xref: /openbmc/linux/drivers/block/xen-blkfront.c (revision d236d361)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56 
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60 
61 #include <asm/xen/hypervisor.h>
62 
63 /*
64  * The minimal size of segment supported by the block framework is PAGE_SIZE.
65  * When Linux is using a different page size than Xen, it may not be possible
66  * to put all the data in a single segment.
67  * This can happen when the backend doesn't support indirect descriptor and
68  * therefore the maximum amount of data that a request can carry is
69  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70  *
71  * Note that we only support one extra request. So the Linux page size
72  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73  * 88KB.
74  */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76 
77 enum blkif_state {
78 	BLKIF_STATE_DISCONNECTED,
79 	BLKIF_STATE_CONNECTED,
80 	BLKIF_STATE_SUSPENDED,
81 };
82 
83 struct grant {
84 	grant_ref_t gref;
85 	struct page *page;
86 	struct list_head node;
87 };
88 
89 enum blk_req_status {
90 	REQ_WAITING,
91 	REQ_DONE,
92 	REQ_ERROR,
93 	REQ_EOPNOTSUPP,
94 };
95 
96 struct blk_shadow {
97 	struct blkif_request req;
98 	struct request *request;
99 	struct grant **grants_used;
100 	struct grant **indirect_grants;
101 	struct scatterlist *sg;
102 	unsigned int num_sg;
103 	enum blk_req_status status;
104 
105 	#define NO_ASSOCIATED_ID ~0UL
106 	/*
107 	 * Id of the sibling if we ever need 2 requests when handling a
108 	 * block I/O request
109 	 */
110 	unsigned long associated_id;
111 };
112 
113 struct split_bio {
114 	struct bio *bio;
115 	atomic_t pending;
116 };
117 
118 struct blkif_req {
119 	int	error;
120 };
121 
122 static inline struct blkif_req *blkif_req(struct request *rq)
123 {
124 	return blk_mq_rq_to_pdu(rq);
125 }
126 
127 static DEFINE_MUTEX(blkfront_mutex);
128 static const struct block_device_operations xlvbd_block_fops;
129 
130 /*
131  * Maximum number of segments in indirect requests, the actual value used by
132  * the frontend driver is the minimum of this value and the value provided
133  * by the backend driver.
134  */
135 
136 static unsigned int xen_blkif_max_segments = 32;
137 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
138 		   S_IRUGO);
139 MODULE_PARM_DESC(max_indirect_segments,
140 		 "Maximum amount of segments in indirect requests (default is 32)");
141 
142 static unsigned int xen_blkif_max_queues = 4;
143 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
144 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
145 
146 /*
147  * Maximum order of pages to be used for the shared ring between front and
148  * backend, 4KB page granularity is used.
149  */
150 static unsigned int xen_blkif_max_ring_order;
151 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
152 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
153 
154 #define BLK_RING_SIZE(info)	\
155 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
156 
157 #define BLK_MAX_RING_SIZE	\
158 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
159 
160 /*
161  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
162  * characters are enough. Define to 20 to keep consistent with backend.
163  */
164 #define RINGREF_NAME_LEN (20)
165 /*
166  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
167  */
168 #define QUEUE_NAME_LEN (17)
169 
170 /*
171  *  Per-ring info.
172  *  Every blkfront device can associate with one or more blkfront_ring_info,
173  *  depending on how many hardware queues/rings to be used.
174  */
175 struct blkfront_ring_info {
176 	/* Lock to protect data in every ring buffer. */
177 	spinlock_t ring_lock;
178 	struct blkif_front_ring ring;
179 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
180 	unsigned int evtchn, irq;
181 	struct work_struct work;
182 	struct gnttab_free_callback callback;
183 	struct blk_shadow shadow[BLK_MAX_RING_SIZE];
184 	struct list_head indirect_pages;
185 	struct list_head grants;
186 	unsigned int persistent_gnts_c;
187 	unsigned long shadow_free;
188 	struct blkfront_info *dev_info;
189 };
190 
191 /*
192  * We have one of these per vbd, whether ide, scsi or 'other'.  They
193  * hang in private_data off the gendisk structure. We may end up
194  * putting all kinds of interesting stuff here :-)
195  */
196 struct blkfront_info
197 {
198 	struct mutex mutex;
199 	struct xenbus_device *xbdev;
200 	struct gendisk *gd;
201 	u16 sector_size;
202 	unsigned int physical_sector_size;
203 	int vdevice;
204 	blkif_vdev_t handle;
205 	enum blkif_state connected;
206 	/* Number of pages per ring buffer. */
207 	unsigned int nr_ring_pages;
208 	struct request_queue *rq;
209 	unsigned int feature_flush:1;
210 	unsigned int feature_fua:1;
211 	unsigned int feature_discard:1;
212 	unsigned int feature_secdiscard:1;
213 	unsigned int feature_persistent:1;
214 	unsigned int discard_granularity;
215 	unsigned int discard_alignment;
216 	/* Number of 4KB segments handled */
217 	unsigned int max_indirect_segments;
218 	int is_ready;
219 	struct blk_mq_tag_set tag_set;
220 	struct blkfront_ring_info *rinfo;
221 	unsigned int nr_rings;
222 	/* Save uncomplete reqs and bios for migration. */
223 	struct list_head requests;
224 	struct bio_list bio_list;
225 };
226 
227 static unsigned int nr_minors;
228 static unsigned long *minors;
229 static DEFINE_SPINLOCK(minor_lock);
230 
231 #define GRANT_INVALID_REF	0
232 
233 #define PARTS_PER_DISK		16
234 #define PARTS_PER_EXT_DISK      256
235 
236 #define BLKIF_MAJOR(dev) ((dev)>>8)
237 #define BLKIF_MINOR(dev) ((dev) & 0xff)
238 
239 #define EXT_SHIFT 28
240 #define EXTENDED (1<<EXT_SHIFT)
241 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
242 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
243 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
244 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
245 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
246 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
247 
248 #define DEV_NAME	"xvd"	/* name in /dev */
249 
250 /*
251  * Grants are always the same size as a Xen page (i.e 4KB).
252  * A physical segment is always the same size as a Linux page.
253  * Number of grants per physical segment
254  */
255 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
256 
257 #define GRANTS_PER_INDIRECT_FRAME \
258 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
259 
260 #define PSEGS_PER_INDIRECT_FRAME	\
261 	(GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
262 
263 #define INDIRECT_GREFS(_grants)		\
264 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
265 
266 #define GREFS(_psegs)	((_psegs) * GRANTS_PER_PSEG)
267 
268 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
269 static void blkfront_gather_backend_features(struct blkfront_info *info);
270 
271 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
272 {
273 	unsigned long free = rinfo->shadow_free;
274 
275 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
276 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
277 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
278 	return free;
279 }
280 
281 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
282 			      unsigned long id)
283 {
284 	if (rinfo->shadow[id].req.u.rw.id != id)
285 		return -EINVAL;
286 	if (rinfo->shadow[id].request == NULL)
287 		return -EINVAL;
288 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
289 	rinfo->shadow[id].request = NULL;
290 	rinfo->shadow_free = id;
291 	return 0;
292 }
293 
294 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
295 {
296 	struct blkfront_info *info = rinfo->dev_info;
297 	struct page *granted_page;
298 	struct grant *gnt_list_entry, *n;
299 	int i = 0;
300 
301 	while (i < num) {
302 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
303 		if (!gnt_list_entry)
304 			goto out_of_memory;
305 
306 		if (info->feature_persistent) {
307 			granted_page = alloc_page(GFP_NOIO);
308 			if (!granted_page) {
309 				kfree(gnt_list_entry);
310 				goto out_of_memory;
311 			}
312 			gnt_list_entry->page = granted_page;
313 		}
314 
315 		gnt_list_entry->gref = GRANT_INVALID_REF;
316 		list_add(&gnt_list_entry->node, &rinfo->grants);
317 		i++;
318 	}
319 
320 	return 0;
321 
322 out_of_memory:
323 	list_for_each_entry_safe(gnt_list_entry, n,
324 	                         &rinfo->grants, node) {
325 		list_del(&gnt_list_entry->node);
326 		if (info->feature_persistent)
327 			__free_page(gnt_list_entry->page);
328 		kfree(gnt_list_entry);
329 		i--;
330 	}
331 	BUG_ON(i != 0);
332 	return -ENOMEM;
333 }
334 
335 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
336 {
337 	struct grant *gnt_list_entry;
338 
339 	BUG_ON(list_empty(&rinfo->grants));
340 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
341 					  node);
342 	list_del(&gnt_list_entry->node);
343 
344 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
345 		rinfo->persistent_gnts_c--;
346 
347 	return gnt_list_entry;
348 }
349 
350 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
351 					const struct blkfront_info *info)
352 {
353 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
354 						 info->xbdev->otherend_id,
355 						 gnt_list_entry->page,
356 						 0);
357 }
358 
359 static struct grant *get_grant(grant_ref_t *gref_head,
360 			       unsigned long gfn,
361 			       struct blkfront_ring_info *rinfo)
362 {
363 	struct grant *gnt_list_entry = get_free_grant(rinfo);
364 	struct blkfront_info *info = rinfo->dev_info;
365 
366 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
367 		return gnt_list_entry;
368 
369 	/* Assign a gref to this page */
