1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 58 struct bio *parent); 59 60 static int zram_slot_trylock(struct zram *zram, u32 index) 61 { 62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 63 } 64 65 static void zram_slot_lock(struct zram *zram, u32 index) 66 { 67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 68 } 69 70 static void zram_slot_unlock(struct zram *zram, u32 index) 71 { 72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 73 } 74 75 static inline bool init_done(struct zram *zram) 76 { 77 return zram->disksize; 78 } 79 80 static inline struct zram *dev_to_zram(struct device *dev) 81 { 82 return (struct zram *)dev_to_disk(dev)->private_data; 83 } 84 85 static unsigned long zram_get_handle(struct zram *zram, u32 index) 86 { 87 return zram->table[index].handle; 88 } 89 90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 91 { 92 zram->table[index].handle = handle; 93 } 94 95 /* flag operations require table entry bit_spin_lock() being held */ 96 static bool zram_test_flag(struct zram *zram, u32 index, 97 enum zram_pageflags flag) 98 { 99 return zram->table[index].flags & BIT(flag); 100 } 101 102 static void zram_set_flag(struct zram *zram, u32 index, 103 enum zram_pageflags flag) 104 { 105 zram->table[index].flags |= BIT(flag); 106 } 107 108 static void zram_clear_flag(struct zram *zram, u32 index, 109 enum zram_pageflags flag) 110 { 111 zram->table[index].flags &= ~BIT(flag); 112 } 113 114 static inline void zram_set_element(struct zram *zram, u32 index, 115 unsigned long element) 116 { 117 zram->table[index].element = element; 118 } 119 120 static unsigned long zram_get_element(struct zram *zram, u32 index) 121 { 122 return zram->table[index].element; 123 } 124 125 static size_t zram_get_obj_size(struct zram *zram, u32 index) 126 { 127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 128 } 129 130 static void zram_set_obj_size(struct zram *zram, 131 u32 index, size_t size) 132 { 133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 134 135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 136 } 137 138 static inline bool zram_allocated(struct zram *zram, u32 index) 139 { 140 return zram_get_obj_size(zram, index) || 141 zram_test_flag(zram, index, ZRAM_SAME) || 142 zram_test_flag(zram, index, ZRAM_WB); 143 } 144 145 #if PAGE_SIZE != 4096 146 static inline bool is_partial_io(struct bio_vec *bvec) 147 { 148 return bvec->bv_len != PAGE_SIZE; 149 } 150 #define ZRAM_PARTIAL_IO 1 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 static inline void update_used_max(struct zram *zram, 178 const unsigned long pages) 179 { 180 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 181 182 do { 183 if (cur_max >= pages) 184 return; 185 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 186 &cur_max, pages)); 187 } 188 189 static inline void zram_fill_page(void *ptr, unsigned long len, 190 unsigned long value) 191 { 192 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 193 memset_l(ptr, value, len / sizeof(unsigned long)); 194 } 195 196 static bool page_same_filled(void *ptr, unsigned long *element) 197 { 198 unsigned long *page; 199 unsigned long val; 200 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 201 202 page = (unsigned long *)ptr; 203 val = page[0]; 204 205 if (val != page[last_pos]) 206 return false; 207 208 for (pos = 1; pos < last_pos; pos++) { 209 if (val != page[pos]) 210 return false; 211 } 212 213 *element = val; 214 215 return true; 216 } 217 218 static ssize_t initstate_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 u32 val; 222 struct zram *zram = dev_to_zram(dev); 223 224 down_read(&zram->init_lock); 225 val = init_done(zram); 226 up_read(&zram->init_lock); 227 228 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 229 } 230 231 static ssize_t disksize_show(struct device *dev, 232 struct device_attribute *attr, char *buf) 233 { 234 struct zram *zram = dev_to_zram(dev); 235 236 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 237 } 238 239 static ssize_t mem_limit_store(struct device *dev, 240 struct device_attribute *attr, const char *buf, size_t len) 241 { 242 u64 limit; 243 char *tmp; 244 struct zram *zram = dev_to_zram(dev); 245 246 limit = memparse(buf, &tmp); 247 if (buf == tmp) /* no chars parsed, invalid input */ 248 return -EINVAL; 249 250 down_write(&zram->init_lock); 251 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 252 up_write(&zram->init_lock); 253 254 return len; 255 } 256 257 static ssize_t mem_used_max_store(struct device *dev, 258 struct device_attribute *attr, const char *buf, size_t len) 259 { 260 int err; 261 unsigned long val; 262 struct zram *zram = dev_to_zram(dev); 263 264 err = kstrtoul(buf, 10, &val); 265 if (err || val != 0) 266 return -EINVAL; 267 268 down_read(&zram->init_lock); 269 if (init_done(zram)) { 270 atomic_long_set(&zram->stats.max_used_pages, 271 zs_get_total_pages(zram->mem_pool)); 272 } 273 up_read(&zram->init_lock); 274 275 return len; 276 } 277 278 /* 279 * Mark all pages which are older than or equal to cutoff as IDLE. 280 * Callers should hold the zram init lock in read mode 281 */ 282 static void mark_idle(struct zram *zram, ktime_t cutoff) 283 { 284 int is_idle = 1; 285 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 286 int index; 287 288 for (index = 0; index < nr_pages; index++) { 289 /* 290 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 291 * See the comment in writeback_store. 292 */ 293 zram_slot_lock(zram, index); 294 if (zram_allocated(zram, index) && 295 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 296 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 297 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); 298 #endif 299 if (is_idle) 300 zram_set_flag(zram, index, ZRAM_IDLE); 301 } 302 zram_slot_unlock(zram, index); 303 } 304 } 305 306 static ssize_t idle_store(struct device *dev, 307 struct device_attribute *attr, const char *buf, size_t len) 308 { 309 struct zram *zram = dev_to_zram(dev); 310 ktime_t cutoff_time = 0; 311 ssize_t rv = -EINVAL; 312 313 if (!sysfs_streq(buf, "all")) { 314 /* 315 * If it did not parse as 'all' try to treat it as an integer 316 * when we have memory tracking enabled. 317 */ 318 u64 age_sec; 319 320 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) 321 cutoff_time = ktime_sub(ktime_get_boottime(), 322 ns_to_ktime(age_sec * NSEC_PER_SEC)); 323 else 324 goto out; 325 } 326 327 down_read(&zram->init_lock); 328 if (!init_done(zram)) 329 goto out_unlock; 330 331 /* 332 * A cutoff_time of 0 marks everything as idle, this is the 333 * "all" behavior. 334 */ 335 mark_idle(zram, cutoff_time); 336 rv = len; 337 338 out_unlock: 339 up_read(&zram->init_lock); 340 out: 341 return rv; 342 } 343 344 #ifdef CONFIG_ZRAM_WRITEBACK 345 static ssize_t writeback_limit_enable_store(struct device *dev, 346 struct device_attribute *attr, const char *buf, size_t len) 347 { 348 struct zram *zram = dev_to_zram(dev); 349 u64 val; 350 ssize_t ret = -EINVAL; 351 352 if (kstrtoull(buf, 10, &val)) 353 return ret; 354 355 down_read(&zram->init_lock); 356 spin_lock(&zram->wb_limit_lock); 357 zram->wb_limit_enable = val; 358 spin_unlock(&zram->wb_limit_lock); 359 up_read(&zram->init_lock); 360 ret = len; 361 362 return ret; 363 } 364 365 static ssize_t writeback_limit_enable_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 bool val; 369 struct zram *zram = dev_to_zram(dev); 370 371 down_read(&zram->init_lock); 372 spin_lock(&zram->wb_limit_lock); 373 val = zram->wb_limit_enable; 374 spin_unlock(&zram->wb_limit_lock); 375 up_read(&zram->init_lock); 376 377 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 378 } 379 380 static ssize_t writeback_limit_store(struct device *dev, 381 struct device_attribute *attr, const char *buf, size_t len) 382 { 383 struct zram *zram = dev_to_zram(dev); 384 u64 val; 385 ssize_t ret = -EINVAL; 386 387 if (kstrtoull(buf, 10, &val)) 388 return ret; 389 390 down_read(&zram->init_lock); 391 spin_lock(&zram->wb_limit_lock); 392 zram->bd_wb_limit = val; 393 spin_unlock(&zram->wb_limit_lock); 394 up_read(&zram->init_lock); 395 ret = len; 396 397 return ret; 398 } 399 400 static