1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/major.h> 46 #include <linux/mutex.h> 47 #include <linux/scatterlist.h> 48 #include <linux/bitmap.h> 49 #include <linux/list.h> 50 #include <linux/workqueue.h> 51 #include <linux/sched/mm.h> 52 53 #include <xen/xen.h> 54 #include <xen/xenbus.h> 55 #include <xen/grant_table.h> 56 #include <xen/events.h> 57 #include <xen/page.h> 58 #include <xen/platform_pci.h> 59 60 #include <xen/interface/grant_table.h> 61 #include <xen/interface/io/blkif.h> 62 #include <xen/interface/io/protocols.h> 63 64 #include <asm/xen/hypervisor.h> 65 66 /* 67 * The minimal size of segment supported by the block framework is PAGE_SIZE. 68 * When Linux is using a different page size than Xen, it may not be possible 69 * to put all the data in a single segment. 70 * This can happen when the backend doesn't support indirect descriptor and 71 * therefore the maximum amount of data that a request can carry is 72 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 73 * 74 * Note that we only support one extra request. So the Linux page size 75 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 76 * 88KB. 77 */ 78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 79 80 enum blkif_state { 81 BLKIF_STATE_DISCONNECTED, 82 BLKIF_STATE_CONNECTED, 83 BLKIF_STATE_SUSPENDED, 84 BLKIF_STATE_ERROR, 85 }; 86 87 struct grant { 88 grant_ref_t gref; 89 struct page *page; 90 struct list_head node; 91 }; 92 93 enum blk_req_status { 94 REQ_PROCESSING, 95 REQ_WAITING, 96 REQ_DONE, 97 REQ_ERROR, 98 REQ_EOPNOTSUPP, 99 }; 100 101 struct blk_shadow { 102 struct blkif_request req; 103 struct request *request; 104 struct grant **grants_used; 105 struct grant **indirect_grants; 106 struct scatterlist *sg; 107 unsigned int num_sg; 108 enum blk_req_status status; 109 110 #define NO_ASSOCIATED_ID ~0UL 111 /* 112 * Id of the sibling if we ever need 2 requests when handling a 113 * block I/O request 114 */ 115 unsigned long associated_id; 116 }; 117 118 struct blkif_req { 119 blk_status_t error; 120 }; 121 122 static inline struct blkif_req *blkif_req(struct request *rq) 123 { 124 return blk_mq_rq_to_pdu(rq); 125 } 126 127 static DEFINE_MUTEX(blkfront_mutex); 128 static const struct block_device_operations xlvbd_block_fops; 129 static struct delayed_work blkfront_work; 130 static LIST_HEAD(info_list); 131 132 /* 133 * Maximum number of segments in indirect requests, the actual value used by 134 * the frontend driver is the minimum of this value and the value provided 135 * by the backend driver. 136 */ 137 138 static unsigned int xen_blkif_max_segments = 32; 139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 140 MODULE_PARM_DESC(max_indirect_segments, 141 "Maximum amount of segments in indirect requests (default is 32)"); 142 143 static unsigned int xen_blkif_max_queues = 4; 144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 146 147 /* 148 * Maximum order of pages to be used for the shared ring between front and 149 * backend, 4KB page granularity is used. 150 */ 151 static unsigned int xen_blkif_max_ring_order; 152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 154 155 #define BLK_RING_SIZE(info) \ 156 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 157 158 /* 159 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 160 * characters are enough. Define to 20 to keep consistent with backend. 161 */ 162 #define RINGREF_NAME_LEN (20) 163 /* 164 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 165 */ 166 #define QUEUE_NAME_LEN (17) 167 168 /* 169 * Per-ring info. 170 * Every blkfront device can associate with one or more blkfront_ring_info, 171 * depending on how many hardware queues/rings to be used. 172 */ 173 struct blkfront_ring_info { 174 /* Lock to protect data in every ring buffer. */ 175 spinlock_t ring_lock; 176 struct blkif_front_ring ring; 177 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 178 unsigned int evtchn, irq; 179 struct work_struct work; 180 struct gnttab_free_callback callback; 181 struct list_head indirect_pages; 182 struct list_head grants; 183 unsigned int persistent_gnts_c; 184 unsigned long shadow_free; 185 struct blkfront_info *dev_info; 186 struct blk_shadow shadow[]; 187 }; 188 189 /* 190 * We have one of these per vbd, whether ide, scsi or 'other'. They 191 * hang in private_data off the gendisk structure. We may end up 192 * putting all kinds of interesting stuff here :-) 193 */ 194 struct blkfront_info 195 { 196 struct mutex mutex; 197 struct xenbus_device *xbdev; 198 struct gendisk *gd; 199 u16 sector_size; 200 unsigned int physical_sector_size; 201 unsigned long vdisk_info; 202 int vdevice; 203 blkif_vdev_t handle; 204 enum blkif_state connected; 205 /* Number of pages per ring buffer. */ 206 unsigned int nr_ring_pages; 207 struct request_queue *rq; 208 unsigned int feature_flush:1; 209 unsigned int feature_fua:1; 210 unsigned int feature_discard:1; 211 unsigned int feature_secdiscard:1; 212 unsigned int feature_persistent:1; 213 unsigned int discard_granularity; 214 unsigned int discard_alignment; 215 /* Number of 4KB segments handled */ 216 unsigned int max_indirect_segments; 217 int is_ready; 218 struct blk_mq_tag_set tag_set; 219 struct blkfront_ring_info *rinfo; 220 unsigned int nr_rings; 221 unsigned int rinfo_size; 222 /* Save uncomplete reqs and bios for migration. */ 223 struct list_head requests; 224 struct bio_list bio_list; 225 struct list_head info_list; 226 }; 227 228 static unsigned int nr_minors; 229 static unsigned long *minors; 230 static DEFINE_SPINLOCK(minor_lock); 231 232 #define PARTS_PER_DISK 16 233 #define PARTS_PER_EXT_DISK 256 234 235 #define BLKIF_MAJOR(dev) ((dev)>>8) 236 #define BLKIF_MINOR(dev) ((dev) & 0xff) 237 238 #define EXT_SHIFT 28 239 #define EXTENDED (1<<EXT_SHIFT) 240 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 241 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 242 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 243 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 244 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 245 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 246 247 #define DEV_NAME "xvd" /* name in /dev */ 248 249 /* 250 * Grants are always the same size as a Xen page (i.e 4KB). 251 * A physical segment is always the same size as a Linux page. 252 * Number of grants per physical segment 253 */ 254 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 255 256 #define GRANTS_PER_INDIRECT_FRAME \ 257 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 258 259 #define INDIRECT_GREFS(_grants) \ 260 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 261 262 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 263 static void blkfront_gather_backend_features(struct blkfront_info *info); 264 static int negotiate_mq(struct blkfront_info *info); 265 266 #define for_each_rinfo(info, ptr, idx) \ 267 for ((ptr) = (info)->rinfo, (idx) = 0; \ 268 (idx) < (info)->nr_rings; \ 269 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 270 271 static inline struct blkfront_ring_info * 272 get_rinfo(const struct blkfront_info *info, unsigned int i) 273 { 274 BUG_ON(i >= info->nr_rings); 275 return (void *)info->rinfo + i * info->rinfo_size; 276 } 277 278 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 279 { 280 unsigned long free = rinfo->shadow_free; 281 282 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 283 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 284 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 285 return free; 286 } 287 288 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 289 unsigned long id) 290 { 291 if (rinfo->shadow[id].req.u.rw.id != id) 292 return -EINVAL; 293 if (rinfo->shadow[id].request == NULL) 294 return -EINVAL; 295 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 296 rinfo->shadow[id].request = NULL; 297 rinfo->shadow_free = id; 298 return 0; 299 } 300 301 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 302 { 303 struct blkfront_info *info = rinfo->dev_info; 304 struct page *granted_page; 305 struct grant *gnt_list_entry, *n; 306 int i = 0; 307 308 while (i < num) { 309 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 310 if (!gnt_list_entry) 311 goto out_of_memory; 312 313 if (info->feature_persistent) { 314 granted_page = alloc_page(GFP_NOIO); 315 if (!granted_page) { 316 kfree(gnt_list_entry); 317 goto out_of_memory; 318 } 319 gnt_list_entry->page = granted_page; 320 } 321 322 gnt_list_entry->gref = INVALID_GRANT_REF; 323 list_add(&gnt_list_entry->node, &rinfo->grants); 324 i++; 325 } 326 327 return 0; 328 329 out_of_memory: 330 list_for_each_entry_safe(gnt_list_entry, n, 331 &rinfo->grants, node) { 332 list_del(&gnt_list_entry->node); 333 if (info->feature_persistent) 334 __free_page(gnt_list_entry->page); 335 kfree(gnt_list_entry); 336 i--; 337 } 338 BUG_ON(i != 0); 339 return -ENOMEM; 340 } 341 342 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 343 { 344 struct grant *gnt_list_entry; 345 346 BUG_ON(list_empty(&rinfo->grants)); 347 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 348 node); 349 list_del(&gnt_list_entry->node); 350 351 if (gnt_list_entry->gref != INVALID_GRANT_REF) 352 rinfo->persistent_gnts_c--; 353 354 return gnt_list_entry; 355 } 356 357 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 358 const struct blkfront_info *info) 359 { 360 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 361 info->xbdev->otherend_id, 362 gnt_list_entry->page, 363 0); 364 } 365 366 static struct grant *get_grant(grant_ref_t *gref_head, 367 unsigned long gfn, 368 struct blkfront_ring_info *rinfo) 369 { 370 struct grant *gnt_list_entry = get_free_grant(rinfo); 371 struct blkfront_info *info = rinfo->dev_info; 372 373 if (gnt_list_entry->gref != INVALID_GRANT_REF) 374 return gnt_list_entry; 375 376 /* Assign a gref to this page */ 377 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 378 BUG_ON(gnt_list_entry->gref == -ENOSPC); 379 if (info->feature_persistent) 380 grant_foreign_access(gnt_list_entry, info); 381 else { 382 /* Grant access to the GFN passed by the caller */ 383 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 384 info->xbdev->otherend_id, 385 gfn, 0); 386 } 387 388 return gnt_list_entry; 389 } 390 391 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 392 struct blkfront_ring_info *rinfo) 393 { 394 struct grant *gnt_list_entry = get_free_grant(rinfo); 395 struct blkfront_info *info = rinfo->dev_info; 396 397 if (gnt_list_entry->gref != INVALID_GRANT_REF) 398 return gnt_list_entry; 399 400 /* Assign a gref to this page */ 401 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 402 BUG_ON(gnt_list_entry->gref == -ENOSPC); 403 if (!info->feature_persistent) { 404 struct page *indirect_page; 405 406 /* Fetch a pre-allocated page to use for indirect grefs */ 407 BUG_ON(list_empty(&rinfo->indirect_pages)); 408 indirect_page = list_first_entry(&rinfo->indirect_pages, 409 struct page, lru); 410 list_del(&indirect_page->lru); 411 gnt_list_entry->page = indirect_page; 412 } 413 grant_foreign_access(gnt_list_entry, info); 414 415 return gnt_list_entry; 416 } 417 418 static const char *op_name(int op) 419 { 420 static const char *const names[] = { 421 [BLKIF_OP_READ] = "read", 422 [BLKIF_OP_WRITE] = "write", 423 [BLKIF_OP_WRITE_BARRIER] = "barrier", 424 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 425 [BLKIF_OP_DISCARD] = "discard" }; 426 427 if (op < 0 || op >= ARRAY_SIZE(names)) 428 return "unknown"; 429 430 if (!names[op]) 431 return "reserved"; 432 433 return names[op]; 434 } 435 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 436 { 437 unsigned int end = minor + nr; 438 int rc; 439 440 if (end > nr_minors) { 441 unsigned long *bitmap, *old; 442 443 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 444 GFP_KERNEL); 445 if (bitmap == NULL) 446 return -ENOMEM; 447 448 spin_lock(&minor_lock); 449 if (end > nr_minors) { 450 old = minors; 451 memcpy(bitmap, minors, 452 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 453 minors = bitmap; 454 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 455 } else 456 old = bitmap; 457 spin_unlock(&minor_lock); 458 kfree(old); 459 } 460 461 spin_lock(&minor_lock); 462 if (find_next_bit(minors, end, minor) >= end) { 463 bitmap_set(minors, minor, nr); 464 rc = 0; 465 } else 466 rc = -EBUSY; 467 spin_unlock(&minor_lock); 468 469 return rc; 470 } 471 472 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 473 { 474 unsigned int end = minor + nr; 475 476 BUG_ON(end > nr_minors); 477 spin_lock(&minor_lock); 478 bitmap_clear(minors, minor, nr); 479 spin_unlock(&minor_lock); 480 } 481 482 static void blkif_restart_queue_callback(void *arg) 483 { 484 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 485 schedule_work(&rinfo->work); 486 } 487 488 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 489 { 490 /* We don't have real geometry info, but let's at least return 491 values consistent with the size of the device */ 492 sector_t nsect = get_capacity(bd->bd_disk); 493 sector_t cylinders = nsect; 494 495 hg->heads = 0xff; 496 hg->sectors = 0x3f; 497 sector_div(cylinders, hg->heads * hg->sectors); 498 hg->cylinders = cylinders; 499 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 500 hg->cylinders = 0xffff; 501 return 0; 502 } 503 504 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 505 unsigned command, unsigned long argument) 506 { 507 struct blkfront_info *info = bdev->bd_disk->private_data; 508 int i; 509 510 switch (command) { 511 case CDROMMULTISESSION: 512 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 513 if (put_user(0, (char __user *)(argument + i))) 514 return -EFAULT; 515 return 0; 516 case CDROM_GET_CAPABILITY: 517 if (!(info->vdisk_info & VDISK_CDROM)) 518 return -EINVAL; 519 return 0; 520 default: 521 return -EINVAL; 522 } 523 } 524 525 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 526 struct request *req, 527 struct blkif_request **ring_req) 528 { 529 unsigned long id; 530 531 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 532 rinfo->ring.req_prod_pvt++; 533 534 id = get_id_from_freelist(rinfo); 535 rinfo->shadow[id].request = req; 536 rinfo->shadow[id].status = REQ_PROCESSING; 537 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 538 539 rinfo->shadow[id].req.u.rw.id = id; 540 541 return id; 542 } 543 544 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 545 { 546 struct blkfront_info *info = rinfo->dev_info; 547 struct blkif_request *ring_req, *final_ring_req; 548 unsigned long id; 549 550 /* Fill out a communications ring structure. */ 551 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 552 ring_req = &rinfo->shadow[id].req; 553 554 ring_req->operation = BLKIF_OP_DISCARD; 555 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 556 ring_req->u.discard.id = id; 557 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 558 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 559 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 560 else 561 ring_req->u.discard.flag = 0; 562 563 /* Copy the request to the ring page. */ 564 *final_ring_req = *ring_req; 565 rinfo->shadow[id].status = REQ_WAITING; 566 567 return 0; 568 } 569 570 struct setup_rw_req { 571 unsigned int grant_idx; 572 struct blkif_request_segment *segments; 573 struct blkfront_ring_info *rinfo; 574 struct blkif_request *ring_req; 575 grant_ref_t gref_head; 576 unsigned int id; 577 /* Only used when persistent grant is used and it's a write request */ 578 bool need_copy; 579 unsigned int bvec_off; 580 char *bvec_data; 581 582 bool require_extra_req; 583 struct blkif_request *extra_ring_req; 584 }; 585 586 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 587 unsigned int len, void *data) 588 { 589 struct setup_rw_req *setup = data; 590 int n, ref; 591 struct grant *gnt_list_entry; 592 unsigned int fsect, lsect; 593 /* Convenient aliases */ 594 unsigned int grant_idx = setup->grant_idx; 595 struct blkif_request *ring_req = setup->ring_req; 596 struct blkfront_ring_info *rinfo = setup->rinfo; 597 /* 598 * We always use the shadow of the first request to store the list 599 * of grant associated to the block I/O request. This made the 600 * completion more easy to handle even if the block I/O request is 601 * split. 602 */ 603 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 604 605 if (unlikely(setup->require_extra_req && 606 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 607 /* 608 * We are using the second request, setup grant_idx 609 * to be the index of the segment array. 610 */ 611 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 612 ring_req = setup->extra_ring_req; 613 } 614 615 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 616 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 617 if (setup->segments) 618 kunmap_atomic(setup->segments); 619 620 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 621 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 622 shadow->indirect_grants[n] = gnt_list_entry; 623 setup->segments = kmap_atomic(gnt_list_entry->page); 624 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 625 } 626 627 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 628 ref = gnt_list_entry->gref; 629 /* 630 * All the grants are stored in the shadow of the first 631 * request. Therefore we have to use the global index. 632 */ 633 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 634 635 if (setup->need_copy) { 636 void *shared_data; 637 638 shared_data = kmap_atomic(gnt_list_entry->page); 639 /* 640 * this does not wipe data stored outside the 641 * range sg->offset..sg->offset+sg->length. 642 * Therefore, blkback *could* see data from 643 * previous requests. This is OK as long as 644 * persistent grants are shared with just one 645 * domain. It may need refactoring if this 646 * changes 647 */ 648 memcpy(shared_data + offset, 649 setup->bvec_data + setup->bvec_off, 650 len); 651 652 kunmap_atomic(shared_data); 653 setup->bvec_off += len; 654 } 655 656 fsect = offset >> 9; 657 lsect = fsect + (len >> 9) - 1; 658 if (ring_req->operation != BLKIF_OP_INDIRECT) { 659 ring_req->u.rw.seg[grant_idx] = 660 (struct blkif_request_segment) { 661 .gref = ref, 662 .first_sect = fsect, 663 .last_sect = lsect }; 664 } else { 665 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 666 (struct blkif_request_segment) { 667 .gref = ref, 668 .first_sect = fsect, 669 .last_sect = lsect }; 670 } 671 672 (setup->grant_idx)++; 673 } 674 675 static void blkif_setup_extra_req(struct blkif_request *first, 676 struct blkif_request *second) 677 { 678 uint16_t nr_segments = first->u.rw.nr_segments; 679 680 /* 681 * The second request is only present when the first request uses 682 * all its segments. It's always the continuity of the first one. 683 */ 684 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 685 686 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 687 second->u.rw.sector_number = first->u.rw.sector_number + 688 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 689 690 second->u.rw.handle = first->u.rw.handle; 691 second->operation = first->operation; 692 } 693 694 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 695 { 696 struct blkfront_info *info = rinfo->dev_info; 697 struct blkif_request *ring_req, *extra_ring_req = NULL; 698 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL; 699 unsigned long id, extra_id = NO_ASSOCIATED_ID; 700 bool require_extra_req = false; 701 int i; 702 struct setup_rw_req setup = { 703 .grant_idx = 0, 704 .segments = NULL, 705 .rinfo = rinfo, 706 .need_copy = rq_data_dir(req) && info->feature_persistent, 707 }; 708 709 /* 710 * Used to store if we are able to queue the request by just using 711 * existing persistent grants, or if we have to get new grants, 712 * as there are not sufficiently many free. 713 */ 714 bool new_persistent_gnts = false; 715 struct scatterlist *sg; 716 int num_sg, max_grefs, num_grant; 717 718 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 719 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 720 /* 721 * If we are using indirect segments we need to account 722 * for the indirect grefs used in the request. 