xref: /openbmc/linux/drivers/block/xen-blkfront.c (revision f5b06569)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56 
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60 
61 #include <asm/xen/hypervisor.h>
62 
63 /*
64  * The minimal size of segment supported by the block framework is PAGE_SIZE.
65  * When Linux is using a different page size than Xen, it may not be possible
66  * to put all the data in a single segment.
67  * This can happen when the backend doesn't support indirect descriptor and
68  * therefore the maximum amount of data that a request can carry is
69  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70  *
71  * Note that we only support one extra request. So the Linux page size
72  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73  * 88KB.
74  */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76 
77 enum blkif_state {
78 	BLKIF_STATE_DISCONNECTED,
79 	BLKIF_STATE_CONNECTED,
80 	BLKIF_STATE_SUSPENDED,
81 };
82 
83 struct grant {
84 	grant_ref_t gref;
85 	struct page *page;
86 	struct list_head node;
87 };
88 
89 enum blk_req_status {
90 	REQ_WAITING,
91 	REQ_DONE,
92 	REQ_ERROR,
93 	REQ_EOPNOTSUPP,
94 };
95 
96 struct blk_shadow {
97 	struct blkif_request req;
98 	struct request *request;
99 	struct grant **grants_used;
100 	struct grant **indirect_grants;
101 	struct scatterlist *sg;
102 	unsigned int num_sg;
103 	enum blk_req_status status;
104 
105 	#define NO_ASSOCIATED_ID ~0UL
106 	/*
107 	 * Id of the sibling if we ever need 2 requests when handling a
108 	 * block I/O request
109 	 */
110 	unsigned long associated_id;
111 };
112 
113 struct split_bio {
114 	struct bio *bio;
115 	atomic_t pending;
116 };
117 
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120 
121 /*
122  * Maximum number of segments in indirect requests, the actual value used by
123  * the frontend driver is the minimum of this value and the value provided
124  * by the backend driver.
125  */
126 
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 		   S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 		 "Maximum amount of segments in indirect requests (default is 32)");
132 
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136 
137 /*
138  * Maximum order of pages to be used for the shared ring between front and
139  * backend, 4KB page granularity is used.
140  */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144 
145 #define BLK_RING_SIZE(info)	\
146 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147 
148 #define BLK_MAX_RING_SIZE	\
149 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150 
151 /*
152  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153  * characters are enough. Define to 20 to keep consistent with backend.
154  */
155 #define RINGREF_NAME_LEN (20)
156 /*
157  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158  */
159 #define QUEUE_NAME_LEN (17)
160 
161 /*
162  *  Per-ring info.
163  *  Every blkfront device can associate with one or more blkfront_ring_info,
164  *  depending on how many hardware queues/rings to be used.
165  */
166 struct blkfront_ring_info {
167 	/* Lock to protect data in every ring buffer. */
168 	spinlock_t ring_lock;
169 	struct blkif_front_ring ring;
170 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 	unsigned int evtchn, irq;
172 	struct work_struct work;
173 	struct gnttab_free_callback callback;
174 	struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 	struct list_head indirect_pages;
176 	struct list_head grants;
177 	unsigned int persistent_gnts_c;
178 	unsigned long shadow_free;
179 	struct blkfront_info *dev_info;
180 };
181 
182 /*
183  * We have one of these per vbd, whether ide, scsi or 'other'.  They
184  * hang in private_data off the gendisk structure. We may end up
185  * putting all kinds of interesting stuff here :-)
186  */
187 struct blkfront_info
188 {
189 	struct mutex mutex;
190 	struct xenbus_device *xbdev;
191 	struct gendisk *gd;
192 	u16 sector_size;
193 	unsigned int physical_sector_size;
194 	int vdevice;
195 	blkif_vdev_t handle;
196 	enum blkif_state connected;
197 	/* Number of pages per ring buffer. */
198 	unsigned int nr_ring_pages;
199 	struct request_queue *rq;
200 	unsigned int feature_flush;
201 	unsigned int feature_fua;
202 	unsigned int feature_discard:1;
203 	unsigned int feature_secdiscard:1;
204 	unsigned int discard_granularity;
205 	unsigned int discard_alignment;
206 	unsigned int feature_persistent:1;
207 	/* Number of 4KB segments handled */
208 	unsigned int max_indirect_segments;
209 	int is_ready;
210 	struct blk_mq_tag_set tag_set;
211 	struct blkfront_ring_info *rinfo;
212 	unsigned int nr_rings;
213 	/* Save uncomplete reqs and bios for migration. */
214 	struct list_head requests;
215 	struct bio_list bio_list;
216 };
217 
218 static unsigned int nr_minors;
219 static unsigned long *minors;
220 static DEFINE_SPINLOCK(minor_lock);
221 
222 #define GRANT_INVALID_REF	0
223 
224 #define PARTS_PER_DISK		16
225 #define PARTS_PER_EXT_DISK      256
226 
227 #define BLKIF_MAJOR(dev) ((dev)>>8)
228 #define BLKIF_MINOR(dev) ((dev) & 0xff)
229 
230 #define EXT_SHIFT 28
231 #define EXTENDED (1<<EXT_SHIFT)
232 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
233 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
234 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
235 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
236 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
237 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
238 
239 #define DEV_NAME	"xvd"	/* name in /dev */
240 
241 /*
242  * Grants are always the same size as a Xen page (i.e 4KB).
243  * A physical segment is always the same size as a Linux page.
244  * Number of grants per physical segment
245  */
246 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
247 
248 #define GRANTS_PER_INDIRECT_FRAME \
249 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
250 
251 #define PSEGS_PER_INDIRECT_FRAME	\
252 	(GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
253 
254 #define INDIRECT_GREFS(_grants)		\
255 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
256 
257 #define GREFS(_psegs)	((_psegs) * GRANTS_PER_PSEG)
258 
259 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
260 static void blkfront_gather_backend_features(struct blkfront_info *info);
261 
262 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
263 {
264 	unsigned long free = rinfo->shadow_free;
265 
266 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
267 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
268 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
269 	return free;
270 }
271 
272 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
273 			      unsigned long id)
274 {
275 	if (rinfo->shadow[id].req.u.rw.id != id)
276 		return -EINVAL;
277 	if (rinfo->shadow[id].request == NULL)
278 		return -EINVAL;
279 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
280 	rinfo->shadow[id].request = NULL;
281 	rinfo->shadow_free = id;
282 	return 0;
283 }
284 
285 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
286 {
287 	struct blkfront_info *info = rinfo->dev_info;
288 	struct page *granted_page;
289 	struct grant *gnt_list_entry, *n;
290 	int i = 0;
291 
292 	while (i < num) {
293 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
294 		if (!gnt_list_entry)
295 			goto out_of_memory;
296 
297 		if (info->feature_persistent) {
298 			granted_page = alloc_page(GFP_NOIO);
299 			if (!granted_page) {
300 				kfree(gnt_list_entry);
301 				goto out_of_memory;
302 			}
303 			gnt_list_entry->page = granted_page;
304 		}
305 
306 		gnt_list_entry->gref = GRANT_INVALID_REF;
307 		list_add(&gnt_list_entry->node, &rinfo->grants);
308 		i++;
309 	}
310 
311 	return 0;
312 
313 out_of_memory:
314 	list_for_each_entry_safe(gnt_list_entry, n,
315 	                         &rinfo->grants, node) {
316 		list_del(&gnt_list_entry->node);
317 		if (info->feature_persistent)
318 			__free_page(gnt_list_entry->page);
319 		kfree(gnt_list_entry);
320 		i--;
321 	}
322 	BUG_ON(i != 0);
323 	return -ENOMEM;
324 }
325 
326 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
327 {
328 	struct grant *gnt_list_entry;
329 
330 	BUG_ON(list_empty(&rinfo->grants));
331 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
332 					  node);
333 	list_del(&gnt_list_entry->node);
334 
335 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
336 		rinfo->persistent_gnts_c--;
337 
338 	return gnt_list_entry;
339 }
340 
341 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
342 					const struct blkfront_info *info)
343 {
344 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
345 						 info->xbdev->otherend_id,
346 						 gnt_list_entry->page,
347 						 0);
348 }
349 
350 static struct grant *get_grant(grant_ref_t *gref_head,
351 			       unsigned long gfn,
352 			       struct blkfront_ring_info *rinfo)
353 {
354 	struct grant *gnt_list_entry = get_free_grant(rinfo);
355 	struct blkfront_info *info = rinfo->dev_info;
356 
357 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
358 		return gnt_list_entry;
359 
360 	/* Assign a gref to this page */
361 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
362 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
363 	if (info->feature_persistent)
364 		grant_foreign_access(gnt_list_entry, info);
365 	else {
366 		/* Grant access to the GFN passed by the caller */
367 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
368 						info->xbdev->otherend_id,
369 						gfn, 0);
370 	}
371 
372 	return gnt_list_entry;
373 }
374 
375 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
376 					struct blkfront_ring_info *rinfo)
377 {
378 	struct grant *gnt_list_entry = get_free_grant(rinfo);
379 	struct blkfront_info *info = rinfo->dev_info;
380 
381 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
382 		return gnt_list_entry;
383 
384 	/* Assign a gref to this page */
385 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 	if (!info->feature_persistent) {
388 		struct page *indirect_page;
389 
390 		/* Fetch a pre-allocated page to use for indirect grefs */
391 		BUG_ON(list_empty(&rinfo->indirect_pages));
392 		indirect_page = list_first_entry(&rinfo->indirect_pages,
393 						 struct page, lru);
394 		list_del(&indirect_page->lru);
395 		gnt_list_entry->page = indirect_page;
396 	}
397 	grant_foreign_access(gnt_list_entry, info);
398 
399 	return gnt_list_entry;
400 }
401 
402 static const char *op_name(int op)
403 {
404 	static const char *const names[] = {
405 		[BLKIF_OP_READ] = "read",
406 		[BLKIF_OP_WRITE] = "write",
407 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
408 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
409 		[BLKIF_OP_DISCARD] = "discard" };
410 
411 	if (op < 0 || op >= ARRAY_SIZE(names))
412 		return "unknown";
413 
414 	if (!names[op])
415 		return "reserved";
416 
417 	return names[op];
418 }
419 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
420 {
421 	unsigned int end = minor + nr;
422 	int rc;
423 
424 	if (end > nr_minors) {
425 		unsigned long *bitmap, *old;
426 