ssize_t writeback_limit_show(struct device *dev, 401 struct device_attribute *attr, char *buf) 402 { 403 u64 val; 404 struct zram *zram = dev_to_zram(dev); 405 406 down_read(&zram->init_lock); 407 spin_lock(&zram->wb_limit_lock); 408 val = zram->bd_wb_limit; 409 spin_unlock(&zram->wb_limit_lock); 410 up_read(&zram->init_lock); 411 412 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 413 } 414 415 static void reset_bdev(struct zram *zram) 416 { 417 struct block_device *bdev; 418 419 if (!zram->backing_dev) 420 return; 421 422 bdev = zram->bdev; 423 blkdev_put(bdev, zram); 424 /* hope filp_close flush all of IO */ 425 filp_close(zram->backing_dev, NULL); 426 zram->backing_dev = NULL; 427 zram->bdev = NULL; 428 zram->disk->fops = &zram_devops; 429 kvfree(zram->bitmap); 430 zram->bitmap = NULL; 431 } 432 433 static ssize_t backing_dev_show(struct device *dev, 434 struct device_attribute *attr, char *buf) 435 { 436 struct file *file; 437 struct zram *zram = dev_to_zram(dev); 438 char *p; 439 ssize_t ret; 440 441 down_read(&zram->init_lock); 442 file = zram->backing_dev; 443 if (!file) { 444 memcpy(buf, "none\n", 5); 445 up_read(&zram->init_lock); 446 return 5; 447 } 448 449 p = file_path(file, buf, PAGE_SIZE - 1); 450 if (IS_ERR(p)) { 451 ret = PTR_ERR(p); 452 goto out; 453 } 454 455 ret = strlen(p); 456 memmove(buf, p, ret); 457 buf[ret++] = '\n'; 458 out: 459 up_read(&zram->init_lock); 460 return ret; 461 } 462 463 static ssize_t backing_dev_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, size_t len) 465 { 466 char *file_name; 467 size_t sz; 468 struct file *backing_dev = NULL; 469 struct inode *inode; 470 struct address_space *mapping; 471 unsigned int bitmap_sz; 472 unsigned long nr_pages, *bitmap = NULL; 473 struct block_device *bdev = NULL; 474 int err; 475 struct zram *zram = dev_to_zram(dev); 476 477 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 478 if (!file_name) 479 return -ENOMEM; 480 481 down_write(&zram->init_lock); 482 if (init_done(zram)) { 483 pr_info("Can't setup backing device for initialized device\n"); 484 err = -EBUSY; 485 goto out; 486 } 487 488 strscpy(file_name, buf, PATH_MAX); 489 /* ignore trailing newline */ 490 sz = strlen(file_name); 491 if (sz > 0 && file_name[sz - 1] == '\n') 492 file_name[sz - 1] = 0x00; 493 494 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 495 if (IS_ERR(backing_dev)) { 496 err = PTR_ERR(backing_dev); 497 backing_dev = NULL; 498 goto out; 499 } 500 501 mapping = backing_dev->f_mapping; 502 inode = mapping->host; 503 504 /* Support only block device in this moment */ 505 if (!S_ISBLK(inode->i_mode)) { 506 err = -ENOTBLK; 507 goto out; 508 } 509 510 bdev = blkdev_get_by_dev(inode->i_rdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 511 zram, NULL); 512 if (IS_ERR(bdev)) { 513 err = PTR_ERR(bdev); 514 bdev = NULL; 515 goto out; 516 } 517 518 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 519 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 520 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 521 if (!bitmap) { 522 err = -ENOMEM; 523 goto out; 524 } 525 526 reset_bdev(zram); 527 528 zram->bdev = bdev; 529 zram->backing_dev = backing_dev; 530 zram->bitmap = bitmap; 531 zram->nr_pages = nr_pages; 532 up_write(&zram->init_lock); 533 534 pr_info("setup backing device %s\n", file_name); 535 kfree(file_name); 536 537 return len; 538 out: 539 kvfree(bitmap); 540 541 if (bdev) 542 blkdev_put(bdev, zram); 543 544 if (backing_dev) 545 filp_close(backing_dev, NULL); 546 547 up_write(&zram->init_lock); 548 549 kfree(file_name); 550 551 return err; 552 } 553 554 static unsigned long alloc_block_bdev(struct zram *zram) 555 { 556 unsigned long blk_idx = 1; 557 retry: 558 /* skip 0 bit to confuse zram.handle = 0 */ 559 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 560 if (blk_idx == zram->nr_pages) 561 return 0; 562 563 if (test_and_set_bit(blk_idx, zram->bitmap)) 564 goto retry; 565 566 atomic64_inc(&zram->stats.bd_count); 567 return blk_idx; 568 } 569 570 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 571 { 572 int was_set; 573 574 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 575 WARN_ON_ONCE(!was_set); 576 atomic64_dec(&zram->stats.bd_count); 577 } 578 579 static void read_from_bdev_async(struct zram *zram, struct page *page, 580 unsigned long entry, struct bio *parent) 581 { 582 struct bio *bio; 583 584 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 585 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 586 __bio_add_page(bio, page, PAGE_SIZE, 0); 587 bio_chain(bio, parent); 588 submit_bio(bio); 589 } 590 591 #define PAGE_WB_SIG "page_index=" 592 593 #define PAGE_WRITEBACK 0 594 #define HUGE_WRITEBACK (1<<0) 595 #define IDLE_WRITEBACK (1<<1) 596 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 597 598 static ssize_t writeback_store(struct device *dev, 599 struct device_attribute *attr, const char *buf, size_t len) 600 { 601 struct zram *zram = dev_to_zram(dev); 602 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 603 unsigned long index = 0; 604 struct bio bio; 605 struct bio_vec bio_vec; 606 struct page *page; 607 ssize_t ret = len; 608 int mode, err; 609 unsigned long blk_idx = 0; 610 611 if (sysfs_streq(buf, "idle")) 612 mode = IDLE_WRITEBACK; 613 else if (sysfs_streq(buf, "huge")) 614 mode = HUGE_WRITEBACK; 615 else if (sysfs_streq(buf, "huge_idle")) 616 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 617 else if (sysfs_streq(buf, "incompressible")) 618 mode = INCOMPRESSIBLE_WRITEBACK; 619 else { 620 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 621 return -EINVAL; 622 623 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 624 index >= nr_pages) 625 return -EINVAL; 626 627 nr_pages = 1; 628 mode = PAGE_WRITEBACK; 629 } 630 631 down_read(&zram->init_lock); 632 if (!init_done(zram)) { 633 ret = -EINVAL; 634 goto release_init_lock; 635 } 636 637 if (!zram->backing_dev) { 638 ret = -ENODEV; 639 goto release_init_lock; 640 } 641 642 page = alloc_page(GFP_KERNEL); 643 if (!page) { 644 ret = -ENOMEM; 645 goto release_init_lock; 646 } 647 648 for (; nr_pages != 0; index++, nr_pages--) { 649 spin_lock(&zram->wb_limit_lock); 650 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 651 spin_unlock(&zram->wb_limit_lock); 652 ret = -EIO; 653 break; 654 } 655 spin_unlock(&zram->wb_limit_lock); 656 657 if (!blk_idx) { 658 blk_idx = alloc_block_bdev(zram); 659 if (!blk_idx) { 660 ret = -ENOSPC; 661 break; 662 } 663 } 664 665 zram_slot_lock(zram, index); 666 if (!zram_allocated(zram, index)) 667 goto next; 668 669 if (zram_test_flag(zram, index, ZRAM_WB) || 670 zram_test_flag(zram, index, ZRAM_SAME) || 671 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 672 goto next; 673 674 if (mode & IDLE_WRITEBACK && 675 !zram_test_flag(zram, index, ZRAM_IDLE)) 676 goto next; 677 if (mode & HUGE_WRITEBACK && 678 !zram_test_flag(zram, index, ZRAM_HUGE)) 679 goto next; 680 if (mode & INCOMPRESSIBLE_WRITEBACK && 681 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 682 goto next; 683 684 /* 685 * Clearing ZRAM_UNDER_WB is duty of caller. 686 * IOW, zram_free_page never clear it. 687 */ 688 zram_set_flag(zram, index, ZRAM_UNDER_WB); 689 /* Need for hugepage writeback racing */ 690 zram_set_flag(zram, index, ZRAM_IDLE); 691 zram_slot_unlock(zram, index); 692 if (zram_read_page(zram, page, index, NULL)) { 693 zram_slot_lock(zram, index); 694 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 695 zram_clear_flag(zram, index, ZRAM_IDLE); 696 zram_slot_unlock(zram, index); 697 continue; 698 } 699 700 bio_init(&bio, zram->bdev, &bio_vec, 1, 701 REQ_OP_WRITE | REQ_SYNC); 702 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 703 __bio_add_page(&bio, page, PAGE_SIZE, 0); 704 705 /* 706 * XXX: A single page IO would be inefficient for write 707 * but it would be not bad as starter. 708 */ 709 err = submit_bio_wait(&bio); 710 if (err) { 711 zram_slot_lock(zram, index); 712 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 713 zram_clear_flag(zram, index, ZRAM_IDLE); 714 zram_slot_unlock(zram, index); 715 /* 716 * BIO errors are not fatal, we continue and simply 717 * attempt to writeback the remaining objects (pages). 