1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 50 #include <xen/xen.h> 51 #include <xen/xenbus.h> 52 #include <xen/grant_table.h> 53 #include <xen/events.h> 54 #include <xen/page.h> 55 #include <xen/platform_pci.h> 56 57 #include <xen/interface/grant_table.h> 58 #include <xen/interface/io/blkif.h> 59 #include <xen/interface/io/protocols.h> 60 61 #include <asm/xen/hypervisor.h> 62 63 /* 64 * The minimal size of segment supported by the block framework is PAGE_SIZE. 65 * When Linux is using a different page size than Xen, it may not be possible 66 * to put all the data in a single segment. 67 * This can happen when the backend doesn't support indirect descriptor and 68 * therefore the maximum amount of data that a request can carry is 69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 70 * 71 * Note that we only support one extra request. So the Linux page size 72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 73 * 88KB. 74 */ 75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 76 77 enum blkif_state { 78 BLKIF_STATE_DISCONNECTED, 79 BLKIF_STATE_CONNECTED, 80 BLKIF_STATE_SUSPENDED, 81 }; 82 83 struct grant { 84 grant_ref_t gref; 85 struct page *page; 86 struct list_head node; 87 }; 88 89 enum blk_req_status { 90 REQ_WAITING, 91 REQ_DONE, 92 REQ_ERROR, 93 REQ_EOPNOTSUPP, 94 }; 95 96 struct blk_shadow { 97 struct blkif_request req; 98 struct request *request; 99 struct grant **grants_used; 100 struct grant **indirect_grants; 101 struct scatterlist *sg; 102 unsigned int num_sg; 103 enum blk_req_status status; 104 105 #define NO_ASSOCIATED_ID ~0UL 106 /* 107 * Id of the sibling if we ever need 2 requests when handling a 108 * block I/O request 109 */ 110 unsigned long associated_id; 111 }; 112 113 struct split_bio { 114 struct bio *bio; 115 atomic_t pending; 116 }; 117 118 static DEFINE_MUTEX(blkfront_mutex); 119 static const struct block_device_operations xlvbd_block_fops; 120 121 /* 122 * Maximum number of segments in indirect requests, the actual value used by 123 * the frontend driver is the minimum of this value and the value provided 124 * by the backend driver. 125 */ 126 127 static unsigned int xen_blkif_max_segments = 32; 128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 129 S_IRUGO); 130 MODULE_PARM_DESC(max_indirect_segments, 131 "Maximum amount of segments in indirect requests (default is 32)"); 132 133 static unsigned int xen_blkif_max_queues = 4; 134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO); 135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 136 137 /* 138 * Maximum order of pages to be used for the shared ring between front and 139 * backend, 4KB page granularity is used. 140 */ 141 static unsigned int xen_blkif_max_ring_order; 142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO); 143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 144 145 #define BLK_RING_SIZE(info) \ 146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 147 148 #define BLK_MAX_RING_SIZE \ 149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS) 150 151 /* 152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 153 * characters are enough. Define to 20 to keep consistent with backend. 154 */ 155 #define RINGREF_NAME_LEN (20) 156 /* 157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 158 */ 159 #define QUEUE_NAME_LEN (17) 160 161 /* 162 * Per-ring info. 163 * Every blkfront device can associate with one or more blkfront_ring_info, 164 * depending on how many hardware queues/rings to be used. 165 */ 166 struct blkfront_ring_info { 167 /* Lock to protect data in every ring buffer. */ 168 spinlock_t ring_lock; 169 struct blkif_front_ring ring; 170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 171 unsigned int evtchn, irq; 172 struct work_struct work; 173 struct gnttab_free_callback callback; 174 struct blk_shadow shadow[BLK_MAX_RING_SIZE]; 175 struct list_head indirect_pages; 176 struct list_head grants; 177 unsigned int persistent_gnts_c; 178 unsigned long shadow_free; 179 struct blkfront_info *dev_info; 180 }; 181 182 /* 183 * We have one of these per vbd, whether ide, scsi or 'other'. They 184 * hang in private_data off the gendisk structure. We may end up 185 * putting all kinds of interesting stuff here :-) 186 */ 187 struct blkfront_info 188 { 189 struct mutex mutex; 190 struct xenbus_device *xbdev; 191 struct gendisk *gd; 192 u16 sector_size; 193 unsigned int physical_sector_size; 194 int vdevice; 195 blkif_vdev_t handle; 196 enum blkif_state connected; 197 /* Number of pages per ring buffer. */ 198 unsigned int nr_ring_pages; 199 struct request_queue *rq; 200 unsigned int feature_flush; 201 unsigned int feature_fua; 202 unsigned int feature_discard:1; 203 unsigned int feature_secdiscard:1; 204 unsigned int discard_granularity; 205 unsigned int discard_alignment; 206 unsigned int feature_persistent:1; 207 /* Number of 4KB segments handled */ 208 unsigned int max_indirect_segments; 209 int is_ready; 210 struct blk_mq_tag_set tag_set; 211 struct blkfront_ring_info *rinfo; 212 unsigned int nr_rings; 213 /* Save uncomplete reqs and bios for migration. */ 214 struct list_head requests; 215 struct bio_list bio_list; 216 }; 217 218 static unsigned int nr_minors; 219 static unsigned long *minors; 220 static DEFINE_SPINLOCK(minor_lock); 221 222 #define GRANT_INVALID_REF 0 223 224 #define PARTS_PER_DISK 16 225 #define PARTS_PER_EXT_DISK 256 226 227 #define BLKIF_MAJOR(dev) ((dev)>>8) 228 #define BLKIF_MINOR(dev) ((dev) & 0xff) 229 230 #define EXT_SHIFT 28 231 #define EXTENDED (1<<EXT_SHIFT) 232 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 233 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 234 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 235 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 236 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 237 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 238 239 #define DEV_NAME "xvd" /* name in /dev */ 240 241 /* 242 * Grants are always the same size as a Xen page (i.e 4KB). 243 * A physical segment is always the same size as a Linux page. 244 * Number of grants per physical segment 245 */ 246 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 247 248 #define GRANTS_PER_INDIRECT_FRAME \ 249 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 250 251 #define PSEGS_PER_INDIRECT_FRAME \ 252 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS) 253 254 #define INDIRECT_GREFS(_grants) \ 255 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 256 257 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG) 258 259 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 260 static void blkfront_gather_backend_features(struct blkfront_info *info); 261 262 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 263 { 264 unsigned long free = rinfo->shadow_free; 265 266 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 267 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 268 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 269 return free; 270 } 271 272 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 273 unsigned long id) 274 { 275 if (rinfo->shadow[id].req.u.rw.id != id) 276 return -EINVAL; 277 if (rinfo->shadow[id].request == NULL) 278 return -EINVAL; 279 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 280 rinfo->shadow[id].request = NULL; 281 rinfo->shadow_free = id; 282 return 0; 283 } 284 285 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 286 { 287 struct blkfront_info *info = rinfo->dev_info; 288 struct page *granted_page; 289 struct grant *gnt_list_entry, *n; 290 int i = 0; 291 292 while (i < num) { 293 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 294 if (!gnt_list_entry) 295 goto out_of_memory; 296 297 if (info->feature_persistent) { 298 granted_page = alloc_page(GFP_NOIO); 299 if (!granted_page) { 300 kfree(gnt_list_entry); 301 goto out_of_memory; 302 } 303 gnt_list_entry->page = granted_page; 304 } 305 306 gnt_list_entry->gref = GRANT_INVALID_REF; 307 list_add(&gnt_list_entry->node, &rinfo->grants); 308 i++; 309 } 310 311 return 0; 312 313 out_of_memory: 314 list_for_each_entry_safe(gnt_list_entry, n, 315 &rinfo->grants, node) { 316 list_del(&gnt_list_entry->node); 317 if (info->feature_persistent) 318 __free_page(gnt_list_entry->page); 319 kfree(gnt_list_entry); 320 i--; 321 } 322 BUG_ON(i != 0); 323 return -ENOMEM; 324 } 325 326 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 327 { 328 struct grant *gnt_list_entry; 329 330 BUG_ON(list_empty(&rinfo->grants)); 331 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 332 node); 333 list_del(&gnt_list_entry->node); 334 335 if (gnt_list_entry->gref != GRANT_INVALID_REF) 336 rinfo->persistent_gnts_c--; 337 338 return gnt_list_entry; 339 } 340 341 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 342 const struct blkfront_info *info) 343 { 344 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 345 info->xbdev->otherend_id, 346 gnt_list_entry->page, 347 0); 348 } 349 350 static struct grant *get_grant(grant_ref_t *gref_head, 351 unsigned long gfn, 352 struct blkfront_ring_info *rinfo) 353 { 354 struct grant *gnt_list_entry = get_free_grant(rinfo); 355 struct blkfront_info *info = rinfo->dev_info; 356 357 if (gnt_list_entry->gref != GRANT_INVALID_REF) 358 return gnt_list_entry; 359 360 /* Assign a gref to this page */ 361 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 362 BUG_ON(gnt_list_entry->gref == -ENOSPC); 363 if (info->feature_persistent) 364 grant_foreign_access(gnt_list_entry, info); 365 else { 366 /* Grant access to the GFN passed by the caller */ 367 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 368 info->xbdev->otherend_id, 369 gfn, 0); 370 } 371 372 return gnt_list_entry; 373 } 374 375 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 376 struct blkfront_ring_info *rinfo) 377 { 378 struct grant *gnt_list_entry = get_free_grant(rinfo); 379 struct blkfront_info *info = rinfo->dev_info; 380 381 if (gnt_list_entry->gref != GRANT_INVALID_REF) 382 return gnt_list_entry; 383 384 /* Assign a gref to this page */ 385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 386 BUG_ON(gnt_list_entry->gref == -ENOSPC); 387 if (!info->feature_persistent) { 388 struct page *indirect_page; 389 390 /* Fetch a pre-allocated page to use for indirect grefs */ 391 BUG_ON(list_empty(&rinfo->indirect_pages)); 392 indirect_page = list_first_entry(&rinfo->indirect_pages, 393 struct page, lru); 394 list_del(&indirect_page->lru); 395 gnt_list_entry->page = indirect_page; 396 } 397 grant_foreign_access(gnt_list_entry, info); 398 399 return gnt_list_entry; 400 } 401 402 static const char *op_name(int op) 403 { 404 static const char *const names[] = { 405 [BLKIF_OP_READ] = "read", 406 [BLKIF_OP_WRITE] = "write", 407 [BLKIF_OP_WRITE_BARRIER] = "barrier", 408 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 409 [BLKIF_OP_DISCARD] = "discard" }; 410 411 if (op < 0 || op >= ARRAY_SIZE(names)) 412 return "unknown"; 413 414 if (!names[op]) 415 return "reserved"; 416 417 return names[op]; 418 } 419 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 420 { 421 unsigned int end = minor + nr; 422 int rc; 423 424 if (end > nr_minors) { 425 unsigned long *bitmap, *old; 426 427 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 428 GFP_KERNEL); 429 if (bitmap == NULL) 430 return -ENOMEM; 431 432 spin_lock(&minor_lock); 433 if (end > nr_minors) { 434 old = minors; 435 memcpy(bitmap, minors, 436 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 437 minors = bitmap; 438 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 439 } else 440 old = bitmap; 441 spin_unlock(&minor_lock); 442 kfree(old); 443 } 444 445 spin_lock(&minor_lock); 446 if (find_next_bit(minors, end, minor) >= end) { 447 bitmap_set(minors, minor, nr); 448 rc = 0; 449 } else 450 rc = -EBUSY; 451 spin_unlock(&minor_lock); 452 453 return rc; 454 } 455 456 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 457 { 458 unsigned int end = minor + nr; 459 460 BUG_ON(end > nr_minors); 461 spin_lock(&minor_lock); 462 bitmap_clear(minors, minor, nr); 463 spin_unlock(&minor_lock); 464 } 465 466 static void blkif_restart_queue_callback(void *arg) 467 { 468 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 469 schedule_work(&rinfo->work); 470 } 471 472 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 473 { 474 /* We don't have real geometry info, but let's at least return 475 values consistent with the size of the device */ 476 sector_t nsect = get_capacity(bd->bd_disk); 477 sector_t cylinders = nsect; 478 479 hg->heads = 0xff; 480 hg->sectors = 0x3f; 481 sector_div(cylinders, hg->heads * hg->sectors); 482 hg->cylinders = cylinders; 483 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 484 hg->cylinders = 0xffff; 485 return 0; 486 } 487 488 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 489 unsigned command, unsigned long argument) 490 { 491 struct blkfront_info *info = bdev->bd_disk->private_data; 492 int i; 493 494 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 495 command, (long)argument); 496 497 switch (command) { 498 case CDROMMULTISESSION: 499 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 500 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 501 if (put_user(0, (char __user *)(argument + i))) 502 return -EFAULT; 503 return 0; 504 505 case CDROM_GET_CAPABILITY: { 506 struct gendisk *gd = info->gd; 507 if (gd->flags & GENHD_FL_CD) 508 return 0; 509 return -EINVAL; 510 } 511 512 default: 513 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 514 command);*/ 515 return -EINVAL; /* same return as native Linux */ 516 } 517 518 return 0; 519 } 520 521 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 522 struct request *req, 523 struct blkif_request **ring_req) 524 { 525 unsigned long id; 526 527 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 528 rinfo->ring.req_prod_pvt++; 529 530 id = get_id_from_freelist(rinfo); 531 rinfo->shadow[id].request = req; 532 rinfo->shadow[id].status = REQ_WAITING; 533 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 534 535 (*ring_req)->u.rw.id = id; 536 537 return id; 538 } 539 540 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 541 { 542 struct blkfront_info *info = rinfo->dev_info; 543 struct blkif_request *ring_req; 544 unsigned long id; 545 546 /* Fill out a communications ring structure. */ 547 id = blkif_ring_get_request(rinfo, req, &ring_req); 548 549 ring_req->operation = BLKIF_OP_DISCARD; 550 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 551 ring_req->u.discard.id = id; 552 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 553 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 554 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 555 else 556 ring_req->u.discard.flag = 0; 557 558 /* Keep a private copy so we can reissue requests when recovering. */ 559 rinfo->shadow[id].req = *ring_req; 560 561 return 0; 562 } 563 564 struct setup_rw_req { 565 unsigned int grant_idx; 566 struct blkif_request_segment *segments; 567 struct blkfront_ring_info *rinfo; 568 struct blkif_request *ring_req; 569 grant_ref_t gref_head; 570 unsigned int id; 571 /* Only used when persistent grant is used and it's a read request */ 572 bool need_copy; 573 unsigned int bvec_off; 574 char *bvec_data; 575 576 bool require_extra_req; 577 struct blkif_request *extra_ring_req; 578 }; 579 580 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 581 unsigned int len, void *data) 582 { 583 struct setup_rw_req *setup = data; 584 int n, ref; 585 struct grant *gnt_list_entry; 586 unsigned int fsect, lsect; 587 /* Convenient aliases */ 588 unsigned int grant_idx = setup->grant_idx; 589 struct blkif_request *ring_req = setup->ring_req; 590 struct blkfront_ring_info *rinfo = setup->rinfo; 591 /* 592 * We always use the shadow of the first request to store the list 593 * of grant associated to the block I/O request. This made the 594 * completion more easy to handle even if the block I/O request is 595 * split. 596 */ 597 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 598 599 if (unlikely(setup->require_extra_req && 600 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 601 /* 602 * We are using the second request, setup grant_idx 603 * to be the index of the segment array. 604 */ 605 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 606 ring_req = setup->extra_ring_req; 607 } 608 609 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 610 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 611 if (setup->segments) 612 kunmap_atomic(setup->segments); 613 614 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 615 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 616 shadow->indirect_grants[n] = gnt_list_entry; 617 setup->segments = kmap_atomic(gnt_list_entry->page); 618 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 619 } 620 621 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 622 ref = gnt_list_entry->gref; 623 /* 624 * All the grants are stored in the shadow of the first 625 * request. Therefore we have to use the global index. 626 */ 627 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 628 629 if (setup->need_copy) { 630 void *shared_data; 631 632 shared_data = kmap_atomic(gnt_list_entry->page); 633 /* 634 * this does not wipe data stored outside the 635 * range sg->offset..sg->offset+sg->length. 636 * Therefore, blkback *could* see data from 637 * previous requests. This is OK as long as 638 * persistent grants are shared with just one 639 * domain. It may need refactoring if this 640 * changes 641 */ 642 memcpy(shared_data + offset, 643 setup->bvec_data + setup->bvec_off, 644 len); 645 646 kunmap_atomic(shared_data); 647 setup->bvec_off += len; 648 } 649 650 fsect = offset >> 9; 651 lsect = fsect + (len >> 9) - 1; 652 if (ring_req->operation != BLKIF_OP_INDIRECT) { 653 ring_req->u.rw.seg[grant_idx] = 654 (struct blkif_request_segment) { 655 .gref = ref, 656 .first_sect = fsect, 657 .last_sect = lsect }; 658 } else { 659 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 660 (struct blkif_request_segment) { 661 .gref = ref, 662 .first_sect = fsect, 663 .last_sect = lsect }; 664 } 665 666 (setup->grant_idx)++; 667 } 668 669 static void blkif_setup_extra_req(struct blkif_request *first, 670 struct blkif_request *second) 671 { 672 uint16_t nr_segments = first->u.rw.nr_segments; 673 674 /* 675 * The second request is only present when the first request uses 676 * all its segments. It's always the continuity of the first one. 677 */ 678 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 679 680 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 681 second->u.rw.sector_number = first->u.rw.sector_number + 682 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 683 684 second->u.rw.handle = first->u.rw.handle; 685 second->operation = first->operation; 686 } 687 688 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 689 { 690 struct blkfront_info *info = rinfo->dev_info; 691 struct blkif_request *ring_req, *extra_ring_req = NULL; 692 unsigned long id, extra_id = NO_ASSOCIATED_ID; 693 bool require_extra_req = false; 694 int i; 695 struct setup_rw_req setup = { 696 .grant_idx = 0, 697 .segments = NULL, 698 .rinfo = rinfo, 699 .need_copy = rq_data_dir(req) && info->feature_persistent, 700 }; 701 702 /* 703 * Used to store if we are able to queue the request by just using 704 * existing persistent grants, or if we have to get new grants, 705 * as there are not sufficiently many free. 706 */ 707 struct scatterlist *sg; 708 int num_sg, max_grefs, num_grant; 709 710 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 711 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 712 /* 713 * If we are using indirect segments we need to account 714 * for the indirect grefs used in the request. 