427 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
428 				 GFP_KERNEL);
429 		if (bitmap == NULL)
430 			return -ENOMEM;
431 
432 		spin_lock(&minor_lock);
433 		if (end > nr_minors) {
434 			old = minors;
435 			memcpy(bitmap, minors,
436 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
437 			minors = bitmap;
438 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
439 		} else
440 			old = bitmap;
441 		spin_unlock(&minor_lock);
442 		kfree(old);
443 	}
444 
445 	spin_lock(&minor_lock);
446 	if (find_next_bit(minors, end, minor) >= end) {
447 		bitmap_set(minors, minor, nr);
448 		rc = 0;
449 	} else
450 		rc = -EBUSY;
451 	spin_unlock(&minor_lock);
452 
453 	return rc;
454 }
455 
456 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
457 {
458 	unsigned int end = minor + nr;
459 
460 	BUG_ON(end > nr_minors);
461 	spin_lock(&minor_lock);
462 	bitmap_clear(minors,  minor, nr);
463 	spin_unlock(&minor_lock);
464 }
465 
466 static void blkif_restart_queue_callback(void *arg)
467 {
468 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
469 	schedule_work(&rinfo->work);
470 }
471 
472 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
473 {
474 	/* We don't have real geometry info, but let's at least return
475 	   values consistent with the size of the device */
476 	sector_t nsect = get_capacity(bd->bd_disk);
477 	sector_t cylinders = nsect;
478 
479 	hg->heads = 0xff;
480 	hg->sectors = 0x3f;
481 	sector_div(cylinders, hg->heads * hg->sectors);
482 	hg->cylinders = cylinders;
483 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
484 		hg->cylinders = 0xffff;
485 	return 0;
486 }
487 
488 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
489 		       unsigned command, unsigned long argument)
490 {
491 	struct blkfront_info *info = bdev->bd_disk->private_data;
492 	int i;
493 
494 	dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
495 		command, (long)argument);
496 
497 	switch (command) {
498 	case CDROMMULTISESSION:
499 		dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
500 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
501 			if (put_user(0, (char __user *)(argument + i)))
502 				return -EFAULT;
503 		return 0;
504 
505 	case CDROM_GET_CAPABILITY: {
506 		struct gendisk *gd = info->gd;
507 		if (gd->flags & GENHD_FL_CD)
508 			return 0;
509 		return -EINVAL;
510 	}
511 
512 	default:
513 		/*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
514 		  command);*/
515 		return -EINVAL; /* same return as native Linux */
516 	}
517 
518 	return 0;
519 }
520 
521 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
522 					    struct request *req,
523 					    struct blkif_request **ring_req)
524 {
525 	unsigned long id;
526 
527 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
528 	rinfo->ring.req_prod_pvt++;
529 
530 	id = get_id_from_freelist(rinfo);
531 	rinfo->shadow[id].request = req;
532 	rinfo->shadow[id].status = REQ_WAITING;
533 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
534 
535 	(*ring_req)->u.rw.id = id;
536 
537 	return id;
538 }
539 
540 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
541 {
542 	struct blkfront_info *info = rinfo->dev_info;
543 	struct blkif_request *ring_req;
544 	unsigned long id;
545 
546 	/* Fill out a communications ring structure. */
547 	id = blkif_ring_get_request(rinfo, req, &ring_req);
548 
549 	ring_req->operation = BLKIF_OP_DISCARD;
550 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
551 	ring_req->u.discard.id = id;
552 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
553 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
554 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
555 	else
556 		ring_req->u.discard.flag = 0;
557 
558 	/* Keep a private copy so we can reissue requests when recovering. */
559 	rinfo->shadow[id].req = *ring_req;
560 
561 	return 0;
562 }
563 
564 struct setup_rw_req {
565 	unsigned int grant_idx;
566 	struct blkif_request_segment *segments;
567 	struct blkfront_ring_info *rinfo;
568 	struct blkif_request *ring_req;
569 	grant_ref_t gref_head;
570 	unsigned int id;
571 	/* Only used when persistent grant is used and it's a read request */
572 	bool need_copy;
573 	unsigned int bvec_off;
574 	char *bvec_data;
575 
576 	bool require_extra_req;
577 	struct blkif_request *extra_ring_req;
578 };
579 
580 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
581 				     unsigned int len, void *data)
582 {
583 	struct setup_rw_req *setup = data;
584 	int n, ref;
585 	struct grant *gnt_list_entry;
586 	unsigned int fsect, lsect;
587 	/* Convenient aliases */
588 	unsigned int grant_idx = setup->grant_idx;
589 	struct blkif_request *ring_req = setup->ring_req;
590 	struct blkfront_ring_info *rinfo = setup->rinfo;
591 	/*
592 	 * We always use the shadow of the first request to store the list
593 	 * of grant associated to the block I/O request. This made the
594 	 * completion more easy to handle even if the block I/O request is
595 	 * split.
596 	 */
597 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
598 
599 	if (unlikely(setup->require_extra_req &&
600 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
601 		/*
602 		 * We are using the second request, setup grant_idx
603 		 * to be the index of the segment array.
604 		 */
605 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
606 		ring_req = setup->extra_ring_req;
607 	}
608 
609 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
610 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
611 		if (setup->segments)
612 			kunmap_atomic(setup->segments);
613 
614 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
615 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
616 		shadow->indirect_grants[n] = gnt_list_entry;
617 		setup->segments = kmap_atomic(gnt_list_entry->page);
618 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
619 	}
620 
621 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
622 	ref = gnt_list_entry->gref;
623 	/*
624 	 * All the grants are stored in the shadow of the first
625 	 * request. Therefore we have to use the global index.
626 	 */
627 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
628 
629 	if (setup->need_copy) {
630 		void *shared_data;
631 
632 		shared_data = kmap_atomic(gnt_list_entry->page);
633 		/*
634 		 * this does not wipe data stored outside the
635 		 * range sg->offset..sg->offset+sg->length.
636 		 * Therefore, blkback *could* see data from
637 		 * previous requests. This is OK as long as
638 		 * persistent grants are shared with just one
639 		 * domain. It may need refactoring if this
640 		 * changes
641 		 */
642 		memcpy(shared_data + offset,
643 		       setup->bvec_data + setup->bvec_off,
644 		       len);
645 
646 		kunmap_atomic(shared_data);
647 		setup->bvec_off += len;
648 	}
649 
650 	fsect = offset >> 9;
651 	lsect = fsect + (len >> 9) - 1;
652 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
653 		ring_req->u.rw.seg[grant_idx] =
654 			(struct blkif_request_segment) {
655 				.gref       = ref,
656 				.first_sect = fsect,
657 				.last_sect  = lsect };
658 	} else {
659 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
660 			(struct blkif_request_segment) {
661 				.gref       = ref,
662 				.first_sect = fsect,
663 				.last_sect  = lsect };
664 	}
665 
666 	(setup->grant_idx)++;
667 }
668 
669 static void blkif_setup_extra_req(struct blkif_request *first,
670 				  struct blkif_request *second)
671 {
672 	uint16_t nr_segments = first->u.rw.nr_segments;
673 
674 	/*
675 	 * The second request is only present when the first request uses
676 	 * all its segments. It's always the continuity of the first one.
677 	 */
678 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
679 
680 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
681 	second->u.rw.sector_number = first->u.rw.sector_number +
682 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
683 
684 	second->u.rw.handle = first->u.rw.handle;
685 	second->operation = first->operation;
686 }
687 
688 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
689 {
690 	struct blkfront_info *info = rinfo->dev_info;
691 	struct blkif_request *ring_req, *extra_ring_req = NULL;
692 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
693 	bool require_extra_req = false;
694 	int i;
695 	struct setup_rw_req setup = {
696 		.grant_idx = 0,
697 		.segments = NULL,
698 		.rinfo = rinfo,
699 		.need_copy = rq_data_dir(req) && info->feature_persistent,
700 	};
701 
702 	/*
703 	 * Used to store if we are able to queue the request by just using
704 	 * existing persistent grants, or if we have to get new grants,
705 	 * as there are not sufficiently many free.
706 	 */
707 	struct scatterlist *sg;
708 	int num_sg, max_grefs, num_grant;
709 
710 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
711 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
712 		/*
713 		 * If we are using indirect segments we need to account
714 		 * for the indirect grefs used in the request.
715 		 */
716 		max_grefs += INDIRECT_GREFS(max_grefs);
717 
718 	/*
719 	 * We have to reserve 'max_grefs' grants because persistent
720 	 * grants are shared by all rings.
721 	 */
722 	if (max_grefs > 0)
723 		if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
724 			gnttab_request_free_callback(
725 				&rinfo->callback,
726 				blkif_restart_queue_callback,
727 				rinfo,
728 				max_grefs);
729 			return 1;
730 		}
731 
732 	/* Fill out a communications ring structure. */
733 	id = blkif_ring_get_request(rinfo, req, &ring_req);
734 
735 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
736 	num_grant = 0;
737 	/* Calculate the number of grant used */
738 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
739 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
740 
741 	require_extra_req = info->max_indirect_segments == 0 &&
742 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
743 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
744 
745 	rinfo->shadow[id].num_sg = num_sg;
746 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
747 	    likely(!require_extra_req)) {
748 		/*
749 		 * The indirect operation can only be a BLKIF_OP_READ or
750 		 * BLKIF_OP_WRITE
751 		 */
752 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
753 		ring_req->operation = BLKIF_OP_INDIRECT;
754 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
755 			BLKIF_OP_WRITE : BLKIF_OP_READ;
756 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
757 		ring_req->u.indirect.handle = info->handle;
758 		ring_req->u.indirect.nr_segments = num_grant;
759 	} else {
760 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
761 		ring_req->u.rw.handle = info->handle;
762 		ring_req->operation = rq_data_dir(req) ?
763 			BLKIF_OP_WRITE : BLKIF_OP_READ;
764 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
765 			/*
766 			 * Ideally we can do an unordered flush-to-disk.
767 			 * In case the backend onlysupports barriers, use that.
768 			 * A barrier request a superset of FUA, so we can
769 			 * implement it the same way.  (It's also a FLUSH+FUA,
770 			 * since it is guaranteed ordered WRT previous writes.)