718 * At the same time we need to signal user-space that 719 * some writes (at least one, but also could be all of 720 * them) were not successful and we do so by returning 721 * the most recent BIO error. 722 */ 723 ret = err; 724 continue; 725 } 726 727 atomic64_inc(&zram->stats.bd_writes); 728 /* 729 * We released zram_slot_lock so need to check if the slot was 730 * changed. If there is freeing for the slot, we can catch it 731 * easily by zram_allocated. 732 * A subtle case is the slot is freed/reallocated/marked as 733 * ZRAM_IDLE again. To close the race, idle_store doesn't 734 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 735 * Thus, we could close the race by checking ZRAM_IDLE bit. 736 */ 737 zram_slot_lock(zram, index); 738 if (!zram_allocated(zram, index) || 739 !zram_test_flag(zram, index, ZRAM_IDLE)) { 740 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 741 zram_clear_flag(zram, index, ZRAM_IDLE); 742 goto next; 743 } 744 745 zram_free_page(zram, index); 746 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 747 zram_set_flag(zram, index, ZRAM_WB); 748 zram_set_element(zram, index, blk_idx); 749 blk_idx = 0; 750 atomic64_inc(&zram->stats.pages_stored); 751 spin_lock(&zram->wb_limit_lock); 752 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 753 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 754 spin_unlock(&zram->wb_limit_lock); 755 next: 756 zram_slot_unlock(zram, index); 757 } 758 759 if (blk_idx) 760 free_block_bdev(zram, blk_idx); 761 __free_page(page); 762 release_init_lock: 763 up_read(&zram->init_lock); 764 765 return ret; 766 } 767 768 struct zram_work { 769 struct work_struct work; 770 struct zram *zram; 771 unsigned long entry; 772 struct page *page; 773 int error; 774 }; 775 776 static void zram_sync_read(struct work_struct *work) 777 { 778 struct zram_work *zw = container_of(work, struct zram_work, work); 779 struct bio_vec bv; 780 struct bio bio; 781 782 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 783 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 784 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 785 zw->error = submit_bio_wait(&bio); 786 } 787 788 /* 789 * Block layer want one ->submit_bio to be active at a time, so if we use 790 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 791 * use a worker thread context. 792 */ 793 static int read_from_bdev_sync(struct zram *zram, struct page *page, 794 unsigned long entry) 795 { 796 struct zram_work work; 797 798 work.page = page; 799 work.zram = zram; 800 work.entry = entry; 801 802 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 803 queue_work(system_unbound_wq, &work.work); 804 flush_work(&work.work); 805 destroy_work_on_stack(&work.work); 806 807 return work.error; 808 } 809 810 static int read_from_bdev(struct zram *zram, struct page *page, 811 unsigned long entry, struct bio *parent) 812 { 813 atomic64_inc(&zram->stats.bd_reads); 814 if (!parent) { 815 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 816 return -EIO; 817 return read_from_bdev_sync(zram, page, entry); 818 } 819 read_from_bdev_async(zram, page, entry, parent); 820 return 0; 821 } 822 #else 823 static inline void reset_bdev(struct zram *zram) {}; 824 static int read_from_bdev(struct zram *zram, struct page *page, 825 unsigned long entry, struct bio *parent) 826 { 827 return -EIO; 828 } 829 830 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 831 #endif 832 833 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 834 835 static struct dentry *zram_debugfs_root; 836 837 static void zram_debugfs_create(void) 838 { 839 zram_debugfs_root = debugfs_create_dir("zram", NULL); 840 } 841 842 static void zram_debugfs_destroy(void) 843 { 844 debugfs_remove_recursive(zram_debugfs_root); 845 } 846 847 static void zram_accessed(struct zram *zram, u32 index) 848 { 849 zram_clear_flag(zram, index, ZRAM_IDLE); 850 zram->table[index].ac_time = ktime_get_boottime(); 851 } 852 853 static ssize_t read_block_state(struct file *file, char __user *buf, 854 size_t count, loff_t *ppos) 855 { 856 char *kbuf; 857 ssize_t index, written = 0; 858 struct zram *zram = file->private_data; 859 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 860 struct timespec64 ts; 861 862 kbuf = kvmalloc(count, GFP_KERNEL); 863 if (!kbuf) 864 return -ENOMEM; 865 866 down_read(&zram->init_lock); 867 if (!init_done(zram)) { 868 up_read(&zram->init_lock); 869 kvfree(kbuf); 870 return -EINVAL; 871 } 872 873 for (index = *ppos; index < nr_pages; index++) { 874 int copied; 875 876 zram_slot_lock(zram, index); 877 if (!zram_allocated(zram, index)) 878 goto next; 879 880 ts = ktime_to_timespec64(zram->table[index].ac_time); 881 copied = snprintf(kbuf + written, count, 882 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 883 index, (s64)ts.tv_sec, 884 ts.tv_nsec / NSEC_PER_USEC, 885 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 886 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 887 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 888 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 889 zram_get_priority(zram, index) ? 'r' : '.', 890 zram_test_flag(zram, index, 891 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 892 893 if (count <= copied) { 894 zram_slot_unlock(zram, index); 895 break; 896 } 897 written += copied; 898 count -= copied; 899 next: 900 zram_slot_unlock(zram, index); 901 *ppos += 1; 902 } 903 904 up_read(&zram->init_lock); 905 if (copy_to_user(buf, kbuf, written)) 906 written = -EFAULT; 907 kvfree(kbuf); 908 909 return written; 910 } 911 912 static const struct file_operations proc_zram_block_state_op = { 913 .open = simple_open, 914 .read = read_block_state, 915 .llseek = default_llseek, 916 }; 917 918 static void zram_debugfs_register(struct zram *zram) 919 { 920 if (!zram_debugfs_root) 921 return; 922 923 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 924 zram_debugfs_root); 925 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 926 zram, &proc_zram_block_state_op); 927 } 928 929 static void zram_debugfs_unregister(struct zram *zram) 930 { 931 debugfs_remove_recursive(zram->debugfs_dir); 932 } 933 #else 934 static void zram_debugfs_create(void) {}; 935 static void zram_debugfs_destroy(void) {}; 936 static void zram_accessed(struct zram *zram, u32 index) 937 { 938 zram_clear_flag(zram, index, ZRAM_IDLE); 939 }; 940 static void zram_debugfs_register(struct zram *zram) {}; 941 static void zram_debugfs_unregister(struct zram *zram) {}; 942 #endif 943 944 /* 945 * We switched to per-cpu streams and this attr is not needed anymore. 946 * However, we will keep it around for some time, because: 947 * a) we may revert per-cpu streams in the future 948 * b) it's visible to user space and we need to follow our 2 years 949 * retirement rule; but we already have a number of 'soon to be 950 * altered' attrs, so max_comp_streams need to wait for the next 951 * layoff cycle. 