723 */ 724 max_grefs += INDIRECT_GREFS(max_grefs); 725 726 /* Check if we have enough persistent grants to allocate a requests */ 727 if (rinfo->persistent_gnts_c < max_grefs) { 728 new_persistent_gnts = true; 729 730 if (gnttab_alloc_grant_references( 731 max_grefs - rinfo->persistent_gnts_c, 732 &setup.gref_head) < 0) { 733 gnttab_request_free_callback( 734 &rinfo->callback, 735 blkif_restart_queue_callback, 736 rinfo, 737 max_grefs - rinfo->persistent_gnts_c); 738 return 1; 739 } 740 } 741 742 /* Fill out a communications ring structure. */ 743 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 744 ring_req = &rinfo->shadow[id].req; 745 746 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 747 num_grant = 0; 748 /* Calculate the number of grant used */ 749 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 750 num_grant += gnttab_count_grant(sg->offset, sg->length); 751 752 require_extra_req = info->max_indirect_segments == 0 && 753 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 754 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 755 756 rinfo->shadow[id].num_sg = num_sg; 757 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 758 likely(!require_extra_req)) { 759 /* 760 * The indirect operation can only be a BLKIF_OP_READ or 761 * BLKIF_OP_WRITE 762 */ 763 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 764 ring_req->operation = BLKIF_OP_INDIRECT; 765 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 766 BLKIF_OP_WRITE : BLKIF_OP_READ; 767 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 768 ring_req->u.indirect.handle = info->handle; 769 ring_req->u.indirect.nr_segments = num_grant; 770 } else { 771 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 772 ring_req->u.rw.handle = info->handle; 773 ring_req->operation = rq_data_dir(req) ? 774 BLKIF_OP_WRITE : BLKIF_OP_READ; 775 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 776 /* 777 * Ideally we can do an unordered flush-to-disk. 778 * In case the backend onlysupports barriers, use that. 779 * A barrier request a superset of FUA, so we can 780 * implement it the same way. (It's also a FLUSH+FUA, 781 * since it is guaranteed ordered WRT previous writes.) 782 */ 783 if (info->feature_flush && info->feature_fua) 784 ring_req->operation = 785 BLKIF_OP_WRITE_BARRIER; 786 else if (info->feature_flush) 787 ring_req->operation = 788 BLKIF_OP_FLUSH_DISKCACHE; 789 else 790 ring_req->operation = 0; 791 } 792 ring_req->u.rw.nr_segments = num_grant; 793 if (unlikely(require_extra_req)) { 794 extra_id = blkif_ring_get_request(rinfo, req, 795 &final_extra_ring_req); 796 extra_ring_req = &rinfo->shadow[extra_id].req; 797 798 /* 799 * Only the first request contains the scatter-gather 800 * list. 801 */ 802 rinfo->shadow[extra_id].num_sg = 0; 803 804 blkif_setup_extra_req(ring_req, extra_ring_req); 805 806 /* Link the 2 requests together */ 807 rinfo->shadow[extra_id].associated_id = id; 808 rinfo->shadow[id].associated_id = extra_id; 809 } 810 } 811 812 setup.ring_req = ring_req; 813 setup.id = id; 814 815 setup.require_extra_req = require_extra_req; 816 if (unlikely(require_extra_req)) 817 setup.extra_ring_req = extra_ring_req; 818 819 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 820 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 821 822 if (setup.need_copy) { 823 setup.bvec_off = sg->offset; 824 setup.bvec_data = kmap_atomic(sg_page(sg)); 825 } 826 827 gnttab_foreach_grant_in_range(sg_page(sg), 828 sg->offset, 829 sg->length, 830 blkif_setup_rw_req_grant, 831 &setup); 832 833 if (setup.need_copy) 834 kunmap_atomic(setup.bvec_data); 835 } 836 if (setup.segments) 837 kunmap_atomic(setup.segments); 838 839 /* Copy request(s) to the ring page. */ 840 *final_ring_req = *ring_req; 841 rinfo->shadow[id].status = REQ_WAITING; 842 if (unlikely(require_extra_req)) { 843 *final_extra_ring_req = *extra_ring_req; 844 rinfo->shadow[extra_id].status = REQ_WAITING; 845 } 846 847 if (new_persistent_gnts) 848 gnttab_free_grant_references(setup.gref_head); 849 850 return 0; 851 } 852 853 /* 854 * Generate a Xen blkfront IO request from a blk layer request. Reads 855 * and writes are handled as expected. 856 * 857 * @req: a request struct 858 */ 859 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 860 { 861 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 862 return 1; 863 864 if (unlikely(req_op(req) == REQ_OP_DISCARD || 865 req_op(req) == REQ_OP_SECURE_ERASE)) 866 return blkif_queue_discard_req(req, rinfo); 867 else 868 return blkif_queue_rw_req(req, rinfo); 869 } 870 871 static inline void flush_requests(struct blkfront_ring_info *rinfo) 872 { 873 int notify; 874 875 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 876 877 if (notify) 878 notify_remote_via_irq(rinfo->irq); 879 } 880 881 static inline bool blkif_request_flush_invalid(struct request *req, 882 struct blkfront_info *info) 883 { 884 return (blk_rq_is_passthrough(req) || 885 ((req_op(req) == REQ_OP_FLUSH) && 886 !info->feature_flush) || 887 ((req->cmd_flags & REQ_FUA) && 888 !info->feature_fua)); 889 } 890 891 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 892 const struct blk_mq_queue_data *qd) 893 { 894 unsigned long flags; 895 int qid = hctx->queue_num; 896 struct blkfront_info *info = hctx->queue->queuedata; 897 struct blkfront_ring_info *rinfo = NULL; 898 899 rinfo = get_rinfo(info, qid); 900 blk_mq_start_request(qd->rq); 901 spin_lock_irqsave(&rinfo->ring_lock, flags); 902 if (RING_FULL(&rinfo->ring)) 903 goto out_busy; 904 905 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 906 goto out_err; 907 908 if (blkif_queue_request(qd->rq, rinfo)) 909 goto out_busy; 910 911 flush_requests(rinfo); 912 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 913 return BLK_STS_OK; 914 915 out_err: 916 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 917 return BLK_STS_IOERR; 918 919 out_busy: 920 blk_mq_stop_hw_queue(hctx); 921 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 922 return BLK_STS_DEV_RESOURCE; 923 } 924 925 static void blkif_complete_rq(struct request *rq) 926 { 927 blk_mq_end_request(rq, blkif_req(rq)->error); 928 } 929 930 static const struct blk_mq_ops blkfront_mq_ops = { 931 .queue_rq = blkif_queue_rq, 932 .complete = blkif_complete_rq, 933 }; 934 935 static void blkif_set_queue_limits(struct blkfront_info *info) 936 { 937 struct request_queue *rq = info->rq; 938 struct gendisk *gd = info->gd; 939 unsigned int segments = info->max_indirect_segments ? : 940 BLKIF_MAX_SEGMENTS_PER_REQUEST; 941 942 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 943 944 if (info->feature_discard) { 945 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 946 rq->limits.discard_granularity = info->discard_granularity ?: 947 info->physical_sector_size; 948 rq->limits.discard_alignment = info->discard_alignment; 949 if (info->feature_secdiscard) 950 blk_queue_max_secure_erase_sectors(rq, 951 get_capacity(gd)); 952 } 953 954 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 955 blk_queue_logical_block_size(rq, info->sector_size); 956 blk_queue_physical_block_size(rq, info->physical_sector_size); 957 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 958 959 /* Each segment in a request is up to an aligned page in size. */ 960 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 961 blk_queue_max_segment_size(rq, PAGE_SIZE); 962 963 /* Ensure a merged request will fit in a single I/O ring slot. */ 964 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 965 966 /* Make sure buffer addresses are sector-aligned. */ 967 blk_queue_dma_alignment(rq, 511); 968 } 969 970 static const char *flush_info(struct blkfront_info *info) 971 { 972 if (info->feature_flush && info->feature_fua) 973 return "barrier: enabled;"; 974 else if (info->feature_flush) 975 return "flush diskcache: enabled;"; 976 else 977 return "barrier or flush: disabled;"; 978 } 979 980 static void xlvbd_flush(struct blkfront_info *info) 981 { 982 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 983 info->feature_fua ? true : false); 984 pr_info("blkfront: %s: %s %s %s %s %s\n", 985 info->gd->disk_name, flush_info(info), 986 "persistent grants:", info->feature_persistent ? 