715 */ 716 max_grefs += INDIRECT_GREFS(max_grefs); 717 718 /* 719 * We have to reserve 'max_grefs' grants because persistent 720 * grants are shared by all rings. 721 */ 722 if (max_grefs > 0) 723 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) { 724 gnttab_request_free_callback( 725 &rinfo->callback, 726 blkif_restart_queue_callback, 727 rinfo, 728 max_grefs); 729 return 1; 730 } 731 732 /* Fill out a communications ring structure. */ 733 id = blkif_ring_get_request(rinfo, req, &ring_req); 734 735 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 736 num_grant = 0; 737 /* Calculate the number of grant used */ 738 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 739 num_grant += gnttab_count_grant(sg->offset, sg->length); 740 741 require_extra_req = info->max_indirect_segments == 0 && 742 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 743 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 744 745 rinfo->shadow[id].num_sg = num_sg; 746 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 747 likely(!require_extra_req)) { 748 /* 749 * The indirect operation can only be a BLKIF_OP_READ or 750 * BLKIF_OP_WRITE 751 */ 752 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 753 ring_req->operation = BLKIF_OP_INDIRECT; 754 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 755 BLKIF_OP_WRITE : BLKIF_OP_READ; 756 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 757 ring_req->u.indirect.handle = info->handle; 758 ring_req->u.indirect.nr_segments = num_grant; 759 } else { 760 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 761 ring_req->u.rw.handle = info->handle; 762 ring_req->operation = rq_data_dir(req) ? 763 BLKIF_OP_WRITE : BLKIF_OP_READ; 764 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 765 /* 766 * Ideally we can do an unordered flush-to-disk. 767 * In case the backend onlysupports barriers, use that. 768 * A barrier request a superset of FUA, so we can 769 * implement it the same way. (It's also a FLUSH+FUA, 770 * since it is guaranteed ordered WRT previous writes.) 771 */ 772 if (info->feature_flush && info->feature_fua) 773 ring_req->operation = 774 BLKIF_OP_WRITE_BARRIER; 775 else if (info->feature_flush) 776 ring_req->operation = 777 BLKIF_OP_FLUSH_DISKCACHE; 778 else 779 ring_req->operation = 0; 780 } 781 ring_req->u.rw.nr_segments = num_grant; 782 if (unlikely(require_extra_req)) { 783 extra_id = blkif_ring_get_request(rinfo, req, 784 &extra_ring_req); 785 /* 786 * Only the first request contains the scatter-gather 787 * list. 788 */ 789 rinfo->shadow[extra_id].num_sg = 0; 790 791 blkif_setup_extra_req(ring_req, extra_ring_req); 792 793 /* Link the 2 requests together */ 794 rinfo->shadow[extra_id].associated_id = id; 795 rinfo->shadow[id].associated_id = extra_id; 796 } 797 } 798 799 setup.ring_req = ring_req; 800 setup.id = id; 801 802 setup.require_extra_req = require_extra_req; 803 if (unlikely(require_extra_req)) 804 setup.extra_ring_req = extra_ring_req; 805 806 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 807 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 808 809 if (setup.need_copy) { 810 setup.bvec_off = sg->offset; 811 setup.bvec_data = kmap_atomic(sg_page(sg)); 812 } 813 814 gnttab_foreach_grant_in_range(sg_page(sg), 815 sg->offset, 816 sg->length, 817 blkif_setup_rw_req_grant, 818 &setup); 819 820 if (setup.need_copy) 821 kunmap_atomic(setup.bvec_data); 822 } 823 if (setup.segments) 824 kunmap_atomic(setup.segments); 825 826 /* Keep a private copy so we can reissue requests when recovering. */ 827 rinfo->shadow[id].req = *ring_req; 828 if (unlikely(require_extra_req)) 829 rinfo->shadow[extra_id].req = *extra_ring_req; 830 831 if (max_grefs > 0) 832 gnttab_free_grant_references(setup.gref_head); 833 834 return 0; 835 } 836 837 /* 838 * Generate a Xen blkfront IO request from a blk layer request. Reads 839 * and writes are handled as expected. 840 * 841 * @req: a request struct 842 */ 843 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 844 { 845 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 846 return 1; 847 848 if (unlikely(req_op(req) == REQ_OP_DISCARD || 849 req_op(req) == REQ_OP_SECURE_ERASE)) 850 return blkif_queue_discard_req(req, rinfo); 851 else 852 return blkif_queue_rw_req(req, rinfo); 853 } 854 855 static inline void flush_requests(struct blkfront_ring_info *rinfo) 856 { 857 int notify; 858 859 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 860 861 if (notify) 862 notify_remote_via_irq(rinfo->irq); 863 } 864 865 static inline bool blkif_request_flush_invalid(struct request *req, 866 struct blkfront_info *info) 867 { 868 return ((req->cmd_type != REQ_TYPE_FS) || 869 ((req_op(req) == REQ_OP_FLUSH) && 870 !info->feature_flush) || 871 ((req->cmd_flags & REQ_FUA) && 872 !info->feature_fua)); 873 } 874 875 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 876 const struct blk_mq_queue_data *qd) 877 { 878 unsigned long flags; 879 int qid = hctx->queue_num; 880 struct blkfront_info *info = hctx->queue->queuedata; 881 struct blkfront_ring_info *rinfo = NULL; 882 883 BUG_ON(info->nr_rings <= qid); 884 rinfo = &info->rinfo[qid]; 885 blk_mq_start_request(qd->rq); 886 spin_lock_irqsave(&rinfo->ring_lock, flags); 887 if (RING_FULL(&rinfo->ring)) 888 goto out_busy; 889 890 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 891 goto out_err; 892 893 if (blkif_queue_request(qd->rq, rinfo)) 894 goto out_busy; 895 896 flush_requests(rinfo); 897 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 898 return BLK_MQ_RQ_QUEUE_OK; 899 900 out_err: 901 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 902 return BLK_MQ_RQ_QUEUE_ERROR; 903 904 out_busy: 905 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 906 blk_mq_stop_hw_queue(hctx); 907 return BLK_MQ_RQ_QUEUE_BUSY; 908 } 909 910 static struct blk_mq_ops blkfront_mq_ops = { 911 .queue_rq = blkif_queue_rq, 912 .map_queue = blk_mq_map_queue, 913 }; 914 915 static void blkif_set_queue_limits(struct blkfront_info *info) 916 { 917 struct request_queue *rq = info->rq; 918 struct gendisk *gd = info->gd; 919 unsigned int segments = info->max_indirect_segments ? : 920 BLKIF_MAX_SEGMENTS_PER_REQUEST; 921 922 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq); 923 924 if (info->feature_discard) { 925 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq); 926 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 927 rq->limits.discard_granularity = info->discard_granularity; 928 rq->limits.discard_alignment = info->discard_alignment; 929 if (info->feature_secdiscard) 930 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq); 931 } 932 933 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 934 blk_queue_logical_block_size(rq, info->sector_size); 935 blk_queue_physical_block_size(rq, info->physical_sector_size); 936 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 937 938 /* Each segment in a request is up to an aligned page in size. */ 939 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 940 blk_queue_max_segment_size(rq, PAGE_SIZE); 941 942 /* Ensure a merged request will fit in a single I/O ring slot. */ 943 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 944 945 /* Make sure buffer addresses are sector-aligned. */ 946 blk_queue_dma_alignment(rq, 511); 947 948 /* Make sure we don't use bounce buffers. */ 949 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY); 950 } 951 952 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 953 unsigned int physical_sector_size) 954 { 955 struct request_queue *rq; 956 struct blkfront_info *info = gd->private_data; 957 958 memset(&info->tag_set, 0, sizeof(info->tag_set)); 959 info->tag_set.ops = &blkfront_mq_ops; 960 info->tag_set.nr_hw_queues = info->nr_rings; 961 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 962 /* 963 * When indirect descriptior is not supported, the I/O request 964 * will be split between multiple request in the ring. 965 * To avoid problems when sending the request, divide by 966 * 2 the depth of the queue. 967 */ 968 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 969 } else 970 info->tag_set.queue_depth = BLK_RING_SIZE(info); 971 info->tag_set.numa_node = NUMA_NO_NODE; 972 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 973 info->tag_set.cmd_size = 0; 974 info->tag_set.driver_data = info; 975 976 if (blk_mq_alloc_tag_set(&info->tag_set)) 977 return -EINVAL; 978 rq = blk_mq_init_queue(&info->tag_set); 979 if (IS_ERR(rq)) { 980 blk_mq_free_tag_set(&info->tag_set); 981 return PTR_ERR(rq); 982 } 983 984 rq->queuedata = info; 985 info->rq = gd->queue = rq; 986 info->gd = gd; 987 info->sector_size = sector_size; 988 info->physical_sector_size = physical_sector_size; 989 blkif_set_queue_limits(info); 990 991 return 0; 992 } 993 994 static const char *flush_info(struct blkfront_info *info) 995 { 996 if (info->feature_flush && info->feature_fua) 997 return "barrier: enabled;"; 998 else if (info->feature_flush) 999 return "flush diskcache: enabled;"; 1000 else 1001 return "barrier or flush: disabled;"; 1002 } 1003 1004 static void xlvbd_flush(struct blkfront_info *info) 1005 { 1006 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 1007 info->feature_fua ? true : false); 1008 pr_info("blkfront: %s: %s %s %s %s %s\n", 1009 info->gd->disk_name, flush_info(info), 1010 "persistent grants:", info->feature_persistent ? 