771 			 */
772 			if (info->feature_flush && info->feature_fua)
773 				ring_req->operation =
774 					BLKIF_OP_WRITE_BARRIER;
775 			else if (info->feature_flush)
776 				ring_req->operation =
777 					BLKIF_OP_FLUSH_DISKCACHE;
778 			else
779 				ring_req->operation = 0;
780 		}
781 		ring_req->u.rw.nr_segments = num_grant;
782 		if (unlikely(require_extra_req)) {
783 			extra_id = blkif_ring_get_request(rinfo, req,
784 							  &extra_ring_req);
785 			/*
786 			 * Only the first request contains the scatter-gather
787 			 * list.
788 			 */
789 			rinfo->shadow[extra_id].num_sg = 0;
790 
791 			blkif_setup_extra_req(ring_req, extra_ring_req);
792 
793 			/* Link the 2 requests together */
794 			rinfo->shadow[extra_id].associated_id = id;
795 			rinfo->shadow[id].associated_id = extra_id;
796 		}
797 	}
798 
799 	setup.ring_req = ring_req;
800 	setup.id = id;
801 
802 	setup.require_extra_req = require_extra_req;
803 	if (unlikely(require_extra_req))
804 		setup.extra_ring_req = extra_ring_req;
805 
806 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
807 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
808 
809 		if (setup.need_copy) {
810 			setup.bvec_off = sg->offset;
811 			setup.bvec_data = kmap_atomic(sg_page(sg));
812 		}
813 
814 		gnttab_foreach_grant_in_range(sg_page(sg),
815 					      sg->offset,
816 					      sg->length,
817 					      blkif_setup_rw_req_grant,
818 					      &setup);
819 
820 		if (setup.need_copy)
821 			kunmap_atomic(setup.bvec_data);
822 	}
823 	if (setup.segments)
824 		kunmap_atomic(setup.segments);
825 
826 	/* Keep a private copy so we can reissue requests when recovering. */
827 	rinfo->shadow[id].req = *ring_req;
828 	if (unlikely(require_extra_req))
829 		rinfo->shadow[extra_id].req = *extra_ring_req;
830 
831 	if (max_grefs > 0)
832 		gnttab_free_grant_references(setup.gref_head);
833 
834 	return 0;
835 }
836 
837 /*
838  * Generate a Xen blkfront IO request from a blk layer request.  Reads
839  * and writes are handled as expected.
840  *
841  * @req: a request struct
842  */
843 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
844 {
845 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
846 		return 1;
847 
848 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
849 		     req_op(req) == REQ_OP_SECURE_ERASE))
850 		return blkif_queue_discard_req(req, rinfo);
851 	else
852 		return blkif_queue_rw_req(req, rinfo);
853 }
854 
855 static inline void flush_requests(struct blkfront_ring_info *rinfo)
856 {
857 	int notify;
858 
859 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
860 
861 	if (notify)
862 		notify_remote_via_irq(rinfo->irq);
863 }
864 
865 static inline bool blkif_request_flush_invalid(struct request *req,
866 					       struct blkfront_info *info)
867 {
868 	return ((req->cmd_type != REQ_TYPE_FS) ||
869 		((req_op(req) == REQ_OP_FLUSH) &&
870 		 !info->feature_flush) ||
871 		((req->cmd_flags & REQ_FUA) &&
872 		 !info->feature_fua));
873 }
874 
875 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
876 			  const struct blk_mq_queue_data *qd)
877 {
878 	unsigned long flags;
879 	int qid = hctx->queue_num;
880 	struct blkfront_info *info = hctx->queue->queuedata;
881 	struct blkfront_ring_info *rinfo = NULL;
882 
883 	BUG_ON(info->nr_rings <= qid);
884 	rinfo = &info->rinfo[qid];
885 	blk_mq_start_request(qd->rq);
886 	spin_lock_irqsave(&rinfo->ring_lock, flags);
887 	if (RING_FULL(&rinfo->ring))
888 		goto out_busy;
889 
890 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
891 		goto out_err;
892 
893 	if (blkif_queue_request(qd->rq, rinfo))
894 		goto out_busy;
895 
896 	flush_requests(rinfo);
897 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
898 	return BLK_MQ_RQ_QUEUE_OK;
899 
900 out_err:
901 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
902 	return BLK_MQ_RQ_QUEUE_ERROR;
903 
904 out_busy:
905 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
906 	blk_mq_stop_hw_queue(hctx);
907 	return BLK_MQ_RQ_QUEUE_BUSY;
908 }
909 
910 static struct blk_mq_ops blkfront_mq_ops = {
911 	.queue_rq = blkif_queue_rq,
912 	.map_queue = blk_mq_map_queue,
913 };
914 
915 static void blkif_set_queue_limits(struct blkfront_info *info)
916 {
917 	struct request_queue *rq = info->rq;
918 	struct gendisk *gd = info->gd;
919 	unsigned int segments = info->max_indirect_segments ? :
920 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
921 
922 	queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
923 
924 	if (info->feature_discard) {
925 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
926 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
927 		rq->limits.discard_granularity = info->discard_granularity;
928 		rq->limits.discard_alignment = info->discard_alignment;
929 		if (info->feature_secdiscard)
930 			queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
931 	}
932 
933 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
934 	blk_queue_logical_block_size(rq, info->sector_size);
935 	blk_queue_physical_block_size(rq, info->physical_sector_size);
936 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
937 
938 	/* Each segment in a request is up to an aligned page in size. */
939 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
940 	blk_queue_max_segment_size(rq, PAGE_SIZE);
941 
942 	/* Ensure a merged request will fit in a single I/O ring slot. */
943 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
944 
945 	/* Make sure buffer addresses are sector-aligned. */
946 	blk_queue_dma_alignment(rq, 511);
947 
948 	/* Make sure we don't use bounce buffers. */
949 	blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
950 }
951 
952 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
953 				unsigned int physical_sector_size)
954 {
955 	struct request_queue *rq;
956 	struct blkfront_info *info = gd->private_data;
957 
958 	memset(&info->tag_set, 0, sizeof(info->tag_set));
959 	info->tag_set.ops = &blkfront_mq_ops;
960 	info->tag_set.nr_hw_queues = info->nr_rings;
961 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
962 		/*
963 		 * When indirect descriptior is not supported, the I/O request
964 		 * will be split between multiple request in the ring.
965 		 * To avoid problems when sending the request, divide by
966 		 * 2 the depth of the queue.
967 		 */
968 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
969 	} else
970 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
971 	info->tag_set.numa_node = NUMA_NO_NODE;
972 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
973 	info->tag_set.cmd_size = 0;
974 	info->tag_set.driver_data = info;
975 
976 	if (blk_mq_alloc_tag_set(&info->tag_set))
977 		return -EINVAL;
978 	rq = blk_mq_init_queue(&info->tag_set);
979 	if (IS_ERR(rq)) {
980 		blk_mq_free_tag_set(&info->tag_set);
981 		return PTR_ERR(rq);
982 	}
983 
984 	rq->queuedata = info;
985 	info->rq = gd->queue = rq;
986 	info->gd = gd;
987 	info->sector_size = sector_size;
988 	info->physical_sector_size = physical_sector_size;
989 	blkif_set_queue_limits(info);
990 
991 	return 0;
992 }
993 
994 static const char *flush_info(struct blkfront_info *info)
995 {
996 	if (info->feature_flush && info->feature_fua)
997 		return "barrier: enabled;";
998 	else if (info->feature_flush)
999 		return "flush diskcache: enabled;";
1000 	else
1001 		return "barrier or flush: disabled;";
1002 }
1003 
1004 static void xlvbd_flush(struct blkfront_info *info)
1005 {
1006 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1007 			      info->feature_fua ? true : false);
1008 	pr_info("blkfront: %s: %s %s %s %s %s\n",
1009 		info->gd->disk_name, flush_info(info),
1010 		"persistent grants:", info->feature_persistent ?