370 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
371 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
372 	if (info->feature_persistent)
373 		grant_foreign_access(gnt_list_entry, info);
374 	else {
375 		/* Grant access to the GFN passed by the caller */
376 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
377 						info->xbdev->otherend_id,
378 						gfn, 0);
379 	}
380 
381 	return gnt_list_entry;
382 }
383 
384 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
385 					struct blkfront_ring_info *rinfo)
386 {
387 	struct grant *gnt_list_entry = get_free_grant(rinfo);
388 	struct blkfront_info *info = rinfo->dev_info;
389 
390 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
391 		return gnt_list_entry;
392 
393 	/* Assign a gref to this page */
394 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
395 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
396 	if (!info->feature_persistent) {
397 		struct page *indirect_page;
398 
399 		/* Fetch a pre-allocated page to use for indirect grefs */
400 		BUG_ON(list_empty(&rinfo->indirect_pages));
401 		indirect_page = list_first_entry(&rinfo->indirect_pages,
402 						 struct page, lru);
403 		list_del(&indirect_page->lru);
404 		gnt_list_entry->page = indirect_page;
405 	}
406 	grant_foreign_access(gnt_list_entry, info);
407 
408 	return gnt_list_entry;
409 }
410 
411 static const char *op_name(int op)
412 {
413 	static const char *const names[] = {
414 		[BLKIF_OP_READ] = "read",
415 		[BLKIF_OP_WRITE] = "write",
416 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
417 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
418 		[BLKIF_OP_DISCARD] = "discard" };
419 
420 	if (op < 0 || op >= ARRAY_SIZE(names))
421 		return "unknown";
422 
423 	if (!names[op])
424 		return "reserved";
425 
426 	return names[op];
427 }
428 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
429 {
430 	unsigned int end = minor + nr;
431 	int rc;
432 
433 	if (end > nr_minors) {
434 		unsigned long *bitmap, *old;
435 
436 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
437 				 GFP_KERNEL);
438 		if (bitmap == NULL)
439 			return -ENOMEM;
440 
441 		spin_lock(&minor_lock);
442 		if (end > nr_minors) {
443 			old = minors;
444 			memcpy(bitmap, minors,
445 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
446 			minors = bitmap;
447 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
448 		} else
449 			old = bitmap;
450 		spin_unlock(&minor_lock);
451 		kfree(old);
452 	}
453 
454 	spin_lock(&minor_lock);
455 	if (find_next_bit(minors, end, minor) >= end) {
456 		bitmap_set(minors, minor, nr);
457 		rc = 0;
458 	} else
459 		rc = -EBUSY;
460 	spin_unlock(&minor_lock);
461 
462 	return rc;
463 }
464 
465 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
466 {
467 	unsigned int end = minor + nr;
468 
469 	BUG_ON(end > nr_minors);
470 	spin_lock(&minor_lock);
471 	bitmap_clear(minors,  minor, nr);
472 	spin_unlock(&minor_lock);
473 }
474 
475 static void blkif_restart_queue_callback(void *arg)
476 {
477 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
478 	schedule_work(&rinfo->work);
479 }
480 
481 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
482 {
483 	/* We don't have real geometry info, but let's at least return
484 	   values consistent with the size of the device */
485 	sector_t nsect = get_capacity(bd->bd_disk);
486 	sector_t cylinders = nsect;
487 
488 	hg->heads = 0xff;
489 	hg->sectors = 0x3f;
490 	sector_div(cylinders, hg->heads * hg->sectors);
491 	hg->cylinders = cylinders;
492 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
493 		hg->cylinders = 0xffff;
494 	return 0;
495 }
496 
497 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
498 		       unsigned command, unsigned long argument)
499 {
500 	struct blkfront_info *info = bdev->bd_disk->private_data;
501 	int i;
502 
503 	dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
504 		command, (long)argument);
505 
506 	switch (command) {
507 	case CDROMMULTISESSION:
508 		dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
509 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
510 			if (put_user(0, (char __user *)(argument + i)))
511 				return -EFAULT;
512 		return 0;
513 
514 	case CDROM_GET_CAPABILITY: {
515 		struct gendisk *gd = info->gd;
516 		if (gd->flags & GENHD_FL_CD)
517 			return 0;
518 		return -EINVAL;
519 	}
520 
521 	default:
522 		/*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
523 		  command);*/
524 		return -EINVAL; /* same return as native Linux */
525 	}
526 
527 	return 0;
528 }
529 
530 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
531 					    struct request *req,
532 					    struct blkif_request **ring_req)
533 {
534 	unsigned long id;
535 
536 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
537 	rinfo->ring.req_prod_pvt++;
538 
539 	id = get_id_from_freelist(rinfo);
540 	rinfo->shadow[id].request = req;
541 	rinfo->shadow[id].status = REQ_WAITING;
542 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
543 
544 	(*ring_req)->u.rw.id = id;
545 
546 	return id;
547 }
548 
549 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
550 {
551 	struct blkfront_info *info = rinfo->dev_info;
552 	struct blkif_request *ring_req;
553 	unsigned long id;
554 
555 	/* Fill out a communications ring structure. */
556 	id = blkif_ring_get_request(rinfo, req, &ring_req);
557 
558 	ring_req->operation = BLKIF_OP_DISCARD;
559 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
560 	ring_req->u.discard.id = id;
561 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
562 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
563 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
564 	else
565 		ring_req->u.discard.flag = 0;
566 
567 	/* Keep a private copy so we can reissue requests when recovering. */
568 	rinfo->shadow[id].req = *ring_req;
569 
570 	return 0;
571 }
572 
573 struct setup_rw_req {
574 	unsigned int grant_idx;
575 	struct blkif_request_segment *segments;
576 	struct blkfront_ring_info *rinfo;
577 	struct blkif_request *ring_req;
578 	grant_ref_t gref_head;
579 	unsigned int id;
580 	/* Only used when persistent grant is used and it's a read request */
581 	bool need_copy;
582 	unsigned int bvec_off;
583 	char *bvec_data;
584 
585 	bool require_extra_req;
586 	struct blkif_request *extra_ring_req;
587 };
588 
589 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
590 				     unsigned int len, void *data)
591 {
592 	struct setup_rw_req *setup = data;
593 	int n, ref;
594 	struct grant *gnt_list_entry;
595 	unsigned int fsect, lsect;
596 	/* Convenient aliases */
597 	unsigned int grant_idx = setup->grant_idx;
598 	struct blkif_request *ring_req = setup->ring_req;
599 	struct blkfront_ring_info *rinfo = setup->rinfo;
600 	/*
601 	 * We always use the shadow of the first request to store the list
602 	 * of grant associated to the block I/O request. This made the
603 	 * completion more easy to handle even if the block I/O request is
604 	 * split.
605 	 */
606 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
607 
608 	if (unlikely(setup->require_extra_req &&
609 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
610 		/*
611 		 * We are using the second request, setup grant_idx
612 		 * to be the index of the segment array.
613 		 */
614 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
615 		ring_req = setup->extra_ring_req;
616 	}
617 
618 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
619 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
620 		if (setup->segments)
621 			kunmap_atomic(setup->segments);
622 
623 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
624 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
625 		shadow->indirect_grants[n] = gnt_list_entry;
626 		setup->segments = kmap_atomic(gnt_list_entry->page);
627 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
628 	}
629 
630 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
631 	ref = gnt_list_entry->gref;
632 	/*
633 	 * All the grants are stored in the shadow of the first
634 	 * request. Therefore we have to use the global index.
635 	 */
636 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
637 
638 	if (setup->need_copy) {
639 		void *shared_data;
640 
641 		shared_data = kmap_atomic(gnt_list_entry->page);
642 		/*
643 		 * this does not wipe data stored outside the
644 		 * range sg->offset..sg->offset+sg->length.
645 		 * Therefore, blkback *could* see data from
646 		 * previous requests. This is OK as long as
647 		 * persistent grants are shared with just one
648 		 * domain. It may need refactoring if this
649 		 * changes
650 		 */
651 		memcpy(shared_data + offset,
652 		       setup->bvec_data + setup->bvec_off,
653 		       len);
654 
655 		kunmap_atomic(shared_data);
656 		setup->bvec_off += len;
657 	}
658 
659 	fsect = offset >> 9;
660 	lsect = fsect + (len >> 9) - 1;
661 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
662 		ring_req->u.rw.seg[grant_idx] =
663 			(struct blkif_request_segment) {
664 				.gref       = ref,
665 				.first_sect = fsect,
666 				.last_sect  = lsect };
667 	} else {
668 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
669 			(struct blkif_request_segment) {
670 				.gref       = ref,
671 				.first_sect = fsect,
672 				.last_sect  = lsect };
673 	}
674 
675 	(setup->grant_idx)++;
676 }
677 
678 static void blkif_setup_extra_req(struct blkif_request *first,
679 				  struct blkif_request *second)
680 {
681 	uint16_t nr_segments = first->u.rw.nr_segments;
682 
683 	/*
684 	 * The second request is only present when the first request uses
685 	 * all its segments. It's always the continuity of the first one.