987 "enabled;" : "disabled;", "indirect descriptors:", 988 info->max_indirect_segments ? "enabled;" : "disabled;"); 989 } 990 991 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 992 { 993 int major; 994 major = BLKIF_MAJOR(vdevice); 995 *minor = BLKIF_MINOR(vdevice); 996 switch (major) { 997 case XEN_IDE0_MAJOR: 998 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 999 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1000 EMULATED_HD_DISK_MINOR_OFFSET; 1001 break; 1002 case XEN_IDE1_MAJOR: 1003 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1004 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1005 EMULATED_HD_DISK_MINOR_OFFSET; 1006 break; 1007 case XEN_SCSI_DISK0_MAJOR: 1008 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1009 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1010 break; 1011 case XEN_SCSI_DISK1_MAJOR: 1012 case XEN_SCSI_DISK2_MAJOR: 1013 case XEN_SCSI_DISK3_MAJOR: 1014 case XEN_SCSI_DISK4_MAJOR: 1015 case XEN_SCSI_DISK5_MAJOR: 1016 case XEN_SCSI_DISK6_MAJOR: 1017 case XEN_SCSI_DISK7_MAJOR: 1018 *offset = (*minor / PARTS_PER_DISK) + 1019 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1020 EMULATED_SD_DISK_NAME_OFFSET; 1021 *minor = *minor + 1022 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1023 EMULATED_SD_DISK_MINOR_OFFSET; 1024 break; 1025 case XEN_SCSI_DISK8_MAJOR: 1026 case XEN_SCSI_DISK9_MAJOR: 1027 case XEN_SCSI_DISK10_MAJOR: 1028 case XEN_SCSI_DISK11_MAJOR: 1029 case XEN_SCSI_DISK12_MAJOR: 1030 case XEN_SCSI_DISK13_MAJOR: 1031 case XEN_SCSI_DISK14_MAJOR: 1032 case XEN_SCSI_DISK15_MAJOR: 1033 *offset = (*minor / PARTS_PER_DISK) + 1034 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1035 EMULATED_SD_DISK_NAME_OFFSET; 1036 *minor = *minor + 1037 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1038 EMULATED_SD_DISK_MINOR_OFFSET; 1039 break; 1040 case XENVBD_MAJOR: 1041 *offset = *minor / PARTS_PER_DISK; 1042 break; 1043 default: 1044 printk(KERN_WARNING "blkfront: your disk configuration is " 1045 "incorrect, please use an xvd device instead\n"); 1046 return -ENODEV; 1047 } 1048 return 0; 1049 } 1050 1051 static char *encode_disk_name(char *ptr, unsigned int n) 1052 { 1053 if (n >= 26) 1054 ptr = encode_disk_name(ptr, n / 26 - 1); 1055 *ptr = 'a' + n % 26; 1056 return ptr + 1; 1057 } 1058 1059 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1060 struct blkfront_info *info, u16 sector_size, 1061 unsigned int physical_sector_size) 1062 { 1063 struct gendisk *gd; 1064 int nr_minors = 1; 1065 int err; 1066 unsigned int offset; 1067 int minor; 1068 int nr_parts; 1069 char *ptr; 1070 1071 BUG_ON(info->gd != NULL); 1072 BUG_ON(info->rq != NULL); 1073 1074 if ((info->vdevice>>EXT_SHIFT) > 1) { 1075 /* this is above the extended range; something is wrong */ 1076 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1077 return -ENODEV; 1078 } 1079 1080 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1081 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1082 if (err) 1083 return err; 1084 nr_parts = PARTS_PER_DISK; 1085 } else { 1086 minor = BLKIF_MINOR_EXT(info->vdevice); 1087 nr_parts = PARTS_PER_EXT_DISK; 1088 offset = minor / nr_parts; 1089 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1090 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1091 "emulated IDE disks,\n\t choose an xvd device name" 1092 "from xvde on\n", info->vdevice); 1093 } 1094 if (minor >> MINORBITS) { 1095 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1096 info->vdevice, minor); 1097 return -ENODEV; 1098 } 1099 1100 if ((minor % nr_parts) == 0) 1101 nr_minors = nr_parts; 1102 1103 err = xlbd_reserve_minors(minor, nr_minors); 1104 if (err) 1105 return err; 1106 1107 memset(&info->tag_set, 0, sizeof(info->tag_set)); 1108 info->tag_set.ops = &blkfront_mq_ops; 1109 info->tag_set.nr_hw_queues = info->nr_rings; 1110 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1111 /* 1112 * When indirect descriptior is not supported, the I/O request 1113 * will be split between multiple request in the ring. 1114 * To avoid problems when sending the request, divide by 1115 * 2 the depth of the queue. 1116 */ 1117 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1118 } else 1119 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1120 info->tag_set.numa_node = NUMA_NO_NODE; 1121 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1122 info->tag_set.cmd_size = sizeof(struct blkif_req); 1123 info->tag_set.driver_data = info; 1124 1125 err = blk_mq_alloc_tag_set(&info->tag_set); 1126 if (err) 1127 goto out_release_minors; 1128 1129 gd = blk_mq_alloc_disk(&info->tag_set, info); 1130 if (IS_ERR(gd)) { 1131 err = PTR_ERR(gd); 1132 goto out_free_tag_set; 1133 } 1134 1135 strcpy(gd->disk_name, DEV_NAME); 1136 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1137 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1138 if (nr_minors > 1) 1139 *ptr = 0; 1140 else 1141 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1142 "%d", minor & (nr_parts - 1)); 1143 1144 gd->major = XENVBD_MAJOR; 1145 gd->first_minor = minor; 1146 gd->minors = nr_minors; 1147 gd->fops = &xlvbd_block_fops; 1148 gd->private_data = info; 1149 set_capacity(gd, capacity); 1150 1151 info->rq = gd->queue; 1152 info->gd = gd; 1153 info->sector_size = sector_size; 1154 info->physical_sector_size = physical_sector_size; 1155 blkif_set_queue_limits(info); 1156 1157 xlvbd_flush(info); 1158 1159 if (info->vdisk_info & VDISK_READONLY) 1160 set_disk_ro(gd, 1); 1161 if (info->vdisk_info & VDISK_REMOVABLE) 1162 gd->flags |= GENHD_FL_REMOVABLE; 1163 1164 return 0; 1165 1166 out_free_tag_set: 1167 blk_mq_free_tag_set(&info->tag_set); 1168 out_release_minors: 1169 xlbd_release_minors(minor, nr_minors); 1170 return err; 1171 } 1172 1173 /* Already hold rinfo->ring_lock. */ 1174 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1175 { 1176 if (!RING_FULL(&rinfo->ring)) 1177 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1178 } 1179 1180 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1181 { 1182 unsigned long flags; 1183 1184 spin_lock_irqsave(&rinfo->ring_lock, flags); 1185 kick_pending_request_queues_locked(rinfo); 1186 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1187 } 1188 1189 static void blkif_restart_queue(struct work_struct *work) 1190 { 1191 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1192 1193 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1194 kick_pending_request_queues(rinfo); 1195 } 1196 1197 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1198 { 1199 struct grant *persistent_gnt, *n; 1200 struct blkfront_info *info = rinfo->dev_info; 1201 int i, j, segs; 1202 1203 /* 1204 * Remove indirect pages, this only happens when using indirect 1205 * descriptors but not persistent grants 1206 */ 1207 if (!list_empty(&rinfo->indirect_pages)) { 1208 struct page *indirect_page, *n; 1209 1210 BUG_ON(info->feature_persistent); 1211 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1212 list_del(&indirect_page->lru); 1213 __free_page(indirect_page); 1214 } 1215 } 1216 1217 /* Remove all persistent grants. */ 1218 if (!list_empty(&rinfo->grants)) { 1219 list_for_each_entry_safe(persistent_gnt, n, 1220 &rinfo->grants, node) { 1221 list_del(&persistent_gnt->node); 1222 if (persistent_gnt->gref != INVALID_GRANT_REF) { 1223 gnttab_end_foreign_access(persistent_gnt->gref, 1224 NULL); 1225 rinfo->persistent_gnts_c--; 1226 } 1227 if (info->feature_persistent) 1228 __free_page(persistent_gnt->page); 1229 kfree(persistent_gnt); 1230 } 1231 } 1232 BUG_ON(rinfo->persistent_gnts_c != 0); 1233 1234 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1235 /* 1236 * Clear persistent grants present in requests already 1237 * on the shared ring 1238 */ 1239 if (!rinfo->shadow[i].request) 1240 goto free_shadow; 1241 1242 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1243 rinfo->shadow[i].req.u.indirect.nr_segments : 1244 rinfo->shadow[i].req.u.rw.nr_segments; 1245 for (j = 0; j < segs; j++) { 1246 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1247 gnttab_end_foreign_access(persistent_gnt->gref, NULL); 1248 if (info->feature_persistent) 1249 __free_page(persistent_gnt->page); 1250 kfree(persistent_gnt); 1251 } 1252 1253 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1254 /* 1255 * If this is not an indirect operation don't try to 1256 * free indirect segments 1257 */ 1258 goto free_shadow; 1259 1260 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1261 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1262 gnttab_end_foreign_access(persistent_gnt->gref, NULL); 1263 __free_page(persistent_gnt->page); 1264 kfree(persistent_gnt); 1265 } 1266 1267 free_shadow: 1268 kvfree(rinfo->shadow[i].grants_used); 1269 rinfo->shadow[i].grants_used = NULL; 1270 kvfree(rinfo->shadow[i].indirect_grants); 1271 rinfo->shadow[i].indirect_grants = NULL; 1272 kvfree(rinfo->shadow[i].sg); 1273 rinfo->shadow[i].sg = NULL; 1274 } 1275 1276 /* No more gnttab callback work. */ 1277 gnttab_cancel_free_callback(&rinfo->callback); 1278 1279 /* Flush gnttab callback work. Must be done with no locks held. */ 1280 flush_work(&rinfo->work); 1281 1282 /* Free resources associated with old device channel. */ 1283 xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages, 1284 rinfo->ring_ref); 1285 1286 if (rinfo->irq) 1287 unbind_from_irqhandler(rinfo->irq, rinfo); 1288 rinfo->evtchn = rinfo->irq = 0; 1289 } 1290 1291 static void blkif_free(struct blkfront_info *info, int suspend) 1292 { 1293 unsigned int i; 1294 struct blkfront_ring_info *rinfo; 1295 1296 /* Prevent new requests being issued until we fix things up. */ 1297 info->connected = suspend ? 