1011 "enabled;" : "disabled;", "indirect descriptors:", 1012 info->max_indirect_segments ? "enabled;" : "disabled;"); 1013 } 1014 1015 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1016 { 1017 int major; 1018 major = BLKIF_MAJOR(vdevice); 1019 *minor = BLKIF_MINOR(vdevice); 1020 switch (major) { 1021 case XEN_IDE0_MAJOR: 1022 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1023 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1024 EMULATED_HD_DISK_MINOR_OFFSET; 1025 break; 1026 case XEN_IDE1_MAJOR: 1027 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1028 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1029 EMULATED_HD_DISK_MINOR_OFFSET; 1030 break; 1031 case XEN_SCSI_DISK0_MAJOR: 1032 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1033 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1034 break; 1035 case XEN_SCSI_DISK1_MAJOR: 1036 case XEN_SCSI_DISK2_MAJOR: 1037 case XEN_SCSI_DISK3_MAJOR: 1038 case XEN_SCSI_DISK4_MAJOR: 1039 case XEN_SCSI_DISK5_MAJOR: 1040 case XEN_SCSI_DISK6_MAJOR: 1041 case XEN_SCSI_DISK7_MAJOR: 1042 *offset = (*minor / PARTS_PER_DISK) + 1043 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1044 EMULATED_SD_DISK_NAME_OFFSET; 1045 *minor = *minor + 1046 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1047 EMULATED_SD_DISK_MINOR_OFFSET; 1048 break; 1049 case XEN_SCSI_DISK8_MAJOR: 1050 case XEN_SCSI_DISK9_MAJOR: 1051 case XEN_SCSI_DISK10_MAJOR: 1052 case XEN_SCSI_DISK11_MAJOR: 1053 case XEN_SCSI_DISK12_MAJOR: 1054 case XEN_SCSI_DISK13_MAJOR: 1055 case XEN_SCSI_DISK14_MAJOR: 1056 case XEN_SCSI_DISK15_MAJOR: 1057 *offset = (*minor / PARTS_PER_DISK) + 1058 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1059 EMULATED_SD_DISK_NAME_OFFSET; 1060 *minor = *minor + 1061 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1062 EMULATED_SD_DISK_MINOR_OFFSET; 1063 break; 1064 case XENVBD_MAJOR: 1065 *offset = *minor / PARTS_PER_DISK; 1066 break; 1067 default: 1068 printk(KERN_WARNING "blkfront: your disk configuration is " 1069 "incorrect, please use an xvd device instead\n"); 1070 return -ENODEV; 1071 } 1072 return 0; 1073 } 1074 1075 static char *encode_disk_name(char *ptr, unsigned int n) 1076 { 1077 if (n >= 26) 1078 ptr = encode_disk_name(ptr, n / 26 - 1); 1079 *ptr = 'a' + n % 26; 1080 return ptr + 1; 1081 } 1082 1083 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1084 struct blkfront_info *info, 1085 u16 vdisk_info, u16 sector_size, 1086 unsigned int physical_sector_size) 1087 { 1088 struct gendisk *gd; 1089 int nr_minors = 1; 1090 int err; 1091 unsigned int offset; 1092 int minor; 1093 int nr_parts; 1094 char *ptr; 1095 1096 BUG_ON(info->gd != NULL); 1097 BUG_ON(info->rq != NULL); 1098 1099 if ((info->vdevice>>EXT_SHIFT) > 1) { 1100 /* this is above the extended range; something is wrong */ 1101 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1102 return -ENODEV; 1103 } 1104 1105 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1106 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1107 if (err) 1108 return err; 1109 nr_parts = PARTS_PER_DISK; 1110 } else { 1111 minor = BLKIF_MINOR_EXT(info->vdevice); 1112 nr_parts = PARTS_PER_EXT_DISK; 1113 offset = minor / nr_parts; 1114 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1115 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1116 "emulated IDE disks,\n\t choose an xvd device name" 1117 "from xvde on\n", info->vdevice); 1118 } 1119 if (minor >> MINORBITS) { 1120 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1121 info->vdevice, minor); 1122 return -ENODEV; 1123 } 1124 1125 if ((minor % nr_parts) == 0) 1126 nr_minors = nr_parts; 1127 1128 err = xlbd_reserve_minors(minor, nr_minors); 1129 if (err) 1130 goto out; 1131 err = -ENODEV; 1132 1133 gd = alloc_disk(nr_minors); 1134 if (gd == NULL) 1135 goto release; 1136 1137 strcpy(gd->disk_name, DEV_NAME); 1138 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1139 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1140 if (nr_minors > 1) 1141 *ptr = 0; 1142 else 1143 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1144 "%d", minor & (nr_parts - 1)); 1145 1146 gd->major = XENVBD_MAJOR; 1147 gd->first_minor = minor; 1148 gd->fops = &xlvbd_block_fops; 1149 gd->private_data = info; 1150 set_capacity(gd, capacity); 1151 1152 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) { 1153 del_gendisk(gd); 1154 goto release; 1155 } 1156 1157 xlvbd_flush(info); 1158 1159 if (vdisk_info & VDISK_READONLY) 1160 set_disk_ro(gd, 1); 1161 1162 if (vdisk_info & VDISK_REMOVABLE) 1163 gd->flags |= GENHD_FL_REMOVABLE; 1164 1165 if (vdisk_info & VDISK_CDROM) 1166 gd->flags |= GENHD_FL_CD; 1167 1168 return 0; 1169 1170 release: 1171 xlbd_release_minors(minor, nr_minors); 1172 out: 1173 return err; 1174 } 1175 1176 static void xlvbd_release_gendisk(struct blkfront_info *info) 1177 { 1178 unsigned int minor, nr_minors, i; 1179 1180 if (info->rq == NULL) 1181 return; 1182 1183 /* No more blkif_request(). */ 1184 blk_mq_stop_hw_queues(info->rq); 1185 1186 for (i = 0; i < info->nr_rings; i++) { 1187 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1188 1189 /* No more gnttab callback work. */ 1190 gnttab_cancel_free_callback(&rinfo->callback); 1191 1192 /* Flush gnttab callback work. Must be done with no locks held. */ 1193 flush_work(&rinfo->work); 1194 } 1195 1196 del_gendisk(info->gd); 1197 1198 minor = info->gd->first_minor; 1199 nr_minors = info->gd->minors; 1200 xlbd_release_minors(minor, nr_minors); 1201 1202 blk_cleanup_queue(info->rq); 1203 blk_mq_free_tag_set(&info->tag_set); 1204 info->rq = NULL; 1205 1206 put_disk(info->gd); 1207 info->gd = NULL; 1208 } 1209 1210 /* Already hold rinfo->ring_lock. */ 1211 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1212 { 1213 if (!RING_FULL(&rinfo->ring)) 1214 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1215 } 1216 1217 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1218 { 1219 unsigned long flags; 1220 1221 spin_lock_irqsave(&rinfo->ring_lock, flags); 1222 kick_pending_request_queues_locked(rinfo); 1223 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1224 } 1225 1226 static void blkif_restart_queue(struct work_struct *work) 1227 { 1228 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1229 1230 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1231 kick_pending_request_queues(rinfo); 1232 } 1233 1234 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1235 { 1236 struct grant *persistent_gnt, *n; 1237 struct blkfront_info *info = rinfo->dev_info; 1238 int i, j, segs; 1239 1240 /* 1241 * Remove indirect pages, this only happens when using indirect 1242 * descriptors but not persistent grants 1243 */ 1244 if (!list_empty(&rinfo->indirect_pages)) { 1245 struct page *indirect_page, *n; 1246 1247 BUG_ON(info->feature_persistent); 1248 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1249 list_del(&indirect_page->lru); 1250 __free_page(indirect_page); 1251 } 1252 } 1253 1254 /* Remove all persistent grants. */ 1255 if (!list_empty(&rinfo->grants)) { 1256 list_for_each_entry_safe(persistent_gnt, n, 1257 &rinfo->grants, node) { 1258 list_del(&persistent_gnt->node); 1259 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1260 gnttab_end_foreign_access(persistent_gnt->gref, 1261 0, 0UL); 1262 rinfo->persistent_gnts_c--; 1263 } 1264 if (info->feature_persistent) 1265 __free_page(persistent_gnt->page); 1266 kfree(persistent_gnt); 1267 } 1268 } 1269 BUG_ON(rinfo->persistent_gnts_c != 0); 1270 1271 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1272 /* 1273 * Clear persistent grants present in requests already 1274 * on the shared ring 1275 */ 1276 if (!rinfo->shadow[i].request) 1277 goto free_shadow; 1278 1279 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1280 rinfo->shadow[i].req.u.indirect.nr_segments : 1281 rinfo->shadow[i].req.u.rw.nr_segments; 1282 for (j = 0; j < segs; j++) { 1283 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1284 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1285 if (info->feature_persistent) 1286 __free_page(persistent_gnt->page); 1287 kfree(persistent_gnt); 1288 } 1289 1290 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1291 /* 1292 * If this is not an indirect operation don't try to 1293 * free indirect segments 1294 */ 1295 goto free_shadow; 1296 1297 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1298 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1299 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1300 __free_page(persistent_gnt->page); 1301 kfree(persistent_gnt); 1302 } 1303 1304 free_shadow: 1305 kfree(rinfo->shadow[i].grants_used); 1306 rinfo->shadow[i].grants_used = NULL; 1307 kfree(rinfo->shadow[i].indirect_grants); 1308 rinfo->shadow[i].indirect_grants = NULL; 1309 kfree(rinfo->shadow[i].sg); 1310 rinfo->shadow[i].sg = NULL; 1311 } 1312 1313 /* No more gnttab callback work. */ 1314 gnttab_cancel_free_callback(&rinfo->callback); 1315 1316 /* Flush gnttab callback work. Must be done with no locks held. */ 1317 flush_work(&rinfo->work); 1318 1319 /* Free resources associated with old device channel. */ 1320 for (i = 0; i < info->nr_ring_pages; i++) { 1321 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1322 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1323 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1324 } 1325 } 1326 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1327 rinfo->ring.sring = NULL; 1328 1329 if (rinfo->irq) 1330 unbind_from_irqhandler(rinfo->irq, rinfo); 1331 rinfo->evtchn = rinfo->irq = 0; 1332 } 1333 1334 static void blkif_free(struct blkfront_info *info, int suspend) 1335 { 1336 unsigned int i; 1337 1338 /* Prevent new requests being issued until we fix things up. */ 1339 info->connected = suspend ? 