686 	 */
687 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
688 
689 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
690 	second->u.rw.sector_number = first->u.rw.sector_number +
691 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
692 
693 	second->u.rw.handle = first->u.rw.handle;
694 	second->operation = first->operation;
695 }
696 
697 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
698 {
699 	struct blkfront_info *info = rinfo->dev_info;
700 	struct blkif_request *ring_req, *extra_ring_req = NULL;
701 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
702 	bool require_extra_req = false;
703 	int i;
704 	struct setup_rw_req setup = {
705 		.grant_idx = 0,
706 		.segments = NULL,
707 		.rinfo = rinfo,
708 		.need_copy = rq_data_dir(req) && info->feature_persistent,
709 	};
710 
711 	/*
712 	 * Used to store if we are able to queue the request by just using
713 	 * existing persistent grants, or if we have to get new grants,
714 	 * as there are not sufficiently many free.
715 	 */
716 	struct scatterlist *sg;
717 	int num_sg, max_grefs, num_grant;
718 
719 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
720 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
721 		/*
722 		 * If we are using indirect segments we need to account
723 		 * for the indirect grefs used in the request.
724 		 */
725 		max_grefs += INDIRECT_GREFS(max_grefs);
726 
727 	/*
728 	 * We have to reserve 'max_grefs' grants because persistent
729 	 * grants are shared by all rings.
730 	 */
731 	if (max_grefs > 0)
732 		if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
733 			gnttab_request_free_callback(
734 				&rinfo->callback,
735 				blkif_restart_queue_callback,
736 				rinfo,
737 				max_grefs);
738 			return 1;
739 		}
740 
741 	/* Fill out a communications ring structure. */
742 	id = blkif_ring_get_request(rinfo, req, &ring_req);
743 
744 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
745 	num_grant = 0;
746 	/* Calculate the number of grant used */
747 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
748 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
749 
750 	require_extra_req = info->max_indirect_segments == 0 &&
751 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
752 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
753 
754 	rinfo->shadow[id].num_sg = num_sg;
755 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
756 	    likely(!require_extra_req)) {
757 		/*
758 		 * The indirect operation can only be a BLKIF_OP_READ or
759 		 * BLKIF_OP_WRITE
760 		 */
761 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
762 		ring_req->operation = BLKIF_OP_INDIRECT;
763 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
764 			BLKIF_OP_WRITE : BLKIF_OP_READ;
765 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
766 		ring_req->u.indirect.handle = info->handle;
767 		ring_req->u.indirect.nr_segments = num_grant;
768 	} else {
769 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
770 		ring_req->u.rw.handle = info->handle;
771 		ring_req->operation = rq_data_dir(req) ?
772 			BLKIF_OP_WRITE : BLKIF_OP_READ;
773 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
774 			/*
775 			 * Ideally we can do an unordered flush-to-disk.
776 			 * In case the backend onlysupports barriers, use that.
777 			 * A barrier request a superset of FUA, so we can
778 			 * implement it the same way.  (It's also a FLUSH+FUA,
779 			 * since it is guaranteed ordered WRT previous writes.)
780 			 */
781 			if (info->feature_flush && info->feature_fua)
782 				ring_req->operation =
783 					BLKIF_OP_WRITE_BARRIER;
784 			else if (info->feature_flush)
785 				ring_req->operation =
786 					BLKIF_OP_FLUSH_DISKCACHE;
787 			else
788 				ring_req->operation = 0;
789 		}
790 		ring_req->u.rw.nr_segments = num_grant;
791 		if (unlikely(require_extra_req)) {
792 			extra_id = blkif_ring_get_request(rinfo, req,
793 							  &extra_ring_req);
794 			/*
795 			 * Only the first request contains the scatter-gather
796 			 * list.
797 			 */
798 			rinfo->shadow[extra_id].num_sg = 0;
799 
800 			blkif_setup_extra_req(ring_req, extra_ring_req);
801 
802 			/* Link the 2 requests together */
803 			rinfo->shadow[extra_id].associated_id = id;
804 			rinfo->shadow[id].associated_id = extra_id;
805 		}
806 	}
807 
808 	setup.ring_req = ring_req;
809 	setup.id = id;
810 
811 	setup.require_extra_req = require_extra_req;
812 	if (unlikely(require_extra_req))
813 		setup.extra_ring_req = extra_ring_req;
814 
815 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
816 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
817 
818 		if (setup.need_copy) {
819 			setup.bvec_off = sg->offset;
820 			setup.bvec_data = kmap_atomic(sg_page(sg));
821 		}
822 
823 		gnttab_foreach_grant_in_range(sg_page(sg),
824 					      sg->offset,
825 					      sg->length,
826 					      blkif_setup_rw_req_grant,
827 					      &setup);
828 
829 		if (setup.need_copy)
830 			kunmap_atomic(setup.bvec_data);
831 	}
832 	if (setup.segments)
833 		kunmap_atomic(setup.segments);
834 
835 	/* Keep a private copy so we can reissue requests when recovering. */
836 	rinfo->shadow[id].req = *ring_req;
837 	if (unlikely(require_extra_req))
838 		rinfo->shadow[extra_id].req = *extra_ring_req;
839 
840 	if (max_grefs > 0)
841 		gnttab_free_grant_references(setup.gref_head);
842 
843 	return 0;
844 }
845 
846 /*
847  * Generate a Xen blkfront IO request from a blk layer request.  Reads
848  * and writes are handled as expected.
849  *
850  * @req: a request struct
851  */
852 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
853 {
854 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
855 		return 1;
856 
857 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
858 		     req_op(req) == REQ_OP_SECURE_ERASE))
859 		return blkif_queue_discard_req(req, rinfo);
860 	else
861 		return blkif_queue_rw_req(req, rinfo);
862 }
863 
864 static inline void flush_requests(struct blkfront_ring_info *rinfo)
865 {
866 	int notify;
867 
868 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
869 
870 	if (notify)
871 		notify_remote_via_irq(rinfo->irq);
872 }
873 
874 static inline bool blkif_request_flush_invalid(struct request *req,
875 					       struct blkfront_info *info)
876 {
877 	return (blk_rq_is_passthrough(req) ||
878 		((req_op(req) == REQ_OP_FLUSH) &&
879 		 !info->feature_flush) ||
880 		((req->cmd_flags & REQ_FUA) &&
881 		 !info->feature_fua));
882 }
883 
884 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
885 			  const struct blk_mq_queue_data *qd)
886 {
887 	unsigned long flags;
888 	int qid = hctx->queue_num;
889 	struct blkfront_info *info = hctx->queue->queuedata;
890 	struct blkfront_ring_info *rinfo = NULL;
891 
892 	BUG_ON(info->nr_rings <= qid);
893 	rinfo = &info->rinfo[qid];
894 	blk_mq_start_request(qd->rq);
895 	spin_lock_irqsave(&rinfo->ring_lock, flags);
896 	if (RING_FULL(&rinfo->ring))
897 		goto out_busy;
898 
899 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
900 		goto out_err;
901 
902 	if (blkif_queue_request(qd->rq, rinfo))
903 		goto out_busy;
904 
905 	flush_requests(rinfo);
906 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
907 	return BLK_MQ_RQ_QUEUE_OK;
908 
909 out_err:
910 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
911 	return BLK_MQ_RQ_QUEUE_ERROR;
912 
913 out_busy:
914 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
915 	blk_mq_stop_hw_queue(hctx);
916 	return BLK_MQ_RQ_QUEUE_BUSY;
917 }
918 
919 static void blkif_complete_rq(struct request *rq)
920 {
921 	blk_mq_end_request(rq, blkif_req(rq)->error);
922 }
923 
924 static const struct blk_mq_ops blkfront_mq_ops = {
925 	.queue_rq = blkif_queue_rq,
926 	.complete = blkif_complete_rq,
927 };
928 
929 static void blkif_set_queue_limits(struct blkfront_info *info)
930 {
931 	struct request_queue *rq = info->rq;
932 	struct gendisk *gd = info->gd;
933 	unsigned int segments = info->max_indirect_segments ? :
934 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
935 
936 	queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
937 
938 	if (info->feature_discard) {
939 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
940 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
941 		rq->limits.discard_granularity = info->discard_granularity;
942 		rq->limits.discard_alignment = info->discard_alignment;
943 		if (info->feature_secdiscard)
944 			queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
945 	}
946 
947 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
948 	blk_queue_logical_block_size(rq, info->sector_size);
949 	blk_queue_physical_block_size(rq, info->physical_sector_size);
950 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
951 
952 	/* Each segment in a request is up to an aligned page in size. */
953 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
954 	blk_queue_max_segment_size(rq, PAGE_SIZE);
955 
956 	/* Ensure a merged request will fit in a single I/O ring slot. */
957 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
958 
959 	/* Make sure buffer addresses are sector-aligned. */
960 	blk_queue_dma_alignment(rq, 511);
961 
962 	/* Make sure we don't use bounce buffers. */
963 	blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
964 }
965 
966 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
967 				unsigned int physical_sector_size)
968 {
969 	struct request_queue *rq;
970 	struct blkfront_info *info = gd->private_data;
971 
972 	memset(&info->tag_set, 0, sizeof(info->tag_set));
973 	info->tag_set.ops = &blkfront_mq_ops;
974 	info->tag_set.nr_hw_queues = info->nr_rings;
975 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
976 		/*
977 		 * When indirect descriptior is not supported, the I/O request
978 		 * will be split between multiple request in the ring.
979 		 * To avoid problems when sending the request, divide by
980 		 * 2 the depth of the queue.