1298 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1299 /* No more blkif_request(). */ 1300 if (info->rq) 1301 blk_mq_stop_hw_queues(info->rq); 1302 1303 for_each_rinfo(info, rinfo, i) 1304 blkif_free_ring(rinfo); 1305 1306 kvfree(info->rinfo); 1307 info->rinfo = NULL; 1308 info->nr_rings = 0; 1309 } 1310 1311 struct copy_from_grant { 1312 const struct blk_shadow *s; 1313 unsigned int grant_idx; 1314 unsigned int bvec_offset; 1315 char *bvec_data; 1316 }; 1317 1318 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1319 unsigned int len, void *data) 1320 { 1321 struct copy_from_grant *info = data; 1322 char *shared_data; 1323 /* Convenient aliases */ 1324 const struct blk_shadow *s = info->s; 1325 1326 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1327 1328 memcpy(info->bvec_data + info->bvec_offset, 1329 shared_data + offset, len); 1330 1331 info->bvec_offset += len; 1332 info->grant_idx++; 1333 1334 kunmap_atomic(shared_data); 1335 } 1336 1337 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1338 { 1339 switch (rsp) 1340 { 1341 case BLKIF_RSP_OKAY: 1342 return REQ_DONE; 1343 case BLKIF_RSP_EOPNOTSUPP: 1344 return REQ_EOPNOTSUPP; 1345 case BLKIF_RSP_ERROR: 1346 default: 1347 return REQ_ERROR; 1348 } 1349 } 1350 1351 /* 1352 * Get the final status of the block request based on two ring response 1353 */ 1354 static int blkif_get_final_status(enum blk_req_status s1, 1355 enum blk_req_status s2) 1356 { 1357 BUG_ON(s1 < REQ_DONE); 1358 BUG_ON(s2 < REQ_DONE); 1359 1360 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1361 return BLKIF_RSP_ERROR; 1362 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1363 return BLKIF_RSP_EOPNOTSUPP; 1364 return BLKIF_RSP_OKAY; 1365 } 1366 1367 /* 1368 * Return values: 1369 * 1 response processed. 1370 * 0 missing further responses. 1371 * -1 error while processing. 1372 */ 1373 static int blkif_completion(unsigned long *id, 1374 struct blkfront_ring_info *rinfo, 1375 struct blkif_response *bret) 1376 { 1377 int i = 0; 1378 struct scatterlist *sg; 1379 int num_sg, num_grant; 1380 struct blkfront_info *info = rinfo->dev_info; 1381 struct blk_shadow *s = &rinfo->shadow[*id]; 1382 struct copy_from_grant data = { 1383 .grant_idx = 0, 1384 }; 1385 1386 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1387 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1388 1389 /* The I/O request may be split in two. */ 1390 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1391 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1392 1393 /* Keep the status of the current response in shadow. */ 1394 s->status = blkif_rsp_to_req_status(bret->status); 1395 1396 /* Wait the second response if not yet here. */ 1397 if (s2->status < REQ_DONE) 1398 return 0; 1399 1400 bret->status = blkif_get_final_status(s->status, 1401 s2->status); 1402 1403 /* 1404 * All the grants is stored in the first shadow in order 1405 * to make the completion code simpler. 1406 */ 1407 num_grant += s2->req.u.rw.nr_segments; 1408 1409 /* 1410 * The two responses may not come in order. Only the 1411 * first request will store the scatter-gather list. 1412 */ 1413 if (s2->num_sg != 0) { 1414 /* Update "id" with the ID of the first response. */ 1415 *id = s->associated_id; 1416 s = s2; 1417 } 1418 1419 /* 1420 * We don't need anymore the second request, so recycling 1421 * it now. 1422 */ 1423 if (add_id_to_freelist(rinfo, s->associated_id)) 1424 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1425 info->gd->disk_name, s->associated_id); 1426 } 1427 1428 data.s = s; 1429 num_sg = s->num_sg; 1430 1431 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1432 for_each_sg(s->sg, sg, num_sg, i) { 1433 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1434 1435 data.bvec_offset = sg->offset; 1436 data.bvec_data = kmap_atomic(sg_page(sg)); 1437 1438 gnttab_foreach_grant_in_range(sg_page(sg), 1439 sg->offset, 1440 sg->length, 1441 blkif_copy_from_grant, 1442 &data); 1443 1444 kunmap_atomic(data.bvec_data); 1445 } 1446 } 1447 /* Add the persistent grant into the list of free grants */ 1448 for (i = 0; i < num_grant; i++) { 1449 if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) { 1450 /* 1451 * If the grant is still mapped by the backend (the 1452 * backend has chosen to make this grant persistent) 1453 * we add it at the head of the list, so it will be 1454 * reused first. 1455 */ 1456 if (!info->feature_persistent) { 1457 pr_alert("backed has not unmapped grant: %u\n", 1458 s->grants_used[i]->gref); 1459 return -1; 1460 } 1461 list_add(&s->grants_used[i]->node, &rinfo->grants); 1462 rinfo->persistent_gnts_c++; 1463 } else { 1464 /* 1465 * If the grant is not mapped by the backend we add it 1466 * to the tail of the list, so it will not be picked 1467 * again unless we run out of persistent grants. 1468 */ 1469 s->grants_used[i]->gref = INVALID_GRANT_REF; 1470 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1471 } 1472 } 1473 if (s->req.operation == BLKIF_OP_INDIRECT) { 1474 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1475 if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) { 1476 if (!info->feature_persistent) { 1477 pr_alert("backed has not unmapped grant: %u\n", 1478 s->indirect_grants[i]->gref); 1479 return -1; 1480 } 1481 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1482 rinfo->persistent_gnts_c++; 1483 } else { 1484 struct page *indirect_page; 1485 1486 /* 1487 * Add the used indirect page back to the list of 1488 * available pages for indirect grefs. 1489 */ 1490 if (!info->feature_persistent) { 1491 indirect_page = s->indirect_grants[i]->page; 1492 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1493 } 1494 s->indirect_grants[i]->gref = INVALID_GRANT_REF; 1495 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1496 } 1497 } 1498 } 1499 1500 return 1; 1501 } 1502 1503 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1504 { 1505 struct request *req; 1506 struct blkif_response bret; 1507 RING_IDX i, rp; 1508 unsigned long flags; 1509 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1510 struct blkfront_info *info = rinfo->dev_info; 1511 unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS; 1512 1513 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) { 1514 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS); 1515 return IRQ_HANDLED; 1516 } 1517 1518 spin_lock_irqsave(&rinfo->ring_lock, flags); 1519 again: 1520 rp = READ_ONCE(rinfo->ring.sring->rsp_prod); 1521 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */ 1522 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) { 1523 pr_alert("%s: illegal number of responses %u\n", 1524 info->gd->disk_name, rp - rinfo->ring.rsp_cons); 1525 goto err; 1526 } 1527 1528 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1529 unsigned long id; 1530 unsigned int op; 1531 1532 eoiflag = 0; 1533 1534 RING_COPY_RESPONSE(&rinfo->ring, i, &bret); 1535 id = bret.id; 1536 1537 /* 1538 * The backend has messed up and given us an id that we would 1539 * never have given to it (we stamp it up to BLK_RING_SIZE - 1540 * look in get_id_from_freelist. 1541 */ 1542 if (id >= BLK_RING_SIZE(info)) { 1543 pr_alert("%s: response has incorrect id (%ld)\n", 1544 info->gd->disk_name, id); 1545 goto err; 1546 } 1547 if (rinfo->shadow[id].status != REQ_WAITING) { 1548 pr_alert("%s: response references no pending request\n", 1549 info->gd->disk_name); 1550 goto err; 1551 } 1552 1553 rinfo->shadow[id].status = REQ_PROCESSING; 1554 req = rinfo->shadow[id].request; 1555 1556 op = rinfo->shadow[id].req.operation; 1557 if (op == BLKIF_OP_INDIRECT) 1558 op = rinfo->shadow[id].req.u.indirect.indirect_op; 1559 if (bret.operation != op) { 1560 pr_alert("%s: response has wrong operation (%u instead of %u)\n", 1561 info->gd->disk_name, bret.operation, op); 1562 goto err; 1563 } 1564 1565 if (bret.operation != BLKIF_OP_DISCARD) { 1566 int ret; 1567 1568 /* 1569 * We may need to wait for an extra response if the 1570 * I/O request is split in 2 1571 */ 1572 ret = blkif_completion(&id, rinfo, &bret); 1573 if (!ret) 1574 continue; 1575 if (unlikely(ret < 0)) 1576 goto err; 1577 } 1578 1579 if (add_id_to_freelist(rinfo, id)) { 1580 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1581 info->gd->disk_name, op_name(bret.operation), id); 1582 continue; 1583 } 1584 1585 if (bret.status == BLKIF_RSP_OKAY) 1586 blkif_req(req)->error = BLK_STS_OK; 1587 else 1588 blkif_req(req)->error = BLK_STS_IOERR; 1589 1590 switch (bret.operation) { 1591 case BLKIF_OP_DISCARD: 1592 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1593 struct request_queue *rq = info->rq; 1594 1595 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1596 info->gd->disk_name, op_name(bret.operation)); 1597 blkif_req(req)->error = BLK_STS_NOTSUPP; 1598 info->feature_discard = 0; 1599 info->feature_secdiscard = 0; 1600 blk_queue_max_discard_sectors(rq, 0); 1601 blk_queue_max_secure_erase_sectors(rq, 0); 1602 } 1603 break; 1604 case BLKIF_OP_FLUSH_DISKCACHE: 1605 case BLKIF_OP_WRITE_BARRIER: 1606 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1607 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1608 info->gd->disk_name, op_name(bret.operation)); 1609 blkif_req(req)->error = BLK_STS_NOTSUPP; 1610 } 1611 if (unlikely(bret.status == BLKIF_RSP_ERROR && 1612 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1613 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n", 1614 info->gd->disk_name, op_name(bret.operation)); 1615 blkif_req(req)->error = BLK_STS_NOTSUPP; 1616 } 1617 if (unlikely(blkif_req(req)->error)) { 1618 