1011 		"enabled;" : "disabled;", "indirect descriptors:",
1012 		info->max_indirect_segments ? "enabled;" : "disabled;");
1013 }
1014 
1015 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1016 {
1017 	int major;
1018 	major = BLKIF_MAJOR(vdevice);
1019 	*minor = BLKIF_MINOR(vdevice);
1020 	switch (major) {
1021 		case XEN_IDE0_MAJOR:
1022 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1023 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1024 				EMULATED_HD_DISK_MINOR_OFFSET;
1025 			break;
1026 		case XEN_IDE1_MAJOR:
1027 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1028 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1029 				EMULATED_HD_DISK_MINOR_OFFSET;
1030 			break;
1031 		case XEN_SCSI_DISK0_MAJOR:
1032 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1033 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1034 			break;
1035 		case XEN_SCSI_DISK1_MAJOR:
1036 		case XEN_SCSI_DISK2_MAJOR:
1037 		case XEN_SCSI_DISK3_MAJOR:
1038 		case XEN_SCSI_DISK4_MAJOR:
1039 		case XEN_SCSI_DISK5_MAJOR:
1040 		case XEN_SCSI_DISK6_MAJOR:
1041 		case XEN_SCSI_DISK7_MAJOR:
1042 			*offset = (*minor / PARTS_PER_DISK) +
1043 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1044 				EMULATED_SD_DISK_NAME_OFFSET;
1045 			*minor = *minor +
1046 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1047 				EMULATED_SD_DISK_MINOR_OFFSET;
1048 			break;
1049 		case XEN_SCSI_DISK8_MAJOR:
1050 		case XEN_SCSI_DISK9_MAJOR:
1051 		case XEN_SCSI_DISK10_MAJOR:
1052 		case XEN_SCSI_DISK11_MAJOR:
1053 		case XEN_SCSI_DISK12_MAJOR:
1054 		case XEN_SCSI_DISK13_MAJOR:
1055 		case XEN_SCSI_DISK14_MAJOR:
1056 		case XEN_SCSI_DISK15_MAJOR:
1057 			*offset = (*minor / PARTS_PER_DISK) +
1058 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1059 				EMULATED_SD_DISK_NAME_OFFSET;
1060 			*minor = *minor +
1061 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1062 				EMULATED_SD_DISK_MINOR_OFFSET;
1063 			break;
1064 		case XENVBD_MAJOR:
1065 			*offset = *minor / PARTS_PER_DISK;
1066 			break;
1067 		default:
1068 			printk(KERN_WARNING "blkfront: your disk configuration is "
1069 					"incorrect, please use an xvd device instead\n");
1070 			return -ENODEV;
1071 	}
1072 	return 0;
1073 }
1074 
1075 static char *encode_disk_name(char *ptr, unsigned int n)
1076 {
1077 	if (n >= 26)
1078 		ptr = encode_disk_name(ptr, n / 26 - 1);
1079 	*ptr = 'a' + n % 26;
1080 	return ptr + 1;
1081 }
1082 
1083 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1084 			       struct blkfront_info *info,
1085 			       u16 vdisk_info, u16 sector_size,
1086 			       unsigned int physical_sector_size)
1087 {
1088 	struct gendisk *gd;
1089 	int nr_minors = 1;
1090 	int err;
1091 	unsigned int offset;
1092 	int minor;
1093 	int nr_parts;
1094 	char *ptr;
1095 
1096 	BUG_ON(info->gd != NULL);
1097 	BUG_ON(info->rq != NULL);
1098 
1099 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1100 		/* this is above the extended range; something is wrong */
1101 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1102 		return -ENODEV;
1103 	}
1104 
1105 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1106 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1107 		if (err)
1108 			return err;
1109  		nr_parts = PARTS_PER_DISK;
1110 	} else {
1111 		minor = BLKIF_MINOR_EXT(info->vdevice);
1112 		nr_parts = PARTS_PER_EXT_DISK;
1113 		offset = minor / nr_parts;
1114 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1115 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1116 					"emulated IDE disks,\n\t choose an xvd device name"
1117 					"from xvde on\n", info->vdevice);
1118 	}
1119 	if (minor >> MINORBITS) {
1120 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1121 			info->vdevice, minor);
1122 		return -ENODEV;
1123 	}
1124 
1125 	if ((minor % nr_parts) == 0)
1126 		nr_minors = nr_parts;
1127 
1128 	err = xlbd_reserve_minors(minor, nr_minors);
1129 	if (err)
1130 		goto out;
1131 	err = -ENODEV;
1132 
1133 	gd = alloc_disk(nr_minors);
1134 	if (gd == NULL)
1135 		goto release;
1136 
1137 	strcpy(gd->disk_name, DEV_NAME);
1138 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1139 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1140 	if (nr_minors > 1)
1141 		*ptr = 0;
1142 	else
1143 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1144 			 "%d", minor & (nr_parts - 1));
1145 
1146 	gd->major = XENVBD_MAJOR;
1147 	gd->first_minor = minor;
1148 	gd->fops = &xlvbd_block_fops;
1149 	gd->private_data = info;
1150 	set_capacity(gd, capacity);
1151 
1152 	if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1153 		del_gendisk(gd);
1154 		goto release;
1155 	}
1156 
1157 	xlvbd_flush(info);
1158 
1159 	if (vdisk_info & VDISK_READONLY)
1160 		set_disk_ro(gd, 1);
1161 
1162 	if (vdisk_info & VDISK_REMOVABLE)
1163 		gd->flags |= GENHD_FL_REMOVABLE;
1164 
1165 	if (vdisk_info & VDISK_CDROM)
1166 		gd->flags |= GENHD_FL_CD;
1167 
1168 	return 0;
1169 
1170  release:
1171 	xlbd_release_minors(minor, nr_minors);
1172  out:
1173 	return err;
1174 }
1175 
1176 static void xlvbd_release_gendisk(struct blkfront_info *info)
1177 {
1178 	unsigned int minor, nr_minors, i;
1179 
1180 	if (info->rq == NULL)
1181 		return;
1182 
1183 	/* No more blkif_request(). */
1184 	blk_mq_stop_hw_queues(info->rq);
1185 
1186 	for (i = 0; i < info->nr_rings; i++) {
1187 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1188 
1189 		/* No more gnttab callback work. */
1190 		gnttab_cancel_free_callback(&rinfo->callback);
1191 
1192 		/* Flush gnttab callback work. Must be done with no locks held. */
1193 		flush_work(&rinfo->work);
1194 	}
1195 
1196 	del_gendisk(info->gd);
1197 
1198 	minor = info->gd->first_minor;
1199 	nr_minors = info->gd->minors;
1200 	xlbd_release_minors(minor, nr_minors);
1201 
1202 	blk_cleanup_queue(info->rq);
1203 	blk_mq_free_tag_set(&info->tag_set);
1204 	info->rq = NULL;
1205 
1206 	put_disk(info->gd);
1207 	info->gd = NULL;
1208 }
1209 
1210 /* Already hold rinfo->ring_lock. */
1211 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1212 {
1213 	if (!RING_FULL(&rinfo->ring))
1214 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1215 }
1216 
1217 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1218 {
1219 	unsigned long flags;
1220 
1221 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1222 	kick_pending_request_queues_locked(rinfo);
1223 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1224 }
1225 
1226 static void blkif_restart_queue(struct work_struct *work)
1227 {
1228 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1229 
1230 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1231 		kick_pending_request_queues(rinfo);
1232 }
1233 
1234 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1235 {
1236 	struct grant *persistent_gnt, *n;
1237 	struct blkfront_info *info = rinfo->dev_info;
1238 	int i, j, segs;
1239 
1240 	/*
1241 	 * Remove indirect pages, this only happens when using indirect
1242 	 * descriptors but not persistent grants
1243 	 */
1244 	if (!list_empty(&rinfo->indirect_pages)) {
1245 		struct page *indirect_page, *n;
1246 
1247 		BUG_ON(info->feature_persistent);
1248 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1249 			list_del(&indirect_page->lru);
1250 			__free_page(indirect_page);
1251 		}
1252 	}
1253 
1254 	/* Remove all persistent grants. */
1255 	if (!list_empty(&rinfo->grants)) {
1256 		list_for_each_entry_safe(persistent_gnt, n,
1257 					 &rinfo->grants, node) {
1258 			list_del(&persistent_gnt->node);
1259 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1260 				gnttab_end_foreign_access(persistent_gnt->gref,
1261 							  0, 0UL);
1262 				rinfo->persistent_gnts_c--;
1263 			}
1264 			if (info->feature_persistent)
1265 				__free_page(persistent_gnt->page);
1266 			kfree(persistent_gnt);
1267 		}
1268 	}
1269 	BUG_ON(rinfo->persistent_gnts_c != 0);
1270 
1271 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1272 		/*
1273 		 * Clear persistent grants present in requests already
1274 		 * on the shared ring
1275 		 */
1276 		if (!rinfo->shadow[i].request)
1277 			goto free_shadow;
1278 
1279 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1280 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1281 		       rinfo->shadow[i].req.u.rw.nr_segments;
1282 		for (j = 0; j < segs; j++) {
1283 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1284 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1285 			if (info->feature_persistent)
1286 				__free_page(persistent_gnt->page);
1287 			kfree(persistent_gnt);
1288 		}
1289 
1290 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1291 			/*
1292 			 * If this is not an indirect operation don't try to
1293 			 * free indirect segments
1294 			 */
1295 			goto free_shadow;
1296 
1297 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1298 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1299 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1300 			__free_page(persistent_gnt->page);
1301 			kfree(persistent_gnt);
1302 		}
1303 
1304 free_shadow:
1305 		kfree(rinfo->shadow[i].grants_used);
1306 		rinfo->shadow[i].grants_used = NULL;
1307 		kfree(rinfo->shadow[i].indirect_grants);
1308 		rinfo->shadow[i].indirect_grants = NULL;
1309 		kfree(rinfo->shadow[i].sg);
1310 		rinfo->shadow[i].sg = NULL;
1311 	}
1312 
1313 	/* No more gnttab callback work. */
1314 	gnttab_cancel_free_callback(&rinfo->callback);
1315 
1316 	/* Flush gnttab callback work. Must be done with no locks held. */
1317 	flush_work(&rinfo->work);
1318 
1319 	/* Free resources associated with old device channel. */
1320 	for (i = 0; i < info->nr_ring_pages; i++) {
1321 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1322 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1323 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1324 		}
1325 	}
1326 	free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1327 	rinfo->ring.sring = NULL;
1328 
1329 	if (rinfo->irq)
1330 		unbind_from_irqhandler(rinfo->irq, rinfo);
1331 	rinfo->evtchn = rinfo->irq = 0;
1332 }
1333 
1334 static void blkif_free(struct blkfront_info *info, int suspend)
1335 {
1336 	unsigned int i;
1337 
1338 	/* Prevent new requests being issued until we fix things up. */
1339 	info->connected = suspend ?
1340 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1341 	/* No more blkif_request(). */
1342 	if (info->rq)
1343 		blk_mq_stop_hw_queues(info->rq);
1344 
1345 	for (i = 0; i < info->nr_rings; i++)
1346 		blkif_free_ring(&info->rinfo[i]);
1347 
1348 	kfree(info->rinfo);
1349 	info->rinfo = NULL;
1350 	info->nr_rings = 0;
1351 }
1352 
1353 struct copy_from_grant {
1354 	const struct blk_shadow *s;
1355 	unsigned int grant_idx;
1356 	unsigned int bvec_offset;
1357 	char *bvec_data;
1358 };
1359 
1360 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1361 				  unsigned int len, void *data)
1362 {
1363 	struct copy_from_grant *info = data;
1364 	char *shared_data;
1365 	/* Convenient aliases */
1366 	const struct blk_shadow *s = info->s;
1367 
1368 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1369 
1370 	memcpy(info->bvec_data + info->bvec_offset,
1371 	       shared_data + offset, len);
1372 
1373 	info->bvec_offset += len;
1374 	info->grant_idx++;
1375 
1376 	kunmap_atomic(shared_data);
1377 }
1378 
1379 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1380 {
1381 	switch (rsp)
1382 	{
1383 	case BLKIF_RSP_OKAY:
1384 		return REQ_DONE;
1385 	case BLKIF_RSP_EOPNOTSUPP:
1386 		return REQ_EOPNOTSUPP;
1387 	case BLKIF_RSP_ERROR:
1388 		/* Fallthrough. */
1389 	default:
1390 		return REQ_ERROR;
1391 	}
1392 }
1393 
1394 /*
1395  * Get the final status of the block request based on two ring response
1396  */
1397 static int blkif_get_final_status(enum blk_req_status s1,
1398 				  enum blk_req_status s2)
1399 {
1400 	BUG_ON(s1 == REQ_WAITING);
1401 	BUG_ON(s2 == REQ_WAITING);
1402 
1403 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1404 		return BLKIF_RSP_ERROR;
1405 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1406 		return BLKIF_RSP_EOPNOTSUPP;
1407 	return BLKIF_RSP_OKAY;
1408 }
1409 
1410 static bool blkif_completion(unsigned long *id,
1411 			     struct blkfront_ring_info *rinfo,
1412 			     struct blkif_response *bret)
1413 {
1414 	int i = 0;
1415 	struct scatterlist *sg;
1416 	int num_sg, num_grant;
1417 	struct blkfront_info *info = rinfo->dev_info;
1418 	struct blk_shadow *s = &rinfo->shadow[*id];
1419 	struct copy_from_grant data = {
1420 		.grant_idx = 0,
1421 	};
1422 
1423 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1424 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1425 
1426 	/* The I/O request may be split in two. */
1427 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1428 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1429 
1430 		/* Keep the status of the current response in shadow. */
1431 		s->status = blkif_rsp_to_req_status(bret->status);
1432 
1433 		/* Wait the second response if not yet here. */
1434 		if (s2->status == REQ_WAITING)
1435 			return 0;
1436 
1437 		bret->status = blkif_get_final_status(s->status,
1438 						      s2->status);
1439 
1440 		/*
1441 		 * All the grants is stored in the first shadow in order
1442 		 * to make the completion code simpler.