981 		 */
982 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
983 	} else
984 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
985 	info->tag_set.numa_node = NUMA_NO_NODE;
986 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
987 	info->tag_set.cmd_size = sizeof(struct blkif_req);
988 	info->tag_set.driver_data = info;
989 
990 	if (blk_mq_alloc_tag_set(&info->tag_set))
991 		return -EINVAL;
992 	rq = blk_mq_init_queue(&info->tag_set);
993 	if (IS_ERR(rq)) {
994 		blk_mq_free_tag_set(&info->tag_set);
995 		return PTR_ERR(rq);
996 	}
997 
998 	rq->queuedata = info;
999 	info->rq = gd->queue = rq;
1000 	info->gd = gd;
1001 	info->sector_size = sector_size;
1002 	info->physical_sector_size = physical_sector_size;
1003 	blkif_set_queue_limits(info);
1004 
1005 	return 0;
1006 }
1007 
1008 static const char *flush_info(struct blkfront_info *info)
1009 {
1010 	if (info->feature_flush && info->feature_fua)
1011 		return "barrier: enabled;";
1012 	else if (info->feature_flush)
1013 		return "flush diskcache: enabled;";
1014 	else
1015 		return "barrier or flush: disabled;";
1016 }
1017 
1018 static void xlvbd_flush(struct blkfront_info *info)
1019 {
1020 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1021 			      info->feature_fua ? true : false);
1022 	pr_info("blkfront: %s: %s %s %s %s %s\n",
1023 		info->gd->disk_name, flush_info(info),
1024 		"persistent grants:", info->feature_persistent ?
1025 		"enabled;" : "disabled;", "indirect descriptors:",
1026 		info->max_indirect_segments ? "enabled;" : "disabled;");
1027 }
1028 
1029 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1030 {
1031 	int major;
1032 	major = BLKIF_MAJOR(vdevice);
1033 	*minor = BLKIF_MINOR(vdevice);
1034 	switch (major) {
1035 		case XEN_IDE0_MAJOR:
1036 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1037 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1038 				EMULATED_HD_DISK_MINOR_OFFSET;
1039 			break;
1040 		case XEN_IDE1_MAJOR:
1041 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1042 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1043 				EMULATED_HD_DISK_MINOR_OFFSET;
1044 			break;
1045 		case XEN_SCSI_DISK0_MAJOR:
1046 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1047 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1048 			break;
1049 		case XEN_SCSI_DISK1_MAJOR:
1050 		case XEN_SCSI_DISK2_MAJOR:
1051 		case XEN_SCSI_DISK3_MAJOR:
1052 		case XEN_SCSI_DISK4_MAJOR:
1053 		case XEN_SCSI_DISK5_MAJOR:
1054 		case XEN_SCSI_DISK6_MAJOR:
1055 		case XEN_SCSI_DISK7_MAJOR:
1056 			*offset = (*minor / PARTS_PER_DISK) +
1057 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1058 				EMULATED_SD_DISK_NAME_OFFSET;
1059 			*minor = *minor +
1060 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1061 				EMULATED_SD_DISK_MINOR_OFFSET;
1062 			break;
1063 		case XEN_SCSI_DISK8_MAJOR:
1064 		case XEN_SCSI_DISK9_MAJOR:
1065 		case XEN_SCSI_DISK10_MAJOR:
1066 		case XEN_SCSI_DISK11_MAJOR:
1067 		case XEN_SCSI_DISK12_MAJOR:
1068 		case XEN_SCSI_DISK13_MAJOR:
1069 		case XEN_SCSI_DISK14_MAJOR:
1070 		case XEN_SCSI_DISK15_MAJOR:
1071 			*offset = (*minor / PARTS_PER_DISK) +
1072 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1073 				EMULATED_SD_DISK_NAME_OFFSET;
1074 			*minor = *minor +
1075 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1076 				EMULATED_SD_DISK_MINOR_OFFSET;
1077 			break;
1078 		case XENVBD_MAJOR:
1079 			*offset = *minor / PARTS_PER_DISK;
1080 			break;
1081 		default:
1082 			printk(KERN_WARNING "blkfront: your disk configuration is "
1083 					"incorrect, please use an xvd device instead\n");
1084 			return -ENODEV;
1085 	}
1086 	return 0;
1087 }
1088 
1089 static char *encode_disk_name(char *ptr, unsigned int n)
1090 {
1091 	if (n >= 26)
1092 		ptr = encode_disk_name(ptr, n / 26 - 1);
1093 	*ptr = 'a' + n % 26;
1094 	return ptr + 1;
1095 }
1096 
1097 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1098 			       struct blkfront_info *info,
1099 			       u16 vdisk_info, u16 sector_size,
1100 			       unsigned int physical_sector_size)
1101 {
1102 	struct gendisk *gd;
1103 	int nr_minors = 1;
1104 	int err;
1105 	unsigned int offset;
1106 	int minor;
1107 	int nr_parts;
1108 	char *ptr;
1109 
1110 	BUG_ON(info->gd != NULL);
1111 	BUG_ON(info->rq != NULL);
1112 
1113 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1114 		/* this is above the extended range; something is wrong */
1115 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1116 		return -ENODEV;
1117 	}
1118 
1119 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1120 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1121 		if (err)
1122 			return err;
1123  		nr_parts = PARTS_PER_DISK;
1124 	} else {
1125 		minor = BLKIF_MINOR_EXT(info->vdevice);
1126 		nr_parts = PARTS_PER_EXT_DISK;
1127 		offset = minor / nr_parts;
1128 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1129 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1130 					"emulated IDE disks,\n\t choose an xvd device name"
1131 					"from xvde on\n", info->vdevice);
1132 	}
1133 	if (minor >> MINORBITS) {
1134 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1135 			info->vdevice, minor);
1136 		return -ENODEV;
1137 	}
1138 
1139 	if ((minor % nr_parts) == 0)
1140 		nr_minors = nr_parts;
1141 
1142 	err = xlbd_reserve_minors(minor, nr_minors);
1143 	if (err)
1144 		goto out;
1145 	err = -ENODEV;
1146 
1147 	gd = alloc_disk(nr_minors);
1148 	if (gd == NULL)
1149 		goto release;
1150 
1151 	strcpy(gd->disk_name, DEV_NAME);
1152 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1153 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1154 	if (nr_minors > 1)
1155 		*ptr = 0;
1156 	else
1157 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1158 			 "%d", minor & (nr_parts - 1));
1159 
1160 	gd->major = XENVBD_MAJOR;
1161 	gd->first_minor = minor;
1162 	gd->fops = &xlvbd_block_fops;
1163 	gd->private_data = info;
1164 	set_capacity(gd, capacity);
1165 
1166 	if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1167 		del_gendisk(gd);
1168 		goto release;
1169 	}
1170 
1171 	xlvbd_flush(info);
1172 
1173 	if (vdisk_info & VDISK_READONLY)
1174 		set_disk_ro(gd, 1);
1175 
1176 	if (vdisk_info & VDISK_REMOVABLE)
1177 		gd->flags |= GENHD_FL_REMOVABLE;
1178 
1179 	if (vdisk_info & VDISK_CDROM)
1180 		gd->flags |= GENHD_FL_CD;
1181 
1182 	return 0;
1183 
1184  release:
1185 	xlbd_release_minors(minor, nr_minors);
1186  out:
1187 	return err;
1188 }
1189 
1190 static void xlvbd_release_gendisk(struct blkfront_info *info)
1191 {
1192 	unsigned int minor, nr_minors, i;
1193 
1194 	if (info->rq == NULL)
1195 		return;
1196 
1197 	/* No more blkif_request(). */
1198 	blk_mq_stop_hw_queues(info->rq);
1199 
1200 	for (i = 0; i < info->nr_rings; i++) {
1201 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1202 
1203 		/* No more gnttab callback work. */
1204 		gnttab_cancel_free_callback(&rinfo->callback);
1205 
1206 		/* Flush gnttab callback work. Must be done with no locks held. */
1207 		flush_work(&rinfo->work);
1208 	}
1209 
1210 	del_gendisk(info->gd);
1211 
1212 	minor = info->gd->first_minor;
1213 	nr_minors = info->gd->minors;
1214 	xlbd_release_minors(minor, nr_minors);
1215 
1216 	blk_cleanup_queue(info->rq);
1217 	blk_mq_free_tag_set(&info->tag_set);
1218 	info->rq = NULL;
1219 
1220 	put_disk(info->gd);
1221 	info->gd = NULL;
1222 }
1223 
1224 /* Already hold rinfo->ring_lock. */
1225 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1226 {
1227 	if (!RING_FULL(&rinfo->ring))
1228 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1229 }
1230 
1231 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1232 {
1233 	unsigned long flags;
1234 
1235 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1236 	kick_pending_request_queues_locked(rinfo);
1237 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1238 }
1239 
1240 static void blkif_restart_queue(struct work_struct *work)
1241 {
1242 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1243 
1244 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1245 		kick_pending_request_queues(rinfo);
1246 }
1247 
1248 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1249 {
1250 	struct grant *persistent_gnt, *n;
1251 	struct blkfront_info *info = rinfo->dev_info;
1252 	int i, j, segs;
1253 
1254 	/*
1255 	 * Remove indirect pages, this only happens when using indirect
1256 	 * descriptors but not persistent grants
1257 	 */
1258 	if (!list_empty(&rinfo->indirect_pages)) {
1259 		struct page *indirect_page, *n;
1260 
1261 		BUG_ON(info->feature_persistent);
1262 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1263 			list_del(&indirect_page->lru);
1264 			__free_page(indirect_page);
1265 		}
1266 	}
1267 
1268 	/* Remove all persistent grants. */
1269 	if (!list_empty(&rinfo->grants)) {
1270 		list_for_each_entry_safe(persistent_gnt, n,
1271 					 &rinfo->grants, node) {
1272 			list_del(&persistent_gnt->node);
1273 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1274 				gnttab_end_foreign_access(persistent_gnt->gref,
1275 							  0, 0UL);
1276 				rinfo->persistent_gnts_c--;
1277 			}
1278 			if (info->feature_persistent)
1279 				__free_page(persistent_gnt->page);
1280 			kfree(persistent_gnt);
1281 		}
1282 	}
1283 	BUG_ON(rinfo->persistent_gnts_c != 0);
1284 
1285 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1286 		/*
1287 		 * Clear persistent grants present in requests already
