1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 #include <linux/workqueue.h> 50 51 #include <xen/xen.h> 52 #include <xen/xenbus.h> 53 #include <xen/grant_table.h> 54 #include <xen/events.h> 55 #include <xen/page.h> 56 #include <xen/platform_pci.h> 57 58 #include <xen/interface/grant_table.h> 59 #include <xen/interface/io/blkif.h> 60 #include <xen/interface/io/protocols.h> 61 62 #include <asm/xen/hypervisor.h> 63 64 /* 65 * The minimal size of segment supported by the block framework is PAGE_SIZE. 66 * When Linux is using a different page size than Xen, it may not be possible 67 * to put all the data in a single segment. 68 * This can happen when the backend doesn't support indirect descriptor and 69 * therefore the maximum amount of data that a request can carry is 70 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 71 * 72 * Note that we only support one extra request. So the Linux page size 73 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 74 * 88KB. 75 */ 76 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 77 78 enum blkif_state { 79 BLKIF_STATE_DISCONNECTED, 80 BLKIF_STATE_CONNECTED, 81 BLKIF_STATE_SUSPENDED, 82 }; 83 84 struct grant { 85 grant_ref_t gref; 86 struct page *page; 87 struct list_head node; 88 }; 89 90 enum blk_req_status { 91 REQ_WAITING, 92 REQ_DONE, 93 REQ_ERROR, 94 REQ_EOPNOTSUPP, 95 }; 96 97 struct blk_shadow { 98 struct blkif_request req; 99 struct request *request; 100 struct grant **grants_used; 101 struct grant **indirect_grants; 102 struct scatterlist *sg; 103 unsigned int num_sg; 104 enum blk_req_status status; 105 106 #define NO_ASSOCIATED_ID ~0UL 107 /* 108 * Id of the sibling if we ever need 2 requests when handling a 109 * block I/O request 110 */ 111 unsigned long associated_id; 112 }; 113 114 struct blkif_req { 115 blk_status_t error; 116 }; 117 118 static inline struct blkif_req *blkif_req(struct request *rq) 119 { 120 return blk_mq_rq_to_pdu(rq); 121 } 122 123 static DEFINE_MUTEX(blkfront_mutex); 124 static const struct block_device_operations xlvbd_block_fops; 125 static struct delayed_work blkfront_work; 126 static LIST_HEAD(info_list); 127 128 /* 129 * Maximum number of segments in indirect requests, the actual value used by 130 * the frontend driver is the minimum of this value and the value provided 131 * by the backend driver. 132 */ 133 134 static unsigned int xen_blkif_max_segments = 32; 135 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 136 MODULE_PARM_DESC(max_indirect_segments, 137 "Maximum amount of segments in indirect requests (default is 32)"); 138 139 static unsigned int xen_blkif_max_queues = 4; 140 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 141 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 142 143 /* 144 * Maximum order of pages to be used for the shared ring between front and 145 * backend, 4KB page granularity is used. 146 */ 147 static unsigned int xen_blkif_max_ring_order; 148 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 149 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 150 151 #define BLK_RING_SIZE(info) \ 152 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 153 154 /* 155 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 156 * characters are enough. Define to 20 to keep consistent with backend. 157 */ 158 #define RINGREF_NAME_LEN (20) 159 /* 160 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 161 */ 162 #define QUEUE_NAME_LEN (17) 163 164 /* 165 * Per-ring info. 166 * Every blkfront device can associate with one or more blkfront_ring_info, 167 * depending on how many hardware queues/rings to be used. 168 */ 169 struct blkfront_ring_info { 170 /* Lock to protect data in every ring buffer. */ 171 spinlock_t ring_lock; 172 struct blkif_front_ring ring; 173 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 174 unsigned int evtchn, irq; 175 struct work_struct work; 176 struct gnttab_free_callback callback; 177 struct list_head indirect_pages; 178 struct list_head grants; 179 unsigned int persistent_gnts_c; 180 unsigned long shadow_free; 181 struct blkfront_info *dev_info; 182 struct blk_shadow shadow[]; 183 }; 184 185 /* 186 * We have one of these per vbd, whether ide, scsi or 'other'. They 187 * hang in private_data off the gendisk structure. We may end up 188 * putting all kinds of interesting stuff here :-) 189 */ 190 struct blkfront_info 191 { 192 struct mutex mutex; 193 struct xenbus_device *xbdev; 194 struct gendisk *gd; 195 u16 sector_size; 196 unsigned int physical_sector_size; 197 int vdevice; 198 blkif_vdev_t handle; 199 enum blkif_state connected; 200 /* Number of pages per ring buffer. */ 201 unsigned int nr_ring_pages; 202 struct request_queue *rq; 203 unsigned int feature_flush:1; 204 unsigned int feature_fua:1; 205 unsigned int feature_discard:1; 206 unsigned int feature_secdiscard:1; 207 unsigned int feature_persistent:1; 208 unsigned int discard_granularity; 209 unsigned int discard_alignment; 210 /* Number of 4KB segments handled */ 211 unsigned int max_indirect_segments; 212 int is_ready; 213 struct blk_mq_tag_set tag_set; 214 struct blkfront_ring_info *rinfo; 215 unsigned int nr_rings; 216 /* Save uncomplete reqs and bios for migration. */ 217 struct list_head requests; 218 struct bio_list bio_list; 219 struct list_head info_list; 220 }; 221 222 static unsigned int nr_minors; 223 static unsigned long *minors; 224 static DEFINE_SPINLOCK(minor_lock); 225 226 #define GRANT_INVALID_REF 0 227 228 #define PARTS_PER_DISK 16 229 #define PARTS_PER_EXT_DISK 256 230 231 #define BLKIF_MAJOR(dev) ((dev)>>8) 232 #define BLKIF_MINOR(dev) ((dev) & 0xff) 233 234 #define EXT_SHIFT 28 235 #define EXTENDED (1<<EXT_SHIFT) 236 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 237 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 238 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 239 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 240 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 241 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 242 243 #define DEV_NAME "xvd" /* name in /dev */ 244 245 /* 246 * Grants are always the same size as a Xen page (i.e 4KB). 247 * A physical segment is always the same size as a Linux page. 248 * Number of grants per physical segment 249 */ 250 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 251 252 #define GRANTS_PER_INDIRECT_FRAME \ 253 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 254 255 #define INDIRECT_GREFS(_grants) \ 256 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 257 258 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 259 static void blkfront_gather_backend_features(struct blkfront_info *info); 260 static int negotiate_mq(struct blkfront_info *info); 261 262 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 263 { 264 unsigned long free = rinfo->shadow_free; 265 266 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 267 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 268 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 269 return free; 270 } 271 272 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 273 unsigned long id) 274 { 275 if (rinfo->shadow[id].req.u.rw.id != id) 276 return -EINVAL; 277 if (rinfo->shadow[id].request == NULL) 278 return -EINVAL; 279 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 280 rinfo->shadow[id].request = NULL; 281 rinfo->shadow_free = id; 282 return 0; 283 } 284 285 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 286 { 287 struct blkfront_info *info = rinfo->dev_info; 288 struct page *granted_page; 289 struct grant *gnt_list_entry, *n; 290 int i = 0; 291 292 while (i < num) { 293 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 294 if (!gnt_list_entry) 295 goto out_of_memory; 296 297 if (info->feature_persistent) { 298 granted_page = alloc_page(GFP_NOIO); 299 if (!granted_page) { 300 kfree(gnt_list_entry); 301 goto out_of_memory; 302 } 303 gnt_list_entry->page = granted_page; 304 } 305 306 gnt_list_entry->gref = GRANT_INVALID_REF; 307 list_add(&gnt_list_entry->node, &rinfo->grants); 308 i++; 309 } 310 311 return 0; 312 313 out_of_memory: 314 list_for_each_entry_safe(gnt_list_entry, n, 315 &rinfo->grants, node) { 316 list_del(&gnt_list_entry->node); 317 if (info->feature_persistent) 318 __free_page(gnt_list_entry->page); 319 kfree(gnt_list_entry); 320 i--; 321 } 322 BUG_ON(i != 0); 323 return -ENOMEM; 324 } 325 326 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 327 { 328 struct grant *gnt_list_entry; 329 330 BUG_ON(list_empty(&rinfo->grants)); 331 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 332 node); 333 list_del(&gnt_list_entry->node); 334 335 if (gnt_list_entry->gref != GRANT_INVALID_REF) 336 rinfo->persistent_gnts_c--; 337 338 return gnt_list_entry; 339 } 340 341 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 342 const struct blkfront_info *info) 343 { 344 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 345 info->xbdev->otherend_id, 346 gnt_list_entry->page, 347 0); 348 } 349 350 static struct grant *get_grant(grant_ref_t *gref_head, 351 unsigned long gfn, 352 struct blkfront_ring_info *rinfo) 353 { 354 struct grant *gnt_list_entry = get_free_grant(rinfo); 355 struct blkfront_info *info = rinfo->dev_info; 356 357 if (gnt_list_entry->gref != GRANT_INVALID_REF) 358 return gnt_list_entry; 359 360 /* Assign a gref to this page */ 361 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 362 BUG_ON(gnt_list_entry->gref == -ENOSPC); 363 if (info->feature_persistent) 364 grant_foreign_access(gnt_list_entry, info); 365 else { 366 /* Grant access to the GFN passed by the caller */ 367 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 368 info->xbdev->otherend_id, 369 gfn, 0); 370 } 371 372 return gnt_list_entry; 373 } 374 375 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 376 struct blkfront_ring_info *rinfo) 377 { 378 struct grant *gnt_list_entry = get_free_grant(rinfo); 379 struct blkfront_info *info = rinfo->dev_info; 