1443 		 */
1444 		num_grant += s2->req.u.rw.nr_segments;
1445 
1446 		/*
1447 		 * The two responses may not come in order. Only the
1448 		 * first request will store the scatter-gather list.
1449 		 */
1450 		if (s2->num_sg != 0) {
1451 			/* Update "id" with the ID of the first response. */
1452 			*id = s->associated_id;
1453 			s = s2;
1454 		}
1455 
1456 		/*
1457 		 * We don't need anymore the second request, so recycling
1458 		 * it now.
1459 		 */
1460 		if (add_id_to_freelist(rinfo, s->associated_id))
1461 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1462 			     info->gd->disk_name, s->associated_id);
1463 	}
1464 
1465 	data.s = s;
1466 	num_sg = s->num_sg;
1467 
1468 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1469 		for_each_sg(s->sg, sg, num_sg, i) {
1470 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1471 
1472 			data.bvec_offset = sg->offset;
1473 			data.bvec_data = kmap_atomic(sg_page(sg));
1474 
1475 			gnttab_foreach_grant_in_range(sg_page(sg),
1476 						      sg->offset,
1477 						      sg->length,
1478 						      blkif_copy_from_grant,
1479 						      &data);
1480 
1481 			kunmap_atomic(data.bvec_data);
1482 		}
1483 	}
1484 	/* Add the persistent grant into the list of free grants */
1485 	for (i = 0; i < num_grant; i++) {
1486 		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1487 			/*
1488 			 * If the grant is still mapped by the backend (the
1489 			 * backend has chosen to make this grant persistent)
1490 			 * we add it at the head of the list, so it will be
1491 			 * reused first.
1492 			 */
1493 			if (!info->feature_persistent)
1494 				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1495 						     s->grants_used[i]->gref);
1496 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1497 			rinfo->persistent_gnts_c++;
1498 		} else {
1499 			/*
1500 			 * If the grant is not mapped by the backend we end the
1501 			 * foreign access and add it to the tail of the list,
1502 			 * so it will not be picked again unless we run out of
1503 			 * persistent grants.
1504 			 */
1505 			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1506 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1507 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1508 		}
1509 	}
1510 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1511 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1512 			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1513 				if (!info->feature_persistent)
1514 					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1515 							     s->indirect_grants[i]->gref);
1516 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1517 				rinfo->persistent_gnts_c++;
1518 			} else {
1519 				struct page *indirect_page;
1520 
1521 				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1522 				/*
1523 				 * Add the used indirect page back to the list of
1524 				 * available pages for indirect grefs.
1525 				 */
1526 				if (!info->feature_persistent) {
1527 					indirect_page = s->indirect_grants[i]->page;
1528 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1529 				}
1530 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1531 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1532 			}
1533 		}
1534 	}
1535 
1536 	return 1;
1537 }
1538 
1539 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1540 {
1541 	struct request *req;
1542 	struct blkif_response *bret;
1543 	RING_IDX i, rp;
1544 	unsigned long flags;
1545 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1546 	struct blkfront_info *info = rinfo->dev_info;
1547 	int error;
1548 
1549 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1550 		return IRQ_HANDLED;
1551 
1552 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1553  again:
1554 	rp = rinfo->ring.sring->rsp_prod;
1555 	rmb(); /* Ensure we see queued responses up to 'rp'. */
1556 
1557 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1558 		unsigned long id;
1559 
1560 		bret = RING_GET_RESPONSE(&rinfo->ring, i);
1561 		id   = bret->id;
1562 		/*
1563 		 * The backend has messed up and given us an id that we would
1564 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1565 		 * look in get_id_from_freelist.
1566 		 */
1567 		if (id >= BLK_RING_SIZE(info)) {
1568 			WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1569 			     info->gd->disk_name, op_name(bret->operation), id);
1570 			/* We can't safely get the 'struct request' as
1571 			 * the id is busted. */
1572 			continue;
1573 		}
1574 		req  = rinfo->shadow[id].request;
1575 
1576 		if (bret->operation != BLKIF_OP_DISCARD) {
1577 			/*
1578 			 * We may need to wait for an extra response if the
1579 			 * I/O request is split in 2
1580 			 */
1581 			if (!blkif_completion(&id, rinfo, bret))
1582 				continue;
1583 		}
1584 
1585 		if (add_id_to_freelist(rinfo, id)) {
1586 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1587 			     info->gd->disk_name, op_name(bret->operation), id);
1588 			continue;
1589 		}
1590 
1591 		error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1592 		switch (bret->operation) {
1593 		case BLKIF_OP_DISCARD:
1594 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1595 				struct request_queue *rq = info->rq;
1596 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1597 					   info->gd->disk_name, op_name(bret->operation));
1598 				error = -EOPNOTSUPP;
1599 				info->feature_discard = 0;
1600 				info->feature_secdiscard = 0;
1601 				queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1602 				queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1603 			}
1604 			blk_mq_complete_request(req, error);
1605 			break;
1606 		case BLKIF_OP_FLUSH_DISKCACHE:
1607 		case BLKIF_OP_WRITE_BARRIER:
1608 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1609 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1610 				       info->gd->disk_name, op_name(bret->operation));
1611 				error = -EOPNOTSUPP;
1612 			}
1613 			if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1614 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1615 				printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1616 				       info->gd->disk_name, op_name(bret->operation));
1617 				error = -EOPNOTSUPP;
1618 			}
1619 			if (unlikely(error)) {
1620 				if (error == -EOPNOTSUPP)
1621 					error = 0;
1622 				info->feature_fua = 0;
1623 				info->feature_flush = 0;
1624 				xlvbd_flush(info);
1625 			}
1626 			/* fall through */
1627 		case BLKIF_OP_READ:
1628 		case BLKIF_OP_WRITE:
1629 			if (unlikely(bret->status != BLKIF_RSP_OKAY))
1630 				dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1631 					"request: %x\n", bret->status);
1632 
1633 			blk_mq_complete_request(req, error);
1634 			break;
1635 		default:
1636 			BUG();
1637 		}
1638 	}
1639 
1640 	rinfo->ring.rsp_cons = i;
1641 
1642 	if (i != rinfo->ring.req_prod_pvt) {
1643 		int more_to_do;
1644 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1645 		if (more_to_do)
1646 			goto again;
1647 	} else
1648 		rinfo->ring.sring->rsp_event = i + 1;
1649 
1650 	kick_pending_request_queues_locked(rinfo);
1651 
1652 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1653 
1654 	return IRQ_HANDLED;
1655 }
1656 
1657 
1658 static int setup_blkring(struct xenbus_device *dev,
1659 			 struct blkfront_ring_info *rinfo)
1660 {
1661 	struct blkif_sring *sring;
1662 	int err, i;
1663 	struct blkfront_info *info = rinfo->dev_info;
1664 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1665 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1666 
1667 	for (i = 0; i < info->nr_ring_pages; i++)
1668 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1669 
1670 	sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1671 						       get_order(ring_size));
1672 	if (!sring) {
1673 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1674 		return -ENOMEM;
1675 	}
1676 	SHARED_RING_INIT(sring);
1677 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1678 
1679 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1680 	if (err < 0) {
1681 		free_pages((unsigned long)sring, get_order(ring_size));
1682 		rinfo->ring.sring = NULL;
1683 		goto fail;
1684 	}
1685 	for (i = 0; i < info->nr_ring_pages; i++)
1686 		rinfo->ring_ref[i] = gref[i];
1687 
1688 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1689 	if (err)
1690 		goto fail;
1691 
1692 	err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1693 					"blkif", rinfo);
1694 	if (err <= 0) {
1695 		xenbus_dev_fatal(dev, err,
1696 				 "bind_evtchn_to_irqhandler failed");
1697 		goto fail;
1698 	}
1699 	rinfo->irq = err;
1700 
1701 	return 0;
1702 fail:
1703 	blkif_free(info, 0);
1704 	return err;
1705 }
1706 
1707 /*
1708  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1709  * ring buffer may have multi pages depending on ->nr_ring_pages.