952 */ 953 static ssize_t max_comp_streams_show(struct device *dev, 954 struct device_attribute *attr, char *buf) 955 { 956 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 957 } 958 959 static ssize_t max_comp_streams_store(struct device *dev, 960 struct device_attribute *attr, const char *buf, size_t len) 961 { 962 return len; 963 } 964 965 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 966 { 967 /* Do not free statically defined compression algorithms */ 968 if (zram->comp_algs[prio] != default_compressor) 969 kfree(zram->comp_algs[prio]); 970 971 zram->comp_algs[prio] = alg; 972 } 973 974 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 975 { 976 ssize_t sz; 977 978 down_read(&zram->init_lock); 979 sz = zcomp_available_show(zram->comp_algs[prio], buf); 980 up_read(&zram->init_lock); 981 982 return sz; 983 } 984 985 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 986 { 987 char *compressor; 988 size_t sz; 989 990 sz = strlen(buf); 991 if (sz >= CRYPTO_MAX_ALG_NAME) 992 return -E2BIG; 993 994 compressor = kstrdup(buf, GFP_KERNEL); 995 if (!compressor) 996 return -ENOMEM; 997 998 /* ignore trailing newline */ 999 if (sz > 0 && compressor[sz - 1] == '\n') 1000 compressor[sz - 1] = 0x00; 1001 1002 if (!zcomp_available_algorithm(compressor)) { 1003 kfree(compressor); 1004 return -EINVAL; 1005 } 1006 1007 down_write(&zram->init_lock); 1008 if (init_done(zram)) { 1009 up_write(&zram->init_lock); 1010 kfree(compressor); 1011 pr_info("Can't change algorithm for initialized device\n"); 1012 return -EBUSY; 1013 } 1014 1015 comp_algorithm_set(zram, prio, compressor); 1016 up_write(&zram->init_lock); 1017 return 0; 1018 } 1019 1020 static ssize_t comp_algorithm_show(struct device *dev, 1021 struct device_attribute *attr, 1022 char *buf) 1023 { 1024 struct zram *zram = dev_to_zram(dev); 1025 1026 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1027 } 1028 1029 static ssize_t comp_algorithm_store(struct device *dev, 1030 struct device_attribute *attr, 1031 const char *buf, 1032 size_t len) 1033 { 1034 struct zram *zram = dev_to_zram(dev); 1035 int ret; 1036 1037 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1038 return ret ? ret : len; 1039 } 1040 1041 #ifdef CONFIG_ZRAM_MULTI_COMP 1042 static ssize_t recomp_algorithm_show(struct device *dev, 1043 struct device_attribute *attr, 1044 char *buf) 1045 { 1046 struct zram *zram = dev_to_zram(dev); 1047 ssize_t sz = 0; 1048 u32 prio; 1049 1050 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1051 if (!zram->comp_algs[prio]) 1052 continue; 1053 1054 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1055 sz += __comp_algorithm_show(zram, prio, buf + sz); 1056 } 1057 1058 return sz; 1059 } 1060 1061 static ssize_t recomp_algorithm_store(struct device *dev, 1062 struct device_attribute *attr, 1063 const char *buf, 1064 size_t len) 1065 { 1066 struct zram *zram = dev_to_zram(dev); 1067 int prio = ZRAM_SECONDARY_COMP; 1068 char *args, *param, *val; 1069 char *alg = NULL; 1070 int ret; 1071 1072 args = skip_spaces(buf); 1073 while (*args) { 1074 args = next_arg(args, ¶m, &val); 1075 1076 if (!val || !*val) 1077 return -EINVAL; 1078 1079 if (!strcmp(param, "algo")) { 1080 alg = val; 1081 continue; 1082 } 1083 1084 if (!strcmp(param, "priority")) { 1085 ret = kstrtoint(val, 10, &prio); 1086 if (ret) 1087 return ret; 1088 continue; 1089 } 1090 } 1091 1092 if (!alg) 1093 return -EINVAL; 1094 1095 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1096 return -EINVAL; 1097 1098 ret = __comp_algorithm_store(zram, prio, alg); 1099 return ret ? ret : len; 1100 } 1101 #endif 1102 1103 static ssize_t compact_store(struct device *dev, 1104 struct device_attribute *attr, const char *buf, size_t len) 1105 { 1106 struct zram *zram = dev_to_zram(dev); 1107 1108 down_read(&zram->init_lock); 1109 if (!init_done(zram)) { 1110 up_read(&zram->init_lock); 1111 return -EINVAL; 1112 } 1113 1114 zs_compact(zram->mem_pool); 1115 up_read(&zram->init_lock); 1116 1117 return len; 1118 } 1119 1120 static ssize_t io_stat_show(struct device *dev, 1121 struct device_attribute *attr, char *buf) 1122 { 1123 struct zram *zram = dev_to_zram(dev); 1124 ssize_t ret; 1125 1126 down_read(&zram->init_lock); 1127 ret = scnprintf(buf, PAGE_SIZE, 1128 "%8llu %8llu 0 %8llu\n", 1129 (u64)atomic64_read(&zram->stats.failed_reads), 1130 (u64)atomic64_read(&zram->stats.failed_writes), 1131 (u64)atomic64_read(&zram->stats.notify_free)); 1132 up_read(&zram->init_lock); 1133 1134 return ret; 1135 } 1136 1137 static ssize_t mm_stat_show(struct device *dev, 1138 struct device_attribute *attr, char *buf) 1139 { 1140 struct zram *zram = dev_to_zram(dev); 1141 struct zs_pool_stats pool_stats; 1142 u64 orig_size, mem_used = 0; 1143 long max_used; 1144 ssize_t ret; 1145 1146 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1147 1148 down_read(&zram->init_lock); 1149 if (init_done(zram)) { 1150 mem_used = zs_get_total_pages(zram->mem_pool); 1151 zs_pool_stats(zram->mem_pool, &pool_stats); 1152 } 1153 1154 orig_size = atomic64_read(&zram->stats.pages_stored); 1155 max_used = atomic_long_read(&zram->stats.max_used_pages); 1156 1157 ret = scnprintf(buf, PAGE_SIZE, 1158 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1159 orig_size << PAGE_SHIFT, 1160 (u64)atomic64_read(&zram->stats.compr_data_size), 1161 mem_used << PAGE_SHIFT, 1162 zram->limit_pages << PAGE_SHIFT, 1163 max_used << PAGE_SHIFT, 1164 (u64)atomic64_read(&zram->stats.same_pages), 1165 atomic_long_read(&pool_stats.pages_compacted), 1166 (u64)atomic64_read(&zram->stats.huge_pages), 1167 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1168 up_read(&zram->init_lock); 1169 1170 return ret; 1171 } 1172 1173 #ifdef CONFIG_ZRAM_WRITEBACK 1174 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1175 static ssize_t bd_stat_show(struct device *dev, 1176 struct device_attribute *attr, char *buf) 1177 { 1178 struct zram *zram = dev_to_zram(dev); 1179 ssize_t ret; 1180 1181 down_read(&zram->init_lock); 1182 ret = scnprintf(buf, PAGE_SIZE, 1183 "%8llu %8llu %8llu\n", 1184 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1185 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1186 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1187 up_read(&zram->init_lock); 1188 1189 return ret; 1190 } 1191 #endif 1192 1193 static ssize_t debug_stat_show(struct device *dev, 1194 struct device_attribute *attr, char *buf) 1195 { 1196 int version = 1; 1197 struct zram *zram = dev_to_zram(dev); 1198 ssize_t ret; 1199 1200 down_read(&zram->init_lock); 1201 ret = scnprintf(buf, PAGE_SIZE, 1202 "version: %d\n%8llu %8llu\n", 1203 version, 1204 (u64)atomic64_read(&zram->stats.writestall), 1205 (u64)atomic64_read(&zram->stats.miss_free)); 1206 up_read(&zram->init_lock); 1207 1208 return ret; 1209 } 1210 1211 static DEVICE_ATTR_RO(io_stat); 1212 static DEVICE_ATTR_RO(mm_stat); 1213 #ifdef CONFIG_ZRAM_WRITEBACK 1214 static DEVICE_ATTR_RO(bd_stat); 1215 #endif 1216 static DEVICE_ATTR_RO(debug_stat); 1217 1218 static void zram_meta_free(struct zram *zram, u64 disksize) 1219 { 1220 size_t num_pages = disksize >> PAGE_SHIFT; 1221 size_t index; 1222 1223 /* Free all pages that are still in this zram device */ 1224 for (index = 0; index < num_pages; index++) 1225 zram_free_page(zram, index); 1226 1227 zs_destroy_pool(zram->mem_pool); 1228 vfree(zram->table); 1229 } 1230 1231 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1232 { 1233 size_t num_pages; 1234 1235 num_pages = disksize >> PAGE_SHIFT; 1236 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1237 if (!zram->table) 1238 return false; 1239 1240 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1241 if (!zram->mem_pool) { 1242 vfree(zram->table); 1243 return false; 1244 } 1245 1246 if (!huge_class_size) 1247 huge_class_size = zs_huge_class_size(zram->mem_pool); 1248 return true; 1249 } 1250 1251 /* 1252 * To protect concurrent access to the same index entry, 1253 * caller should hold this table index entry's bit_spinlock to 1254 * indicate this index entry is accessing. 1255 */ 1256 static void zram_free_page(struct zram *zram, size_t index) 1257 { 1258 unsigned long handle; 1259 1260 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1261 zram->table[index].ac_time = 0; 1262 #endif 1263 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1264 zram_clear_flag(zram, index, ZRAM_IDLE); 1265 1266 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1267 zram_clear_flag(zram, index, ZRAM_HUGE); 1268 atomic64_dec(&zram->stats.huge_pages); 1269 } 1270 1271 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1272 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1273 1274 zram_set_priority(zram, index, 0); 1275 1276 if (zram_test_flag(zram, index, ZRAM_WB)) { 1277 zram_clear_flag(zram, index, ZRAM_WB); 1278 free_block_bdev(zram, zram_get_element(zram, index)); 1279 goto out; 1280 } 1281 1282 /* 1283 * No memory is allocated for same element filled pages. 