380 381 if (gnt_list_entry->gref != GRANT_INVALID_REF) 382 return gnt_list_entry; 383 384 /* Assign a gref to this page */ 385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 386 BUG_ON(gnt_list_entry->gref == -ENOSPC); 387 if (!info->feature_persistent) { 388 struct page *indirect_page; 389 390 /* Fetch a pre-allocated page to use for indirect grefs */ 391 BUG_ON(list_empty(&rinfo->indirect_pages)); 392 indirect_page = list_first_entry(&rinfo->indirect_pages, 393 struct page, lru); 394 list_del(&indirect_page->lru); 395 gnt_list_entry->page = indirect_page; 396 } 397 grant_foreign_access(gnt_list_entry, info); 398 399 return gnt_list_entry; 400 } 401 402 static const char *op_name(int op) 403 { 404 static const char *const names[] = { 405 [BLKIF_OP_READ] = "read", 406 [BLKIF_OP_WRITE] = "write", 407 [BLKIF_OP_WRITE_BARRIER] = "barrier", 408 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 409 [BLKIF_OP_DISCARD] = "discard" }; 410 411 if (op < 0 || op >= ARRAY_SIZE(names)) 412 return "unknown"; 413 414 if (!names[op]) 415 return "reserved"; 416 417 return names[op]; 418 } 419 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 420 { 421 unsigned int end = minor + nr; 422 int rc; 423 424 if (end > nr_minors) { 425 unsigned long *bitmap, *old; 426 427 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 428 GFP_KERNEL); 429 if (bitmap == NULL) 430 return -ENOMEM; 431 432 spin_lock(&minor_lock); 433 if (end > nr_minors) { 434 old = minors; 435 memcpy(bitmap, minors, 436 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 437 minors = bitmap; 438 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 439 } else 440 old = bitmap; 441 spin_unlock(&minor_lock); 442 kfree(old); 443 } 444 445 spin_lock(&minor_lock); 446 if (find_next_bit(minors, end, minor) >= end) { 447 bitmap_set(minors, minor, nr); 448 rc = 0; 449 } else 450 rc = -EBUSY; 451 spin_unlock(&minor_lock); 452 453 return rc; 454 } 455 456 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 457 { 458 unsigned int end = minor + nr; 459 460 BUG_ON(end > nr_minors); 461 spin_lock(&minor_lock); 462 bitmap_clear(minors, minor, nr); 463 spin_unlock(&minor_lock); 464 } 465 466 static void blkif_restart_queue_callback(void *arg) 467 { 468 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 469 schedule_work(&rinfo->work); 470 } 471 472 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 473 { 474 /* We don't have real geometry info, but let's at least return 475 values consistent with the size of the device */ 476 sector_t nsect = get_capacity(bd->bd_disk); 477 sector_t cylinders = nsect; 478 479 hg->heads = 0xff; 480 hg->sectors = 0x3f; 481 sector_div(cylinders, hg->heads * hg->sectors); 482 hg->cylinders = cylinders; 483 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 484 hg->cylinders = 0xffff; 485 return 0; 486 } 487 488 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 489 unsigned command, unsigned long argument) 490 { 491 struct blkfront_info *info = bdev->bd_disk->private_data; 492 int i; 493 494 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 495 command, (long)argument); 496 497 switch (command) { 498 case CDROMMULTISESSION: 499 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 500 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 501 if (put_user(0, (char __user *)(argument + i))) 502 return -EFAULT; 503 return 0; 504 505 case CDROM_GET_CAPABILITY: { 506 struct gendisk *gd = info->gd; 507 if (gd->flags & GENHD_FL_CD) 508 return 0; 509 return -EINVAL; 510 } 511 512 default: 513 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 514 command);*/ 515 return -EINVAL; /* same return as native Linux */ 516 } 517 518 return 0; 519 } 520 521 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 522 struct request *req, 523 struct blkif_request **ring_req) 524 { 525 unsigned long id; 526 527 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 528 rinfo->ring.req_prod_pvt++; 529 530 id = get_id_from_freelist(rinfo); 531 rinfo->shadow[id].request = req; 532 rinfo->shadow[id].status = REQ_WAITING; 533 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 534 535 (*ring_req)->u.rw.id = id; 536 537 return id; 538 } 539 540 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 541 { 542 struct blkfront_info *info = rinfo->dev_info; 543 struct blkif_request *ring_req; 544 unsigned long id; 545 546 /* Fill out a communications ring structure. */ 547 id = blkif_ring_get_request(rinfo, req, &ring_req); 548 549 ring_req->operation = BLKIF_OP_DISCARD; 550 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 551 ring_req->u.discard.id = id; 552 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 553 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 554 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 555 else 556 ring_req->u.discard.flag = 0; 557 558 /* Keep a private copy so we can reissue requests when recovering. */ 559 rinfo->shadow[id].req = *ring_req; 560 561 return 0; 562 } 563 564 struct setup_rw_req { 565 unsigned int grant_idx; 566 struct blkif_request_segment *segments; 567 struct blkfront_ring_info *rinfo; 568 struct blkif_request *ring_req; 569 grant_ref_t gref_head; 570 unsigned int id; 571 /* Only used when persistent grant is used and it's a read request */ 572 bool need_copy; 573 unsigned int bvec_off; 574 char *bvec_data; 575 576 bool require_extra_req; 577 struct blkif_request *extra_ring_req; 578 }; 579 580 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 581 unsigned int len, void *data) 582 { 583 struct setup_rw_req *setup = data; 584 int n, ref; 585 struct grant *gnt_list_entry; 586 unsigned int fsect, lsect; 587 /* Convenient aliases */ 588 unsigned int grant_idx = setup->grant_idx; 589 struct blkif_request *ring_req = setup->ring_req; 590 struct blkfront_ring_info *rinfo = setup->rinfo; 591 /* 592 * We always use the shadow of the first request to store the list 593 * of grant associated to the block I/O request. This made the 594 * completion more easy to handle even if the block I/O request is 595 * split. 596 */ 597 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 598 599 if (unlikely(setup->require_extra_req && 600 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 601 /* 602 * We are using the second request, setup grant_idx 603 * to be the index of the segment array. 604 */ 605 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 606 ring_req = setup->extra_ring_req; 607 } 608 609 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 610 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 611 if (setup->segments) 612 kunmap_atomic(setup->segments); 613 614 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 615 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 616 shadow->indirect_grants[n] = gnt_list_entry; 617 setup->segments = kmap_atomic(gnt_list_entry->page); 618 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 619 } 620 621 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 622 ref = gnt_list_entry->gref; 623 /* 624 * All the grants are stored in the shadow of the first 625 * request. Therefore we have to use the global index. 626 */ 627 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 628 629 if (setup->need_copy) { 630 void *shared_data; 631 632 shared_data = kmap_atomic(gnt_list_entry->page); 633 /* 634 * this does not wipe data stored outside the 635 * range sg->offset..sg->offset+sg->length. 636 * Therefore, blkback *could* see data from 637 * previous requests. This is OK as long as 638 * persistent grants are shared with just one 639 * domain. It may need refactoring if this 640 * changes 641 */ 642 memcpy(shared_data + offset, 643 setup->bvec_data + setup->bvec_off, 644 len); 645 646 kunmap_atomic(shared_data); 647 setup->bvec_off += len; 648 } 649 650 fsect = offset >> 9; 651 lsect = fsect + (len >> 9) - 1; 652 if (ring_req->operation != BLKIF_OP_INDIRECT) { 653 ring_req->u.rw.seg[grant_idx] = 654 (struct blkif_request_segment) { 655 .gref = ref, 656 .first_sect = fsect, 657 .last_sect = lsect }; 658 } else { 659 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 660 (struct blkif_request_segment) { 661 .gref = ref, 662 .first_sect = fsect, 663 .last_sect = lsect }; 664 } 665 666 (setup->grant_idx)++; 667 } 668 669 static void blkif_setup_extra_req(struct blkif_request *first, 670 struct blkif_request *second) 671 { 672 uint16_t nr_segments = first->u.rw.nr_segments; 673 674 /* 675 * The second request is only present when the first request uses 676 * all its segments. It's always the continuity of the first one. 677 */ 678 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 679 680 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 681 second->u.rw.sector_number = first->u.rw.sector_number + 682 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 683 684 second->u.rw.handle = first->u.rw.handle; 685 second->operation = first->operation; 686 } 687 688 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 689 { 690 struct blkfront_info *info = rinfo->dev_info; 691 struct blkif_request *ring_req, *extra_ring_req = NULL; 692 unsigned long id, extra_id = NO_ASSOCIATED_ID; 693 bool require_extra_req = false; 694 int i; 695 struct setup_rw_req setup = { 696 .grant_idx = 0, 697 .segments = NULL, 698 .rinfo = rinfo, 699 .need_copy = rq_data_dir(req) && info->feature_persistent, 700 }; 701 702 /* 703 * Used to store if we are able to queue the request by just using 704 * existing persistent grants, or if we have to get new grants, 705 * as there are not sufficiently many free. 706 */ 707 bool new_persistent_gnts = false; 708 struct scatterlist *sg; 709 int num_sg, max_grefs, num_grant; 710 711 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 712 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 713 /* 714 * If we are using indirect segments we need to account 715 * for the indirect grefs used in the request. 