1288 		 * on the shared ring
1289 		 */
1290 		if (!rinfo->shadow[i].request)
1291 			goto free_shadow;
1292 
1293 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1294 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1295 		       rinfo->shadow[i].req.u.rw.nr_segments;
1296 		for (j = 0; j < segs; j++) {
1297 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1298 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1299 			if (info->feature_persistent)
1300 				__free_page(persistent_gnt->page);
1301 			kfree(persistent_gnt);
1302 		}
1303 
1304 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1305 			/*
1306 			 * If this is not an indirect operation don't try to
1307 			 * free indirect segments
1308 			 */
1309 			goto free_shadow;
1310 
1311 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1312 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1313 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1314 			__free_page(persistent_gnt->page);
1315 			kfree(persistent_gnt);
1316 		}
1317 
1318 free_shadow:
1319 		kfree(rinfo->shadow[i].grants_used);
1320 		rinfo->shadow[i].grants_used = NULL;
1321 		kfree(rinfo->shadow[i].indirect_grants);
1322 		rinfo->shadow[i].indirect_grants = NULL;
1323 		kfree(rinfo->shadow[i].sg);
1324 		rinfo->shadow[i].sg = NULL;
1325 	}
1326 
1327 	/* No more gnttab callback work. */
1328 	gnttab_cancel_free_callback(&rinfo->callback);
1329 
1330 	/* Flush gnttab callback work. Must be done with no locks held. */
1331 	flush_work(&rinfo->work);
1332 
1333 	/* Free resources associated with old device channel. */
1334 	for (i = 0; i < info->nr_ring_pages; i++) {
1335 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1336 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1337 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1338 		}
1339 	}
1340 	free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1341 	rinfo->ring.sring = NULL;
1342 
1343 	if (rinfo->irq)
1344 		unbind_from_irqhandler(rinfo->irq, rinfo);
1345 	rinfo->evtchn = rinfo->irq = 0;
1346 }
1347 
1348 static void blkif_free(struct blkfront_info *info, int suspend)
1349 {
1350 	unsigned int i;
1351 
1352 	/* Prevent new requests being issued until we fix things up. */
1353 	info->connected = suspend ?
1354 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1355 	/* No more blkif_request(). */
1356 	if (info->rq)
1357 		blk_mq_stop_hw_queues(info->rq);
1358 
1359 	for (i = 0; i < info->nr_rings; i++)
1360 		blkif_free_ring(&info->rinfo[i]);
1361 
1362 	kfree(info->rinfo);
1363 	info->rinfo = NULL;
1364 	info->nr_rings = 0;
1365 }
1366 
1367 struct copy_from_grant {
1368 	const struct blk_shadow *s;
1369 	unsigned int grant_idx;
1370 	unsigned int bvec_offset;
1371 	char *bvec_data;
1372 };
1373 
1374 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1375 				  unsigned int len, void *data)
1376 {
1377 	struct copy_from_grant *info = data;
1378 	char *shared_data;
1379 	/* Convenient aliases */
1380 	const struct blk_shadow *s = info->s;
1381 
1382 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1383 
1384 	memcpy(info->bvec_data + info->bvec_offset,
1385 	       shared_data + offset, len);
1386 
1387 	info->bvec_offset += len;
1388 	info->grant_idx++;
1389 
1390 	kunmap_atomic(shared_data);
1391 }
1392 
1393 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1394 {
1395 	switch (rsp)
1396 	{
1397 	case BLKIF_RSP_OKAY:
1398 		return REQ_DONE;
1399 	case BLKIF_RSP_EOPNOTSUPP:
1400 		return REQ_EOPNOTSUPP;
1401 	case BLKIF_RSP_ERROR:
1402 		/* Fallthrough. */
1403 	default:
1404 		return REQ_ERROR;
1405 	}
1406 }
1407 
1408 /*
1409  * Get the final status of the block request based on two ring response
1410  */
1411 static int blkif_get_final_status(enum blk_req_status s1,
1412 				  enum blk_req_status s2)
1413 {
1414 	BUG_ON(s1 == REQ_WAITING);
1415 	BUG_ON(s2 == REQ_WAITING);
1416 
1417 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1418 		return BLKIF_RSP_ERROR;
1419 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1420 		return BLKIF_RSP_EOPNOTSUPP;
1421 	return BLKIF_RSP_OKAY;
1422 }
1423 
1424 static bool blkif_completion(unsigned long *id,
1425 			     struct blkfront_ring_info *rinfo,
1426 			     struct blkif_response *bret)
1427 {
1428 	int i = 0;
1429 	struct scatterlist *sg;
1430 	int num_sg, num_grant;
1431 	struct blkfront_info *info = rinfo->dev_info;
1432 	struct blk_shadow *s = &rinfo->shadow[*id];
1433 	struct copy_from_grant data = {
1434 		.grant_idx = 0,
1435 	};
1436 
1437 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1438 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1439 
1440 	/* The I/O request may be split in two. */
1441 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1442 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1443 
1444 		/* Keep the status of the current response in shadow. */
1445 		s->status = blkif_rsp_to_req_status(bret->status);
1446 
1447 		/* Wait the second response if not yet here. */
1448 		if (s2->status == REQ_WAITING)
1449 			return 0;
1450 
1451 		bret->status = blkif_get_final_status(s->status,
1452 						      s2->status);
1453 
1454 		/*
1455 		 * All the grants is stored in the first shadow in order
1456 		 * to make the completion code simpler.
1457 		 */
1458 		num_grant += s2->req.u.rw.nr_segments;
1459 
1460 		/*
1461 		 * The two responses may not come in order. Only the
1462 		 * first request will store the scatter-gather list.
1463 		 */
1464 		if (s2->num_sg != 0) {
1465 			/* Update "id" with the ID of the first response. */
1466 			*id = s->associated_id;
1467 			s = s2;
1468 		}
1469 
1470 		/*
1471 		 * We don't need anymore the second request, so recycling
1472 		 * it now.
1473 		 */
1474 		if (add_id_to_freelist(rinfo, s->associated_id))
1475 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1476 			     info->gd->disk_name, s->associated_id);
1477 	}
1478 
1479 	data.s = s;
1480 	num_sg = s->num_sg;
1481 
1482 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1483 		for_each_sg(s->sg, sg, num_sg, i) {
1484 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1485 
1486 			data.bvec_offset = sg->offset;
1487 			data.bvec_data = kmap_atomic(sg_page(sg));
1488 
1489 			gnttab_foreach_grant_in_range(sg_page(sg),
1490 						      sg->offset,
1491 						      sg->length,
1492 						      blkif_copy_from_grant,
1493 						      &data);
1494 
1495 			kunmap_atomic(data.bvec_data);
1496 		}
1497 	}
1498 	/* Add the persistent grant into the list of free grants */
1499 	for (i = 0; i < num_grant; i++) {
1500 		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1501 			/*
1502 			 * If the grant is still mapped by the backend (the
1503 			 * backend has chosen to make this grant persistent)
1504 			 * we add it at the head of the list, so it will be
1505 			 * reused first.
1506 			 */
1507 			if (!info->feature_persistent)
1508 				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1509 						     s->grants_used[i]->gref);
1510 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1511 			rinfo->persistent_gnts_c++;
1512 		} else {
1513 			/*
1514 			 * If the grant is not mapped by the backend we end the
1515 			 * foreign access and add it to the tail of the list,
1516 			 * so it will not be picked again unless we run out of
1517 			 * persistent grants.
1518 			 */
1519 			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1520 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1521 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1522 		}
1523 	}
1524 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1525 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1526 			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1527 				if (!info->feature_persistent)
1528 					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1529 							     s->indirect_grants[i]->gref);
1530 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1531 				rinfo->persistent_gnts_c++;
1532 			} else {
1533 				struct page *indirect_page;
1534 
1535 				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1536 				/*
1537 				 * Add the used indirect page back to the list of
1538 				 * available pages for indirect grefs.
1539 				 */
1540 				if (!info->feature_persistent) {
1541 					indirect_page = s->indirect_grants[i]->page;
1542 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1543 				}
1544 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1545 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1546 			}
1547 		}
1548 	}
1549 
1550 	return 1;
1551 }
1552 
1553 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1554 {
1555 	struct request *req;
1556 	struct blkif_response *bret;
1557 	RING_IDX i, rp;
1558 	unsigned long flags;
1559 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1560 	struct blkfront_info *info = rinfo->dev_info;
1561 
1562 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1563 		return IRQ_HANDLED;
1564 
1565 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1566  again:
1567 	rp = rinfo->ring.sring->rsp_prod;
1568 	rmb(); /* Ensure we see queued responses up to 'rp'. */
1569 
1570 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1571 		unsigned long id;
1572 
1573 		bret = RING_GET_RESPONSE(&rinfo->ring, i);
1574 		id   = bret->id;
1575 		/*
1576 		 * The backend has messed up and given us an id that we would
1577 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1578 		 * look in get_id_from_freelist.