1284 * Simply clear same page flag. 1285 */ 1286 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1287 zram_clear_flag(zram, index, ZRAM_SAME); 1288 atomic64_dec(&zram->stats.same_pages); 1289 goto out; 1290 } 1291 1292 handle = zram_get_handle(zram, index); 1293 if (!handle) 1294 return; 1295 1296 zs_free(zram->mem_pool, handle); 1297 1298 atomic64_sub(zram_get_obj_size(zram, index), 1299 &zram->stats.compr_data_size); 1300 out: 1301 atomic64_dec(&zram->stats.pages_stored); 1302 zram_set_handle(zram, index, 0); 1303 zram_set_obj_size(zram, index, 0); 1304 WARN_ON_ONCE(zram->table[index].flags & 1305 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1306 } 1307 1308 /* 1309 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1310 * Corresponding ZRAM slot should be locked. 1311 */ 1312 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1313 u32 index) 1314 { 1315 struct zcomp_strm *zstrm; 1316 unsigned long handle; 1317 unsigned int size; 1318 void *src, *dst; 1319 u32 prio; 1320 int ret; 1321 1322 handle = zram_get_handle(zram, index); 1323 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1324 unsigned long value; 1325 void *mem; 1326 1327 value = handle ? zram_get_element(zram, index) : 0; 1328 mem = kmap_atomic(page); 1329 zram_fill_page(mem, PAGE_SIZE, value); 1330 kunmap_atomic(mem); 1331 return 0; 1332 } 1333 1334 size = zram_get_obj_size(zram, index); 1335 1336 if (size != PAGE_SIZE) { 1337 prio = zram_get_priority(zram, index); 1338 zstrm = zcomp_stream_get(zram->comps[prio]); 1339 } 1340 1341 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1342 if (size == PAGE_SIZE) { 1343 dst = kmap_atomic(page); 1344 memcpy(dst, src, PAGE_SIZE); 1345 kunmap_atomic(dst); 1346 ret = 0; 1347 } else { 1348 dst = kmap_atomic(page); 1349 ret = zcomp_decompress(zstrm, src, size, dst); 1350 kunmap_atomic(dst); 1351 zcomp_stream_put(zram->comps[prio]); 1352 } 1353 zs_unmap_object(zram->mem_pool, handle); 1354 return ret; 1355 } 1356 1357 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1358 struct bio *parent) 1359 { 1360 int ret; 1361 1362 zram_slot_lock(zram, index); 1363 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1364 /* Slot should be locked through out the function call */ 1365 ret = zram_read_from_zspool(zram, page, index); 1366 zram_slot_unlock(zram, index); 1367 } else { 1368 /* 1369 * The slot should be unlocked before reading from the backing 1370 * device. 1371 */ 1372 zram_slot_unlock(zram, index); 1373 1374 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1375 parent); 1376 } 1377 1378 /* Should NEVER happen. Return bio error if it does. */ 1379 if (WARN_ON(ret < 0)) 1380 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1381 1382 return ret; 1383 } 1384 1385 /* 1386 * Use a temporary buffer to decompress the page, as the decompressor 1387 * always expects a full page for the output. 1388 */ 1389 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1390 u32 index, int offset) 1391 { 1392 struct page *page = alloc_page(GFP_NOIO); 1393 int ret; 1394 1395 if (!page) 1396 return -ENOMEM; 1397 ret = zram_read_page(zram, page, index, NULL); 1398 if (likely(!ret)) 1399 memcpy_to_bvec(bvec, page_address(page) + offset); 1400 __free_page(page); 1401 return ret; 1402 } 1403 1404 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1405 u32 index, int offset, struct bio *bio) 1406 { 1407 if (is_partial_io(bvec)) 1408 return zram_bvec_read_partial(zram, bvec, index, offset); 1409 return zram_read_page(zram, bvec->bv_page, index, bio); 1410 } 1411 1412 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1413 { 1414 int ret = 0; 1415 unsigned long alloced_pages; 1416 unsigned long handle = -ENOMEM; 1417 unsigned int comp_len = 0; 1418 void *src, *dst, *mem; 1419 struct zcomp_strm *zstrm; 1420 unsigned long element = 0; 1421 enum zram_pageflags flags = 0; 1422 1423 mem = kmap_atomic(page); 1424 if (page_same_filled(mem, &element)) { 1425 kunmap_atomic(mem); 1426 /* Free memory associated with this sector now. */ 1427 flags = ZRAM_SAME; 1428 atomic64_inc(&zram->stats.same_pages); 1429 goto out; 1430 } 1431 kunmap_atomic(mem); 1432 1433 compress_again: 1434 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1435 src = kmap_atomic(page); 1436 ret = zcomp_compress(zstrm, src, &comp_len); 1437 kunmap_atomic(src); 1438 1439 if (unlikely(ret)) { 1440 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1441 pr_err("Compression failed! err=%d\n", ret); 1442 zs_free(zram->mem_pool, handle); 1443 return ret; 1444 } 1445 1446 if (comp_len >= huge_class_size) 1447 comp_len = PAGE_SIZE; 1448 /* 1449 * handle allocation has 2 paths: 1450 * a) fast path is executed with preemption disabled (for 1451 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1452 * since we can't sleep; 1453 * b) slow path enables preemption and attempts to allocate 1454 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1455 * put per-cpu compression stream and, thus, to re-do 1456 * the compression once handle is allocated. 1457 * 1458 * if we have a 'non-null' handle here then we are coming 1459 * from the slow path and handle has already been allocated. 1460 */ 1461 if (IS_ERR_VALUE(handle)) 1462 handle = zs_malloc(zram->mem_pool, comp_len, 1463 __GFP_KSWAPD_RECLAIM | 1464 __GFP_NOWARN | 1465 __GFP_HIGHMEM | 1466 __GFP_MOVABLE); 1467 if (IS_ERR_VALUE(handle)) { 1468 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1469 atomic64_inc(&zram->stats.writestall); 1470 handle = zs_malloc(zram->mem_pool, comp_len, 1471 GFP_NOIO | __GFP_HIGHMEM | 1472 __GFP_MOVABLE); 1473 if (IS_ERR_VALUE(handle)) 1474 return PTR_ERR((void *)handle); 1475 1476 if (comp_len != PAGE_SIZE) 1477 goto compress_again; 1478 /* 1479 * If the page is not compressible, you need to acquire the 1480 * lock and execute the code below. The zcomp_stream_get() 1481 * call is needed to disable the cpu hotplug and grab the 1482 * zstrm buffer back. It is necessary that the dereferencing 1483 * of the zstrm variable below occurs correctly. 1484 */ 1485 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1486 } 1487 1488 alloced_pages = zs_get_total_pages(zram->mem_pool); 1489 update_used_max(zram, alloced_pages); 1490 1491 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1492 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1493 zs_free(zram->mem_pool, handle); 1494 return -ENOMEM; 1495 } 1496 1497 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1498 1499 src = zstrm->buffer; 1500 if (comp_len == PAGE_SIZE) 1501 src = kmap_atomic(page); 1502 memcpy(dst, src, comp_len); 1503 if (comp_len == PAGE_SIZE) 1504 kunmap_atomic(src); 1505 1506 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1507 zs_unmap_object(zram->mem_pool, handle); 1508 atomic64_add(comp_len, &zram->stats.compr_data_size); 1509 out: 1510 /* 1511 * Free memory associated with this sector 1512 * before overwriting unused sectors. 1513 */ 1514 zram_slot_lock(zram, index); 1515 zram_free_page(zram, index); 1516 1517 if (comp_len == PAGE_SIZE) { 1518 zram_set_flag(zram, index, ZRAM_HUGE); 1519 atomic64_inc(&zram->stats.huge_pages); 1520 atomic64_inc(&zram->stats.huge_pages_since); 1521 } 1522 1523 if (flags) { 1524 zram_set_flag(zram, index, flags); 1525 zram_set_element(zram, index, element); 1526 } else { 1527 zram_set_handle(zram, index, handle); 1528 zram_set_obj_size(zram, index, comp_len); 1529 } 1530 zram_slot_unlock(zram, index); 1531 1532 /* Update stats */ 1533 atomic64_inc(&zram->stats.pages_stored); 1534 return ret; 1535 } 1536 1537 /* 1538 * This is a partial IO. Read the full page before writing the changes. 1539 */ 1540 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1541 u32 index, int offset, struct bio *bio) 1542 { 1543 struct page *page = alloc_page(GFP_NOIO); 1544 int ret; 1545 1546 if (!page) 1547 return -ENOMEM; 1548 1549 ret = zram_read_page(zram, page, index, bio); 1550 if (!ret) { 1551 memcpy_from_bvec(page_address(page) + offset, bvec); 1552 ret = zram_write_page(zram, page, index); 1553 } 1554 __free_page(page); 1555 return ret; 1556 } 1557 1558 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1559 u32 index, int offset, struct bio *bio) 1560 { 1561 if (is_partial_io(bvec)) 1562 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1563 return zram_write_page(zram, bvec->bv_page, index); 1564 } 1565 1566 #ifdef CONFIG_ZRAM_MULTI_COMP 1567 /* 1568 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1569 * attempt to compress it using provided compression algorithm priority 1570 * (which is potentially more effective). 