716 */ 717 max_grefs += INDIRECT_GREFS(max_grefs); 718 719 /* Check if we have enough persistent grants to allocate a requests */ 720 if (rinfo->persistent_gnts_c < max_grefs) { 721 new_persistent_gnts = true; 722 723 if (gnttab_alloc_grant_references( 724 max_grefs - rinfo->persistent_gnts_c, 725 &setup.gref_head) < 0) { 726 gnttab_request_free_callback( 727 &rinfo->callback, 728 blkif_restart_queue_callback, 729 rinfo, 730 max_grefs - rinfo->persistent_gnts_c); 731 return 1; 732 } 733 } 734 735 /* Fill out a communications ring structure. */ 736 id = blkif_ring_get_request(rinfo, req, &ring_req); 737 738 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 739 num_grant = 0; 740 /* Calculate the number of grant used */ 741 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 742 num_grant += gnttab_count_grant(sg->offset, sg->length); 743 744 require_extra_req = info->max_indirect_segments == 0 && 745 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 746 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 747 748 rinfo->shadow[id].num_sg = num_sg; 749 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 750 likely(!require_extra_req)) { 751 /* 752 * The indirect operation can only be a BLKIF_OP_READ or 753 * BLKIF_OP_WRITE 754 */ 755 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 756 ring_req->operation = BLKIF_OP_INDIRECT; 757 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 758 BLKIF_OP_WRITE : BLKIF_OP_READ; 759 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 760 ring_req->u.indirect.handle = info->handle; 761 ring_req->u.indirect.nr_segments = num_grant; 762 } else { 763 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 764 ring_req->u.rw.handle = info->handle; 765 ring_req->operation = rq_data_dir(req) ? 766 BLKIF_OP_WRITE : BLKIF_OP_READ; 767 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 768 /* 769 * Ideally we can do an unordered flush-to-disk. 770 * In case the backend onlysupports barriers, use that. 771 * A barrier request a superset of FUA, so we can 772 * implement it the same way. (It's also a FLUSH+FUA, 773 * since it is guaranteed ordered WRT previous writes.) 774 */ 775 if (info->feature_flush && info->feature_fua) 776 ring_req->operation = 777 BLKIF_OP_WRITE_BARRIER; 778 else if (info->feature_flush) 779 ring_req->operation = 780 BLKIF_OP_FLUSH_DISKCACHE; 781 else 782 ring_req->operation = 0; 783 } 784 ring_req->u.rw.nr_segments = num_grant; 785 if (unlikely(require_extra_req)) { 786 extra_id = blkif_ring_get_request(rinfo, req, 787 &extra_ring_req); 788 /* 789 * Only the first request contains the scatter-gather 790 * list. 791 */ 792 rinfo->shadow[extra_id].num_sg = 0; 793 794 blkif_setup_extra_req(ring_req, extra_ring_req); 795 796 /* Link the 2 requests together */ 797 rinfo->shadow[extra_id].associated_id = id; 798 rinfo->shadow[id].associated_id = extra_id; 799 } 800 } 801 802 setup.ring_req = ring_req; 803 setup.id = id; 804 805 setup.require_extra_req = require_extra_req; 806 if (unlikely(require_extra_req)) 807 setup.extra_ring_req = extra_ring_req; 808 809 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 810 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 811 812 if (setup.need_copy) { 813 setup.bvec_off = sg->offset; 814 setup.bvec_data = kmap_atomic(sg_page(sg)); 815 } 816 817 gnttab_foreach_grant_in_range(sg_page(sg), 818 sg->offset, 819 sg->length, 820 blkif_setup_rw_req_grant, 821 &setup); 822 823 if (setup.need_copy) 824 kunmap_atomic(setup.bvec_data); 825 } 826 if (setup.segments) 827 kunmap_atomic(setup.segments); 828 829 /* Keep a private copy so we can reissue requests when recovering. */ 830 rinfo->shadow[id].req = *ring_req; 831 if (unlikely(require_extra_req)) 832 rinfo->shadow[extra_id].req = *extra_ring_req; 833 834 if (new_persistent_gnts) 835 gnttab_free_grant_references(setup.gref_head); 836 837 return 0; 838 } 839 840 /* 841 * Generate a Xen blkfront IO request from a blk layer request. Reads 842 * and writes are handled as expected. 843 * 844 * @req: a request struct 845 */ 846 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 847 { 848 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 849 return 1; 850 851 if (unlikely(req_op(req) == REQ_OP_DISCARD || 852 req_op(req) == REQ_OP_SECURE_ERASE)) 853 return blkif_queue_discard_req(req, rinfo); 854 else 855 return blkif_queue_rw_req(req, rinfo); 856 } 857 858 static inline void flush_requests(struct blkfront_ring_info *rinfo) 859 { 860 int notify; 861 862 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 863 864 if (notify) 865 notify_remote_via_irq(rinfo->irq); 866 } 867 868 static inline bool blkif_request_flush_invalid(struct request *req, 869 struct blkfront_info *info) 870 { 871 return (blk_rq_is_passthrough(req) || 872 ((req_op(req) == REQ_OP_FLUSH) && 873 !info->feature_flush) || 874 ((req->cmd_flags & REQ_FUA) && 875 !info->feature_fua)); 876 } 877 878 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 879 const struct blk_mq_queue_data *qd) 880 { 881 unsigned long flags; 882 int qid = hctx->queue_num; 883 struct blkfront_info *info = hctx->queue->queuedata; 884 struct blkfront_ring_info *rinfo = NULL; 885 886 BUG_ON(info->nr_rings <= qid); 887 rinfo = &info->rinfo[qid]; 888 blk_mq_start_request(qd->rq); 889 spin_lock_irqsave(&rinfo->ring_lock, flags); 890 if (RING_FULL(&rinfo->ring)) 891 goto out_busy; 892 893 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 894 goto out_err; 895 896 if (blkif_queue_request(qd->rq, rinfo)) 897 goto out_busy; 898 899 flush_requests(rinfo); 900 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 901 return BLK_STS_OK; 902 903 out_err: 904 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 905 return BLK_STS_IOERR; 906 907 out_busy: 908 blk_mq_stop_hw_queue(hctx); 909 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 910 return BLK_STS_DEV_RESOURCE; 911 } 912 913 static void blkif_complete_rq(struct request *rq) 914 { 915 blk_mq_end_request(rq, blkif_req(rq)->error); 916 } 917 918 static const struct blk_mq_ops blkfront_mq_ops = { 919 .queue_rq = blkif_queue_rq, 920 .complete = blkif_complete_rq, 921 }; 922 923 static void blkif_set_queue_limits(struct blkfront_info *info) 924 { 925 struct request_queue *rq = info->rq; 926 struct gendisk *gd = info->gd; 927 unsigned int segments = info->max_indirect_segments ? : 928 BLKIF_MAX_SEGMENTS_PER_REQUEST; 929 930 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 931 932 if (info->feature_discard) { 933 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 934 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 935 rq->limits.discard_granularity = info->discard_granularity; 936 rq->limits.discard_alignment = info->discard_alignment; 937 if (info->feature_secdiscard) 938 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 939 } 940 941 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 942 blk_queue_logical_block_size(rq, info->sector_size); 943 blk_queue_physical_block_size(rq, info->physical_sector_size); 944 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 945 946 /* Each segment in a request is up to an aligned page in size. */ 947 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 948 blk_queue_max_segment_size(rq, PAGE_SIZE); 949 950 /* Ensure a merged request will fit in a single I/O ring slot. */ 951 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 952 953 /* Make sure buffer addresses are sector-aligned. */ 954 blk_queue_dma_alignment(rq, 511); 955 } 956 957 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 958 unsigned int physical_sector_size) 959 { 960 struct request_queue *rq; 961 struct blkfront_info *info = gd->private_data; 962 963 memset(&info->tag_set, 0, sizeof(info->tag_set)); 964 info->tag_set.ops = &blkfront_mq_ops; 965 info->tag_set.nr_hw_queues = info->nr_rings; 966 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 967 /* 968 * When indirect descriptior is not supported, the I/O request 969 * will be split between multiple request in the ring. 970 * To avoid problems when sending the request, divide by 971 * 2 the depth of the queue. 972 */ 973 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 974 } else 975 info->tag_set.queue_depth = BLK_RING_SIZE(info); 976 info->tag_set.numa_node = NUMA_NO_NODE; 977 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 978 info->tag_set.cmd_size = sizeof(struct blkif_req); 979 info->tag_set.driver_data = info; 980 981 if (blk_mq_alloc_tag_set(&info->tag_set)) 982 return -EINVAL; 983 rq = blk_mq_init_queue(&info->tag_set); 984 if (IS_ERR(rq)) { 985 blk_mq_free_tag_set(&info->tag_set); 986 return PTR_ERR(rq); 987 } 988 989 rq->queuedata = info; 990 info->rq = gd->queue = rq; 991 info->gd = gd; 992 info->sector_size = sector_size; 993 info->physical_sector_size = physical_sector_size; 994 blkif_set_queue_limits(info); 995 996 return 0; 997 } 998 999 static const char *flush_info(struct blkfront_info *info) 1000 { 1001 if (info->feature_flush && info->feature_fua) 1002 return "barrier: enabled;"; 1003 else if (info->feature_flush) 1004 return "flush diskcache: enabled;"; 1005 else 1006 return "barrier or flush: disabled;"; 1007 } 1008 1009 static void xlvbd_flush(struct blkfront_info *info) 1010 { 1011 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 1012 info->feature_fua ? true : false); 1013 pr_info("blkfront: %s: %s %s %s %s %s\n", 1014 info->gd->disk_name, flush_info(info), 1015 "persistent grants:", info->feature_persistent ? 