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1619 blkif_req(req)->error = BLK_STS_OK; 1620 info->feature_fua = 0; 1621 info->feature_flush = 0; 1622 xlvbd_flush(info); 1623 } 1624 fallthrough; 1625 case BLKIF_OP_READ: 1626 case BLKIF_OP_WRITE: 1627 if (unlikely(bret.status != BLKIF_RSP_OKAY)) 1628 dev_dbg_ratelimited(&info->xbdev->dev, 1629 "Bad return from blkdev data request: %#x\n", 1630 bret.status); 1631 1632 break; 1633 default: 1634 BUG(); 1635 } 1636 1637 if (likely(!blk_should_fake_timeout(req->q))) 1638 blk_mq_complete_request(req); 1639 } 1640 1641 rinfo->ring.rsp_cons = i; 1642 1643 if (i != rinfo->ring.req_prod_pvt) { 1644 int more_to_do; 1645 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1646 if (more_to_do) 1647 goto again; 1648 } else 1649 rinfo->ring.sring->rsp_event = i + 1; 1650 1651 kick_pending_request_queues_locked(rinfo); 1652 1653 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1654 1655 xen_irq_lateeoi(irq, eoiflag); 1656 1657 return IRQ_HANDLED; 1658 1659 err: 1660 info->connected = BLKIF_STATE_ERROR; 1661 1662 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1663 1664 /* No EOI in order to avoid further interrupts. */ 1665 1666 pr_alert("%s disabled for further use\n", info->gd->disk_name); 1667 return IRQ_HANDLED; 1668 } 1669 1670 1671 static int setup_blkring(struct xenbus_device *dev, 1672 struct blkfront_ring_info *rinfo) 1673 { 1674 struct blkif_sring *sring; 1675 int err; 1676 struct blkfront_info *info = rinfo->dev_info; 1677 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1678 1679 err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring, 1680 info->nr_ring_pages, rinfo->ring_ref); 1681 if (err) 1682 goto fail; 1683 1684 XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1685 1686 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1687 if (err) 1688 goto fail; 1689 1690 err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt, 1691 0, "blkif", rinfo); 1692 if (err <= 0) { 1693 xenbus_dev_fatal(dev, err, 1694 "bind_evtchn_to_irqhandler failed"); 1695 goto fail; 1696 } 1697 rinfo->irq = err; 1698 1699 return 0; 1700 fail: 1701 blkif_free(info, 0); 1702 return err; 1703 } 1704 1705 /* 1706 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1707 * ring buffer may have multi pages depending on ->nr_ring_pages. 1708 */ 1709 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1710 struct blkfront_ring_info *rinfo, const char *dir) 1711 { 1712 int err; 1713 unsigned int i; 1714 const char *message = NULL; 1715 struct blkfront_info *info = rinfo->dev_info; 1716 1717 if (info->nr_ring_pages == 1) { 1718 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1719 if (err) { 1720 message = "writing ring-ref"; 1721 goto abort_transaction; 1722 } 1723 } else { 1724 for (i = 0; i < info->nr_ring_pages; i++) { 1725 char ring_ref_name[RINGREF_NAME_LEN]; 1726 1727 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1728 err = xenbus_printf(xbt, dir, ring_ref_name, 1729 "%u", rinfo->ring_ref[i]); 1730 if (err) { 1731 message = "writing ring-ref"; 1732 goto abort_transaction; 1733 } 1734 } 1735 } 1736 1737 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1738 if (err) { 1739 message = "writing event-channel"; 1740 goto abort_transaction; 1741 } 1742 1743 return 0; 1744 1745 abort_transaction: 1746 xenbus_transaction_end(xbt, 1); 1747 if (message) 1748 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1749 1750 return err; 1751 } 1752 1753 /* Common code used when first setting up, and when resuming. */ 1754 static int talk_to_blkback(struct xenbus_device *dev, 1755 struct blkfront_info *info) 1756 { 1757 const char *message = NULL; 1758 struct xenbus_transaction xbt; 1759 int err; 1760 unsigned int i, max_page_order; 1761 unsigned int ring_page_order; 1762 struct blkfront_ring_info *rinfo; 1763 1764 if (!info) 1765 return -ENODEV; 1766 1767 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1768 "max-ring-page-order", 0); 1769 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1770 info->nr_ring_pages = 1 << ring_page_order; 1771 1772 err = negotiate_mq(info); 1773 if (err) 1774 goto destroy_blkring; 1775 1776 for_each_rinfo(info, rinfo, i) { 1777 /* Create shared ring, alloc event channel. */ 1778 err = setup_blkring(dev, rinfo); 1779 if (err) 1780 goto destroy_blkring; 1781 } 1782 1783 again: 1784 err = xenbus_transaction_start(&xbt); 1785 if (err) { 1786 xenbus_dev_fatal(dev, err, "starting transaction"); 1787 goto destroy_blkring; 1788 } 1789 1790 if (info->nr_ring_pages > 1) { 1791 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1792 ring_page_order); 1793 if (err) { 1794 message = "writing ring-page-order"; 1795 goto abort_transaction; 1796 } 1797 } 1798 1799 /* We already got the number of queues/rings in _probe */ 1800 if (info->nr_rings == 1) { 1801 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1802 if (err) 1803 goto destroy_blkring; 1804 } else { 1805 char *path; 1806 size_t pathsize; 1807 1808 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1809 info->nr_rings); 1810 if (err) { 1811 message = "writing multi-queue-num-queues"; 1812 goto abort_transaction; 1813 } 1814 1815 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1816 path = kmalloc(pathsize, GFP_KERNEL); 1817 if (!path) { 1818 err = -ENOMEM; 1819 message = "ENOMEM while writing ring references"; 1820 goto abort_transaction; 1821 } 1822 1823 for_each_rinfo(info, rinfo, i) { 1824 memset(path, 0, pathsize); 1825 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1826 err = write_per_ring_nodes(xbt, rinfo, path); 1827 if (err) { 1828 kfree(path); 1829 goto destroy_blkring; 1830 } 1831 } 1832 kfree(path); 1833 } 1834 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1835 XEN_IO_PROTO_ABI_NATIVE); 1836 if (err) { 1837 message = "writing protocol"; 1838 goto abort_transaction; 1839 } 1840 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1841 info->feature_persistent); 1842 if (err) 1843 dev_warn(&dev->dev, 1844 "writing persistent grants feature to xenbus"); 1845 1846 err = xenbus_transaction_end(xbt, 0); 1847 if (err) { 1848 if (err == -EAGAIN) 1849 goto again; 1850 xenbus_dev_fatal(dev, err, "completing transaction"); 1851 goto destroy_blkring; 1852 } 1853 1854 for_each_rinfo(info, rinfo, i) { 1855 unsigned int j; 1856 1857 for (j = 0; j < BLK_RING_SIZE(info); j++) 1858 rinfo->shadow[j].req.u.rw.id = j + 1; 1859 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1860 } 1861 xenbus_switch_state(dev, XenbusStateInitialised); 1862 1863 return 0; 1864 1865 abort_transaction: 1866 xenbus_transaction_end(xbt, 1); 1867 if (message) 1868 xenbus_dev_fatal(dev, err, "%s", message); 1869 destroy_blkring: 1870 blkif_free(info, 0); 1871 return err; 1872 } 1873 1874 static int negotiate_mq(struct blkfront_info *info) 1875 { 1876 unsigned int backend_max_queues; 1877 unsigned int i; 1878 struct blkfront_ring_info *rinfo; 1879 1880 BUG_ON(info->nr_rings); 1881 1882 /* Check if backend supports multiple queues. */ 1883 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1884 "multi-queue-max-queues", 1); 1885 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1886 /* We need at least one ring. */ 1887 if (!info->nr_rings) 1888 info->nr_rings = 1; 1889 1890 info->rinfo_size = struct_size(info->rinfo, shadow, 1891 BLK_RING_SIZE(info)); 1892 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1893 if (!info->rinfo) { 1894 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1895 info->nr_rings = 0; 1896 return -ENOMEM; 1897 } 1898 1899 for_each_rinfo(info, rinfo, i) { 1900 INIT_LIST_HEAD(&rinfo->indirect_pages); 1901 INIT_LIST_HEAD(&rinfo->grants); 1902 rinfo->dev_info = info; 1903 INIT_WORK(&rinfo->work, blkif_restart_queue); 1904 spin_lock_init(&rinfo->ring_lock); 1905 } 1906 return 0; 1907 } 1908 1909 /* Enable the persistent grants feature. */ 1910 static bool feature_persistent = true; 1911 module_param(feature_persistent, bool, 0644); 1912 MODULE_PARM_DESC(feature_persistent, 1913 "Enables the persistent grants feature"); 1914 1915 /* 1916 * Entry point to this code when a new device is created. Allocate the basic 1917 * structures and the ring buffer for communication with the backend, and 1918 * inform the backend of the appropriate details for those. Switch to 1919 * Initialised state. 