1710  */
1711 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1712 				struct blkfront_ring_info *rinfo, const char *dir)
1713 {
1714 	int err;
1715 	unsigned int i;
1716 	const char *message = NULL;
1717 	struct blkfront_info *info = rinfo->dev_info;
1718 
1719 	if (info->nr_ring_pages == 1) {
1720 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1721 		if (err) {
1722 			message = "writing ring-ref";
1723 			goto abort_transaction;
1724 		}
1725 	} else {
1726 		for (i = 0; i < info->nr_ring_pages; i++) {
1727 			char ring_ref_name[RINGREF_NAME_LEN];
1728 
1729 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1730 			err = xenbus_printf(xbt, dir, ring_ref_name,
1731 					    "%u", rinfo->ring_ref[i]);
1732 			if (err) {
1733 				message = "writing ring-ref";
1734 				goto abort_transaction;
1735 			}
1736 		}
1737 	}
1738 
1739 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1740 	if (err) {
1741 		message = "writing event-channel";
1742 		goto abort_transaction;
1743 	}
1744 
1745 	return 0;
1746 
1747 abort_transaction:
1748 	xenbus_transaction_end(xbt, 1);
1749 	if (message)
1750 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1751 
1752 	return err;
1753 }
1754 
1755 /* Common code used when first setting up, and when resuming. */
1756 static int talk_to_blkback(struct xenbus_device *dev,
1757 			   struct blkfront_info *info)
1758 {
1759 	const char *message = NULL;
1760 	struct xenbus_transaction xbt;
1761 	int err;
1762 	unsigned int i, max_page_order = 0;
1763 	unsigned int ring_page_order = 0;
1764 
1765 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1766 			   "max-ring-page-order", "%u", &max_page_order);
1767 	if (err != 1)
1768 		info->nr_ring_pages = 1;
1769 	else {
1770 		ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1771 		info->nr_ring_pages = 1 << ring_page_order;
1772 	}
1773 
1774 	for (i = 0; i < info->nr_rings; i++) {
1775 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1776 
1777 		/* Create shared ring, alloc event channel. */
1778 		err = setup_blkring(dev, rinfo);
1779 		if (err)
1780 			goto destroy_blkring;
1781 	}
1782 
1783 again:
1784 	err = xenbus_transaction_start(&xbt);
1785 	if (err) {
1786 		xenbus_dev_fatal(dev, err, "starting transaction");
1787 		goto destroy_blkring;
1788 	}
1789 
1790 	if (info->nr_ring_pages > 1) {
1791 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1792 				    ring_page_order);
1793 		if (err) {
1794 			message = "writing ring-page-order";
1795 			goto abort_transaction;
1796 		}
1797 	}
1798 
1799 	/* We already got the number of queues/rings in _probe */
1800 	if (info->nr_rings == 1) {
1801 		err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1802 		if (err)
1803 			goto destroy_blkring;
1804 	} else {
1805 		char *path;
1806 		size_t pathsize;
1807 
1808 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1809 				    info->nr_rings);
1810 		if (err) {
1811 			message = "writing multi-queue-num-queues";
1812 			goto abort_transaction;
1813 		}
1814 
1815 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1816 		path = kmalloc(pathsize, GFP_KERNEL);
1817 		if (!path) {
1818 			err = -ENOMEM;
1819 			message = "ENOMEM while writing ring references";
1820 			goto abort_transaction;
1821 		}
1822 
1823 		for (i = 0; i < info->nr_rings; i++) {
1824 			memset(path, 0, pathsize);
1825 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1826 			err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1827 			if (err) {
1828 				kfree(path);
1829 				goto destroy_blkring;
1830 			}
1831 		}
1832 		kfree(path);
1833 	}
1834 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1835 			    XEN_IO_PROTO_ABI_NATIVE);
1836 	if (err) {
1837 		message = "writing protocol";
1838 		goto abort_transaction;
1839 	}
1840 	err = xenbus_printf(xbt, dev->nodename,
1841 			    "feature-persistent", "%u", 1);
1842 	if (err)
1843 		dev_warn(&dev->dev,
1844 			 "writing persistent grants feature to xenbus");
1845 
1846 	err = xenbus_transaction_end(xbt, 0);
1847 	if (err) {
1848 		if (err == -EAGAIN)
1849 			goto again;
1850 		xenbus_dev_fatal(dev, err, "completing transaction");
1851 		goto destroy_blkring;
1852 	}
1853 
1854 	for (i = 0; i < info->nr_rings; i++) {
1855 		unsigned int j;
1856 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1857 
1858 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1859 			rinfo->shadow[j].req.u.rw.id = j + 1;
1860 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1861 	}
1862 	xenbus_switch_state(dev, XenbusStateInitialised);
1863 
1864 	return 0;
1865 
1866  abort_transaction:
1867 	xenbus_transaction_end(xbt, 1);
1868 	if (message)
1869 		xenbus_dev_fatal(dev, err, "%s", message);
1870  destroy_blkring:
1871 	blkif_free(info, 0);
1872 
1873 	kfree(info);
1874 	dev_set_drvdata(&dev->dev, NULL);
1875 
1876 	return err;
1877 }
1878 
1879 static int negotiate_mq(struct blkfront_info *info)
1880 {
1881 	unsigned int backend_max_queues = 0;
1882 	int err;
1883 	unsigned int i;
1884 
1885 	BUG_ON(info->nr_rings);
1886 
1887 	/* Check if backend supports multiple queues. */
1888 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1889 			   "multi-queue-max-queues", "%u", &backend_max_queues);
1890 	if (err < 0)
1891 		backend_max_queues = 1;
1892 
1893 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1894 	/* We need at least one ring. */
1895 	if (!info->nr_rings)
1896 		info->nr_rings = 1;
1897 
1898 	info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1899 	if (!info->rinfo) {
1900 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1901 		return -ENOMEM;
1902 	}
1903 
1904 	for (i = 0; i < info->nr_rings; i++) {
1905 		struct blkfront_ring_info *rinfo;
1906 
1907 		rinfo = &info->rinfo[i];
1908 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1909 		INIT_LIST_HEAD(&rinfo->grants);
1910 		rinfo->dev_info = info;
1911 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1912 		spin_lock_init(&rinfo->ring_lock);
1913 	}
1914 	return 0;
1915 }
1916 /**
1917  * Entry point to this code when a new device is created.  Allocate the basic
1918  * structures and the ring buffer for communication with the backend, and
1919  * inform the backend of the appropriate details for those.  Switch to
1920  * Initialised state.
1921  */
1922 static int blkfront_probe(struct xenbus_device *dev,
1923 			  const struct xenbus_device_id *id)
1924 {
1925 	int err, vdevice;
1926 	struct blkfront_info *info;
1927 
1928 	/* FIXME: Use dynamic device id if this is not set. */
1929 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1930 			   "virtual-device", "%i", &vdevice);
1931 	if (err != 1) {
1932 		/* go looking in the extended area instead */
1933 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1934 				   "%i", &vdevice);
1935 		if (err != 1) {
1936 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1937 			return err;
1938 		}
1939 	}
1940 
1941 	if (xen_hvm_domain()) {
1942 		char *type;
1943 		int len;
1944 		/* no unplug has been done: do not hook devices != xen vbds */
1945 		if (xen_has_pv_and_legacy_disk_devices()) {
1946 			int major;
1947 
1948 			if (!VDEV_IS_EXTENDED(vdevice))
1949 				major = BLKIF_MAJOR(vdevice);
1950 			else
1951 				major = XENVBD_MAJOR;
1952 
1953 			if (major != XENVBD_MAJOR) {
1954 				printk(KERN_INFO
1955 						"%s: HVM does not support vbd %d as xen block device\n",
1956 						__func__, vdevice);
1957 				return -ENODEV;
1958 			}
1959 		}
1960 		/* do not create a PV cdrom device if we are an HVM guest */
1961 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1962 		if (IS_ERR(type))
1963 			return -ENODEV;
1964 		if (strncmp(type, "cdrom", 5) == 0) {
1965 			kfree(type);
1966 			return -ENODEV;
1967 		}
1968 		kfree(type);
1969 	}
1970 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1971 	if (!info) {
1972 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1973 		return -ENOMEM;
1974 	}
1975 
1976 	info->xbdev = dev;
1977 	err = negotiate_mq(info);
1978 	if (err) {
1979 		kfree(info);
1980 		return err;
1981 	}
1982 
1983 	mutex_init(&info->mutex);
1984 	info->vdevice = vdevice;
1985 	info->connected = BLKIF_STATE_DISCONNECTED;
1986 
1987 	/* Front end dir is a number, which is used as the id. */
1988 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1989 	dev_set_drvdata(&dev->dev, info);
1990 
1991 	return 0;
1992 }
1993 
1994 static void split_bio_end(struct bio *bio)
1995 {
1996 	struct split_bio *split_bio = bio->bi_private;
1997 
1998 	if (atomic_dec_and_test(&split_bio->pending)) {
1999 		split_bio->bio->bi_phys_segments = 0;
2000 		split_bio->bio->bi_error = bio->bi_error;
2001 		bio_endio(split_bio->bio);
2002 		kfree(split_bio);
2003 	}
2004 	bio_put(bio);
2005 }
2006 
2007 static int blkif_recover(struct blkfront_info *info)
2008 {
2009 	unsigned int i, r_index;
2010 	struct request *req, *n;
2011 	int rc;
2012 	struct bio *bio, *cloned_bio;
2013 	unsigned int segs, offset;
2014 	int pending, size;
2015 	struct split_bio *split_bio;
2016 
2017 	blkfront_gather_backend_features(info);
2018 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2019 	blkif_set_queue_limits(info);
2020 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2021 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2022 
2023 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2024 		struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2025 
2026 		rc = blkfront_setup_indirect(rinfo);
2027 		if (rc)
2028 			return rc;
2029 	}
2030 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2031 
2032 	/* Now safe for us to use the shared ring */
2033 	info->connected = BLKIF_STATE_CONNECTED;
2034 
2035 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2036 		struct blkfront_ring_info *rinfo;
2037 
2038 		rinfo = &info->rinfo[r_index];
2039 		/* Kick any other new requests queued since we resumed */
2040 		kick_pending_request_queues(rinfo);
2041 	}
2042 
2043 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2044 		/* Requeue pending requests (flush or discard) */
2045 		list_del_init(&req->queuelist);
2046 		BUG_ON(req->nr_phys_segments > segs);
2047 		blk_mq_requeue_request(req);
2048 	}
2049 	blk_mq_kick_requeue_list(info->rq);
2050 
2051 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2052 		/* Traverse the list of pending bios and re-queue them */
2053 		if (bio_segments(bio) > segs) {
2054 			/*
2055 			 * This bio has more segments than what we can
2056 			 * handle, we have to split it.
2057 			 */
2058 			pending = (bio_segments(bio) + segs - 1) / segs;
2059 			split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2060 			BUG_ON(split_bio == NULL);
2061 			atomic_set(&split_bio->pending, pending);
2062 			split_bio->bio = bio;
2063 			for (i = 0; i < pending; i++) {
2064 				offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2065 				size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2066 					   (unsigned int)bio_sectors(bio) - offset);
2067 				cloned_bio = bio_clone(bio, GFP_NOIO);
2068 				BUG_ON(cloned_bio == NULL);
2069 				bio_trim(cloned_bio, offset, size);
2070 				cloned_bio->bi_private = split_bio;
2071 				cloned_bio->bi_end_io = split_bio_end;
2072 				submit_bio(cloned_bio);
2073 			}
2074 			/*
2075 			 * Now we have to wait for all those smaller bios to
2076 			 * end, so we can also end the "parent" bio.