1016 "enabled;" : "disabled;", "indirect descriptors:", 1017 info->max_indirect_segments ? "enabled;" : "disabled;"); 1018 } 1019 1020 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1021 { 1022 int major; 1023 major = BLKIF_MAJOR(vdevice); 1024 *minor = BLKIF_MINOR(vdevice); 1025 switch (major) { 1026 case XEN_IDE0_MAJOR: 1027 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1028 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1029 EMULATED_HD_DISK_MINOR_OFFSET; 1030 break; 1031 case XEN_IDE1_MAJOR: 1032 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1033 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1034 EMULATED_HD_DISK_MINOR_OFFSET; 1035 break; 1036 case XEN_SCSI_DISK0_MAJOR: 1037 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1038 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1039 break; 1040 case XEN_SCSI_DISK1_MAJOR: 1041 case XEN_SCSI_DISK2_MAJOR: 1042 case XEN_SCSI_DISK3_MAJOR: 1043 case XEN_SCSI_DISK4_MAJOR: 1044 case XEN_SCSI_DISK5_MAJOR: 1045 case XEN_SCSI_DISK6_MAJOR: 1046 case XEN_SCSI_DISK7_MAJOR: 1047 *offset = (*minor / PARTS_PER_DISK) + 1048 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1049 EMULATED_SD_DISK_NAME_OFFSET; 1050 *minor = *minor + 1051 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1052 EMULATED_SD_DISK_MINOR_OFFSET; 1053 break; 1054 case XEN_SCSI_DISK8_MAJOR: 1055 case XEN_SCSI_DISK9_MAJOR: 1056 case XEN_SCSI_DISK10_MAJOR: 1057 case XEN_SCSI_DISK11_MAJOR: 1058 case XEN_SCSI_DISK12_MAJOR: 1059 case XEN_SCSI_DISK13_MAJOR: 1060 case XEN_SCSI_DISK14_MAJOR: 1061 case XEN_SCSI_DISK15_MAJOR: 1062 *offset = (*minor / PARTS_PER_DISK) + 1063 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1064 EMULATED_SD_DISK_NAME_OFFSET; 1065 *minor = *minor + 1066 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1067 EMULATED_SD_DISK_MINOR_OFFSET; 1068 break; 1069 case XENVBD_MAJOR: 1070 *offset = *minor / PARTS_PER_DISK; 1071 break; 1072 default: 1073 printk(KERN_WARNING "blkfront: your disk configuration is " 1074 "incorrect, please use an xvd device instead\n"); 1075 return -ENODEV; 1076 } 1077 return 0; 1078 } 1079 1080 static char *encode_disk_name(char *ptr, unsigned int n) 1081 { 1082 if (n >= 26) 1083 ptr = encode_disk_name(ptr, n / 26 - 1); 1084 *ptr = 'a' + n % 26; 1085 return ptr + 1; 1086 } 1087 1088 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1089 struct blkfront_info *info, 1090 u16 vdisk_info, u16 sector_size, 1091 unsigned int physical_sector_size) 1092 { 1093 struct gendisk *gd; 1094 int nr_minors = 1; 1095 int err; 1096 unsigned int offset; 1097 int minor; 1098 int nr_parts; 1099 char *ptr; 1100 1101 BUG_ON(info->gd != NULL); 1102 BUG_ON(info->rq != NULL); 1103 1104 if ((info->vdevice>>EXT_SHIFT) > 1) { 1105 /* this is above the extended range; something is wrong */ 1106 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1107 return -ENODEV; 1108 } 1109 1110 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1111 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1112 if (err) 1113 return err; 1114 nr_parts = PARTS_PER_DISK; 1115 } else { 1116 minor = BLKIF_MINOR_EXT(info->vdevice); 1117 nr_parts = PARTS_PER_EXT_DISK; 1118 offset = minor / nr_parts; 1119 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1120 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1121 "emulated IDE disks,\n\t choose an xvd device name" 1122 "from xvde on\n", info->vdevice); 1123 } 1124 if (minor >> MINORBITS) { 1125 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1126 info->vdevice, minor); 1127 return -ENODEV; 1128 } 1129 1130 if ((minor % nr_parts) == 0) 1131 nr_minors = nr_parts; 1132 1133 err = xlbd_reserve_minors(minor, nr_minors); 1134 if (err) 1135 goto out; 1136 err = -ENODEV; 1137 1138 gd = alloc_disk(nr_minors); 1139 if (gd == NULL) 1140 goto release; 1141 1142 strcpy(gd->disk_name, DEV_NAME); 1143 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1144 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1145 if (nr_minors > 1) 1146 *ptr = 0; 1147 else 1148 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1149 "%d", minor & (nr_parts - 1)); 1150 1151 gd->major = XENVBD_MAJOR; 1152 gd->first_minor = minor; 1153 gd->fops = &xlvbd_block_fops; 1154 gd->private_data = info; 1155 set_capacity(gd, capacity); 1156 1157 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) { 1158 del_gendisk(gd); 1159 goto release; 1160 } 1161 1162 xlvbd_flush(info); 1163 1164 if (vdisk_info & VDISK_READONLY) 1165 set_disk_ro(gd, 1); 1166 1167 if (vdisk_info & VDISK_REMOVABLE) 1168 gd->flags |= GENHD_FL_REMOVABLE; 1169 1170 if (vdisk_info & VDISK_CDROM) 1171 gd->flags |= GENHD_FL_CD; 1172 1173 return 0; 1174 1175 release: 1176 xlbd_release_minors(minor, nr_minors); 1177 out: 1178 return err; 1179 } 1180 1181 static void xlvbd_release_gendisk(struct blkfront_info *info) 1182 { 1183 unsigned int minor, nr_minors, i; 1184 1185 if (info->rq == NULL) 1186 return; 1187 1188 /* No more blkif_request(). */ 1189 blk_mq_stop_hw_queues(info->rq); 1190 1191 for (i = 0; i < info->nr_rings; i++) { 1192 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1193 1194 /* No more gnttab callback work. */ 1195 gnttab_cancel_free_callback(&rinfo->callback); 1196 1197 /* Flush gnttab callback work. Must be done with no locks held. */ 1198 flush_work(&rinfo->work); 1199 } 1200 1201 del_gendisk(info->gd); 1202 1203 minor = info->gd->first_minor; 1204 nr_minors = info->gd->minors; 1205 xlbd_release_minors(minor, nr_minors); 1206 1207 blk_cleanup_queue(info->rq); 1208 blk_mq_free_tag_set(&info->tag_set); 1209 info->rq = NULL; 1210 1211 put_disk(info->gd); 1212 info->gd = NULL; 1213 } 1214 1215 /* Already hold rinfo->ring_lock. */ 1216 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1217 { 1218 if (!RING_FULL(&rinfo->ring)) 1219 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1220 } 1221 1222 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1223 { 1224 unsigned long flags; 1225 1226 spin_lock_irqsave(&rinfo->ring_lock, flags); 1227 kick_pending_request_queues_locked(rinfo); 1228 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1229 } 1230 1231 static void blkif_restart_queue(struct work_struct *work) 1232 { 1233 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1234 1235 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1236 kick_pending_request_queues(rinfo); 1237 } 1238 1239 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1240 { 1241 struct grant *persistent_gnt, *n; 1242 struct blkfront_info *info = rinfo->dev_info; 1243 int i, j, segs; 1244 1245 /* 1246 * Remove indirect pages, this only happens when using indirect 1247 * descriptors but not persistent grants 1248 */ 1249 if (!list_empty(&rinfo->indirect_pages)) { 1250 struct page *indirect_page, *n; 1251 1252 BUG_ON(info->feature_persistent); 1253 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1254 list_del(&indirect_page->lru); 1255 __free_page(indirect_page); 1256 } 1257 } 1258 1259 /* Remove all persistent grants. */ 1260 if (!list_empty(&rinfo->grants)) { 1261 list_for_each_entry_safe(persistent_gnt, n, 1262 &rinfo->grants, node) { 1263 list_del(&persistent_gnt->node); 1264 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1265 gnttab_end_foreign_access(persistent_gnt->gref, 1266 0, 0UL); 1267 rinfo->persistent_gnts_c--; 1268 } 1269 if (info->feature_persistent) 1270 __free_page(persistent_gnt->page); 1271 kfree(persistent_gnt); 1272 } 1273 } 1274 BUG_ON(rinfo->persistent_gnts_c != 0); 1275 1276 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1277 /* 1278 * Clear persistent grants present in requests already 1279 * on the shared ring 1280 */ 1281 if (!rinfo->shadow[i].request) 1282 goto free_shadow; 1283 1284 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1285 rinfo->shadow[i].req.u.indirect.nr_segments : 1286 rinfo->shadow[i].req.u.rw.nr_segments; 1287 for (j = 0; j < segs; j++) { 1288 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1289 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1290 if (info->feature_persistent) 1291 __free_page(persistent_gnt->page); 1292 kfree(persistent_gnt); 1293 } 1294 1295 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1296 /* 1297 * If this is not an indirect operation don't try to 1298 * free indirect segments 1299 */ 1300 goto free_shadow; 1301 1302 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1303 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1304 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1305 __free_page(persistent_gnt->page); 1306 kfree(persistent_gnt); 1307 } 1308 1309 free_shadow: 1310 kvfree(rinfo->shadow[i].grants_used); 1311 rinfo->shadow[i].grants_used = NULL; 1312 kvfree(rinfo->shadow[i].indirect_grants); 1313 rinfo->shadow[i].indirect_grants = NULL; 1314 kvfree(rinfo->shadow[i].sg); 1315 rinfo->shadow[i].sg = NULL; 1316 } 1317 1318 /* No more gnttab callback work. */ 1319 gnttab_cancel_free_callback(&rinfo->callback); 1320 1321 /* Flush gnttab callback work. Must be done with no locks held. */ 1322 flush_work(&rinfo->work); 1323 1324 /* Free resources associated with old device channel. */ 1325 for (i = 0; i < info->nr_ring_pages; i++) { 1326 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1327 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1328 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1329 } 1330 } 1331 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1332 rinfo->ring.sring = NULL; 1333 1334 if (rinfo->irq) 1335 unbind_from_irqhandler(rinfo->irq, rinfo); 1336 rinfo->evtchn = rinfo->irq = 0; 1337 } 1338 1339 static void blkif_free(struct blkfront_info *info, int suspend) 1340 { 1341 unsigned int i; 1342 1343 /* Prevent new requests being issued until we fix things up. */ 1344 info->connected = suspend ? 