1579 		 */
1580 		if (id >= BLK_RING_SIZE(info)) {
1581 			WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1582 			     info->gd->disk_name, op_name(bret->operation), id);
1583 			/* We can't safely get the 'struct request' as
1584 			 * the id is busted. */
1585 			continue;
1586 		}
1587 		req  = rinfo->shadow[id].request;
1588 
1589 		if (bret->operation != BLKIF_OP_DISCARD) {
1590 			/*
1591 			 * We may need to wait for an extra response if the
1592 			 * I/O request is split in 2
1593 			 */
1594 			if (!blkif_completion(&id, rinfo, bret))
1595 				continue;
1596 		}
1597 
1598 		if (add_id_to_freelist(rinfo, id)) {
1599 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1600 			     info->gd->disk_name, op_name(bret->operation), id);
1601 			continue;
1602 		}
1603 
1604 		blkif_req(req)->error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1605 		switch (bret->operation) {
1606 		case BLKIF_OP_DISCARD:
1607 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1608 				struct request_queue *rq = info->rq;
1609 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1610 					   info->gd->disk_name, op_name(bret->operation));
1611 				blkif_req(req)->error = -EOPNOTSUPP;
1612 				info->feature_discard = 0;
1613 				info->feature_secdiscard = 0;
1614 				queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1615 				queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1616 			}
1617 			break;
1618 		case BLKIF_OP_FLUSH_DISKCACHE:
1619 		case BLKIF_OP_WRITE_BARRIER:
1620 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1621 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1622 				       info->gd->disk_name, op_name(bret->operation));
1623 				blkif_req(req)->error = -EOPNOTSUPP;
1624 			}
1625 			if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1626 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1627 				printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1628 				       info->gd->disk_name, op_name(bret->operation));
1629 				blkif_req(req)->error = -EOPNOTSUPP;
1630 			}
1631 			if (unlikely(blkif_req(req)->error)) {
1632 				if (blkif_req(req)->error == -EOPNOTSUPP)
1633 					blkif_req(req)->error = 0;
1634 				info->feature_fua = 0;
1635 				info->feature_flush = 0;
1636 				xlvbd_flush(info);
1637 			}
1638 			/* fall through */
1639 		case BLKIF_OP_READ:
1640 		case BLKIF_OP_WRITE:
1641 			if (unlikely(bret->status != BLKIF_RSP_OKAY))
1642 				dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1643 					"request: %x\n", bret->status);
1644 
1645 			break;
1646 		default:
1647 			BUG();
1648 		}
1649 
1650 		blk_mq_complete_request(req);
1651 	}
1652 
1653 	rinfo->ring.rsp_cons = i;
1654 
1655 	if (i != rinfo->ring.req_prod_pvt) {
1656 		int more_to_do;
1657 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1658 		if (more_to_do)
1659 			goto again;
1660 	} else
1661 		rinfo->ring.sring->rsp_event = i + 1;
1662 
1663 	kick_pending_request_queues_locked(rinfo);
1664 
1665 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1666 
1667 	return IRQ_HANDLED;
1668 }
1669 
1670 
1671 static int setup_blkring(struct xenbus_device *dev,
1672 			 struct blkfront_ring_info *rinfo)
1673 {
1674 	struct blkif_sring *sring;
1675 	int err, i;
1676 	struct blkfront_info *info = rinfo->dev_info;
1677 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1678 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1679 
1680 	for (i = 0; i < info->nr_ring_pages; i++)
1681 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1682 
1683 	sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1684 						       get_order(ring_size));
1685 	if (!sring) {
1686 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1687 		return -ENOMEM;
1688 	}
1689 	SHARED_RING_INIT(sring);
1690 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1691 
1692 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1693 	if (err < 0) {
1694 		free_pages((unsigned long)sring, get_order(ring_size));
1695 		rinfo->ring.sring = NULL;
1696 		goto fail;
1697 	}
1698 	for (i = 0; i < info->nr_ring_pages; i++)
1699 		rinfo->ring_ref[i] = gref[i];
1700 
1701 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1702 	if (err)
1703 		goto fail;
1704 
1705 	err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1706 					"blkif", rinfo);
1707 	if (err <= 0) {
1708 		xenbus_dev_fatal(dev, err,
1709 				 "bind_evtchn_to_irqhandler failed");
1710 		goto fail;
1711 	}
1712 	rinfo->irq = err;
1713 
1714 	return 0;
1715 fail:
1716 	blkif_free(info, 0);
1717 	return err;
1718 }
1719 
1720 /*
1721  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1722  * ring buffer may have multi pages depending on ->nr_ring_pages.
1723  */
1724 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1725 				struct blkfront_ring_info *rinfo, const char *dir)
1726 {
1727 	int err;
1728 	unsigned int i;
1729 	const char *message = NULL;
1730 	struct blkfront_info *info = rinfo->dev_info;
1731 
1732 	if (info->nr_ring_pages == 1) {
1733 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1734 		if (err) {
1735 			message = "writing ring-ref";
1736 			goto abort_transaction;
1737 		}
1738 	} else {
1739 		for (i = 0; i < info->nr_ring_pages; i++) {
1740 			char ring_ref_name[RINGREF_NAME_LEN];
1741 
1742 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1743 			err = xenbus_printf(xbt, dir, ring_ref_name,
1744 					    "%u", rinfo->ring_ref[i]);
1745 			if (err) {
1746 				message = "writing ring-ref";
1747 				goto abort_transaction;
1748 			}
1749 		}
1750 	}
1751 
1752 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1753 	if (err) {
1754 		message = "writing event-channel";
1755 		goto abort_transaction;
1756 	}
1757 
1758 	return 0;
1759 
1760 abort_transaction:
1761 	xenbus_transaction_end(xbt, 1);
1762 	if (message)
1763 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1764 
1765 	return err;
1766 }
1767 
1768 /* Common code used when first setting up, and when resuming. */
1769 static int talk_to_blkback(struct xenbus_device *dev,
1770 			   struct blkfront_info *info)
1771 {
1772 	const char *message = NULL;
1773 	struct xenbus_transaction xbt;
1774 	int err;
1775 	unsigned int i, max_page_order;
1776 	unsigned int ring_page_order;
1777 
1778 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1779 					      "max-ring-page-order", 0);
1780 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1781 	info->nr_ring_pages = 1 << ring_page_order;
1782 
1783 	for (i = 0; i < info->nr_rings; i++) {
1784 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1785 
1786 		/* Create shared ring, alloc event channel. */
1787 		err = setup_blkring(dev, rinfo);
1788 		if (err)
1789 			goto destroy_blkring;
1790 	}
1791 
1792 again:
1793 	err = xenbus_transaction_start(&xbt);
1794 	if (err) {
1795 		xenbus_dev_fatal(dev, err, "starting transaction");
1796 		goto destroy_blkring;
1797 	}
1798 
1799 	if (info->nr_ring_pages > 1) {
1800 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1801 				    ring_page_order);
1802 		if (err) {
1803 			message = "writing ring-page-order";
1804 			goto abort_transaction;
1805 		}
1806 	}
1807 
1808 	/* We already got the number of queues/rings in _probe */
1809 	if (info->nr_rings == 1) {
1810 		err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1811 		if (err)
1812 			goto destroy_blkring;
1813 	} else {
1814 		char *path;
1815 		size_t pathsize;
1816 
1817 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1818 				    info->nr_rings);
1819 		if (err) {
1820 			message = "writing multi-queue-num-queues";
1821 			goto abort_transaction;
1822 		}
1823 
1824 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1825 		path = kmalloc(pathsize, GFP_KERNEL);
1826 		if (!path) {
1827 			err = -ENOMEM;
1828 			message = "ENOMEM while writing ring references";
1829 			goto abort_transaction;
1830 		}
1831 
1832 		for (i = 0; i < info->nr_rings; i++) {
1833 			memset(path, 0, pathsize);
1834 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1835 			err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1836 			if (err) {
1837 				kfree(path);
1838 				goto destroy_blkring;
1839 			}
1840 		}
1841 		kfree(path);
1842 	}
1843 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1844 			    XEN_IO_PROTO_ABI_NATIVE);
1845 	if (err) {
1846 		message = "writing protocol";
1847 		goto abort_transaction;
1848 	}
1849 	err = xenbus_printf(xbt, dev->nodename,
1850 			    "feature-persistent", "%u", 1);
1851 	if (err)
1852 		dev_warn(&dev->dev,
1853 			 "writing persistent grants feature to xenbus");
1854 
1855 	err = xenbus_transaction_end(xbt, 0);
1856 	if (err) {
1857 		if (err == -EAGAIN)
1858 			goto again;
1859 		xenbus_dev_fatal(dev, err, "completing transaction");
1860 		goto destroy_blkring;
1861 	}
1862 
1863 	for (i = 0; i < info->nr_rings; i++) {
1864 		unsigned int j;
1865 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1866 
1867 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1868 			rinfo->shadow[j].req.u.rw.id = j + 1;
1869 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1870 	}
1871 	xenbus_switch_state(dev, XenbusStateInitialised);
1872 
1873 	return 0;
1874 
1875  abort_transaction:
1876 	xenbus_transaction_end(xbt, 1);
1877 	if (message)
1878 		xenbus_dev_fatal(dev, err, "%s", message);
1879  destroy_blkring:
1880 	blkif_free(info, 0);
1881 
1882 	kfree(info);
1883 	dev_set_drvdata(&dev->dev, NULL);
1884 
1885 	return err;
1886 }
1887 
1888 static int negotiate_mq(struct blkfront_info *info)
1889 {
1890 	unsigned int backend_max_queues;
1891 	unsigned int i;
1892 
1893 	BUG_ON(info->nr_rings);
1894 
1895 	/* Check if backend supports multiple queues. */
1896 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1897 						  "multi-queue-max-queues", 1);
1898 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1899 	/* We need at least one ring. */
1900 	if (!info->nr_rings)
1901 		info->nr_rings = 1;
1902 
1903 	info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1904 	if (!info->rinfo) {
1905 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1906 		return -ENOMEM;
1907 	}
1908 
1909 	for (i = 0; i < info->nr_rings; i++) {
1910 		struct blkfront_ring_info *rinfo;
1911 
1912 		rinfo = &info->rinfo[i];
1913 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1914 		INIT_LIST_HEAD(&rinfo->grants);
1915 		rinfo->dev_info = info;
1916 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1917 		spin_lock_init(&rinfo->ring_lock);
1918 	}
1919 	return 0;
1920 }
1921 /**
1922  * Entry point to this code when a new device is created.  Allocate the basic
1923  * structures and the ring buffer for communication with the backend, and
1924  * inform the backend of the appropriate details for those.  Switch to
1925  * Initialised state.