2077 			 */
2078 			continue;
2079 		}
2080 		/* We don't need to split this bio */
2081 		submit_bio(bio);
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 /**
2088  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2089  * driver restart.  We tear down our blkif structure and recreate it, but
2090  * leave the device-layer structures intact so that this is transparent to the
2091  * rest of the kernel.
2092  */
2093 static int blkfront_resume(struct xenbus_device *dev)
2094 {
2095 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2096 	int err = 0;
2097 	unsigned int i, j;
2098 
2099 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2100 
2101 	bio_list_init(&info->bio_list);
2102 	INIT_LIST_HEAD(&info->requests);
2103 	for (i = 0; i < info->nr_rings; i++) {
2104 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
2105 		struct bio_list merge_bio;
2106 		struct blk_shadow *shadow = rinfo->shadow;
2107 
2108 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2109 			/* Not in use? */
2110 			if (!shadow[j].request)
2111 				continue;
2112 
2113 			/*
2114 			 * Get the bios in the request so we can re-queue them.
2115 			 */
2116 			if (req_op(shadow[i].request) == REQ_OP_FLUSH ||
2117 			    req_op(shadow[i].request) == REQ_OP_DISCARD ||
2118 			    req_op(shadow[i].request) == REQ_OP_SECURE_ERASE ||
2119 			    shadow[j].request->cmd_flags & REQ_FUA) {
2120 				/*
2121 				 * Flush operations don't contain bios, so
2122 				 * we need to requeue the whole request
2123 				 *
2124 				 * XXX: but this doesn't make any sense for a
2125 				 * write with the FUA flag set..
2126 				 */
2127 				list_add(&shadow[j].request->queuelist, &info->requests);
2128 				continue;
2129 			}
2130 			merge_bio.head = shadow[j].request->bio;
2131 			merge_bio.tail = shadow[j].request->biotail;
2132 			bio_list_merge(&info->bio_list, &merge_bio);
2133 			shadow[j].request->bio = NULL;
2134 			blk_mq_end_request(shadow[j].request, 0);
2135 		}
2136 	}
2137 
2138 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2139 
2140 	err = negotiate_mq(info);
2141 	if (err)
2142 		return err;
2143 
2144 	err = talk_to_blkback(dev, info);
2145 	if (!err)
2146 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2147 
2148 	/*
2149 	 * We have to wait for the backend to switch to
2150 	 * connected state, since we want to read which
2151 	 * features it supports.
2152 	 */
2153 
2154 	return err;
2155 }
2156 
2157 static void blkfront_closing(struct blkfront_info *info)
2158 {
2159 	struct xenbus_device *xbdev = info->xbdev;
2160 	struct block_device *bdev = NULL;
2161 
2162 	mutex_lock(&info->mutex);
2163 
2164 	if (xbdev->state == XenbusStateClosing) {
2165 		mutex_unlock(&info->mutex);
2166 		return;
2167 	}
2168 
2169 	if (info->gd)
2170 		bdev = bdget_disk(info->gd, 0);
2171 
2172 	mutex_unlock(&info->mutex);
2173 
2174 	if (!bdev) {
2175 		xenbus_frontend_closed(xbdev);
2176 		return;
2177 	}
2178 
2179 	mutex_lock(&bdev->bd_mutex);
2180 
2181 	if (bdev->bd_openers) {
2182 		xenbus_dev_error(xbdev, -EBUSY,
2183 				 "Device in use; refusing to close");
2184 		xenbus_switch_state(xbdev, XenbusStateClosing);
2185 	} else {
2186 		xlvbd_release_gendisk(info);
2187 		xenbus_frontend_closed(xbdev);
2188 	}
2189 
2190 	mutex_unlock(&bdev->bd_mutex);
2191 	bdput(bdev);
2192 }
2193 
2194 static void blkfront_setup_discard(struct blkfront_info *info)
2195 {
2196 	int err;
2197 	unsigned int discard_granularity;
2198 	unsigned int discard_alignment;
2199 	unsigned int discard_secure;
2200 
2201 	info->feature_discard = 1;
2202 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2203 		"discard-granularity", "%u", &discard_granularity,
2204 		"discard-alignment", "%u", &discard_alignment,
2205 		NULL);
2206 	if (!err) {
2207 		info->discard_granularity = discard_granularity;
2208 		info->discard_alignment = discard_alignment;
2209 	}
2210 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2211 			   "discard-secure", "%u", &discard_secure);
2212 	if (err > 0)
2213 		info->feature_secdiscard = !!discard_secure;
2214 }
2215 
2216 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2217 {
2218 	unsigned int psegs, grants;
2219 	int err, i;
2220 	struct blkfront_info *info = rinfo->dev_info;
2221 
2222 	if (info->max_indirect_segments == 0) {
2223 		if (!HAS_EXTRA_REQ)
2224 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2225 		else {
2226 			/*
2227 			 * When an extra req is required, the maximum
2228 			 * grants supported is related to the size of the
2229 			 * Linux block segment.
2230 			 */
2231 			grants = GRANTS_PER_PSEG;
2232 		}
2233 	}
2234 	else
2235 		grants = info->max_indirect_segments;
2236 	psegs = grants / GRANTS_PER_PSEG;
2237 
2238 	err = fill_grant_buffer(rinfo,
2239 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2240 	if (err)
2241 		goto out_of_memory;
2242 
2243 	if (!info->feature_persistent && info->max_indirect_segments) {
2244 		/*
2245 		 * We are using indirect descriptors but not persistent
2246 		 * grants, we need to allocate a set of pages that can be
2247 		 * used for mapping indirect grefs
2248 		 */
2249 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2250 
2251 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2252 		for (i = 0; i < num; i++) {
2253 			struct page *indirect_page = alloc_page(GFP_NOIO);
2254 			if (!indirect_page)
2255 				goto out_of_memory;
2256 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2257 		}
2258 	}
2259 
2260 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2261 		rinfo->shadow[i].grants_used = kzalloc(
2262 			sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2263 			GFP_NOIO);
2264 		rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2265 		if (info->max_indirect_segments)
2266 			rinfo->shadow[i].indirect_grants = kzalloc(
2267 				sizeof(rinfo->shadow[i].indirect_grants[0]) *
2268 				INDIRECT_GREFS(grants),
2269 				GFP_NOIO);
2270 		if ((rinfo->shadow[i].grants_used == NULL) ||
2271 			(rinfo->shadow[i].sg == NULL) ||
2272 		     (info->max_indirect_segments &&
2273 		     (rinfo->shadow[i].indirect_grants == NULL)))
2274 			goto out_of_memory;
2275 		sg_init_table(rinfo->shadow[i].sg, psegs);
2276 	}
2277 
2278 
2279 	return 0;
2280 
2281 out_of_memory:
2282 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2283 		kfree(rinfo->shadow[i].grants_used);
2284 		rinfo->shadow[i].grants_used = NULL;
2285 		kfree(rinfo->shadow[i].sg);
2286 		rinfo->shadow[i].sg = NULL;
2287 		kfree(rinfo->shadow[i].indirect_grants);
2288 		rinfo->shadow[i].indirect_grants = NULL;
2289 	}
2290 	if (!list_empty(&rinfo->indirect_pages)) {
2291 		struct page *indirect_page, *n;
2292 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2293 			list_del(&indirect_page->lru);
2294 			__free_page(indirect_page);
2295 		}
2296 	}
2297 	return -ENOMEM;
2298 }
2299 
2300 /*
2301  * Gather all backend feature-*
2302  */
2303 static void blkfront_gather_backend_features(struct blkfront_info *info)
2304 {
2305 	int err;
2306 	int barrier, flush, discard, persistent;
2307 	unsigned int indirect_segments;
2308 
2309 	info->feature_flush = 0;
2310 	info->feature_fua = 0;
2311 
2312 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2313 			   "feature-barrier", "%d", &barrier);
2314 
2315 	/*
2316 	 * If there's no "feature-barrier" defined, then it means
2317 	 * we're dealing with a very old backend which writes
2318 	 * synchronously; nothing to do.
2319 	 *
2320 	 * If there are barriers, then we use flush.
2321 	 */
2322 	if (err > 0 && barrier) {
2323 		info->feature_flush = 1;
2324 		info->feature_fua = 1;
2325 	}
2326 
2327 	/*
2328 	 * And if there is "feature-flush-cache" use that above
2329 	 * barriers.
2330 	 */
2331 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2332 			   "feature-flush-cache", "%d", &flush);
2333 
2334 	if (err > 0 && flush) {
2335 		info->feature_flush = 1;
2336 		info->feature_fua = 0;
2337 	}
2338 
2339 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2340 			   "feature-discard", "%d", &discard);
2341 
2342 	if (err > 0 && discard)
2343 		blkfront_setup_discard(info);
2344 
2345 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2346 			   "feature-persistent", "%d", &persistent);
2347 	if (err <= 0)
2348 		info->feature_persistent = 0;
2349 	else
2350 		info->feature_persistent = persistent;
2351 
2352 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2353 			   "feature-max-indirect-segments", "%u",
2354 			   &indirect_segments);
2355 	if (err <= 0)
2356 		info->max_indirect_segments = 0;
2357 	else
2358 		info->max_indirect_segments = min(indirect_segments,
2359 						  xen_blkif_max_segments);
2360 }
2361 
2362 /*
2363  * Invoked when the backend is finally 'ready' (and has told produced
2364  * the details about the physical device - #sectors, size, etc).
2365  */
2366 static void blkfront_connect(struct blkfront_info *info)
2367 {
2368 	unsigned long long sectors;
2369 	unsigned long sector_size;
2370 	unsigned int physical_sector_size;
2371 	unsigned int binfo;
2372 	int err, i;
2373 
2374 	switch (info->connected) {
2375 	case BLKIF_STATE_CONNECTED:
2376 		/*
2377 		 * Potentially, the back-end may be signalling
2378 		 * a capacity change; update the capacity.
2379 		 */
2380 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2381 				   "sectors", "%Lu", &sectors);
2382 		if (XENBUS_EXIST_ERR(err))
2383 			return;
2384 		printk(KERN_INFO "Setting capacity to %Lu\n",
2385 		       sectors);
2386 		set_capacity(info->gd, sectors);
2387 		revalidate_disk(info->gd);
2388 
2389 		return;
2390 	case BLKIF_STATE_SUSPENDED:
2391 		/*
2392 		 * If we are recovering from suspension, we need to wait
2393 		 * for the backend to announce it's features before
2394 		 * reconnecting, at least we need to know if the backend
2395 		 * supports indirect descriptors, and how many.