1345 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1346 /* No more blkif_request(). */ 1347 if (info->rq) 1348 blk_mq_stop_hw_queues(info->rq); 1349 1350 for (i = 0; i < info->nr_rings; i++) 1351 blkif_free_ring(&info->rinfo[i]); 1352 1353 kvfree(info->rinfo); 1354 info->rinfo = NULL; 1355 info->nr_rings = 0; 1356 } 1357 1358 struct copy_from_grant { 1359 const struct blk_shadow *s; 1360 unsigned int grant_idx; 1361 unsigned int bvec_offset; 1362 char *bvec_data; 1363 }; 1364 1365 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1366 unsigned int len, void *data) 1367 { 1368 struct copy_from_grant *info = data; 1369 char *shared_data; 1370 /* Convenient aliases */ 1371 const struct blk_shadow *s = info->s; 1372 1373 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1374 1375 memcpy(info->bvec_data + info->bvec_offset, 1376 shared_data + offset, len); 1377 1378 info->bvec_offset += len; 1379 info->grant_idx++; 1380 1381 kunmap_atomic(shared_data); 1382 } 1383 1384 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1385 { 1386 switch (rsp) 1387 { 1388 case BLKIF_RSP_OKAY: 1389 return REQ_DONE; 1390 case BLKIF_RSP_EOPNOTSUPP: 1391 return REQ_EOPNOTSUPP; 1392 case BLKIF_RSP_ERROR: 1393 /* Fallthrough. */ 1394 default: 1395 return REQ_ERROR; 1396 } 1397 } 1398 1399 /* 1400 * Get the final status of the block request based on two ring response 1401 */ 1402 static int blkif_get_final_status(enum blk_req_status s1, 1403 enum blk_req_status s2) 1404 { 1405 BUG_ON(s1 == REQ_WAITING); 1406 BUG_ON(s2 == REQ_WAITING); 1407 1408 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1409 return BLKIF_RSP_ERROR; 1410 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1411 return BLKIF_RSP_EOPNOTSUPP; 1412 return BLKIF_RSP_OKAY; 1413 } 1414 1415 static bool blkif_completion(unsigned long *id, 1416 struct blkfront_ring_info *rinfo, 1417 struct blkif_response *bret) 1418 { 1419 int i = 0; 1420 struct scatterlist *sg; 1421 int num_sg, num_grant; 1422 struct blkfront_info *info = rinfo->dev_info; 1423 struct blk_shadow *s = &rinfo->shadow[*id]; 1424 struct copy_from_grant data = { 1425 .grant_idx = 0, 1426 }; 1427 1428 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1429 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1430 1431 /* The I/O request may be split in two. */ 1432 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1433 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1434 1435 /* Keep the status of the current response in shadow. */ 1436 s->status = blkif_rsp_to_req_status(bret->status); 1437 1438 /* Wait the second response if not yet here. */ 1439 if (s2->status == REQ_WAITING) 1440 return false; 1441 1442 bret->status = blkif_get_final_status(s->status, 1443 s2->status); 1444 1445 /* 1446 * All the grants is stored in the first shadow in order 1447 * to make the completion code simpler. 1448 */ 1449 num_grant += s2->req.u.rw.nr_segments; 1450 1451 /* 1452 * The two responses may not come in order. Only the 1453 * first request will store the scatter-gather list. 1454 */ 1455 if (s2->num_sg != 0) { 1456 /* Update "id" with the ID of the first response. */ 1457 *id = s->associated_id; 1458 s = s2; 1459 } 1460 1461 /* 1462 * We don't need anymore the second request, so recycling 1463 * it now. 1464 */ 1465 if (add_id_to_freelist(rinfo, s->associated_id)) 1466 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1467 info->gd->disk_name, s->associated_id); 1468 } 1469 1470 data.s = s; 1471 num_sg = s->num_sg; 1472 1473 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1474 for_each_sg(s->sg, sg, num_sg, i) { 1475 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1476 1477 data.bvec_offset = sg->offset; 1478 data.bvec_data = kmap_atomic(sg_page(sg)); 1479 1480 gnttab_foreach_grant_in_range(sg_page(sg), 1481 sg->offset, 1482 sg->length, 1483 blkif_copy_from_grant, 1484 &data); 1485 1486 kunmap_atomic(data.bvec_data); 1487 } 1488 } 1489 /* Add the persistent grant into the list of free grants */ 1490 for (i = 0; i < num_grant; i++) { 1491 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1492 /* 1493 * If the grant is still mapped by the backend (the 1494 * backend has chosen to make this grant persistent) 1495 * we add it at the head of the list, so it will be 1496 * reused first. 1497 */ 1498 if (!info->feature_persistent) 1499 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1500 s->grants_used[i]->gref); 1501 list_add(&s->grants_used[i]->node, &rinfo->grants); 1502 rinfo->persistent_gnts_c++; 1503 } else { 1504 /* 1505 * If the grant is not mapped by the backend we end the 1506 * foreign access and add it to the tail of the list, 1507 * so it will not be picked again unless we run out of 1508 * persistent grants. 1509 */ 1510 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1511 s->grants_used[i]->gref = GRANT_INVALID_REF; 1512 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1513 } 1514 } 1515 if (s->req.operation == BLKIF_OP_INDIRECT) { 1516 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1517 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1518 if (!info->feature_persistent) 1519 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1520 s->indirect_grants[i]->gref); 1521 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1522 rinfo->persistent_gnts_c++; 1523 } else { 1524 struct page *indirect_page; 1525 1526 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1527 /* 1528 * Add the used indirect page back to the list of 1529 * available pages for indirect grefs. 1530 */ 1531 if (!info->feature_persistent) { 1532 indirect_page = s->indirect_grants[i]->page; 1533 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1534 } 1535 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1536 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1537 } 1538 } 1539 } 1540 1541 return true; 1542 } 1543 1544 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1545 { 1546 struct request *req; 1547 struct blkif_response *bret; 1548 RING_IDX i, rp; 1549 unsigned long flags; 1550 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1551 struct blkfront_info *info = rinfo->dev_info; 1552 1553 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1554 return IRQ_HANDLED; 1555 1556 spin_lock_irqsave(&rinfo->ring_lock, flags); 1557 again: 1558 rp = rinfo->ring.sring->rsp_prod; 1559 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1560 1561 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1562 unsigned long id; 1563 1564 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1565 id = bret->id; 1566 /* 1567 * The backend has messed up and given us an id that we would 1568 * never have given to it (we stamp it up to BLK_RING_SIZE - 1569 * look in get_id_from_freelist. 1570 */ 1571 if (id >= BLK_RING_SIZE(info)) { 1572 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1573 info->gd->disk_name, op_name(bret->operation), id); 1574 /* We can't safely get the 'struct request' as 1575 * the id is busted. */ 1576 continue; 1577 } 1578 req = rinfo->shadow[id].request; 1579 1580 if (bret->operation != BLKIF_OP_DISCARD) { 1581 /* 1582 * We may need to wait for an extra response if the 1583 * I/O request is split in 2 1584 */ 1585 if (!blkif_completion(&id, rinfo, bret)) 1586 continue; 1587 } 1588 1589 if (add_id_to_freelist(rinfo, id)) { 1590 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1591 info->gd->disk_name, op_name(bret->operation), id); 1592 continue; 1593 } 1594 1595 if (bret->status == BLKIF_RSP_OKAY) 1596 blkif_req(req)->error = BLK_STS_OK; 1597 else 1598 blkif_req(req)->error = BLK_STS_IOERR; 1599 1600 switch (bret->operation) { 1601 case BLKIF_OP_DISCARD: 1602 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1603 struct request_queue *rq = info->rq; 1604 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1605 info->gd->disk_name, op_name(bret->operation)); 1606 blkif_req(req)->error = BLK_STS_NOTSUPP; 1607 info->feature_discard = 0; 1608 info->feature_secdiscard = 0; 1609 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1610 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1611 } 1612 break; 1613 case BLKIF_OP_FLUSH_DISKCACHE: 1614 case BLKIF_OP_WRITE_BARRIER: 1615 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1616 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1617 info->gd->disk_name, op_name(bret->operation)); 1618 blkif_req(req)->error = BLK_STS_NOTSUPP; 1619 } 1620 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1621 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1622 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1623 info->gd->disk_name, op_name(bret->operation)); 1624 blkif_req(req)->error = BLK_STS_NOTSUPP; 1625 } 1626 if (unlikely(blkif_req(req)->error)) { 1627 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1628 blkif_req(req)->error = BLK_STS_OK; 1629 info->feature_fua = 0; 1630 info->feature_flush = 0; 1631 xlvbd_flush(info); 1632 } 1633 /* fall through */ 1634 case BLKIF_OP_READ: 1635 case BLKIF_OP_WRITE: 1636 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1637 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1638 "request: %x\n", bret->status); 1639 1640 break; 1641 default: 1642 BUG(); 1643 } 1644 1645 blk_mq_complete_request(req); 1646 } 1647 1648 rinfo->ring.rsp_cons = i; 1649 1650 if (i != rinfo->ring.req_prod_pvt) { 1651 int more_to_do; 1652 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1653 if (more_to_do) 1654 goto again; 1655 } else 1656 rinfo->ring.sring->rsp_event = i + 1; 1657 1658 kick_pending_request_queues_locked(rinfo); 1659 1660 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1661 1662 return IRQ_HANDLED; 1663 } 1664 1665 1666 static int setup_blkring(struct xenbus_device *dev, 1667 struct blkfront_ring_info *rinfo) 1668 { 1669 struct blkif_sring *sring; 1670 int err, i; 1671 struct blkfront_info *info = rinfo->dev_info; 1672 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1673 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1674 1675 for (i = 0; i < info->nr_ring_pages; i++) 1676 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1677 1678 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1679 get_order(ring_size)); 1680 if (!sring) { 1681 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1682 return -ENOMEM; 1683 } 1684 SHARED_RING_INIT(sring); 1685 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1686 1687 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1688 if (err < 0) { 1689 free_pages((unsigned long)sring, get_order(ring_size)); 1690 rinfo->ring.sring = NULL; 1691 goto fail; 1692 } 1693 for (i = 0; i < info->nr_ring_pages; i++) 1694 rinfo->ring_ref[i] = gref[i]; 1695 1696 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1697 if (err) 1698 goto fail; 1699 1700 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1701 "blkif", rinfo); 1702 if (err <= 0) { 1703 xenbus_dev_fatal(dev, err, 1704 "bind_evtchn_to_irqhandler failed"); 1705 goto fail; 1706 } 1707 rinfo->irq = err; 1708 1709 return 0; 1710 fail: 1711 blkif_free(info, 0); 1712 return err; 1713 } 1714 1715 /* 1716 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1717 * ring buffer may have multi pages depending on ->nr_ring_pages. 