1340 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1341 /* No more blkif_request(). */ 1342 if (info->rq) 1343 blk_mq_stop_hw_queues(info->rq); 1344 1345 for (i = 0; i < info->nr_rings; i++) 1346 blkif_free_ring(&info->rinfo[i]); 1347 1348 kfree(info->rinfo); 1349 info->rinfo = NULL; 1350 info->nr_rings = 0; 1351 } 1352 1353 struct copy_from_grant { 1354 const struct blk_shadow *s; 1355 unsigned int grant_idx; 1356 unsigned int bvec_offset; 1357 char *bvec_data; 1358 }; 1359 1360 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1361 unsigned int len, void *data) 1362 { 1363 struct copy_from_grant *info = data; 1364 char *shared_data; 1365 /* Convenient aliases */ 1366 const struct blk_shadow *s = info->s; 1367 1368 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1369 1370 memcpy(info->bvec_data + info->bvec_offset, 1371 shared_data + offset, len); 1372 1373 info->bvec_offset += len; 1374 info->grant_idx++; 1375 1376 kunmap_atomic(shared_data); 1377 } 1378 1379 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1380 { 1381 switch (rsp) 1382 { 1383 case BLKIF_RSP_OKAY: 1384 return REQ_DONE; 1385 case BLKIF_RSP_EOPNOTSUPP: 1386 return REQ_EOPNOTSUPP; 1387 case BLKIF_RSP_ERROR: 1388 /* Fallthrough. */ 1389 default: 1390 return REQ_ERROR; 1391 } 1392 } 1393 1394 /* 1395 * Get the final status of the block request based on two ring response 1396 */ 1397 static int blkif_get_final_status(enum blk_req_status s1, 1398 enum blk_req_status s2) 1399 { 1400 BUG_ON(s1 == REQ_WAITING); 1401 BUG_ON(s2 == REQ_WAITING); 1402 1403 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1404 return BLKIF_RSP_ERROR; 1405 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1406 return BLKIF_RSP_EOPNOTSUPP; 1407 return BLKIF_RSP_OKAY; 1408 } 1409 1410 static bool blkif_completion(unsigned long *id, 1411 struct blkfront_ring_info *rinfo, 1412 struct blkif_response *bret) 1413 { 1414 int i = 0; 1415 struct scatterlist *sg; 1416 int num_sg, num_grant; 1417 struct blkfront_info *info = rinfo->dev_info; 1418 struct blk_shadow *s = &rinfo->shadow[*id]; 1419 struct copy_from_grant data = { 1420 .grant_idx = 0, 1421 }; 1422 1423 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1424 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1425 1426 /* The I/O request may be split in two. */ 1427 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1428 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1429 1430 /* Keep the status of the current response in shadow. */ 1431 s->status = blkif_rsp_to_req_status(bret->status); 1432 1433 /* Wait the second response if not yet here. */ 1434 if (s2->status == REQ_WAITING) 1435 return 0; 1436 1437 bret->status = blkif_get_final_status(s->status, 1438 s2->status); 1439 1440 /* 1441 * All the grants is stored in the first shadow in order 1442 * to make the completion code simpler. 1443 */ 1444 num_grant += s2->req.u.rw.nr_segments; 1445 1446 /* 1447 * The two responses may not come in order. Only the 1448 * first request will store the scatter-gather list. 1449 */ 1450 if (s2->num_sg != 0) { 1451 /* Update "id" with the ID of the first response. */ 1452 *id = s->associated_id; 1453 s = s2; 1454 } 1455 1456 /* 1457 * We don't need anymore the second request, so recycling 1458 * it now. 1459 */ 1460 if (add_id_to_freelist(rinfo, s->associated_id)) 1461 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1462 info->gd->disk_name, s->associated_id); 1463 } 1464 1465 data.s = s; 1466 num_sg = s->num_sg; 1467 1468 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1469 for_each_sg(s->sg, sg, num_sg, i) { 1470 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1471 1472 data.bvec_offset = sg->offset; 1473 data.bvec_data = kmap_atomic(sg_page(sg)); 1474 1475 gnttab_foreach_grant_in_range(sg_page(sg), 1476 sg->offset, 1477 sg->length, 1478 blkif_copy_from_grant, 1479 &data); 1480 1481 kunmap_atomic(data.bvec_data); 1482 } 1483 } 1484 /* Add the persistent grant into the list of free grants */ 1485 for (i = 0; i < num_grant; i++) { 1486 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1487 /* 1488 * If the grant is still mapped by the backend (the 1489 * backend has chosen to make this grant persistent) 1490 * we add it at the head of the list, so it will be 1491 * reused first. 1492 */ 1493 if (!info->feature_persistent) 1494 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1495 s->grants_used[i]->gref); 1496 list_add(&s->grants_used[i]->node, &rinfo->grants); 1497 rinfo->persistent_gnts_c++; 1498 } else { 1499 /* 1500 * If the grant is not mapped by the backend we end the 1501 * foreign access and add it to the tail of the list, 1502 * so it will not be picked again unless we run out of 1503 * persistent grants. 1504 */ 1505 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1506 s->grants_used[i]->gref = GRANT_INVALID_REF; 1507 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1508 } 1509 } 1510 if (s->req.operation == BLKIF_OP_INDIRECT) { 1511 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1512 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1513 if (!info->feature_persistent) 1514 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1515 s->indirect_grants[i]->gref); 1516 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1517 rinfo->persistent_gnts_c++; 1518 } else { 1519 struct page *indirect_page; 1520 1521 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1522 /* 1523 * Add the used indirect page back to the list of 1524 * available pages for indirect grefs. 1525 */ 1526 if (!info->feature_persistent) { 1527 indirect_page = s->indirect_grants[i]->page; 1528 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1529 } 1530 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1531 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1532 } 1533 } 1534 } 1535 1536 return 1; 1537 } 1538 1539 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1540 { 1541 struct request *req; 1542 struct blkif_response *bret; 1543 RING_IDX i, rp; 1544 unsigned long flags; 1545 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1546 struct blkfront_info *info = rinfo->dev_info; 1547 int error; 1548 1549 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1550 return IRQ_HANDLED; 1551 1552 spin_lock_irqsave(&rinfo->ring_lock, flags); 1553 again: 1554 rp = rinfo->ring.sring->rsp_prod; 1555 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1556 1557 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1558 unsigned long id; 1559 1560 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1561 id = bret->id; 1562 /* 1563 * The backend has messed up and given us an id that we would 1564 * never have given to it (we stamp it up to BLK_RING_SIZE - 1565 * look in get_id_from_freelist. 1566 */ 1567 if (id >= BLK_RING_SIZE(info)) { 1568 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1569 info->gd->disk_name, op_name(bret->operation), id); 1570 /* We can't safely get the 'struct request' as 1571 * the id is busted. */ 1572 continue; 1573 } 1574 req = rinfo->shadow[id].request; 1575 1576 if (bret->operation != BLKIF_OP_DISCARD) { 1577 /* 1578 * We may need to wait for an extra response if the 1579 * I/O request is split in 2 1580 */ 1581 if (!blkif_completion(&id, rinfo, bret)) 1582 continue; 1583 } 1584 1585 if (add_id_to_freelist(rinfo, id)) { 1586 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1587 info->gd->disk_name, op_name(bret->operation), id); 1588 continue; 1589 } 1590 1591 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO; 1592 switch (bret->operation) { 1593 case BLKIF_OP_DISCARD: 1594 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1595 struct request_queue *rq = info->rq; 1596 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1597 info->gd->disk_name, op_name(bret->operation)); 1598 error = -EOPNOTSUPP; 1599 info->feature_discard = 0; 1600 info->feature_secdiscard = 0; 1601 queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1602 queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1603 } 1604 blk_mq_complete_request(req, error); 1605 break; 1606 case BLKIF_OP_FLUSH_DISKCACHE: 1607 case BLKIF_OP_WRITE_BARRIER: 1608 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1609 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1610 info->gd->disk_name, op_name(bret->operation)); 1611 error = -EOPNOTSUPP; 1612 } 1613 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1614 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1615 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1616 info->gd->disk_name, op_name(bret->operation)); 1617 error = -EOPNOTSUPP; 1618 } 1619 if (unlikely(error)) { 1620 if (error == -EOPNOTSUPP) 1621 error = 0; 1622 info->feature_fua = 0; 1623 info->feature_flush = 0; 1624 xlvbd_flush(info); 1625 } 1626 /* fall through */ 1627 case BLKIF_OP_READ: 1628 case BLKIF_OP_WRITE: 1629 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1630 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1631 "request: %x\n", bret->status); 1632 1633 blk_mq_complete_request(req, error); 1634 break; 1635 default: 1636 BUG(); 1637 } 1638 } 1639 1640 rinfo->ring.rsp_cons = i; 1641 1642 if (i != rinfo->ring.req_prod_pvt) { 1643 int more_to_do; 1644 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1645 if (more_to_do) 1646 goto again; 1647 } else 1648 rinfo->ring.sring->rsp_event = i + 1; 1649 1650 kick_pending_request_queues_locked(rinfo); 1651 1652 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1653 1654 return IRQ_HANDLED; 1655 } 1656 1657 1658 static int setup_blkring(struct xenbus_device *dev, 1659 struct blkfront_ring_info *rinfo) 1660 { 1661 struct blkif_sring *sring; 1662 int err, i; 1663 struct blkfront_info *info = rinfo->dev_info; 1664 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1665 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1666 1667 for (i = 0; i < info->nr_ring_pages; i++) 1668 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1669 1670 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1671 get_order(ring_size)); 1672 if (!sring) { 1673 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1674 return -ENOMEM; 1675 } 1676 SHARED_RING_INIT(sring); 1677 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1678 1679 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1680 if (err < 0) { 1681 free_pages((unsigned long)sring, get_order(ring_size)); 1682 rinfo->ring.sring = NULL; 1683 goto fail; 1684 } 1685 for (i = 0; i < info->nr_ring_pages; i++) 1686 rinfo->ring_ref[i] = gref[i]; 1687 1688 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1689 if (err) 1690 goto fail; 1691 1692 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1693 "blkif", rinfo); 1694 if (err <= 0) { 1695 xenbus_dev_fatal(dev, err, 1696 "bind_evtchn_to_irqhandler failed"); 1697 goto fail; 1698 } 1699 rinfo->irq = err; 1700 1701 return 0; 1702 fail: 1703 blkif_free(info, 0); 1704 return err; 1705 } 1706 1707 /* 1708 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1709 * ring buffer may have multi pages depending on ->nr_ring_pages. 