1926  */
1927 static int blkfront_probe(struct xenbus_device *dev,
1928 			  const struct xenbus_device_id *id)
1929 {
1930 	int err, vdevice;
1931 	struct blkfront_info *info;
1932 
1933 	/* FIXME: Use dynamic device id if this is not set. */
1934 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1935 			   "virtual-device", "%i", &vdevice);
1936 	if (err != 1) {
1937 		/* go looking in the extended area instead */
1938 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1939 				   "%i", &vdevice);
1940 		if (err != 1) {
1941 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1942 			return err;
1943 		}
1944 	}
1945 
1946 	if (xen_hvm_domain()) {
1947 		char *type;
1948 		int len;
1949 		/* no unplug has been done: do not hook devices != xen vbds */
1950 		if (xen_has_pv_and_legacy_disk_devices()) {
1951 			int major;
1952 
1953 			if (!VDEV_IS_EXTENDED(vdevice))
1954 				major = BLKIF_MAJOR(vdevice);
1955 			else
1956 				major = XENVBD_MAJOR;
1957 
1958 			if (major != XENVBD_MAJOR) {
1959 				printk(KERN_INFO
1960 						"%s: HVM does not support vbd %d as xen block device\n",
1961 						__func__, vdevice);
1962 				return -ENODEV;
1963 			}
1964 		}
1965 		/* do not create a PV cdrom device if we are an HVM guest */
1966 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1967 		if (IS_ERR(type))
1968 			return -ENODEV;
1969 		if (strncmp(type, "cdrom", 5) == 0) {
1970 			kfree(type);
1971 			return -ENODEV;
1972 		}
1973 		kfree(type);
1974 	}
1975 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1976 	if (!info) {
1977 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1978 		return -ENOMEM;
1979 	}
1980 
1981 	info->xbdev = dev;
1982 	err = negotiate_mq(info);
1983 	if (err) {
1984 		kfree(info);
1985 		return err;
1986 	}
1987 
1988 	mutex_init(&info->mutex);
1989 	info->vdevice = vdevice;
1990 	info->connected = BLKIF_STATE_DISCONNECTED;
1991 
1992 	/* Front end dir is a number, which is used as the id. */
1993 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1994 	dev_set_drvdata(&dev->dev, info);
1995 
1996 	return 0;
1997 }
1998 
1999 static void split_bio_end(struct bio *bio)
2000 {
2001 	struct split_bio *split_bio = bio->bi_private;
2002 
2003 	if (atomic_dec_and_test(&split_bio->pending)) {
2004 		split_bio->bio->bi_phys_segments = 0;
2005 		split_bio->bio->bi_error = bio->bi_error;
2006 		bio_endio(split_bio->bio);
2007 		kfree(split_bio);
2008 	}
2009 	bio_put(bio);
2010 }
2011 
2012 static int blkif_recover(struct blkfront_info *info)
2013 {
2014 	unsigned int i, r_index;
2015 	struct request *req, *n;
2016 	int rc;
2017 	struct bio *bio, *cloned_bio;
2018 	unsigned int segs, offset;
2019 	int pending, size;
2020 	struct split_bio *split_bio;
2021 
2022 	blkfront_gather_backend_features(info);
2023 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2024 	blkif_set_queue_limits(info);
2025 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2026 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2027 
2028 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2029 		struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2030 
2031 		rc = blkfront_setup_indirect(rinfo);
2032 		if (rc)
2033 			return rc;
2034 	}
2035 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2036 
2037 	/* Now safe for us to use the shared ring */
2038 	info->connected = BLKIF_STATE_CONNECTED;
2039 
2040 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2041 		struct blkfront_ring_info *rinfo;
2042 
2043 		rinfo = &info->rinfo[r_index];
2044 		/* Kick any other new requests queued since we resumed */
2045 		kick_pending_request_queues(rinfo);
2046 	}
2047 
2048 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2049 		/* Requeue pending requests (flush or discard) */
2050 		list_del_init(&req->queuelist);
2051 		BUG_ON(req->nr_phys_segments > segs);
2052 		blk_mq_requeue_request(req, false);
2053 	}
2054 	blk_mq_start_stopped_hw_queues(info->rq, true);
2055 	blk_mq_kick_requeue_list(info->rq);
2056 
2057 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2058 		/* Traverse the list of pending bios and re-queue them */
2059 		if (bio_segments(bio) > segs) {
2060 			/*
2061 			 * This bio has more segments than what we can
2062 			 * handle, we have to split it.
2063 			 */
2064 			pending = (bio_segments(bio) + segs - 1) / segs;
2065 			split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2066 			BUG_ON(split_bio == NULL);
2067 			atomic_set(&split_bio->pending, pending);
2068 			split_bio->bio = bio;
2069 			for (i = 0; i < pending; i++) {
2070 				offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2071 				size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2072 					   (unsigned int)bio_sectors(bio) - offset);
2073 				cloned_bio = bio_clone(bio, GFP_NOIO);
2074 				BUG_ON(cloned_bio == NULL);
2075 				bio_trim(cloned_bio, offset, size);
2076 				cloned_bio->bi_private = split_bio;
2077 				cloned_bio->bi_end_io = split_bio_end;
2078 				submit_bio(cloned_bio);
2079 			}
2080 			/*
2081 			 * Now we have to wait for all those smaller bios to
2082 			 * end, so we can also end the "parent" bio.
2083 			 */
2084 			continue;
2085 		}
2086 		/* We don't need to split this bio */
2087 		submit_bio(bio);
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2095  * driver restart.  We tear down our blkif structure and recreate it, but
2096  * leave the device-layer structures intact so that this is transparent to the
2097  * rest of the kernel.
2098  */
2099 static int blkfront_resume(struct xenbus_device *dev)
2100 {
2101 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2102 	int err = 0;
2103 	unsigned int i, j;
2104 
2105 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2106 
2107 	bio_list_init(&info->bio_list);
2108 	INIT_LIST_HEAD(&info->requests);
2109 	for (i = 0; i < info->nr_rings; i++) {
2110 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
2111 		struct bio_list merge_bio;
2112 		struct blk_shadow *shadow = rinfo->shadow;
2113 
2114 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2115 			/* Not in use? */
2116 			if (!shadow[j].request)
2117 				continue;
2118 
2119 			/*
2120 			 * Get the bios in the request so we can re-queue them.
2121 			 */
2122 			if (req_op(shadow[i].request) == REQ_OP_FLUSH ||
2123 			    req_op(shadow[i].request) == REQ_OP_DISCARD ||
2124 			    req_op(shadow[i].request) == REQ_OP_SECURE_ERASE ||
2125 			    shadow[j].request->cmd_flags & REQ_FUA) {
2126 				/*
2127 				 * Flush operations don't contain bios, so
2128 				 * we need to requeue the whole request
2129 				 *
2130 				 * XXX: but this doesn't make any sense for a
2131 				 * write with the FUA flag set..
2132 				 */
2133 				list_add(&shadow[j].request->queuelist, &info->requests);
2134 				continue;
2135 			}
2136 			merge_bio.head = shadow[j].request->bio;
2137 			merge_bio.tail = shadow[j].request->biotail;
2138 			bio_list_merge(&info->bio_list, &merge_bio);
2139 			shadow[j].request->bio = NULL;
2140 			blk_mq_end_request(shadow[j].request, 0);
2141 		}
2142 	}
2143 
2144 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2145 
2146 	err = negotiate_mq(info);
2147 	if (err)
2148 		return err;
2149 
2150 	err = talk_to_blkback(dev, info);
2151 	if (!err)
2152 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2153 
2154 	/*
2155 	 * We have to wait for the backend to switch to
2156 	 * connected state, since we want to read which
2157 	 * features it supports.