1718 */ 1719 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1720 struct blkfront_ring_info *rinfo, const char *dir) 1721 { 1722 int err; 1723 unsigned int i; 1724 const char *message = NULL; 1725 struct blkfront_info *info = rinfo->dev_info; 1726 1727 if (info->nr_ring_pages == 1) { 1728 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1729 if (err) { 1730 message = "writing ring-ref"; 1731 goto abort_transaction; 1732 } 1733 } else { 1734 for (i = 0; i < info->nr_ring_pages; i++) { 1735 char ring_ref_name[RINGREF_NAME_LEN]; 1736 1737 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1738 err = xenbus_printf(xbt, dir, ring_ref_name, 1739 "%u", rinfo->ring_ref[i]); 1740 if (err) { 1741 message = "writing ring-ref"; 1742 goto abort_transaction; 1743 } 1744 } 1745 } 1746 1747 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1748 if (err) { 1749 message = "writing event-channel"; 1750 goto abort_transaction; 1751 } 1752 1753 return 0; 1754 1755 abort_transaction: 1756 xenbus_transaction_end(xbt, 1); 1757 if (message) 1758 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1759 1760 return err; 1761 } 1762 1763 static void free_info(struct blkfront_info *info) 1764 { 1765 list_del(&info->info_list); 1766 kfree(info); 1767 } 1768 1769 /* Common code used when first setting up, and when resuming. */ 1770 static int talk_to_blkback(struct xenbus_device *dev, 1771 struct blkfront_info *info) 1772 { 1773 const char *message = NULL; 1774 struct xenbus_transaction xbt; 1775 int err; 1776 unsigned int i, max_page_order; 1777 unsigned int ring_page_order; 1778 1779 if (!info) 1780 return -ENODEV; 1781 1782 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1783 "max-ring-page-order", 0); 1784 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1785 info->nr_ring_pages = 1 << ring_page_order; 1786 1787 err = negotiate_mq(info); 1788 if (err) 1789 goto destroy_blkring; 1790 1791 for (i = 0; i < info->nr_rings; i++) { 1792 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1793 1794 /* Create shared ring, alloc event channel. */ 1795 err = setup_blkring(dev, rinfo); 1796 if (err) 1797 goto destroy_blkring; 1798 } 1799 1800 again: 1801 err = xenbus_transaction_start(&xbt); 1802 if (err) { 1803 xenbus_dev_fatal(dev, err, "starting transaction"); 1804 goto destroy_blkring; 1805 } 1806 1807 if (info->nr_ring_pages > 1) { 1808 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1809 ring_page_order); 1810 if (err) { 1811 message = "writing ring-page-order"; 1812 goto abort_transaction; 1813 } 1814 } 1815 1816 /* We already got the number of queues/rings in _probe */ 1817 if (info->nr_rings == 1) { 1818 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename); 1819 if (err) 1820 goto destroy_blkring; 1821 } else { 1822 char *path; 1823 size_t pathsize; 1824 1825 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1826 info->nr_rings); 1827 if (err) { 1828 message = "writing multi-queue-num-queues"; 1829 goto abort_transaction; 1830 } 1831 1832 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1833 path = kmalloc(pathsize, GFP_KERNEL); 1834 if (!path) { 1835 err = -ENOMEM; 1836 message = "ENOMEM while writing ring references"; 1837 goto abort_transaction; 1838 } 1839 1840 for (i = 0; i < info->nr_rings; i++) { 1841 memset(path, 0, pathsize); 1842 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1843 err = write_per_ring_nodes(xbt, &info->rinfo[i], path); 1844 if (err) { 1845 kfree(path); 1846 goto destroy_blkring; 1847 } 1848 } 1849 kfree(path); 1850 } 1851 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1852 XEN_IO_PROTO_ABI_NATIVE); 1853 if (err) { 1854 message = "writing protocol"; 1855 goto abort_transaction; 1856 } 1857 err = xenbus_printf(xbt, dev->nodename, 1858 "feature-persistent", "%u", 1); 1859 if (err) 1860 dev_warn(&dev->dev, 1861 "writing persistent grants feature to xenbus"); 1862 1863 err = xenbus_transaction_end(xbt, 0); 1864 if (err) { 1865 if (err == -EAGAIN) 1866 goto again; 1867 xenbus_dev_fatal(dev, err, "completing transaction"); 1868 goto destroy_blkring; 1869 } 1870 1871 for (i = 0; i < info->nr_rings; i++) { 1872 unsigned int j; 1873 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1874 1875 for (j = 0; j < BLK_RING_SIZE(info); j++) 1876 rinfo->shadow[j].req.u.rw.id = j + 1; 1877 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1878 } 1879 xenbus_switch_state(dev, XenbusStateInitialised); 1880 1881 return 0; 1882 1883 abort_transaction: 1884 xenbus_transaction_end(xbt, 1); 1885 if (message) 1886 xenbus_dev_fatal(dev, err, "%s", message); 1887 destroy_blkring: 1888 blkif_free(info, 0); 1889 1890 mutex_lock(&blkfront_mutex); 1891 free_info(info); 1892 mutex_unlock(&blkfront_mutex); 1893 1894 dev_set_drvdata(&dev->dev, NULL); 1895 1896 return err; 1897 } 1898 1899 static int negotiate_mq(struct blkfront_info *info) 1900 { 1901 unsigned int backend_max_queues; 1902 unsigned int i; 1903 1904 BUG_ON(info->nr_rings); 1905 1906 /* Check if backend supports multiple queues. */ 1907 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1908 "multi-queue-max-queues", 1); 1909 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1910 /* We need at least one ring. */ 1911 if (!info->nr_rings) 1912 info->nr_rings = 1; 1913 1914 info->rinfo = kvcalloc(info->nr_rings, 1915 struct_size(info->rinfo, shadow, 1916 BLK_RING_SIZE(info)), 1917 GFP_KERNEL); 1918 if (!info->rinfo) { 1919 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1920 info->nr_rings = 0; 1921 return -ENOMEM; 1922 } 1923 1924 for (i = 0; i < info->nr_rings; i++) { 1925 struct blkfront_ring_info *rinfo; 1926 1927 rinfo = &info->rinfo[i]; 1928 INIT_LIST_HEAD(&rinfo->indirect_pages); 1929 INIT_LIST_HEAD(&rinfo->grants); 1930 rinfo->dev_info = info; 1931 INIT_WORK(&rinfo->work, blkif_restart_queue); 1932 spin_lock_init(&rinfo->ring_lock); 1933 } 1934 return 0; 1935 } 1936 /** 1937 * Entry point to this code when a new device is created. Allocate the basic 1938 * structures and the ring buffer for communication with the backend, and 1939 * inform the backend of the appropriate details for those. Switch to 1940 * Initialised state. 1941 */ 1942 static int blkfront_probe(struct xenbus_device *dev, 1943 const struct xenbus_device_id *id) 1944 { 1945 int err, vdevice; 1946 struct blkfront_info *info; 1947 1948 /* FIXME: Use dynamic device id if this is not set. */ 1949 err = xenbus_scanf(XBT_NIL, dev->nodename, 1950 "virtual-device", "%i", &vdevice); 1951 if (err != 1) { 1952 /* go looking in the extended area instead */ 1953 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1954 "%i", &vdevice); 1955 if (err != 1) { 1956 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1957 return err; 1958 } 1959 } 1960 1961 if (xen_hvm_domain()) { 1962 char *type; 1963 int len; 1964 /* no unplug has been done: do not hook devices != xen vbds */ 1965 if (xen_has_pv_and_legacy_disk_devices()) { 1966 int major; 1967 1968 if (!VDEV_IS_EXTENDED(vdevice)) 1969 major = BLKIF_MAJOR(vdevice); 1970 else 1971 major = XENVBD_MAJOR; 1972 1973 if (major != XENVBD_MAJOR) { 1974 printk(KERN_INFO 1975 "%s: HVM does not support vbd %d as xen block device\n", 1976 __func__, vdevice); 1977 return -ENODEV; 1978 } 1979 } 1980 /* do not create a PV cdrom device if we are an HVM guest */ 1981 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1982 if (IS_ERR(type)) 1983 return -ENODEV; 1984 if (strncmp(type, "cdrom", 5) == 0) { 1985 kfree(type); 1986 return -ENODEV; 1987 } 1988 kfree(type); 1989 } 1990 info = kzalloc(sizeof(*info), GFP_KERNEL); 1991 if (!info) { 1992 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1993 return -ENOMEM; 1994 } 1995 1996 info->xbdev = dev; 1997 1998 mutex_init(&info->mutex); 1999 info->vdevice = vdevice; 2000 info->connected = BLKIF_STATE_DISCONNECTED; 2001 2002 /* Front end dir is a number, which is used as the id. */ 2003 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 2004 dev_set_drvdata(&dev->dev, info); 2005 2006 mutex_lock(&blkfront_mutex); 2007 list_add(&info->info_list, &info_list); 2008 mutex_unlock(&blkfront_mutex); 2009 2010 return 0; 2011 } 2012 2013 static int blkif_recover(struct blkfront_info *info) 2014 { 2015 unsigned int r_index; 2016 struct request *req, *n; 2017 int rc; 2018 struct bio *bio; 2019 unsigned int segs; 2020 2021 blkfront_gather_backend_features(info); 2022 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2023 blkif_set_queue_limits(info); 2024 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2025 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2026 2027 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2028 struct blkfront_ring_info *rinfo = &info->rinfo[r_index]; 2029 2030 rc = blkfront_setup_indirect(rinfo); 2031 if (rc) 2032 return rc; 2033 } 2034 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2035 2036 /* Now safe for us to use the shared ring */ 2037 info->connected = BLKIF_STATE_CONNECTED; 2038 2039 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2040 struct blkfront_ring_info *rinfo; 2041 2042 rinfo = &info->rinfo[r_index]; 2043 /* Kick any other new requests queued since we resumed */ 2044 kick_pending_request_queues(rinfo); 2045 } 2046 2047 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2048 /* Requeue pending requests (flush or discard) */ 2049 list_del_init(&req->queuelist); 2050 BUG_ON(req->nr_phys_segments > segs); 2051 blk_mq_requeue_request(req, false); 2052 } 2053 blk_mq_start_stopped_hw_queues(info->rq, true); 2054 blk_mq_kick_requeue_list(info->rq); 2055 2056 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2057 /* Traverse the list of pending bios and re-queue them */ 2058 submit_bio(bio); 2059 } 2060 2061 return 0; 2062 } 2063 2064 /** 2065 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2066 * driver restart. We tear down our blkif structure and recreate it, but 2067 * leave the device-layer structures intact so that this is transparent to the 2068 * rest of the kernel. 