1571 * 1572 * Corresponding ZRAM slot should be locked. 1573 */ 1574 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1575 u32 threshold, u32 prio, u32 prio_max) 1576 { 1577 struct zcomp_strm *zstrm = NULL; 1578 unsigned long handle_old; 1579 unsigned long handle_new; 1580 unsigned int comp_len_old; 1581 unsigned int comp_len_new; 1582 unsigned int class_index_old; 1583 unsigned int class_index_new; 1584 u32 num_recomps = 0; 1585 void *src, *dst; 1586 int ret; 1587 1588 handle_old = zram_get_handle(zram, index); 1589 if (!handle_old) 1590 return -EINVAL; 1591 1592 comp_len_old = zram_get_obj_size(zram, index); 1593 /* 1594 * Do not recompress objects that are already "small enough". 1595 */ 1596 if (comp_len_old < threshold) 1597 return 0; 1598 1599 ret = zram_read_from_zspool(zram, page, index); 1600 if (ret) 1601 return ret; 1602 1603 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1604 /* 1605 * Iterate the secondary comp algorithms list (in order of priority) 1606 * and try to recompress the page. 1607 */ 1608 for (; prio < prio_max; prio++) { 1609 if (!zram->comps[prio]) 1610 continue; 1611 1612 /* 1613 * Skip if the object is already re-compressed with a higher 1614 * priority algorithm (or same algorithm). 1615 */ 1616 if (prio <= zram_get_priority(zram, index)) 1617 continue; 1618 1619 num_recomps++; 1620 zstrm = zcomp_stream_get(zram->comps[prio]); 1621 src = kmap_atomic(page); 1622 ret = zcomp_compress(zstrm, src, &comp_len_new); 1623 kunmap_atomic(src); 1624 1625 if (ret) { 1626 zcomp_stream_put(zram->comps[prio]); 1627 return ret; 1628 } 1629 1630 class_index_new = zs_lookup_class_index(zram->mem_pool, 1631 comp_len_new); 1632 1633 /* Continue until we make progress */ 1634 if (class_index_new >= class_index_old || 1635 (threshold && comp_len_new >= threshold)) { 1636 zcomp_stream_put(zram->comps[prio]); 1637 continue; 1638 } 1639 1640 /* Recompression was successful so break out */ 1641 break; 1642 } 1643 1644 /* 1645 * We did not try to recompress, e.g. when we have only one 1646 * secondary algorithm and the page is already recompressed 1647 * using that algorithm 1648 */ 1649 if (!zstrm) 1650 return 0; 1651 1652 if (class_index_new >= class_index_old) { 1653 /* 1654 * Secondary algorithms failed to re-compress the page 1655 * in a way that would save memory, mark the object as 1656 * incompressible so that we will not try to compress 1657 * it again. 1658 * 1659 * We need to make sure that all secondary algorithms have 1660 * failed, so we test if the number of recompressions matches 1661 * the number of active secondary algorithms. 1662 */ 1663 if (num_recomps == zram->num_active_comps - 1) 1664 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1665 return 0; 1666 } 1667 1668 /* Successful recompression but above threshold */ 1669 if (threshold && comp_len_new >= threshold) 1670 return 0; 1671 1672 /* 1673 * No direct reclaim (slow path) for handle allocation and no 1674 * re-compression attempt (unlike in zram_write_bvec()) since 1675 * we already have stored that object in zsmalloc. If we cannot 1676 * alloc memory for recompressed object then we bail out and 1677 * simply keep the old (existing) object in zsmalloc. 1678 */ 1679 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1680 __GFP_KSWAPD_RECLAIM | 1681 __GFP_NOWARN | 1682 __GFP_HIGHMEM | 1683 __GFP_MOVABLE); 1684 if (IS_ERR_VALUE(handle_new)) { 1685 zcomp_stream_put(zram->comps[prio]); 1686 return PTR_ERR((void *)handle_new); 1687 } 1688 1689 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1690 memcpy(dst, zstrm->buffer, comp_len_new); 1691 zcomp_stream_put(zram->comps[prio]); 1692 1693 zs_unmap_object(zram->mem_pool, handle_new); 1694 1695 zram_free_page(zram, index); 1696 zram_set_handle(zram, index, handle_new); 1697 zram_set_obj_size(zram, index, comp_len_new); 1698 zram_set_priority(zram, index, prio); 1699 1700 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1701 atomic64_inc(&zram->stats.pages_stored); 1702 1703 return 0; 1704 } 1705 1706 #define RECOMPRESS_IDLE (1 << 0) 1707 #define RECOMPRESS_HUGE (1 << 1) 1708 1709 static ssize_t recompress_store(struct device *dev, 1710 struct device_attribute *attr, 1711 const char *buf, size_t len) 1712 { 1713 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1714 struct zram *zram = dev_to_zram(dev); 1715 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1716 char *args, *param, *val, *algo = NULL; 1717 u32 mode = 0, threshold = 0; 1718 unsigned long index; 1719 struct page *page; 1720 ssize_t ret; 1721 1722 args = skip_spaces(buf); 1723 while (*args) { 1724 args = next_arg(args, ¶m, &val); 1725 1726 if (!val || !*val) 1727 return -EINVAL; 1728 1729 if (!strcmp(param, "type")) { 1730 if (!strcmp(val, "idle")) 1731 mode = RECOMPRESS_IDLE; 1732 if (!strcmp(val, "huge")) 1733 mode = RECOMPRESS_HUGE; 1734 if (!strcmp(val, "huge_idle")) 1735 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1736 continue; 1737 } 1738 1739 if (!strcmp(param, "threshold")) { 1740 /* 1741 * We will re-compress only idle objects equal or 1742 * greater in size than watermark. 1743 */ 1744 ret = kstrtouint(val, 10, &threshold); 1745 if (ret) 1746 return ret; 1747 continue; 1748 } 1749 1750 if (!strcmp(param, "algo")) { 1751 algo = val; 1752 continue; 1753 } 1754 } 1755 1756 if (threshold >= huge_class_size) 1757 return -EINVAL; 1758 1759 down_read(&zram->init_lock); 1760 if (!init_done(zram)) { 1761 ret = -EINVAL; 1762 goto release_init_lock; 1763 } 1764 1765 if (algo) { 1766 bool found = false; 1767 1768 for (; prio < ZRAM_MAX_COMPS; prio++) { 1769 if (!zram->comp_algs[prio]) 1770 continue; 1771 1772 if (!strcmp(zram->comp_algs[prio], algo)) { 1773 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1774 found = true; 1775 break; 1776 } 1777 } 1778 1779 if (!found) { 1780 ret = -EINVAL; 1781 goto release_init_lock; 1782 } 1783 } 1784 1785 page = alloc_page(GFP_KERNEL); 1786 if (!page) { 1787 ret = -ENOMEM; 1788 goto release_init_lock; 1789 } 1790 1791 ret = len; 1792 for (index = 0; index < nr_pages; index++) { 1793 int err = 0; 1794 1795 zram_slot_lock(zram, index); 1796 1797 if (!zram_allocated(zram, index)) 1798 goto next; 1799 1800 if (mode & RECOMPRESS_IDLE && 1801 !zram_test_flag(zram, index, ZRAM_IDLE)) 1802 goto next; 1803 1804 if (mode & RECOMPRESS_HUGE && 1805 !zram_test_flag(zram, index, ZRAM_HUGE)) 1806 goto next; 1807 1808 if (zram_test_flag(zram, index, ZRAM_WB) || 1809 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1810 zram_test_flag(zram, index, ZRAM_SAME) || 1811 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1812 goto next; 1813 1814 err = zram_recompress(zram, index, page, threshold, 1815 prio, prio_max); 1816 next: 1817 zram_slot_unlock(zram, index); 1818 if (err) { 1819 ret = err; 1820 break; 1821 } 1822 1823 cond_resched(); 1824 } 1825 1826 __free_page(page); 1827 1828 release_init_lock: 1829 up_read(&zram->init_lock); 1830 return ret; 1831 } 1832 #endif 1833 1834 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1835 { 1836 size_t n = bio->bi_iter.bi_size; 1837 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1838 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1839 SECTOR_SHIFT; 1840 1841 /* 1842 * zram manages data in physical block size units. Because logical block 1843 * size isn't identical with physical block size on some arch, we 1844 * could get a discard request pointing to a specific offset within a 1845 * certain physical block. Although we can handle this request by 1846 * reading that physiclal block and decompressing and partially zeroing 1847 * and re-compressing and then re-storing it, this isn't reasonable 1848 * because our intent with a discard request is to save memory. So 1849 * skipping this logical block is appropriate here. 1850 */ 1851 if (offset) { 1852 if (n <= (PAGE_SIZE - offset)) 1853 return; 1854 1855 n -= (PAGE_SIZE - offset); 1856 index++; 1857 } 1858 1859 while (n >= PAGE_SIZE) { 1860 zram_slot_lock(zram, index); 1861 zram_free_page(zram, index); 1862 zram_slot_unlock(zram, index); 1863 atomic64_inc(&zram->stats.notify_free); 1864 index++; 1865 n -= PAGE_SIZE; 