1710 */ 1711 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1712 struct blkfront_ring_info *rinfo, const char *dir) 1713 { 1714 int err; 1715 unsigned int i; 1716 const char *message = NULL; 1717 struct blkfront_info *info = rinfo->dev_info; 1718 1719 if (info->nr_ring_pages == 1) { 1720 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1721 if (err) { 1722 message = "writing ring-ref"; 1723 goto abort_transaction; 1724 } 1725 } else { 1726 for (i = 0; i < info->nr_ring_pages; i++) { 1727 char ring_ref_name[RINGREF_NAME_LEN]; 1728 1729 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1730 err = xenbus_printf(xbt, dir, ring_ref_name, 1731 "%u", rinfo->ring_ref[i]); 1732 if (err) { 1733 message = "writing ring-ref"; 1734 goto abort_transaction; 1735 } 1736 } 1737 } 1738 1739 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1740 if (err) { 1741 message = "writing event-channel"; 1742 goto abort_transaction; 1743 } 1744 1745 return 0; 1746 1747 abort_transaction: 1748 xenbus_transaction_end(xbt, 1); 1749 if (message) 1750 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1751 1752 return err; 1753 } 1754 1755 /* Common code used when first setting up, and when resuming. */ 1756 static int talk_to_blkback(struct xenbus_device *dev, 1757 struct blkfront_info *info) 1758 { 1759 const char *message = NULL; 1760 struct xenbus_transaction xbt; 1761 int err; 1762 unsigned int i, max_page_order = 0; 1763 unsigned int ring_page_order = 0; 1764 1765 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 1766 "max-ring-page-order", "%u", &max_page_order); 1767 if (err != 1) 1768 info->nr_ring_pages = 1; 1769 else { 1770 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1771 info->nr_ring_pages = 1 << ring_page_order; 1772 } 1773 1774 for (i = 0; i < info->nr_rings; i++) { 1775 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1776 1777 /* Create shared ring, alloc event channel. */ 1778 err = setup_blkring(dev, rinfo); 1779 if (err) 1780 goto destroy_blkring; 1781 } 1782 1783 again: 1784 err = xenbus_transaction_start(&xbt); 1785 if (err) { 1786 xenbus_dev_fatal(dev, err, "starting transaction"); 1787 goto destroy_blkring; 1788 } 1789 1790 if (info->nr_ring_pages > 1) { 1791 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1792 ring_page_order); 1793 if (err) { 1794 message = "writing ring-page-order"; 1795 goto abort_transaction; 1796 } 1797 } 1798 1799 /* We already got the number of queues/rings in _probe */ 1800 if (info->nr_rings == 1) { 1801 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename); 1802 if (err) 1803 goto destroy_blkring; 1804 } else { 1805 char *path; 1806 size_t pathsize; 1807 1808 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1809 info->nr_rings); 1810 if (err) { 1811 message = "writing multi-queue-num-queues"; 1812 goto abort_transaction; 1813 } 1814 1815 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1816 path = kmalloc(pathsize, GFP_KERNEL); 1817 if (!path) { 1818 err = -ENOMEM; 1819 message = "ENOMEM while writing ring references"; 1820 goto abort_transaction; 1821 } 1822 1823 for (i = 0; i < info->nr_rings; i++) { 1824 memset(path, 0, pathsize); 1825 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1826 err = write_per_ring_nodes(xbt, &info->rinfo[i], path); 1827 if (err) { 1828 kfree(path); 1829 goto destroy_blkring; 1830 } 1831 } 1832 kfree(path); 1833 } 1834 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1835 XEN_IO_PROTO_ABI_NATIVE); 1836 if (err) { 1837 message = "writing protocol"; 1838 goto abort_transaction; 1839 } 1840 err = xenbus_printf(xbt, dev->nodename, 1841 "feature-persistent", "%u", 1); 1842 if (err) 1843 dev_warn(&dev->dev, 1844 "writing persistent grants feature to xenbus"); 1845 1846 err = xenbus_transaction_end(xbt, 0); 1847 if (err) { 1848 if (err == -EAGAIN) 1849 goto again; 1850 xenbus_dev_fatal(dev, err, "completing transaction"); 1851 goto destroy_blkring; 1852 } 1853 1854 for (i = 0; i < info->nr_rings; i++) { 1855 unsigned int j; 1856 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1857 1858 for (j = 0; j < BLK_RING_SIZE(info); j++) 1859 rinfo->shadow[j].req.u.rw.id = j + 1; 1860 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1861 } 1862 xenbus_switch_state(dev, XenbusStateInitialised); 1863 1864 return 0; 1865 1866 abort_transaction: 1867 xenbus_transaction_end(xbt, 1); 1868 if (message) 1869 xenbus_dev_fatal(dev, err, "%s", message); 1870 destroy_blkring: 1871 blkif_free(info, 0); 1872 1873 kfree(info); 1874 dev_set_drvdata(&dev->dev, NULL); 1875 1876 return err; 1877 } 1878 1879 static int negotiate_mq(struct blkfront_info *info) 1880 { 1881 unsigned int backend_max_queues = 0; 1882 int err; 1883 unsigned int i; 1884 1885 BUG_ON(info->nr_rings); 1886 1887 /* Check if backend supports multiple queues. */ 1888 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 1889 "multi-queue-max-queues", "%u", &backend_max_queues); 1890 if (err < 0) 1891 backend_max_queues = 1; 1892 1893 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1894 /* We need at least one ring. */ 1895 if (!info->nr_rings) 1896 info->nr_rings = 1; 1897 1898 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL); 1899 if (!info->rinfo) { 1900 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1901 return -ENOMEM; 1902 } 1903 1904 for (i = 0; i < info->nr_rings; i++) { 1905 struct blkfront_ring_info *rinfo; 1906 1907 rinfo = &info->rinfo[i]; 1908 INIT_LIST_HEAD(&rinfo->indirect_pages); 1909 INIT_LIST_HEAD(&rinfo->grants); 1910 rinfo->dev_info = info; 1911 INIT_WORK(&rinfo->work, blkif_restart_queue); 1912 spin_lock_init(&rinfo->ring_lock); 1913 } 1914 return 0; 1915 } 1916 /** 1917 * Entry point to this code when a new device is created. Allocate the basic 1918 * structures and the ring buffer for communication with the backend, and 1919 * inform the backend of the appropriate details for those. Switch to 1920 * Initialised state. 1921 */ 1922 static int blkfront_probe(struct xenbus_device *dev, 1923 const struct xenbus_device_id *id) 1924 { 1925 int err, vdevice; 1926 struct blkfront_info *info; 1927 1928 /* FIXME: Use dynamic device id if this is not set. */ 1929 err = xenbus_scanf(XBT_NIL, dev->nodename, 1930 "virtual-device", "%i", &vdevice); 1931 if (err != 1) { 1932 /* go looking in the extended area instead */ 1933 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1934 "%i", &vdevice); 1935 if (err != 1) { 1936 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1937 return err; 1938 } 1939 } 1940 1941 if (xen_hvm_domain()) { 1942 char *type; 1943 int len; 1944 /* no unplug has been done: do not hook devices != xen vbds */ 1945 if (xen_has_pv_and_legacy_disk_devices()) { 1946 int major; 1947 1948 if (!VDEV_IS_EXTENDED(vdevice)) 1949 major = BLKIF_MAJOR(vdevice); 1950 else 1951 major = XENVBD_MAJOR; 1952 1953 if (major != XENVBD_MAJOR) { 1954 printk(KERN_INFO 1955 "%s: HVM does not support vbd %d as xen block device\n", 1956 __func__, vdevice); 1957 return -ENODEV; 1958 } 1959 } 1960 /* do not create a PV cdrom device if we are an HVM guest */ 1961 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1962 if (IS_ERR(type)) 1963 return -ENODEV; 1964 if (strncmp(type, "cdrom", 5) == 0) { 1965 kfree(type); 1966 return -ENODEV; 1967 } 1968 kfree(type); 1969 } 1970 info = kzalloc(sizeof(*info), GFP_KERNEL); 1971 if (!info) { 1972 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1973 return -ENOMEM; 1974 } 1975 1976 info->xbdev = dev; 1977 err = negotiate_mq(info); 1978 if (err) { 1979 kfree(info); 1980 return err; 1981 } 1982 1983 mutex_init(&info->mutex); 1984 info->vdevice = vdevice; 1985 info->connected = BLKIF_STATE_DISCONNECTED; 1986 1987 /* Front end dir is a number, which is used as the id. */ 1988 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1989 dev_set_drvdata(&dev->dev, info); 1990 1991 return 0; 1992 } 1993 1994 static void split_bio_end(struct bio *bio) 1995 { 1996 struct split_bio *split_bio = bio->bi_private; 1997 1998 if (atomic_dec_and_test(&split_bio->pending)) { 1999 split_bio->bio->bi_phys_segments = 0; 2000 split_bio->bio->bi_error = bio->bi_error; 2001 bio_endio(split_bio->bio); 2002 kfree(split_bio); 2003 } 2004 bio_put(bio); 2005 } 2006 2007 static int blkif_recover(struct blkfront_info *info) 2008 { 2009 unsigned int i, r_index; 2010 struct request *req, *n; 2011 int rc; 2012 struct bio *bio, *cloned_bio; 2013 unsigned int segs, offset; 2014 int pending, size; 2015 struct split_bio *split_bio; 2016 2017 blkfront_gather_backend_features(info); 2018 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2019 blkif_set_queue_limits(info); 2020 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2021 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2022 2023 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2024 struct blkfront_ring_info *rinfo = &info->rinfo[r_index]; 2025 2026 rc = blkfront_setup_indirect(rinfo); 2027 if (rc) 2028 return rc; 2029 } 2030 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2031 2032 /* Now safe for us to use the shared ring */ 2033 info->connected = BLKIF_STATE_CONNECTED; 2034 2035 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2036 struct blkfront_ring_info *rinfo; 2037 2038 rinfo = &info->rinfo[r_index]; 2039 /* Kick any other new requests queued since we resumed */ 2040 kick_pending_request_queues(rinfo); 2041 } 2042 2043 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2044 /* Requeue pending requests (flush or discard) */ 2045 list_del_init(&req->queuelist); 2046 BUG_ON(req->nr_phys_segments > segs); 2047 blk_mq_requeue_request(req); 2048 } 2049 blk_mq_kick_requeue_list(info->rq); 2050 2051 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2052 /* Traverse the list of pending bios and re-queue them */ 2053 if (bio_segments(bio) > segs) { 2054 /* 2055 * This bio has more segments than what we can 2056 * handle, we have to split it. 2057 */ 2058 pending = (bio_segments(bio) + segs - 1) / segs; 2059 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO); 2060 BUG_ON(split_bio == NULL); 2061 atomic_set(&split_bio->pending, pending); 2062 split_bio->bio = bio; 2063 for (i = 0; i < pending; i++) { 2064 offset = (i * segs * XEN_PAGE_SIZE) >> 9; 2065 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9, 2066 (unsigned int)bio_sectors(bio) - offset); 2067 cloned_bio = bio_clone(bio, GFP_NOIO); 2068 BUG_ON(cloned_bio == NULL); 2069 bio_trim(cloned_bio, offset, size); 2070 cloned_bio->bi_private = split_bio; 2071 cloned_bio->bi_end_io = split_bio_end; 2072 submit_bio(cloned_bio); 2073 } 2074 /* 2075 * Now we have to wait for all those smaller bios to 2076 * end, so we can also end the "parent" bio. 2077 */ 2078 continue; 2079 } 2080 /* We don't need to split this bio */ 2081 submit_bio(bio); 2082 } 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2089 * driver restart. We tear down our blkif structure and recreate it, but 2090 * leave the device-layer structures intact so that this is transparent to the 2091 * rest of the kernel. 2092 */ 2093 static int blkfront_resume(struct xenbus_device *dev) 2094 { 2095 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2096 int err = 0; 2097 unsigned int i, j; 2098 2099 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2100 2101 bio_list_init(&info->bio_list); 2102 INIT_LIST_HEAD(&info->requests); 2103 for (i = 0; i < info->nr_rings; i++) { 2104 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 2105 struct bio_list merge_bio; 2106 struct blk_shadow *shadow = rinfo->shadow; 2107 2108 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2109 /* Not in use? */ 2110 if (!shadow[j].request) 2111 continue; 2112 2113 /* 2114 * Get the bios in the request so we can re-queue them. 2115 */ 2116 if (req_op(shadow[i].request) == REQ_OP_FLUSH || 2117 req_op(shadow[i].request) == REQ_OP_DISCARD || 2118 req_op(shadow[i].request) == REQ_OP_SECURE_ERASE || 2119 shadow[j].request->cmd_flags & REQ_FUA) { 2120 /* 2121 * Flush operations don't contain bios, so 2122 * we need to requeue the whole request 2123 * 2124 * XXX: but this doesn't make any sense for a 2125 * write with the FUA flag set.. 2126 */ 2127 list_add(&shadow[j].request->queuelist, &info->requests); 2128 continue; 2129 } 2130 merge_bio.head = shadow[j].request->bio; 2131 merge_bio.tail = shadow[j].request->biotail; 2132 bio_list_merge(&info->bio_list, &merge_bio); 2133 shadow[j].request->bio = NULL; 2134 blk_mq_end_request(shadow[j].request, 0); 2135 } 2136 } 2137 2138 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2139 2140 err = negotiate_mq(info); 2141 if (err) 2142 return err; 2143 2144 err = talk_to_blkback(dev, info); 2145 if (!err) 2146 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2147 2148 /* 2149 * We have to wait for the backend to switch to 2150 * connected state, since we want to read which 2151 * features it supports. 2152 */ 2153 2154 return err; 2155 } 2156 2157 static void blkfront_closing(struct blkfront_info *info) 2158 { 2159 struct xenbus_device *xbdev = info->xbdev; 2160 struct block_device *bdev = NULL; 2161 2162 mutex_lock(&info->mutex); 2163 2164 if (xbdev->state == XenbusStateClosing) { 2165 mutex_unlock(&info->mutex); 2166 return; 2167 } 2168 2169 if (info->gd) 2170 bdev = bdget_disk(info->gd, 0); 2171 2172 mutex_unlock(&info->mutex); 2173 2174 if (!bdev) { 2175 xenbus_frontend_closed(xbdev); 2176 return; 2177 } 2178 2179 mutex_lock(&bdev->bd_mutex); 2180 2181 if (bdev->bd_openers) { 2182 xenbus_dev_error(xbdev, -EBUSY, 2183 "Device in use; refusing to close"); 2184 xenbus_switch_state(xbdev, XenbusStateClosing); 2185 } else { 2186 xlvbd_release_gendisk(info); 2187 xenbus_frontend_closed(xbdev); 2188 } 2189 2190 mutex_unlock(&bdev->bd_mutex); 2191 bdput(bdev); 2192 } 2193 2194 static void blkfront_setup_discard(struct blkfront_info *info) 2195 { 2196 int err; 2197 unsigned int discard_granularity; 2198 unsigned int discard_alignment; 2199 unsigned int discard_secure; 2200 2201 info->feature_discard = 1; 2202 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2203 "discard-granularity", "%u", &discard_granularity, 2204 "discard-alignment", "%u", &discard_alignment, 2205 NULL); 2206 if (!err) { 2207 info->discard_granularity = discard_granularity; 2208 info->discard_alignment = discard_alignment; 2209 } 2210 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2211 "discard-secure", "%u", &discard_secure); 2212 if (err > 0) 2213 info->feature_secdiscard = !!discard_secure; 2214 } 2215 2216 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2217 { 2218 unsigned int psegs, grants; 2219 int err, i; 2220 struct blkfront_info *info = rinfo->dev_info; 2221 2222 if (info->max_indirect_segments == 0) { 2223 if (!HAS_EXTRA_REQ) 2224 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2225 else { 2226 /* 2227 * When an extra req is required, the maximum 2228 * grants supported is related to the size of the 2229 * Linux block segment. 2230 */ 2231 grants = GRANTS_PER_PSEG; 2232 } 2233 } 2234 else 2235 grants = info->max_indirect_segments; 2236 psegs = grants / GRANTS_PER_PSEG; 2237 2238 err = fill_grant_buffer(rinfo, 2239 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2240 if (err) 2241 goto out_of_memory; 2242 2243 if (!info->feature_persistent && info->max_indirect_segments) { 2244 /* 2245 * We are using indirect descriptors but not persistent 2246 * grants, we need to allocate a set of pages that can be 2247 * used for mapping indirect grefs 2248 */ 2249 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2250 2251 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2252 for (i = 0; i < num; i++) { 2253 struct page *indirect_page = alloc_page(GFP_NOIO); 2254 if (!indirect_page) 2255 goto out_of_memory; 2256 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2257 } 2258 } 2259 2260 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2261 rinfo->shadow[i].grants_used = kzalloc( 2262 sizeof(rinfo->shadow[i].grants_used[0]) * grants, 2263 GFP_NOIO); 2264 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO); 2265 if (info->max_indirect_segments) 2266 rinfo->shadow[i].indirect_grants = kzalloc( 2267 sizeof(rinfo->shadow[i].indirect_grants[0]) * 2268 INDIRECT_GREFS(grants), 2269 GFP_NOIO); 2270 if ((rinfo->shadow[i].grants_used == NULL) || 2271 (rinfo->shadow[i].sg == NULL) || 2272 (info->max_indirect_segments && 2273 (rinfo->shadow[i].indirect_grants == NULL))) 2274 goto out_of_memory; 2275 sg_init_table(rinfo->shadow[i].sg, psegs); 2276 } 2277 2278 2279 return 0; 2280 2281 out_of_memory: 2282 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2283 kfree(rinfo->shadow[i].grants_used); 2284 rinfo->shadow[i].grants_used = NULL; 2285 kfree(rinfo->shadow[i].sg); 2286 rinfo->shadow[i].sg = NULL; 2287 kfree(rinfo->shadow[i].indirect_grants); 2288 rinfo->shadow[i].indirect_grants = NULL; 2289 } 2290 if (!list_empty(&rinfo->indirect_pages)) { 2291 struct page *indirect_page, *n; 2292 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2293 list_del(&indirect_page->lru); 2294 __free_page(indirect_page); 2295 } 2296 } 2297 return -ENOMEM; 2298 } 2299 2300 /* 2301 * Gather all backend feature-* 2302 */ 2303 static void blkfront_gather_backend_features(struct blkfront_info *info) 2304 { 2305 int err; 2306 int barrier, flush, discard, persistent; 2307 unsigned int indirect_segments; 2308 2309 info->feature_flush = 0; 2310 info->feature_fua = 0; 2311 2312 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2313 "feature-barrier", "%d", &barrier); 2314 2315 /* 2316 * If there's no "feature-barrier" defined, then it means 2317 * we're dealing with a very old backend which writes 2318 * synchronously; nothing to do. 2319 * 2320 * If there are barriers, then we use flush. 2321 */ 2322 if (err > 0 && barrier) { 2323 info->feature_flush = 1; 2324 info->feature_fua = 1; 2325 } 2326 2327 /* 2328 * And if there is "feature-flush-cache" use that above 2329 * barriers. 2330 */ 2331 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2332 "feature-flush-cache", "%d", &flush); 2333 2334 if (err > 0 && flush) { 2335 info->feature_flush = 1; 2336 info->feature_fua = 0; 2337 } 2338 2339 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2340 "feature-discard", "%d", &discard); 2341 2342 if (err > 0 && discard) 2343 blkfront_setup_discard(info); 2344 2345 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2346 "feature-persistent", "%d", &persistent); 2347 if (err <= 0) 2348 info->feature_persistent = 0; 2349 else 2350 info->feature_persistent = persistent; 2351 2352 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2353 "feature-max-indirect-segments", "%u", 2354 &indirect_segments); 2355 if (err <= 0) 2356 info->max_indirect_segments = 0; 2357 else 2358 info->max_indirect_segments = min(indirect_segments, 2359 xen_blkif_max_segments); 2360 } 2361 2362 /* 2363 * Invoked when the backend is finally 'ready' (and has told produced 2364 * the details about the physical device - #sectors, size, etc). 