2069 */ 2070 static int blkfront_resume(struct xenbus_device *dev) 2071 { 2072 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2073 int err = 0; 2074 unsigned int i, j; 2075 2076 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2077 2078 bio_list_init(&info->bio_list); 2079 INIT_LIST_HEAD(&info->requests); 2080 for (i = 0; i < info->nr_rings; i++) { 2081 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 2082 struct bio_list merge_bio; 2083 struct blk_shadow *shadow = rinfo->shadow; 2084 2085 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2086 /* Not in use? */ 2087 if (!shadow[j].request) 2088 continue; 2089 2090 /* 2091 * Get the bios in the request so we can re-queue them. 2092 */ 2093 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2094 req_op(shadow[j].request) == REQ_OP_DISCARD || 2095 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2096 shadow[j].request->cmd_flags & REQ_FUA) { 2097 /* 2098 * Flush operations don't contain bios, so 2099 * we need to requeue the whole request 2100 * 2101 * XXX: but this doesn't make any sense for a 2102 * write with the FUA flag set.. 2103 */ 2104 list_add(&shadow[j].request->queuelist, &info->requests); 2105 continue; 2106 } 2107 merge_bio.head = shadow[j].request->bio; 2108 merge_bio.tail = shadow[j].request->biotail; 2109 bio_list_merge(&info->bio_list, &merge_bio); 2110 shadow[j].request->bio = NULL; 2111 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2112 } 2113 } 2114 2115 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2116 2117 err = talk_to_blkback(dev, info); 2118 if (!err) 2119 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2120 2121 /* 2122 * We have to wait for the backend to switch to 2123 * connected state, since we want to read which 2124 * features it supports. 2125 */ 2126 2127 return err; 2128 } 2129 2130 static void blkfront_closing(struct blkfront_info *info) 2131 { 2132 struct xenbus_device *xbdev = info->xbdev; 2133 struct block_device *bdev = NULL; 2134 2135 mutex_lock(&info->mutex); 2136 2137 if (xbdev->state == XenbusStateClosing) { 2138 mutex_unlock(&info->mutex); 2139 return; 2140 } 2141 2142 if (info->gd) 2143 bdev = bdget_disk(info->gd, 0); 2144 2145 mutex_unlock(&info->mutex); 2146 2147 if (!bdev) { 2148 xenbus_frontend_closed(xbdev); 2149 return; 2150 } 2151 2152 mutex_lock(&bdev->bd_mutex); 2153 2154 if (bdev->bd_openers) { 2155 xenbus_dev_error(xbdev, -EBUSY, 2156 "Device in use; refusing to close"); 2157 xenbus_switch_state(xbdev, XenbusStateClosing); 2158 } else { 2159 xlvbd_release_gendisk(info); 2160 xenbus_frontend_closed(xbdev); 2161 } 2162 2163 mutex_unlock(&bdev->bd_mutex); 2164 bdput(bdev); 2165 } 2166 2167 static void blkfront_setup_discard(struct blkfront_info *info) 2168 { 2169 int err; 2170 unsigned int discard_granularity; 2171 unsigned int discard_alignment; 2172 2173 info->feature_discard = 1; 2174 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2175 "discard-granularity", "%u", &discard_granularity, 2176 "discard-alignment", "%u", &discard_alignment, 2177 NULL); 2178 if (!err) { 2179 info->discard_granularity = discard_granularity; 2180 info->discard_alignment = discard_alignment; 2181 } 2182 info->feature_secdiscard = 2183 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2184 0); 2185 } 2186 2187 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2188 { 2189 unsigned int psegs, grants; 2190 int err, i; 2191 struct blkfront_info *info = rinfo->dev_info; 2192 2193 if (info->max_indirect_segments == 0) { 2194 if (!HAS_EXTRA_REQ) 2195 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2196 else { 2197 /* 2198 * When an extra req is required, the maximum 2199 * grants supported is related to the size of the 2200 * Linux block segment. 2201 */ 2202 grants = GRANTS_PER_PSEG; 2203 } 2204 } 2205 else 2206 grants = info->max_indirect_segments; 2207 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2208 2209 err = fill_grant_buffer(rinfo, 2210 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2211 if (err) 2212 goto out_of_memory; 2213 2214 if (!info->feature_persistent && info->max_indirect_segments) { 2215 /* 2216 * We are using indirect descriptors but not persistent 2217 * grants, we need to allocate a set of pages that can be 2218 * used for mapping indirect grefs 2219 */ 2220 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2221 2222 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2223 for (i = 0; i < num; i++) { 2224 struct page *indirect_page = alloc_page(GFP_NOIO); 2225 if (!indirect_page) 2226 goto out_of_memory; 2227 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2228 } 2229 } 2230 2231 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2232 rinfo->shadow[i].grants_used = 2233 kvcalloc(grants, 2234 sizeof(rinfo->shadow[i].grants_used[0]), 2235 GFP_NOIO); 2236 rinfo->shadow[i].sg = kvcalloc(psegs, 2237 sizeof(rinfo->shadow[i].sg[0]), 2238 GFP_NOIO); 2239 if (info->max_indirect_segments) 2240 rinfo->shadow[i].indirect_grants = 2241 kvcalloc(INDIRECT_GREFS(grants), 2242 sizeof(rinfo->shadow[i].indirect_grants[0]), 2243 GFP_NOIO); 2244 if ((rinfo->shadow[i].grants_used == NULL) || 2245 (rinfo->shadow[i].sg == NULL) || 2246 (info->max_indirect_segments && 2247 (rinfo->shadow[i].indirect_grants == NULL))) 2248 goto out_of_memory; 2249 sg_init_table(rinfo->shadow[i].sg, psegs); 2250 } 2251 2252 2253 return 0; 2254 2255 out_of_memory: 2256 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2257 kvfree(rinfo->shadow[i].grants_used); 2258 rinfo->shadow[i].grants_used = NULL; 2259 kvfree(rinfo->shadow[i].sg); 2260 rinfo->shadow[i].sg = NULL; 2261 kvfree(rinfo->shadow[i].indirect_grants); 2262 rinfo->shadow[i].indirect_grants = NULL; 2263 } 2264 if (!list_empty(&rinfo->indirect_pages)) { 2265 struct page *indirect_page, *n; 2266 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2267 list_del(&indirect_page->lru); 2268 __free_page(indirect_page); 2269 } 2270 } 2271 return -ENOMEM; 2272 } 2273 2274 /* 2275 * Gather all backend feature-* 2276 */ 2277 static void blkfront_gather_backend_features(struct blkfront_info *info) 2278 { 2279 unsigned int indirect_segments; 2280 2281 info->feature_flush = 0; 2282 info->feature_fua = 0; 2283 2284 /* 2285 * If there's no "feature-barrier" defined, then it means 2286 * we're dealing with a very old backend which writes 2287 * synchronously; nothing to do. 2288 * 2289 * If there are barriers, then we use flush. 2290 */ 2291 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2292 info->feature_flush = 1; 2293 info->feature_fua = 1; 2294 } 2295 2296 /* 2297 * And if there is "feature-flush-cache" use that above 2298 * barriers. 2299 */ 2300 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2301 0)) { 2302 info->feature_flush = 1; 2303 info->feature_fua = 0; 2304 } 2305 2306 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2307 blkfront_setup_discard(info); 2308 2309 info->feature_persistent = 2310 !!xenbus_read_unsigned(info->xbdev->otherend, 2311 "feature-persistent", 0); 2312 2313 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2314 "feature-max-indirect-segments", 0); 2315 if (indirect_segments > xen_blkif_max_segments) 2316 indirect_segments = xen_blkif_max_segments; 2317 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2318 indirect_segments = 0; 2319 info->max_indirect_segments = indirect_segments; 2320 2321 if (info->feature_persistent) { 2322 mutex_lock(&blkfront_mutex); 2323 schedule_delayed_work(&blkfront_work, HZ * 10); 2324 mutex_unlock(&blkfront_mutex); 2325 } 2326 } 2327 2328 /* 2329 * Invoked when the backend is finally 'ready' (and has told produced 2330 * the details about the physical device - #sectors, size, etc). 2331 */ 2332 static void blkfront_connect(struct blkfront_info *info) 2333 { 2334 unsigned long long sectors; 2335 unsigned long sector_size; 2336 unsigned int physical_sector_size; 2337 unsigned int binfo; 2338 char *envp[] = { "RESIZE=1", NULL }; 2339 int err, i; 2340 2341 switch (info->connected) { 2342 case BLKIF_STATE_CONNECTED: 2343 /* 2344 * Potentially, the back-end may be signalling 2345 * a capacity change; update the capacity. 2346 */ 2347 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2348 "sectors", "%Lu", §ors); 2349 if (XENBUS_EXIST_ERR(err)) 2350 return; 2351 printk(KERN_INFO "Setting capacity to %Lu\n", 2352 sectors); 2353 set_capacity(info->gd, sectors); 2354 revalidate_disk(info->gd); 2355 kobject_uevent_env(&disk_to_dev(info->gd)->kobj, 2356 KOBJ_CHANGE, envp); 2357 2358 return; 2359 case BLKIF_STATE_SUSPENDED: 2360 /* 2361 * If we are recovering from suspension, we need to wait 2362 * for the backend to announce it's features before 2363 * reconnecting, at least we need to know if the backend 2364 * supports indirect descriptors, and how many. 2365 */ 2366 blkif_recover(info); 2367 return; 2368 2369 default: 2370 break; 2371 } 2372 2373 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2374 __func__, info->xbdev->otherend); 2375 2376 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2377 "sectors", "%llu", §ors, 2378 "info", "%u", &binfo, 2379 "sector-size", "%lu", §or_size, 2380 NULL); 2381 if (err) { 2382 xenbus_dev_fatal(info->xbdev, err, 2383 "reading backend fields at %s", 2384 info->xbdev->otherend); 2385 return; 2386 } 2387 2388 /* 2389 * physcial-sector-size is a newer field, so old backends may not 2390 * provide this. Assume physical sector size to be the same as 2391 * sector_size in that case. 2392 */ 2393 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2394 "physical-sector-size", 2395 sector_size); 2396 blkfront_gather_backend_features(info); 2397 for (i = 0; i < info->nr_rings; i++) { 2398 err = blkfront_setup_indirect(&info->rinfo[i]); 2399 if (err) { 2400 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2401 info->xbdev->otherend); 2402 blkif_free(info, 0); 2403 break; 2404 } 2405 } 2406 2407 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2408 physical_sector_size); 2409 if (err) { 2410 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2411 info->xbdev->otherend); 2412 goto fail; 2413 } 2414 2415 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2416 2417 /* Kick pending requests. */ 2418 info->connected = BLKIF_STATE_CONNECTED; 2419 for (i = 0; i < info->nr_rings; i++) 2420 kick_pending_request_queues(&info->rinfo[i]); 2421 2422 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2423 2424 info->is_ready = 1; 2425 return; 2426 2427 fail: 2428 blkif_free(info, 0); 2429 return; 2430 } 2431 2432 /** 2433 * Callback received when the backend's state changes. 