1866 } 1867 1868 bio_endio(bio); 1869 } 1870 1871 static void zram_bio_read(struct zram *zram, struct bio *bio) 1872 { 1873 unsigned long start_time = bio_start_io_acct(bio); 1874 struct bvec_iter iter = bio->bi_iter; 1875 1876 do { 1877 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1878 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1879 SECTOR_SHIFT; 1880 struct bio_vec bv = bio_iter_iovec(bio, iter); 1881 1882 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1883 1884 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 1885 atomic64_inc(&zram->stats.failed_reads); 1886 bio->bi_status = BLK_STS_IOERR; 1887 break; 1888 } 1889 flush_dcache_page(bv.bv_page); 1890 1891 zram_slot_lock(zram, index); 1892 zram_accessed(zram, index); 1893 zram_slot_unlock(zram, index); 1894 1895 bio_advance_iter_single(bio, &iter, bv.bv_len); 1896 } while (iter.bi_size); 1897 1898 bio_end_io_acct(bio, start_time); 1899 bio_endio(bio); 1900 } 1901 1902 static void zram_bio_write(struct zram *zram, struct bio *bio) 1903 { 1904 unsigned long start_time = bio_start_io_acct(bio); 1905 struct bvec_iter iter = bio->bi_iter; 1906 1907 do { 1908 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1909 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1910 SECTOR_SHIFT; 1911 struct bio_vec bv = bio_iter_iovec(bio, iter); 1912 1913 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1914 1915 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 1916 atomic64_inc(&zram->stats.failed_writes); 1917 bio->bi_status = BLK_STS_IOERR; 1918 break; 1919 } 1920 1921 zram_slot_lock(zram, index); 1922 zram_accessed(zram, index); 1923 zram_slot_unlock(zram, index); 1924 1925 bio_advance_iter_single(bio, &iter, bv.bv_len); 1926 } while (iter.bi_size); 1927 1928 bio_end_io_acct(bio, start_time); 1929 bio_endio(bio); 1930 } 1931 1932 /* 1933 * Handler function for all zram I/O requests. 1934 */ 1935 static void zram_submit_bio(struct bio *bio) 1936 { 1937 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1938 1939 switch (bio_op(bio)) { 1940 case REQ_OP_READ: 1941 zram_bio_read(zram, bio); 1942 break; 1943 case REQ_OP_WRITE: 1944 zram_bio_write(zram, bio); 1945 break; 1946 case REQ_OP_DISCARD: 1947 case REQ_OP_WRITE_ZEROES: 1948 zram_bio_discard(zram, bio); 1949 break; 1950 default: 1951 WARN_ON_ONCE(1); 1952 bio_endio(bio); 1953 } 1954 } 1955 1956 static void zram_slot_free_notify(struct block_device *bdev, 1957 unsigned long index) 1958 { 1959 struct zram *zram; 1960 1961 zram = bdev->bd_disk->private_data; 1962 1963 atomic64_inc(&zram->stats.notify_free); 1964 if (!zram_slot_trylock(zram, index)) { 1965 atomic64_inc(&zram->stats.miss_free); 1966 return; 1967 } 1968 1969 zram_free_page(zram, index); 1970 zram_slot_unlock(zram, index); 1971 } 1972 1973 static void zram_destroy_comps(struct zram *zram) 1974 { 1975 u32 prio; 1976 1977 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 1978 struct zcomp *comp = zram->comps[prio]; 1979 1980 zram->comps[prio] = NULL; 1981 if (!comp) 1982 continue; 1983 zcomp_destroy(comp); 1984 zram->num_active_comps--; 1985 } 1986 } 1987 1988 static void zram_reset_device(struct zram *zram) 1989 { 1990 down_write(&zram->init_lock); 1991 1992 zram->limit_pages = 0; 1993 1994 if (!init_done(zram)) { 1995 up_write(&zram->init_lock); 1996 return; 1997 } 1998 1999 set_capacity_and_notify(zram->disk, 0); 2000 part_stat_set_all(zram->disk->part0, 0); 2001 2002 /* I/O operation under all of CPU are done so let's free */ 2003 zram_meta_free(zram, zram->disksize); 2004 zram->disksize = 0; 2005 zram_destroy_comps(zram); 2006 memset(&zram->stats, 0, sizeof(zram->stats)); 2007 reset_bdev(zram); 2008 2009 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2010 up_write(&zram->init_lock); 2011 } 2012 2013 static ssize_t disksize_store(struct device *dev, 2014 struct device_attribute *attr, const char *buf, size_t len) 2015 { 2016 u64 disksize; 2017 struct zcomp *comp; 2018 struct zram *zram = dev_to_zram(dev); 2019 int err; 2020 u32 prio; 2021 2022 disksize = memparse(buf, NULL); 2023 if (!disksize) 2024 return -EINVAL; 2025 2026 down_write(&zram->init_lock); 2027 if (init_done(zram)) { 2028 pr_info("Cannot change disksize for initialized device\n"); 2029 err = -EBUSY; 2030 goto out_unlock; 2031 } 2032 2033 disksize = PAGE_ALIGN(disksize); 2034 if (!zram_meta_alloc(zram, disksize)) { 2035 err = -ENOMEM; 2036 goto out_unlock; 2037 } 2038 2039 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2040 if (!zram->comp_algs[prio]) 2041 continue; 2042 2043 comp = zcomp_create(zram->comp_algs[prio]); 2044 if (IS_ERR(comp)) { 2045 pr_err("Cannot initialise %s compressing backend\n", 2046 zram->comp_algs[prio]); 2047 err = PTR_ERR(comp); 2048 goto out_free_comps; 2049 } 2050 2051 zram->comps[prio] = comp; 2052 zram->num_active_comps++; 2053 } 2054 zram->disksize = disksize; 2055 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2056 up_write(&zram->init_lock); 2057 2058 return len; 2059 2060 out_free_comps: 2061 zram_destroy_comps(zram); 2062 zram_meta_free(zram, disksize); 2063 out_unlock: 2064 up_write(&zram->init_lock); 2065 return err; 2066 } 2067 2068 static ssize_t reset_store(struct device *dev, 2069 struct device_attribute *attr, const char *buf, size_t len) 2070 { 2071 int ret; 2072 unsigned short do_reset; 2073 struct zram *zram; 2074 struct gendisk *disk; 2075 2076 ret = kstrtou16(buf, 10, &do_reset); 2077 if (ret) 2078 return ret; 2079 2080 if (!do_reset) 2081 return -EINVAL; 2082 2083 zram = dev_to_zram(dev); 2084 disk = zram->disk; 2085 2086 mutex_lock(&disk->open_mutex); 2087 /* Do not reset an active device or claimed device */ 2088 if (disk_openers(disk) || zram->claim) { 2089 mutex_unlock(&disk->open_mutex); 2090 return -EBUSY; 2091 } 2092 2093 /* From now on, anyone can't open /dev/zram[0-9] */ 2094 zram->claim = true; 2095 mutex_unlock(&disk->open_mutex); 2096 2097 /* Make sure all the pending I/O are finished */ 2098 sync_blockdev(disk->part0); 2099 zram_reset_device(zram); 2100 2101 mutex_lock(&disk->open_mutex); 2102 zram->claim = false; 2103 mutex_unlock(&disk->open_mutex); 2104 2105 return len; 2106 } 2107 2108 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2109 { 2110 struct zram *zram = disk->private_data; 2111 2112 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2113 2114 /* zram was claimed to reset so open request fails */ 2115 if (zram->claim) 2116 return -EBUSY; 2117 return 0; 2118 } 2119 2120 static const struct block_device_operations zram_devops = { 2121 .open = zram_open, 2122 .submit_bio = zram_submit_bio, 2123 .swap_slot_free_notify = zram_slot_free_notify, 2124 .owner = THIS_MODULE 2125 }; 2126 2127 static DEVICE_ATTR_WO(compact); 2128 static DEVICE_ATTR_RW(disksize); 2129 static DEVICE_ATTR_RO(initstate); 2130 static DEVICE_ATTR_WO(reset); 2131 static DEVICE_ATTR_WO(mem_limit); 2132 static DEVICE_ATTR_WO(mem_used_max); 2133 static DEVICE_ATTR_WO(idle); 2134 static DEVICE_ATTR_RW(max_comp_streams); 2135 static DEVICE_ATTR_RW(comp_algorithm); 2136 #ifdef CONFIG_ZRAM_WRITEBACK 2137 static DEVICE_ATTR_RW(backing_dev); 2138 static DEVICE_ATTR_WO(writeback); 2139 static DEVICE_ATTR_RW(writeback_limit); 2140 static DEVICE_ATTR_RW(writeback_limit_enable); 2141 #endif 2142 #ifdef CONFIG_ZRAM_MULTI_COMP 2143 static DEVICE_ATTR_RW(recomp_algorithm); 2144 static DEVICE_ATTR_WO(recompress); 2145 #endif 2146 2147 static struct attribute *zram_disk_attrs[] = { 2148 &dev_attr_disksize.attr, 2149 &dev_attr_initstate.attr, 2150 &dev_attr_reset.attr, 2151 &dev_attr_compact.attr, 2152 &dev_attr_mem_limit.attr, 2153 &dev_attr_mem_used_max.attr, 2154 &dev_attr_idle.attr, 2155 &dev_attr_max_comp_streams.attr, 2156 &dev_attr_comp_algorithm.attr, 2157 #ifdef CONFIG_ZRAM_WRITEBACK 2158 &dev_attr_backing_dev.attr, 2159 &dev_attr_writeback.attr, 2160 &dev_attr_writeback_limit.attr, 2161 &dev_attr_writeback_limit_enable.attr, 2162 #endif 2163 &dev_attr_io_stat.attr, 2164 &dev_attr_mm_stat.attr, 2165 #ifdef CONFIG_ZRAM_WRITEBACK 2166 &dev_attr_bd_stat.attr, 2167 #endif 2168 &dev_attr_debug_stat.attr, 2169 #ifdef CONFIG_ZRAM_MULTI_COMP 2170 &dev_attr_recomp_algorithm.attr, 2171 &dev_attr_recompress.attr, 2172 #endif 2173 NULL, 2174 }; 2175 2176 ATTRIBUTE_GROUPS(zram_disk); 2177 2178 /* 2179 * Allocate and initialize new zram device. the function returns 2180 * '>= 0' device_id upon success, and negative value otherwise. 