1920 */ 1921 static int blkfront_probe(struct xenbus_device *dev, 1922 const struct xenbus_device_id *id) 1923 { 1924 int err, vdevice; 1925 struct blkfront_info *info; 1926 1927 /* FIXME: Use dynamic device id if this is not set. */ 1928 err = xenbus_scanf(XBT_NIL, dev->nodename, 1929 "virtual-device", "%i", &vdevice); 1930 if (err != 1) { 1931 /* go looking in the extended area instead */ 1932 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1933 "%i", &vdevice); 1934 if (err != 1) { 1935 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1936 return err; 1937 } 1938 } 1939 1940 if (xen_hvm_domain()) { 1941 char *type; 1942 int len; 1943 /* no unplug has been done: do not hook devices != xen vbds */ 1944 if (xen_has_pv_and_legacy_disk_devices()) { 1945 int major; 1946 1947 if (!VDEV_IS_EXTENDED(vdevice)) 1948 major = BLKIF_MAJOR(vdevice); 1949 else 1950 major = XENVBD_MAJOR; 1951 1952 if (major != XENVBD_MAJOR) { 1953 printk(KERN_INFO 1954 "%s: HVM does not support vbd %d as xen block device\n", 1955 __func__, vdevice); 1956 return -ENODEV; 1957 } 1958 } 1959 /* do not create a PV cdrom device if we are an HVM guest */ 1960 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1961 if (IS_ERR(type)) 1962 return -ENODEV; 1963 if (strncmp(type, "cdrom", 5) == 0) { 1964 kfree(type); 1965 return -ENODEV; 1966 } 1967 kfree(type); 1968 } 1969 info = kzalloc(sizeof(*info), GFP_KERNEL); 1970 if (!info) { 1971 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1972 return -ENOMEM; 1973 } 1974 1975 info->xbdev = dev; 1976 1977 mutex_init(&info->mutex); 1978 info->vdevice = vdevice; 1979 info->connected = BLKIF_STATE_DISCONNECTED; 1980 1981 info->feature_persistent = feature_persistent; 1982 1983 /* Front end dir is a number, which is used as the id. */ 1984 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1985 dev_set_drvdata(&dev->dev, info); 1986 1987 mutex_lock(&blkfront_mutex); 1988 list_add(&info->info_list, &info_list); 1989 mutex_unlock(&blkfront_mutex); 1990 1991 return 0; 1992 } 1993 1994 static int blkif_recover(struct blkfront_info *info) 1995 { 1996 unsigned int r_index; 1997 struct request *req, *n; 1998 int rc; 1999 struct bio *bio; 2000 unsigned int segs; 2001 struct blkfront_ring_info *rinfo; 2002 2003 blkfront_gather_backend_features(info); 2004 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2005 blkif_set_queue_limits(info); 2006 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2007 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2008 2009 for_each_rinfo(info, rinfo, r_index) { 2010 rc = blkfront_setup_indirect(rinfo); 2011 if (rc) 2012 return rc; 2013 } 2014 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2015 2016 /* Now safe for us to use the shared ring */ 2017 info->connected = BLKIF_STATE_CONNECTED; 2018 2019 for_each_rinfo(info, rinfo, r_index) { 2020 /* Kick any other new requests queued since we resumed */ 2021 kick_pending_request_queues(rinfo); 2022 } 2023 2024 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2025 /* Requeue pending requests (flush or discard) */ 2026 list_del_init(&req->queuelist); 2027 BUG_ON(req->nr_phys_segments > segs); 2028 blk_mq_requeue_request(req, false); 2029 } 2030 blk_mq_start_stopped_hw_queues(info->rq, true); 2031 blk_mq_kick_requeue_list(info->rq); 2032 2033 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2034 /* Traverse the list of pending bios and re-queue them */ 2035 submit_bio(bio); 2036 } 2037 2038 return 0; 2039 } 2040 2041 /* 2042 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2043 * driver restart. We tear down our blkif structure and recreate it, but 2044 * leave the device-layer structures intact so that this is transparent to the 2045 * rest of the kernel. 2046 */ 2047 static int blkfront_resume(struct xenbus_device *dev) 2048 { 2049 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2050 int err = 0; 2051 unsigned int i, j; 2052 struct blkfront_ring_info *rinfo; 2053 2054 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2055 2056 bio_list_init(&info->bio_list); 2057 INIT_LIST_HEAD(&info->requests); 2058 for_each_rinfo(info, rinfo, i) { 2059 struct bio_list merge_bio; 2060 struct blk_shadow *shadow = rinfo->shadow; 2061 2062 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2063 /* Not in use? */ 2064 if (!shadow[j].request) 2065 continue; 2066 2067 /* 2068 * Get the bios in the request so we can re-queue them. 2069 */ 2070 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2071 req_op(shadow[j].request) == REQ_OP_DISCARD || 2072 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2073 shadow[j].request->cmd_flags & REQ_FUA) { 2074 /* 2075 * Flush operations don't contain bios, so 2076 * we need to requeue the whole request 2077 * 2078 * XXX: but this doesn't make any sense for a 2079 * write with the FUA flag set.. 2080 */ 2081 list_add(&shadow[j].request->queuelist, &info->requests); 2082 continue; 2083 } 2084 merge_bio.head = shadow[j].request->bio; 2085 merge_bio.tail = shadow[j].request->biotail; 2086 bio_list_merge(&info->bio_list, &merge_bio); 2087 shadow[j].request->bio = NULL; 2088 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2089 } 2090 } 2091 2092 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2093 2094 err = talk_to_blkback(dev, info); 2095 if (!err) 2096 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2097 2098 /* 2099 * We have to wait for the backend to switch to 2100 * connected state, since we want to read which 2101 * features it supports. 2102 */ 2103 2104 return err; 2105 } 2106 2107 static void blkfront_closing(struct blkfront_info *info) 2108 { 2109 struct xenbus_device *xbdev = info->xbdev; 2110 struct blkfront_ring_info *rinfo; 2111 unsigned int i; 2112 2113 if (xbdev->state == XenbusStateClosing) 2114 return; 2115 2116 /* No more blkif_request(). */ 2117 if (info->rq && info->gd) { 2118 blk_mq_stop_hw_queues(info->rq); 2119 blk_mark_disk_dead(info->gd); 2120 set_capacity(info->gd, 0); 2121 } 2122 2123 for_each_rinfo(info, rinfo, i) { 2124 /* No more gnttab callback work. */ 2125 gnttab_cancel_free_callback(&rinfo->callback); 2126 2127 /* Flush gnttab callback work. Must be done with no locks held. */ 2128 flush_work(&rinfo->work); 2129 } 2130 2131 xenbus_frontend_closed(xbdev); 2132 } 2133 2134 static void blkfront_setup_discard(struct blkfront_info *info) 2135 { 2136 info->feature_discard = 1; 2137 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2138 "discard-granularity", 2139 0); 2140 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2141 "discard-alignment", 0); 2142 info->feature_secdiscard = 2143 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2144 0); 2145 } 2146 2147 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2148 { 2149 unsigned int psegs, grants, memflags; 2150 int err, i; 2151 struct blkfront_info *info = rinfo->dev_info; 2152 2153 memflags = memalloc_noio_save(); 2154 2155 if (info->max_indirect_segments == 0) { 2156 if (!HAS_EXTRA_REQ) 2157 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2158 else { 2159 /* 2160 * When an extra req is required, the maximum 2161 * grants supported is related to the size of the 2162 * Linux block segment. 2163 */ 2164 grants = GRANTS_PER_PSEG; 2165 } 2166 } 2167 else 2168 grants = info->max_indirect_segments; 2169 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2170 2171 err = fill_grant_buffer(rinfo, 2172 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2173 if (err) 2174 goto out_of_memory; 2175 2176 if (!info->feature_persistent && info->max_indirect_segments) { 2177 /* 2178 * We are using indirect descriptors but not persistent 2179 * grants, we need to allocate a set of pages that can be 2180 * used for mapping indirect grefs 2181 */ 2182 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2183 2184 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2185 for (i = 0; i < num; i++) { 2186 struct page *indirect_page = alloc_page(GFP_KERNEL); 2187 if (!indirect_page) 2188 goto out_of_memory; 2189 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2190 } 2191 } 2192 2193 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2194 rinfo->shadow[i].grants_used = 2195 kvcalloc(grants, 2196 sizeof(rinfo->shadow[i].grants_used[0]), 2197 GFP_KERNEL); 2198 rinfo->shadow[i].sg = kvcalloc(psegs, 2199 sizeof(rinfo->shadow[i].sg[0]), 2200 GFP_KERNEL); 2201 if (info->max_indirect_segments) 2202 rinfo->shadow[i].indirect_grants = 2203 kvcalloc(INDIRECT_GREFS(grants), 2204 sizeof(rinfo->shadow[i].indirect_grants[0]), 2205 GFP_KERNEL); 2206 if ((rinfo->shadow[i].grants_used == NULL) || 2207 (rinfo->shadow[i].sg == NULL) || 2208 (info->max_indirect_segments && 2209 (rinfo->shadow[i].indirect_grants == NULL))) 2210 goto out_of_memory; 2211 sg_init_table(rinfo->shadow[i].sg, psegs); 2212 } 2213 2214 memalloc_noio_restore(memflags); 2215 2216 return 0; 2217 2218 out_of_memory: 2219 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2220 kvfree(rinfo->shadow[i].grants_used); 2221 rinfo->shadow[i].grants_used = NULL; 2222 kvfree(rinfo->shadow[i].sg); 2223 rinfo->shadow[i].sg = NULL; 2224 kvfree(rinfo->shadow[i].indirect_grants); 2225 rinfo->shadow[i].indirect_grants = NULL; 2226 } 2227 if (!list_empty(&rinfo->indirect_pages)) { 2228 struct page *indirect_page, *n; 2229 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2230 list_del(&indirect_page->lru); 2231 __free_page(indirect_page); 2232 } 2233 } 2234 2235 memalloc_noio_restore(memflags); 2236 2237 return -ENOMEM; 2238 } 2239 2240 /* 2241 * Gather all backend feature-* 2242 */ 2243 static void blkfront_gather_backend_features(struct blkfront_info *info) 2244 { 2245 unsigned int indirect_segments; 2246 2247 info->feature_flush = 0; 2248 info->feature_fua = 0; 2249 2250 /* 2251 * If there's no "feature-barrier" defined, then it means 2252 * we're dealing with a very old backend which writes 2253 * synchronously; nothing to do. 2254 * 2255 * If there are barriers, then we use flush. 2256 */ 2257 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2258 info->feature_flush = 1; 2259 info->feature_fua = 1; 2260 } 2261 2262 /* 2263 * And if there is "feature-flush-cache" use that above 2264 * barriers. 2265 */ 2266 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2267 0)) { 2268 info->feature_flush = 1; 2269 info->feature_fua = 0; 2270 } 2271 2272 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2273 blkfront_setup_discard(info); 2274 2275 if (info->feature_persistent) 2276 info->feature_persistent = 2277 !!xenbus_read_unsigned(info->xbdev->otherend, 2278 "feature-persistent", 0); 2279 2280 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2281 "feature-max-indirect-segments", 0); 2282 if (indirect_segments > xen_blkif_max_segments) 2283 indirect_segments = xen_blkif_max_segments; 2284 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2285 indirect_segments = 0; 2286 info->max_indirect_segments = indirect_segments; 2287 2288 if (info->feature_persistent) { 2289 mutex_lock(&blkfront_mutex); 2290 schedule_delayed_work(&blkfront_work, HZ * 10); 2291 mutex_unlock(&blkfront_mutex); 2292 } 2293 } 2294 2295 /* 2296 * Invoked when the backend is finally 'ready' (and has told produced 2297 * the details about the physical device - #sectors, size, etc). 