutex);
2116 		if (ret < 0)
2117 			goto out_error;
2118 		num_devices--;
2119 	}
2120 
2121 	return 0;
2122 
2123 out_error:
2124 	destroy_devices();
2125 	return ret;
2126 }
2127 
2128 static void __exit zram_exit(void)
2129 {
2130 	destroy_devices();
2131 }
2132 
2133 module_init(zram_init);
2134 module_exit(zram_exit);
2135 
2136 module_param(num_devices, uint, 0);
2137 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2138 
2139 MODULE_LICENSE("Dual BSD/GPL");
2140 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2141 MODULE_DESCRIPTION("Compressed RAM Block Device");
2142