2181 */ 2182 static int zram_add(void) 2183 { 2184 struct zram *zram; 2185 int ret, device_id; 2186 2187 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2188 if (!zram) 2189 return -ENOMEM; 2190 2191 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2192 if (ret < 0) 2193 goto out_free_dev; 2194 device_id = ret; 2195 2196 init_rwsem(&zram->init_lock); 2197 #ifdef CONFIG_ZRAM_WRITEBACK 2198 spin_lock_init(&zram->wb_limit_lock); 2199 #endif 2200 2201 /* gendisk structure */ 2202 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2203 if (!zram->disk) { 2204 pr_err("Error allocating disk structure for device %d\n", 2205 device_id); 2206 ret = -ENOMEM; 2207 goto out_free_idr; 2208 } 2209 2210 zram->disk->major = zram_major; 2211 zram->disk->first_minor = device_id; 2212 zram->disk->minors = 1; 2213 zram->disk->flags |= GENHD_FL_NO_PART; 2214 zram->disk->fops = &zram_devops; 2215 zram->disk->private_data = zram; 2216 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2217 2218 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2219 set_capacity(zram->disk, 0); 2220 /* zram devices sort of resembles non-rotational disks */ 2221 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2222 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2223 2224 /* 2225 * To ensure that we always get PAGE_SIZE aligned 2226 * and n*PAGE_SIZED sized I/O requests. 2227 */ 2228 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2229 blk_queue_logical_block_size(zram->disk->queue, 2230 ZRAM_LOGICAL_BLOCK_SIZE); 2231 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2232 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2233 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2234 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2235 2236 /* 2237 * zram_bio_discard() will clear all logical blocks if logical block 2238 * size is identical with physical block size(PAGE_SIZE). But if it is 2239 * different, we will skip discarding some parts of logical blocks in 2240 * the part of the request range which isn't aligned to physical block 2241 * size. So we can't ensure that all discarded logical blocks are 2242 * zeroed. 2243 */ 2244 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2245 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2246 2247 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2248 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2249 if (ret) 2250 goto out_cleanup_disk; 2251 2252 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2253 2254 zram_debugfs_register(zram); 2255 pr_info("Added device: %s\n", zram->disk->disk_name); 2256 return device_id; 2257 2258 out_cleanup_disk: 2259 put_disk(zram->disk); 2260 out_free_idr: 2261 idr_remove(&zram_index_idr, device_id); 2262 out_free_dev: 2263 kfree(zram); 2264 return ret; 2265 } 2266 2267 static int zram_remove(struct zram *zram) 2268 { 2269 bool claimed; 2270 2271 mutex_lock(&zram->disk->open_mutex); 2272 if (disk_openers(zram->disk)) { 2273 mutex_unlock(&zram->disk->open_mutex); 2274 return -EBUSY; 2275 } 2276 2277 claimed = zram->claim; 2278 if (!claimed) 2279 zram->claim = true; 2280 mutex_unlock(&zram->disk->open_mutex); 2281 2282 zram_debugfs_unregister(zram); 2283 2284 if (claimed) { 2285 /* 2286 * If we were claimed by reset_store(), del_gendisk() will 2287 * wait until reset_store() is done, so nothing need to do. 2288 */ 2289 ; 2290 } else { 2291 /* Make sure all the pending I/O are finished */ 2292 sync_blockdev(zram->disk->part0); 2293 zram_reset_device(zram); 2294 } 2295 2296 pr_info("Removed device: %s\n", zram->disk->disk_name); 2297 2298 del_gendisk(zram->disk); 2299 2300 /* del_gendisk drains pending reset_store */ 2301 WARN_ON_ONCE(claimed && zram->claim); 2302 2303 /* 2304 * disksize_store() may be called in between zram_reset_device() 2305 * and del_gendisk(), so run the last reset to avoid leaking 2306 * anything allocated with disksize_store() 2307 */ 2308 zram_reset_device(zram); 2309 2310 put_disk(zram->disk); 2311 kfree(zram); 2312 return 0; 2313 } 2314 2315 /* zram-control sysfs attributes */ 2316 2317 /* 2318 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2319 * sense that reading from this file does alter the state of your system -- it 2320 * creates a new un-initialized zram device and returns back this device's 2321 * device_id (or an error code if it fails to create a new device). 2322 */ 2323 static ssize_t hot_add_show(const struct class *class, 2324 const struct class_attribute *attr, 2325 char *buf) 2326 { 2327 int ret; 2328 2329 mutex_lock(&zram_index_mutex); 2330 ret = zram_add(); 2331 mutex_unlock(&zram_index_mutex); 2332 2333 if (ret < 0) 2334 return ret; 2335 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2336 } 2337 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2338 static struct class_attribute class_attr_hot_add = 2339 __ATTR(hot_add, 0400, hot_add_show, NULL); 2340 2341 static ssize_t hot_remove_store(const struct class *class, 2342 const struct class_attribute *attr, 2343 const char *buf, 2344 size_t count) 2345 { 2346 struct zram *zram; 2347 int ret, dev_id; 2348 2349 /* dev_id is gendisk->first_minor, which is `int' */ 2350 ret = kstrtoint(buf, 10, &dev_id); 2351 if (ret) 2352 return ret; 2353 if (dev_id < 0) 2354 return -EINVAL; 2355 2356 mutex_lock(&zram_index_mutex); 2357 2358 zram = idr_find(&zram_index_idr, dev_id); 2359 if (zram) { 2360 ret = zram_remove(zram); 2361 if (!ret) 2362 idr_remove(&zram_index_idr, dev_id); 2363 } else { 2364 ret = -ENODEV; 2365 } 2366 2367 mutex_unlock(&zram_index_mutex); 2368 return ret ? ret : count; 2369 } 2370 static CLASS_ATTR_WO(hot_remove); 2371 2372 static struct attribute *zram_control_class_attrs[] = { 2373 &class_attr_hot_add.attr, 2374 &class_attr_hot_remove.attr, 2375 NULL, 2376 }; 2377 ATTRIBUTE_GROUPS(zram_control_class); 2378 2379 static struct class zram_control_class = { 2380 .name = "zram-control", 2381 .class_groups = zram_control_class_groups, 2382 }; 2383 2384 static int zram_remove_cb(int id, void *ptr, void *data) 2385 { 2386 WARN_ON_ONCE(zram_remove(ptr)); 2387 return 0; 2388 } 2389 2390 static void destroy_devices(void) 2391 { 2392 class_unregister(&zram_control_class); 2393 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2394 zram_debugfs_destroy(); 2395 idr_destroy(&zram_index_idr); 2396 unregister_blkdev(zram_major, "zram"); 2397 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2398 } 2399 2400 static int __init zram_init(void) 2401 { 2402 int ret; 2403 2404 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2405 2406 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2407 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2408 if (ret < 0) 2409 return ret; 2410 2411 ret = class_register(&zram_control_class); 2412 if (ret) { 2413 pr_err("Unable to register zram-control class\n"); 2414 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2415 return ret; 2416 } 2417 2418 zram_debugfs_create(); 2419 zram_major = register_blkdev(0, "zram"); 2420 if (zram_major <= 0) { 2421 pr_err("Unable to get major number\n"); 2422 class_unregister(&zram_control_class); 2423 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2424 return -EBUSY; 2425 } 2426 2427 while (num_devices != 0) { 2428 mutex_lock(&zram_index_mutex); 2429 ret = zram_add(); 2430 mutex_unlock(&zram_index_mutex); 2431 if (ret < 0) 2432 goto out_error; 2433 num_devices--; 2434 } 2435 2436 return 0; 2437 2438 out_error: 2439 destroy_devices(); 2440 return ret; 2441 } 2442 2443 static void __exit zram_exit(void) 2444 { 2445 destroy_devices(); 2446 } 2447 2448 module_init(zram_init); 2449 module_exit(zram_exit); 2450 2451 module_param(num_devices, uint, 0); 2452 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2453 2454 MODULE_LICENSE("Dual BSD/GPL"); 2455 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2456 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2457