2298 */ 2299 static void blkfront_connect(struct blkfront_info *info) 2300 { 2301 unsigned long long sectors; 2302 unsigned long sector_size; 2303 unsigned int physical_sector_size; 2304 int err, i; 2305 struct blkfront_ring_info *rinfo; 2306 2307 switch (info->connected) { 2308 case BLKIF_STATE_CONNECTED: 2309 /* 2310 * Potentially, the back-end may be signalling 2311 * a capacity change; update the capacity. 2312 */ 2313 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2314 "sectors", "%Lu", §ors); 2315 if (XENBUS_EXIST_ERR(err)) 2316 return; 2317 printk(KERN_INFO "Setting capacity to %Lu\n", 2318 sectors); 2319 set_capacity_and_notify(info->gd, sectors); 2320 2321 return; 2322 case BLKIF_STATE_SUSPENDED: 2323 /* 2324 * If we are recovering from suspension, we need to wait 2325 * for the backend to announce it's features before 2326 * reconnecting, at least we need to know if the backend 2327 * supports indirect descriptors, and how many. 2328 */ 2329 blkif_recover(info); 2330 return; 2331 2332 default: 2333 break; 2334 } 2335 2336 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2337 __func__, info->xbdev->otherend); 2338 2339 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2340 "sectors", "%llu", §ors, 2341 "info", "%u", &info->vdisk_info, 2342 "sector-size", "%lu", §or_size, 2343 NULL); 2344 if (err) { 2345 xenbus_dev_fatal(info->xbdev, err, 2346 "reading backend fields at %s", 2347 info->xbdev->otherend); 2348 return; 2349 } 2350 2351 /* 2352 * physical-sector-size is a newer field, so old backends may not 2353 * provide this. Assume physical sector size to be the same as 2354 * sector_size in that case. 2355 */ 2356 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2357 "physical-sector-size", 2358 sector_size); 2359 blkfront_gather_backend_features(info); 2360 for_each_rinfo(info, rinfo, i) { 2361 err = blkfront_setup_indirect(rinfo); 2362 if (err) { 2363 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2364 info->xbdev->otherend); 2365 blkif_free(info, 0); 2366 break; 2367 } 2368 } 2369 2370 err = xlvbd_alloc_gendisk(sectors, info, sector_size, 2371 physical_sector_size); 2372 if (err) { 2373 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2374 info->xbdev->otherend); 2375 goto fail; 2376 } 2377 2378 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2379 2380 /* Kick pending requests. */ 2381 info->connected = BLKIF_STATE_CONNECTED; 2382 for_each_rinfo(info, rinfo, i) 2383 kick_pending_request_queues(rinfo); 2384 2385 err = device_add_disk(&info->xbdev->dev, info->gd, NULL); 2386 if (err) { 2387 blk_cleanup_disk(info->gd); 2388 blk_mq_free_tag_set(&info->tag_set); 2389 info->rq = NULL; 2390 goto fail; 2391 } 2392 2393 info->is_ready = 1; 2394 return; 2395 2396 fail: 2397 blkif_free(info, 0); 2398 return; 2399 } 2400 2401 /* 2402 * Callback received when the backend's state changes. 2403 */ 2404 static void blkback_changed(struct xenbus_device *dev, 2405 enum xenbus_state backend_state) 2406 { 2407 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2408 2409 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2410 2411 switch (backend_state) { 2412 case XenbusStateInitWait: 2413 if (dev->state != XenbusStateInitialising) 2414 break; 2415 if (talk_to_blkback(dev, info)) 2416 break; 2417 break; 2418 case XenbusStateInitialising: 2419 case XenbusStateInitialised: 2420 case XenbusStateReconfiguring: 2421 case XenbusStateReconfigured: 2422 case XenbusStateUnknown: 2423 break; 2424 2425 case XenbusStateConnected: 2426 /* 2427 * talk_to_blkback sets state to XenbusStateInitialised 2428 * and blkfront_connect sets it to XenbusStateConnected 2429 * (if connection went OK). 2430 * 2431 * If the backend (or toolstack) decides to poke at backend 2432 * state (and re-trigger the watch by setting the state repeatedly 2433 * to XenbusStateConnected (4)) we need to deal with this. 2434 * This is allowed as this is used to communicate to the guest 2435 * that the size of disk has changed! 2436 */ 2437 if ((dev->state != XenbusStateInitialised) && 2438 (dev->state != XenbusStateConnected)) { 2439 if (talk_to_blkback(dev, info)) 2440 break; 2441 } 2442 2443 blkfront_connect(info); 2444 break; 2445 2446 case XenbusStateClosed: 2447 if (dev->state == XenbusStateClosed) 2448 break; 2449 fallthrough; 2450 case XenbusStateClosing: 2451 blkfront_closing(info); 2452 break; 2453 } 2454 } 2455 2456 static int blkfront_remove(struct xenbus_device *xbdev) 2457 { 2458 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2459 2460 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2461 2462 if (info->gd) 2463 del_gendisk(info->gd); 2464 2465 mutex_lock(&blkfront_mutex); 2466 list_del(&info->info_list); 2467 mutex_unlock(&blkfront_mutex); 2468 2469 blkif_free(info, 0); 2470 if (info->gd) { 2471 xlbd_release_minors(info->gd->first_minor, info->gd->minors); 2472 blk_cleanup_disk(info->gd); 2473 blk_mq_free_tag_set(&info->tag_set); 2474 } 2475 2476 kfree(info); 2477 return 0; 2478 } 2479 2480 static int blkfront_is_ready(struct xenbus_device *dev) 2481 { 2482 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2483 2484 return info->is_ready && info->xbdev; 2485 } 2486 2487 static const struct block_device_operations xlvbd_block_fops = 2488 { 2489 .owner = THIS_MODULE, 2490 .getgeo = blkif_getgeo, 2491 .ioctl = blkif_ioctl, 2492 .compat_ioctl = blkdev_compat_ptr_ioctl, 2493 }; 2494 2495 2496 static const struct xenbus_device_id blkfront_ids[] = { 2497 { "vbd" }, 2498 { "" } 2499 }; 2500 2501 static struct xenbus_driver blkfront_driver = { 2502 .ids = blkfront_ids, 2503 .probe = blkfront_probe, 2504 .remove = blkfront_remove, 2505 .resume = blkfront_resume, 2506 .otherend_changed = blkback_changed, 2507 .is_ready = blkfront_is_ready, 2508 }; 2509 2510 static void purge_persistent_grants(struct blkfront_info *info) 2511 { 2512 unsigned int i; 2513 unsigned long flags; 2514 struct blkfront_ring_info *rinfo; 2515 2516 for_each_rinfo(info, rinfo, i) { 2517 struct grant *gnt_list_entry, *tmp; 2518 LIST_HEAD(grants); 2519 2520 spin_lock_irqsave(&rinfo->ring_lock, flags); 2521 2522 if (rinfo->persistent_gnts_c == 0) { 2523 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2524 continue; 2525 } 2526 2527 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2528 node) { 2529 if (gnt_list_entry->gref == INVALID_GRANT_REF || 2530 !gnttab_try_end_foreign_access(gnt_list_entry->gref)) 2531 continue; 2532 2533 list_del(&gnt_list_entry->node); 2534 rinfo->persistent_gnts_c--; 2535 gnt_list_entry->gref = INVALID_GRANT_REF; 2536 list_add_tail(&gnt_list_entry->node, &grants); 2537 } 2538 2539 list_splice_tail(&grants, &rinfo->grants); 2540 2541 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2542 } 2543 } 2544 2545 static void blkfront_delay_work(struct work_struct *work) 2546 { 2547 struct blkfront_info *info; 2548 bool need_schedule_work = false; 2549 2550 mutex_lock(&blkfront_mutex); 2551 2552 list_for_each_entry(info, &info_list, info_list) { 2553 if (info->feature_persistent) { 2554 need_schedule_work = true; 2555 mutex_lock(&info->mutex); 2556 purge_persistent_grants(info); 2557 mutex_unlock(&info->mutex); 2558 } 2559 } 2560 2561 if (need_schedule_work) 2562 schedule_delayed_work(&blkfront_work, HZ * 10); 2563 2564 mutex_unlock(&blkfront_mutex); 2565 } 2566 2567 static int __init xlblk_init(void) 2568 { 2569 int ret; 2570 int nr_cpus = num_online_cpus(); 2571 2572 if (!xen_domain()) 2573 return -ENODEV; 2574 2575 if (!xen_has_pv_disk_devices()) 2576 return -ENODEV; 2577 2578 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2579 pr_warn("xen_blk: can't get major %d with name %s\n", 2580 XENVBD_MAJOR, DEV_NAME); 2581 return -ENODEV; 2582 } 2583 2584 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2585 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2586 2587 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2588 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2589 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2590 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2591 } 2592 2593 if (xen_blkif_max_queues > nr_cpus) { 2594 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2595 xen_blkif_max_queues, nr_cpus); 2596 xen_blkif_max_queues = nr_cpus; 2597 } 2598 2599 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2600 2601 ret = xenbus_register_frontend(&blkfront_driver); 2602 if (ret) { 2603 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2604 return ret; 2605 } 2606 2607 return 0; 2608 } 2609 module_init(xlblk_init); 2610 2611 2612 static void __exit xlblk_exit(void) 2613 { 2614 cancel_delayed_work_sync(&blkfront_work); 2615 2616 xenbus_unregister_driver(&blkfront_driver); 2617 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2618 kfree(minors); 2619 } 2620 module_exit(xlblk_exit); 2621 2622 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2623 MODULE_LICENSE("GPL"); 2624 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2625 MODULE_ALIAS("xen:vbd"); 2626 MODULE_ALIAS("xenblk"); 2627