2396 		 */
2397 		blkif_recover(info);
2398 		return;
2399 
2400 	default:
2401 		break;
2402 	}
2403 
2404 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2405 		__func__, info->xbdev->otherend);
2406 
2407 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2408 			    "sectors", "%llu", &sectors,
2409 			    "info", "%u", &binfo,
2410 			    "sector-size", "%lu", &sector_size,
2411 			    NULL);
2412 	if (err) {
2413 		xenbus_dev_fatal(info->xbdev, err,
2414 				 "reading backend fields at %s",
2415 				 info->xbdev->otherend);
2416 		return;
2417 	}
2418 
2419 	/*
2420 	 * physcial-sector-size is a newer field, so old backends may not
2421 	 * provide this. Assume physical sector size to be the same as
2422 	 * sector_size in that case.
2423 	 */
2424 	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2425 			   "physical-sector-size", "%u", &physical_sector_size);
2426 	if (err != 1)
2427 		physical_sector_size = sector_size;
2428 
2429 	blkfront_gather_backend_features(info);
2430 	for (i = 0; i < info->nr_rings; i++) {
2431 		err = blkfront_setup_indirect(&info->rinfo[i]);
2432 		if (err) {
2433 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2434 					 info->xbdev->otherend);
2435 			blkif_free(info, 0);
2436 			break;
2437 		}
2438 	}
2439 
2440 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2441 				  physical_sector_size);
2442 	if (err) {
2443 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2444 				 info->xbdev->otherend);
2445 		goto fail;
2446 	}
2447 
2448 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2449 
2450 	/* Kick pending requests. */
2451 	info->connected = BLKIF_STATE_CONNECTED;
2452 	for (i = 0; i < info->nr_rings; i++)
2453 		kick_pending_request_queues(&info->rinfo[i]);
2454 
2455 	device_add_disk(&info->xbdev->dev, info->gd);
2456 
2457 	info->is_ready = 1;
2458 	return;
2459 
2460 fail:
2461 	blkif_free(info, 0);
2462 	return;
2463 }
2464 
2465 /**
2466  * Callback received when the backend's state changes.
2467  */
2468 static void blkback_changed(struct xenbus_device *dev,
2469 			    enum xenbus_state backend_state)
2470 {
2471 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2472 
2473 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2474 
2475 	switch (backend_state) {
2476 	case XenbusStateInitWait:
2477 		if (dev->state != XenbusStateInitialising)
2478 			break;
2479 		if (talk_to_blkback(dev, info))
2480 			break;
2481 	case XenbusStateInitialising:
2482 	case XenbusStateInitialised:
2483 	case XenbusStateReconfiguring:
2484 	case XenbusStateReconfigured:
2485 	case XenbusStateUnknown:
2486 		break;
2487 
2488 	case XenbusStateConnected:
2489 		/*
2490 		 * talk_to_blkback sets state to XenbusStateInitialised
2491 		 * and blkfront_connect sets it to XenbusStateConnected
2492 		 * (if connection went OK).
2493 		 *
2494 		 * If the backend (or toolstack) decides to poke at backend
2495 		 * state (and re-trigger the watch by setting the state repeatedly
2496 		 * to XenbusStateConnected (4)) we need to deal with this.
2497 		 * This is allowed as this is used to communicate to the guest
2498 		 * that the size of disk has changed!
2499 		 */
2500 		if ((dev->state != XenbusStateInitialised) &&
2501 		    (dev->state != XenbusStateConnected)) {
2502 			if (talk_to_blkback(dev, info))
2503 				break;
2504 		}
2505 
2506 		blkfront_connect(info);
2507 		break;
2508 
2509 	case XenbusStateClosed:
2510 		if (dev->state == XenbusStateClosed)
2511 			break;
2512 		/* Missed the backend's Closing state -- fallthrough */
2513 	case XenbusStateClosing:
2514 		if (info)
2515 			blkfront_closing(info);
2516 		break;
2517 	}
2518 }
2519 
2520 static int blkfront_remove(struct xenbus_device *xbdev)
2521 {
2522 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2523 	struct block_device *bdev = NULL;
2524 	struct gendisk *disk;
2525 
2526 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2527 
2528 	blkif_free(info, 0);
2529 
2530 	mutex_lock(&info->mutex);
2531 
2532 	disk = info->gd;
2533 	if (disk)
2534 		bdev = bdget_disk(disk, 0);
2535 
2536 	info->xbdev = NULL;
2537 	mutex_unlock(&info->mutex);
2538 
2539 	if (!bdev) {
2540 		kfree(info);
2541 		return 0;
2542 	}
2543 
2544 	/*
2545 	 * The xbdev was removed before we reached the Closed
2546 	 * state. See if it's safe to remove the disk. If the bdev
2547 	 * isn't closed yet, we let release take care of it.
2548 	 */
2549 
2550 	mutex_lock(&bdev->bd_mutex);
2551 	info = disk->private_data;
2552 
2553 	dev_warn(disk_to_dev(disk),
2554 		 "%s was hot-unplugged, %d stale handles\n",
2555 		 xbdev->nodename, bdev->bd_openers);
2556 
2557 	if (info && !bdev->bd_openers) {
2558 		xlvbd_release_gendisk(info);
2559 		disk->private_data = NULL;
2560 		kfree(info);
2561 	}
2562 
2563 	mutex_unlock(&bdev->bd_mutex);
2564 	bdput(bdev);
2565 
2566 	return 0;
2567 }
2568 
2569 static int blkfront_is_ready(struct xenbus_device *dev)
2570 {
2571 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2572 
2573 	return info->is_ready && info->xbdev;
2574 }
2575 
2576 static int blkif_open(struct block_device *bdev, fmode_t mode)
2577 {
2578 	struct gendisk *disk = bdev->bd_disk;
2579 	struct blkfront_info *info;
2580 	int err = 0;
2581 
2582 	mutex_lock(&blkfront_mutex);
2583 
2584 	info = disk->private_data;
2585 	if (!info) {
2586 		/* xbdev gone */
2587 		err = -ERESTARTSYS;
2588 		goto out;
2589 	}
2590 
2591 	mutex_lock(&info->mutex);
2592 
2593 	if (!info->gd)
2594 		/* xbdev is closed */
2595 		err = -ERESTARTSYS;
2596 
2597 	mutex_unlock(&info->mutex);
2598 
2599 out:
2600 	mutex_unlock(&blkfront_mutex);
2601 	return err;
2602 }
2603 
2604 static void blkif_release(struct gendisk *disk, fmode_t mode)
2605 {
2606 	struct blkfront_info *info = disk->private_data;
2607 	struct block_device *bdev;
2608 	struct xenbus_device *xbdev;
2609 
2610 	mutex_lock(&blkfront_mutex);
2611 
2612 	bdev = bdget_disk(disk, 0);
2613 
2614 	if (!bdev) {
2615 		WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2616 		goto out_mutex;
2617 	}
2618 	if (bdev->bd_openers)
2619 		goto out;
2620 
2621 	/*
2622 	 * Check if we have been instructed to close. We will have
2623 	 * deferred this request, because the bdev was still open.
2624 	 */
2625 
2626 	mutex_lock(&info->mutex);
2627 	xbdev = info->xbdev;
2628 
2629 	if (xbdev && xbdev->state == XenbusStateClosing) {
2630 		/* pending switch to state closed */
2631 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2632 		xlvbd_release_gendisk(info);
2633 		xenbus_frontend_closed(info->xbdev);
2634  	}
2635 
2636 	mutex_unlock(&info->mutex);
2637 
2638 	if (!xbdev) {
2639 		/* sudden device removal */
2640 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2641 		xlvbd_release_gendisk(info);
2642 		disk->private_data = NULL;
2643 		kfree(info);
2644 	}
2645 
2646 out:
2647 	bdput(bdev);
2648 out_mutex:
2649 	mutex_unlock(&blkfront_mutex);
2650 }
2651 
2652 static const struct block_device_operations xlvbd_block_fops =
2653 {
2654 	.owner = THIS_MODULE,
2655 	.open = blkif_open,
2656 	.release = blkif_release,
2657 	.getgeo = blkif_getgeo,
2658 	.ioctl = blkif_ioctl,
2659 };
2660 
2661 
2662 static const struct xenbus_device_id blkfront_ids[] = {
2663 	{ "vbd" },
2664 	{ "" }
2665 };
2666 
2667 static struct xenbus_driver blkfront_driver = {
2668 	.ids  = blkfront_ids,
2669 	.probe = blkfront_probe,
2670 	.remove = blkfront_remove,
2671 	.resume = blkfront_resume,
2672 	.otherend_changed = blkback_changed,
2673 	.is_ready = blkfront_is_ready,
2674 };
2675 
2676 static int __init xlblk_init(void)
2677 {
2678 	int ret;
2679 	int nr_cpus = num_online_cpus();
2680 
2681 	if (!xen_domain())
2682 		return -ENODEV;
2683 
2684 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2685 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2686 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2687 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2688 	}
2689 
2690 	if (xen_blkif_max_queues > nr_cpus) {
2691 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2692 			xen_blkif_max_queues, nr_cpus);
2693 		xen_blkif_max_queues = nr_cpus;
2694 	}
2695 
2696 	if (!xen_has_pv_disk_devices())
2697 		return -ENODEV;
2698 
2699 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2700 		printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2701 		       XENVBD_MAJOR, DEV_NAME);
2702 		return -ENODEV;
2703 	}
2704 
2705 	ret = xenbus_register_frontend(&blkfront_driver);
2706 	if (ret) {
2707 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2708 		return ret;
2709 	}
2710 
2711 	return 0;
2712 }
2713 module_init(xlblk_init);
2714 
2715 
2716 static void __exit xlblk_exit(void)
2717 {
2718 	xenbus_unregister_driver(&blkfront_driver);
2719 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2720 	kfree(minors);
2721 }
2722 module_exit(xlblk_exit);
2723 
2724 MODULE_DESCRIPTION("Xen virtual block device frontend");
2725 MODULE_LICENSE("GPL");
2726 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2727 MODULE_ALIAS("xen:vbd");
2728 MODULE_ALIAS("xenblk");
2729