2434 */ 2435 static void blkback_changed(struct xenbus_device *dev, 2436 enum xenbus_state backend_state) 2437 { 2438 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2439 2440 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2441 2442 switch (backend_state) { 2443 case XenbusStateInitWait: 2444 if (dev->state != XenbusStateInitialising) 2445 break; 2446 if (talk_to_blkback(dev, info)) 2447 break; 2448 case XenbusStateInitialising: 2449 case XenbusStateInitialised: 2450 case XenbusStateReconfiguring: 2451 case XenbusStateReconfigured: 2452 case XenbusStateUnknown: 2453 break; 2454 2455 case XenbusStateConnected: 2456 /* 2457 * talk_to_blkback sets state to XenbusStateInitialised 2458 * and blkfront_connect sets it to XenbusStateConnected 2459 * (if connection went OK). 2460 * 2461 * If the backend (or toolstack) decides to poke at backend 2462 * state (and re-trigger the watch by setting the state repeatedly 2463 * to XenbusStateConnected (4)) we need to deal with this. 2464 * This is allowed as this is used to communicate to the guest 2465 * that the size of disk has changed! 2466 */ 2467 if ((dev->state != XenbusStateInitialised) && 2468 (dev->state != XenbusStateConnected)) { 2469 if (talk_to_blkback(dev, info)) 2470 break; 2471 } 2472 2473 blkfront_connect(info); 2474 break; 2475 2476 case XenbusStateClosed: 2477 if (dev->state == XenbusStateClosed) 2478 break; 2479 /* fall through */ 2480 case XenbusStateClosing: 2481 if (info) 2482 blkfront_closing(info); 2483 break; 2484 } 2485 } 2486 2487 static int blkfront_remove(struct xenbus_device *xbdev) 2488 { 2489 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2490 struct block_device *bdev = NULL; 2491 struct gendisk *disk; 2492 2493 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2494 2495 if (!info) 2496 return 0; 2497 2498 blkif_free(info, 0); 2499 2500 mutex_lock(&info->mutex); 2501 2502 disk = info->gd; 2503 if (disk) 2504 bdev = bdget_disk(disk, 0); 2505 2506 info->xbdev = NULL; 2507 mutex_unlock(&info->mutex); 2508 2509 if (!bdev) { 2510 mutex_lock(&blkfront_mutex); 2511 free_info(info); 2512 mutex_unlock(&blkfront_mutex); 2513 return 0; 2514 } 2515 2516 /* 2517 * The xbdev was removed before we reached the Closed 2518 * state. See if it's safe to remove the disk. If the bdev 2519 * isn't closed yet, we let release take care of it. 2520 */ 2521 2522 mutex_lock(&bdev->bd_mutex); 2523 info = disk->private_data; 2524 2525 dev_warn(disk_to_dev(disk), 2526 "%s was hot-unplugged, %d stale handles\n", 2527 xbdev->nodename, bdev->bd_openers); 2528 2529 if (info && !bdev->bd_openers) { 2530 xlvbd_release_gendisk(info); 2531 disk->private_data = NULL; 2532 mutex_lock(&blkfront_mutex); 2533 free_info(info); 2534 mutex_unlock(&blkfront_mutex); 2535 } 2536 2537 mutex_unlock(&bdev->bd_mutex); 2538 bdput(bdev); 2539 2540 return 0; 2541 } 2542 2543 static int blkfront_is_ready(struct xenbus_device *dev) 2544 { 2545 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2546 2547 return info->is_ready && info->xbdev; 2548 } 2549 2550 static int blkif_open(struct block_device *bdev, fmode_t mode) 2551 { 2552 struct gendisk *disk = bdev->bd_disk; 2553 struct blkfront_info *info; 2554 int err = 0; 2555 2556 mutex_lock(&blkfront_mutex); 2557 2558 info = disk->private_data; 2559 if (!info) { 2560 /* xbdev gone */ 2561 err = -ERESTARTSYS; 2562 goto out; 2563 } 2564 2565 mutex_lock(&info->mutex); 2566 2567 if (!info->gd) 2568 /* xbdev is closed */ 2569 err = -ERESTARTSYS; 2570 2571 mutex_unlock(&info->mutex); 2572 2573 out: 2574 mutex_unlock(&blkfront_mutex); 2575 return err; 2576 } 2577 2578 static void blkif_release(struct gendisk *disk, fmode_t mode) 2579 { 2580 struct blkfront_info *info = disk->private_data; 2581 struct block_device *bdev; 2582 struct xenbus_device *xbdev; 2583 2584 mutex_lock(&blkfront_mutex); 2585 2586 bdev = bdget_disk(disk, 0); 2587 2588 if (!bdev) { 2589 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name); 2590 goto out_mutex; 2591 } 2592 if (bdev->bd_openers) 2593 goto out; 2594 2595 /* 2596 * Check if we have been instructed to close. We will have 2597 * deferred this request, because the bdev was still open. 2598 */ 2599 2600 mutex_lock(&info->mutex); 2601 xbdev = info->xbdev; 2602 2603 if (xbdev && xbdev->state == XenbusStateClosing) { 2604 /* pending switch to state closed */ 2605 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2606 xlvbd_release_gendisk(info); 2607 xenbus_frontend_closed(info->xbdev); 2608 } 2609 2610 mutex_unlock(&info->mutex); 2611 2612 if (!xbdev) { 2613 /* sudden device removal */ 2614 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2615 xlvbd_release_gendisk(info); 2616 disk->private_data = NULL; 2617 free_info(info); 2618 } 2619 2620 out: 2621 bdput(bdev); 2622 out_mutex: 2623 mutex_unlock(&blkfront_mutex); 2624 } 2625 2626 static const struct block_device_operations xlvbd_block_fops = 2627 { 2628 .owner = THIS_MODULE, 2629 .open = blkif_open, 2630 .release = blkif_release, 2631 .getgeo = blkif_getgeo, 2632 .ioctl = blkif_ioctl, 2633 .compat_ioctl = blkdev_compat_ptr_ioctl, 2634 }; 2635 2636 2637 static const struct xenbus_device_id blkfront_ids[] = { 2638 { "vbd" }, 2639 { "" } 2640 }; 2641 2642 static struct xenbus_driver blkfront_driver = { 2643 .ids = blkfront_ids, 2644 .probe = blkfront_probe, 2645 .remove = blkfront_remove, 2646 .resume = blkfront_resume, 2647 .otherend_changed = blkback_changed, 2648 .is_ready = blkfront_is_ready, 2649 }; 2650 2651 static void purge_persistent_grants(struct blkfront_info *info) 2652 { 2653 unsigned int i; 2654 unsigned long flags; 2655 2656 for (i = 0; i < info->nr_rings; i++) { 2657 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 2658 struct grant *gnt_list_entry, *tmp; 2659 2660 spin_lock_irqsave(&rinfo->ring_lock, flags); 2661 2662 if (rinfo->persistent_gnts_c == 0) { 2663 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2664 continue; 2665 } 2666 2667 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2668 node) { 2669 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2670 gnttab_query_foreign_access(gnt_list_entry->gref)) 2671 continue; 2672 2673 list_del(&gnt_list_entry->node); 2674 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2675 rinfo->persistent_gnts_c--; 2676 gnt_list_entry->gref = GRANT_INVALID_REF; 2677 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2678 } 2679 2680 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2681 } 2682 } 2683 2684 static void blkfront_delay_work(struct work_struct *work) 2685 { 2686 struct blkfront_info *info; 2687 bool need_schedule_work = false; 2688 2689 mutex_lock(&blkfront_mutex); 2690 2691 list_for_each_entry(info, &info_list, info_list) { 2692 if (info->feature_persistent) { 2693 need_schedule_work = true; 2694 mutex_lock(&info->mutex); 2695 purge_persistent_grants(info); 2696 mutex_unlock(&info->mutex); 2697 } 2698 } 2699 2700 if (need_schedule_work) 2701 schedule_delayed_work(&blkfront_work, HZ * 10); 2702 2703 mutex_unlock(&blkfront_mutex); 2704 } 2705 2706 static int __init xlblk_init(void) 2707 { 2708 int ret; 2709 int nr_cpus = num_online_cpus(); 2710 2711 if (!xen_domain()) 2712 return -ENODEV; 2713 2714 if (!xen_has_pv_disk_devices()) 2715 return -ENODEV; 2716 2717 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2718 pr_warn("xen_blk: can't get major %d with name %s\n", 2719 XENVBD_MAJOR, DEV_NAME); 2720 return -ENODEV; 2721 } 2722 2723 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2724 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2725 2726 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2727 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2728 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2729 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2730 } 2731 2732 if (xen_blkif_max_queues > nr_cpus) { 2733 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2734 xen_blkif_max_queues, nr_cpus); 2735 xen_blkif_max_queues = nr_cpus; 2736 } 2737 2738 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2739 2740 ret = xenbus_register_frontend(&blkfront_driver); 2741 if (ret) { 2742 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2743 return ret; 2744 } 2745 2746 return 0; 2747 } 2748 module_init(xlblk_init); 2749 2750 2751 static void __exit xlblk_exit(void) 2752 { 2753 cancel_delayed_work_sync(&blkfront_work); 2754 2755 xenbus_unregister_driver(&blkfront_driver); 2756 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2757 kfree(minors); 2758 } 2759 module_exit(xlblk_exit); 2760 2761 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2762 MODULE_LICENSE("GPL"); 2763 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2764 MODULE_ALIAS("xen:vbd"); 2765 MODULE_ALIAS("xenblk"); 2766