2365 */ 2366 static void blkfront_connect(struct blkfront_info *info) 2367 { 2368 unsigned long long sectors; 2369 unsigned long sector_size; 2370 unsigned int physical_sector_size; 2371 unsigned int binfo; 2372 int err, i; 2373 2374 switch (info->connected) { 2375 case BLKIF_STATE_CONNECTED: 2376 /* 2377 * Potentially, the back-end may be signalling 2378 * a capacity change; update the capacity. 2379 */ 2380 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2381 "sectors", "%Lu", §ors); 2382 if (XENBUS_EXIST_ERR(err)) 2383 return; 2384 printk(KERN_INFO "Setting capacity to %Lu\n", 2385 sectors); 2386 set_capacity(info->gd, sectors); 2387 revalidate_disk(info->gd); 2388 2389 return; 2390 case BLKIF_STATE_SUSPENDED: 2391 /* 2392 * If we are recovering from suspension, we need to wait 2393 * for the backend to announce it's features before 2394 * reconnecting, at least we need to know if the backend 2395 * supports indirect descriptors, and how many. 2396 */ 2397 blkif_recover(info); 2398 return; 2399 2400 default: 2401 break; 2402 } 2403 2404 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2405 __func__, info->xbdev->otherend); 2406 2407 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2408 "sectors", "%llu", §ors, 2409 "info", "%u", &binfo, 2410 "sector-size", "%lu", §or_size, 2411 NULL); 2412 if (err) { 2413 xenbus_dev_fatal(info->xbdev, err, 2414 "reading backend fields at %s", 2415 info->xbdev->otherend); 2416 return; 2417 } 2418 2419 /* 2420 * physcial-sector-size is a newer field, so old backends may not 2421 * provide this. Assume physical sector size to be the same as 2422 * sector_size in that case. 2423 */ 2424 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2425 "physical-sector-size", "%u", &physical_sector_size); 2426 if (err != 1) 2427 physical_sector_size = sector_size; 2428 2429 blkfront_gather_backend_features(info); 2430 for (i = 0; i < info->nr_rings; i++) { 2431 err = blkfront_setup_indirect(&info->rinfo[i]); 2432 if (err) { 2433 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2434 info->xbdev->otherend); 2435 blkif_free(info, 0); 2436 break; 2437 } 2438 } 2439 2440 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2441 physical_sector_size); 2442 if (err) { 2443 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2444 info->xbdev->otherend); 2445 goto fail; 2446 } 2447 2448 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2449 2450 /* Kick pending requests. */ 2451 info->connected = BLKIF_STATE_CONNECTED; 2452 for (i = 0; i < info->nr_rings; i++) 2453 kick_pending_request_queues(&info->rinfo[i]); 2454 2455 device_add_disk(&info->xbdev->dev, info->gd); 2456 2457 info->is_ready = 1; 2458 return; 2459 2460 fail: 2461 blkif_free(info, 0); 2462 return; 2463 } 2464 2465 /** 2466 * Callback received when the backend's state changes. 2467 */ 2468 static void blkback_changed(struct xenbus_device *dev, 2469 enum xenbus_state backend_state) 2470 { 2471 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2472 2473 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2474 2475 switch (backend_state) { 2476 case XenbusStateInitWait: 2477 if (dev->state != XenbusStateInitialising) 2478 break; 2479 if (talk_to_blkback(dev, info)) 2480 break; 2481 case XenbusStateInitialising: 2482 case XenbusStateInitialised: 2483 case XenbusStateReconfiguring: 2484 case XenbusStateReconfigured: 2485 case XenbusStateUnknown: 2486 break; 2487 2488 case XenbusStateConnected: 2489 /* 2490 * talk_to_blkback sets state to XenbusStateInitialised 2491 * and blkfront_connect sets it to XenbusStateConnected 2492 * (if connection went OK). 2493 * 2494 * If the backend (or toolstack) decides to poke at backend 2495 * state (and re-trigger the watch by setting the state repeatedly 2496 * to XenbusStateConnected (4)) we need to deal with this. 2497 * This is allowed as this is used to communicate to the guest 2498 * that the size of disk has changed! 2499 */ 2500 if ((dev->state != XenbusStateInitialised) && 2501 (dev->state != XenbusStateConnected)) { 2502 if (talk_to_blkback(dev, info)) 2503 break; 2504 } 2505 2506 blkfront_connect(info); 2507 break; 2508 2509 case XenbusStateClosed: 2510 if (dev->state == XenbusStateClosed) 2511 break; 2512 /* Missed the backend's Closing state -- fallthrough */ 2513 case XenbusStateClosing: 2514 if (info) 2515 blkfront_closing(info); 2516 break; 2517 } 2518 } 2519 2520 static int blkfront_remove(struct xenbus_device *xbdev) 2521 { 2522 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2523 struct block_device *bdev = NULL; 2524 struct gendisk *disk; 2525 2526 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2527 2528 blkif_free(info, 0); 2529 2530 mutex_lock(&info->mutex); 2531 2532 disk = info->gd; 2533 if (disk) 2534 bdev = bdget_disk(disk, 0); 2535 2536 info->xbdev = NULL; 2537 mutex_unlock(&info->mutex); 2538 2539 if (!bdev) { 2540 kfree(info); 2541 return 0; 2542 } 2543 2544 /* 2545 * The xbdev was removed before we reached the Closed 2546 * state. See if it's safe to remove the disk. If the bdev 2547 * isn't closed yet, we let release take care of it. 2548 */ 2549 2550 mutex_lock(&bdev->bd_mutex); 2551 info = disk->private_data; 2552 2553 dev_warn(disk_to_dev(disk), 2554 "%s was hot-unplugged, %d stale handles\n", 2555 xbdev->nodename, bdev->bd_openers); 2556 2557 if (info && !bdev->bd_openers) { 2558 xlvbd_release_gendisk(info); 2559 disk->private_data = NULL; 2560 kfree(info); 2561 } 2562 2563 mutex_unlock(&bdev->bd_mutex); 2564 bdput(bdev); 2565 2566 return 0; 2567 } 2568 2569 static int blkfront_is_ready(struct xenbus_device *dev) 2570 { 2571 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2572 2573 return info->is_ready && info->xbdev; 2574 } 2575 2576 static int blkif_open(struct block_device *bdev, fmode_t mode) 2577 { 2578 struct gendisk *disk = bdev->bd_disk; 2579 struct blkfront_info *info; 2580 int err = 0; 2581 2582 mutex_lock(&blkfront_mutex); 2583 2584 info = disk->private_data; 2585 if (!info) { 2586 /* xbdev gone */ 2587 err = -ERESTARTSYS; 2588 goto out; 2589 } 2590 2591 mutex_lock(&info->mutex); 2592 2593 if (!info->gd) 2594 /* xbdev is closed */ 2595 err = -ERESTARTSYS; 2596 2597 mutex_unlock(&info->mutex); 2598 2599 out: 2600 mutex_unlock(&blkfront_mutex); 2601 return err; 2602 } 2603 2604 static void blkif_release(struct gendisk *disk, fmode_t mode) 2605 { 2606 struct blkfront_info *info = disk->private_data; 2607 struct block_device *bdev; 2608 struct xenbus_device *xbdev; 2609 2610 mutex_lock(&blkfront_mutex); 2611 2612 bdev = bdget_disk(disk, 0); 2613 2614 if (!bdev) { 2615 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name); 2616 goto out_mutex; 2617 } 2618 if (bdev->bd_openers) 2619 goto out; 2620 2621 /* 2622 * Check if we have been instructed to close. We will have 2623 * deferred this request, because the bdev was still open. 2624 */ 2625 2626 mutex_lock(&info->mutex); 2627 xbdev = info->xbdev; 2628 2629 if (xbdev && xbdev->state == XenbusStateClosing) { 2630 /* pending switch to state closed */ 2631 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2632 xlvbd_release_gendisk(info); 2633 xenbus_frontend_closed(info->xbdev); 2634 } 2635 2636 mutex_unlock(&info->mutex); 2637 2638 if (!xbdev) { 2639 /* sudden device removal */ 2640 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2641 xlvbd_release_gendisk(info); 2642 disk->private_data = NULL; 2643 kfree(info); 2644 } 2645 2646 out: 2647 bdput(bdev); 2648 out_mutex: 2649 mutex_unlock(&blkfront_mutex); 2650 } 2651 2652 static const struct block_device_operations xlvbd_block_fops = 2653 { 2654 .owner = THIS_MODULE, 2655 .open = blkif_open, 2656 .release = blkif_release, 2657 .getgeo = blkif_getgeo, 2658 .ioctl = blkif_ioctl, 2659 }; 2660 2661 2662 static const struct xenbus_device_id blkfront_ids[] = { 2663 { "vbd" }, 2664 { "" } 2665 }; 2666 2667 static struct xenbus_driver blkfront_driver = { 2668 .ids = blkfront_ids, 2669 .probe = blkfront_probe, 2670 .remove = blkfront_remove, 2671 .resume = blkfront_resume, 2672 .otherend_changed = blkback_changed, 2673 .is_ready = blkfront_is_ready, 2674 }; 2675 2676 static int __init xlblk_init(void) 2677 { 2678 int ret; 2679 int nr_cpus = num_online_cpus(); 2680 2681 if (!xen_domain()) 2682 return -ENODEV; 2683 2684 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2685 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2686 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2687 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2688 } 2689 2690 if (xen_blkif_max_queues > nr_cpus) { 2691 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2692 xen_blkif_max_queues, nr_cpus); 2693 xen_blkif_max_queues = nr_cpus; 2694 } 2695 2696 if (!xen_has_pv_disk_devices()) 2697 return -ENODEV; 2698 2699 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2700 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n", 2701 XENVBD_MAJOR, DEV_NAME); 2702 return -ENODEV; 2703 } 2704 2705 ret = xenbus_register_frontend(&blkfront_driver); 2706 if (ret) { 2707 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2708 return ret; 2709 } 2710 2711 return 0; 2712 } 2713 module_init(xlblk_init); 2714 2715 2716 static void __exit xlblk_exit(void) 2717 { 2718 xenbus_unregister_driver(&blkfront_driver); 2719 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2720 kfree(minors); 2721 } 2722 module_exit(xlblk_exit); 2723 2724 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2725 MODULE_LICENSE("GPL"); 2726 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2727 MODULE_ALIAS("xen:vbd"); 2728 MODULE_ALIAS("xenblk"); 2729