2158 	 */
2159 
2160 	return err;
2161 }
2162 
2163 static void blkfront_closing(struct blkfront_info *info)
2164 {
2165 	struct xenbus_device *xbdev = info->xbdev;
2166 	struct block_device *bdev = NULL;
2167 
2168 	mutex_lock(&info->mutex);
2169 
2170 	if (xbdev->state == XenbusStateClosing) {
2171 		mutex_unlock(&info->mutex);
2172 		return;
2173 	}
2174 
2175 	if (info->gd)
2176 		bdev = bdget_disk(info->gd, 0);
2177 
2178 	mutex_unlock(&info->mutex);
2179 
2180 	if (!bdev) {
2181 		xenbus_frontend_closed(xbdev);
2182 		return;
2183 	}
2184 
2185 	mutex_lock(&bdev->bd_mutex);
2186 
2187 	if (bdev->bd_openers) {
2188 		xenbus_dev_error(xbdev, -EBUSY,
2189 				 "Device in use; refusing to close");
2190 		xenbus_switch_state(xbdev, XenbusStateClosing);
2191 	} else {
2192 		xlvbd_release_gendisk(info);
2193 		xenbus_frontend_closed(xbdev);
2194 	}
2195 
2196 	mutex_unlock(&bdev->bd_mutex);
2197 	bdput(bdev);
2198 }
2199 
2200 static void blkfront_setup_discard(struct blkfront_info *info)
2201 {
2202 	int err;
2203 	unsigned int discard_granularity;
2204 	unsigned int discard_alignment;
2205 
2206 	info->feature_discard = 1;
2207 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2208 		"discard-granularity", "%u", &discard_granularity,
2209 		"discard-alignment", "%u", &discard_alignment,
2210 		NULL);
2211 	if (!err) {
2212 		info->discard_granularity = discard_granularity;
2213 		info->discard_alignment = discard_alignment;
2214 	}
2215 	info->feature_secdiscard =
2216 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2217 				       0);
2218 }
2219 
2220 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2221 {
2222 	unsigned int psegs, grants;
2223 	int err, i;
2224 	struct blkfront_info *info = rinfo->dev_info;
2225 
2226 	if (info->max_indirect_segments == 0) {
2227 		if (!HAS_EXTRA_REQ)
2228 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2229 		else {
2230 			/*
2231 			 * When an extra req is required, the maximum
2232 			 * grants supported is related to the size of the
2233 			 * Linux block segment.
2234 			 */
2235 			grants = GRANTS_PER_PSEG;
2236 		}
2237 	}
2238 	else
2239 		grants = info->max_indirect_segments;
2240 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2241 
2242 	err = fill_grant_buffer(rinfo,
2243 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2244 	if (err)
2245 		goto out_of_memory;
2246 
2247 	if (!info->feature_persistent && info->max_indirect_segments) {
2248 		/*
2249 		 * We are using indirect descriptors but not persistent
2250 		 * grants, we need to allocate a set of pages that can be
2251 		 * used for mapping indirect grefs
2252 		 */
2253 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2254 
2255 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2256 		for (i = 0; i < num; i++) {
2257 			struct page *indirect_page = alloc_page(GFP_NOIO);
2258 			if (!indirect_page)
2259 				goto out_of_memory;
2260 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2261 		}
2262 	}
2263 
2264 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2265 		rinfo->shadow[i].grants_used = kzalloc(
2266 			sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2267 			GFP_NOIO);
2268 		rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2269 		if (info->max_indirect_segments)
2270 			rinfo->shadow[i].indirect_grants = kzalloc(
2271 				sizeof(rinfo->shadow[i].indirect_grants[0]) *
2272 				INDIRECT_GREFS(grants),
2273 				GFP_NOIO);
2274 		if ((rinfo->shadow[i].grants_used == NULL) ||
2275 			(rinfo->shadow[i].sg == NULL) ||
2276 		     (info->max_indirect_segments &&
2277 		     (rinfo->shadow[i].indirect_grants == NULL)))
2278 			goto out_of_memory;
2279 		sg_init_table(rinfo->shadow[i].sg, psegs);
2280 	}
2281 
2282 
2283 	return 0;
2284 
2285 out_of_memory:
2286 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2287 		kfree(rinfo->shadow[i].grants_used);
2288 		rinfo->shadow[i].grants_used = NULL;
2289 		kfree(rinfo->shadow[i].sg);
2290 		rinfo->shadow[i].sg = NULL;
2291 		kfree(rinfo->shadow[i].indirect_grants);
2292 		rinfo->shadow[i].indirect_grants = NULL;
2293 	}
2294 	if (!list_empty(&rinfo->indirect_pages)) {
2295 		struct page *indirect_page, *n;
2296 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2297 			list_del(&indirect_page->lru);
2298 			__free_page(indirect_page);
2299 		}
2300 	}
2301 	return -ENOMEM;
2302 }
2303 
2304 /*
2305  * Gather all backend feature-*
2306  */
2307 static void blkfront_gather_backend_features(struct blkfront_info *info)
2308 {
2309 	unsigned int indirect_segments;
2310 
2311 	info->feature_flush = 0;
2312 	info->feature_fua = 0;
2313 
2314 	/*
2315 	 * If there's no "feature-barrier" defined, then it means
2316 	 * we're dealing with a very old backend which writes
2317 	 * synchronously; nothing to do.
2318 	 *
2319 	 * If there are barriers, then we use flush.
2320 	 */
2321 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2322 		info->feature_flush = 1;
2323 		info->feature_fua = 1;
2324 	}
2325 
2326 	/*
2327 	 * And if there is "feature-flush-cache" use that above
2328 	 * barriers.
2329 	 */
2330 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2331 				 0)) {
2332 		info->feature_flush = 1;
2333 		info->feature_fua = 0;
2334 	}
2335 
2336 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2337 		blkfront_setup_discard(info);
2338 
2339 	info->feature_persistent =
2340 		!!xenbus_read_unsigned(info->xbdev->otherend,
2341 				       "feature-persistent", 0);
2342 
2343 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2344 					"feature-max-indirect-segments", 0);
2345 	if (indirect_segments > xen_blkif_max_segments)
2346 		indirect_segments = xen_blkif_max_segments;
2347 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2348 		indirect_segments = 0;
2349 	info->max_indirect_segments = indirect_segments;
2350 }
2351 
2352 /*
2353  * Invoked when the backend is finally 'ready' (and has told produced
2354  * the details about the physical device - #sectors, size, etc).
2355  */
2356 static void blkfront_connect(struct blkfront_info *info)
2357 {
2358 	unsigned long long sectors;
2359 	unsigned long sector_size;
2360 	unsigned int physical_sector_size;
2361 	unsigned int binfo;
2362 	char *envp[] = { "RESIZE=1", NULL };
2363 	int err, i;
2364 
2365 	switch (info->connected) {
2366 	case BLKIF_STATE_CONNECTED:
2367 		/*
2368 		 * Potentially, the back-end may be signalling
2369 		 * a capacity change; update the capacity.
2370 		 */
2371 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2372 				   "sectors", "%Lu", &sectors);
2373 		if (XENBUS_EXIST_ERR(err))
2374 			return;
2375 		printk(KERN_INFO "Setting capacity to %Lu\n",
2376 		       sectors);
2377 		set_capacity(info->gd, sectors);
2378 		revalidate_disk(info->gd);
2379 		kobject_uevent_env(&disk_to_dev(info->gd)->kobj,
2380 				   KOBJ_CHANGE, envp);
2381 
2382 		return;
2383 	case BLKIF_STATE_SUSPENDED:
2384 		/*
2385 		 * If we are recovering from suspension, we need to wait
2386 		 * for the backend to announce it's features before
2387 		 * reconnecting, at least we need to know if the backend
2388 		 * supports indirect descriptors, and how many.
2389 		 */
2390 		blkif_recover(info);
2391 		return;
2392 
2393 	default:
2394 		break;
2395 	}
2396 
2397 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2398 		__func__, info->xbdev->otherend);
2399 
2400 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2401 			    "sectors", "%llu", &sectors,
2402 			    "info", "%u", &binfo,
2403 			    "sector-size", "%lu", &sector_size,
2404 			    NULL);
2405 	if (err) {
2406 		xenbus_dev_fatal(info->xbdev, err,
2407 				 "reading backend fields at %s",
2408 				 info->xbdev->otherend);
2409 		return;
2410 	}
2411 
2412 	/*
2413 	 * physcial-sector-size is a newer field, so old backends may not
2414 	 * provide this. Assume physical sector size to be the same as
2415 	 * sector_size in that case.
2416 	 */
2417 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2418 						    "physical-sector-size",
2419 						    sector_size);
2420 	blkfront_gather_backend_features(info);
2421 	for (i = 0; i < info->nr_rings; i++) {
2422 		err = blkfront_setup_indirect(&info->rinfo[i]);
2423 		if (err) {
2424 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2425 					 info->xbdev->otherend);
2426 			blkif_free(info, 0);
2427 			break;
2428 		}
2429 	}
2430 
2431 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2432 				  physical_sector_size);
2433 	if (err) {
2434 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2435 				 info->xbdev->otherend);
2436 		goto fail;
2437 	}
2438 
2439 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2440 
2441 	/* Kick pending requests. */
2442 	info->connected = BLKIF_STATE_CONNECTED;
2443 	for (i = 0; i < info->nr_rings; i++)
2444 		kick_pending_request_queues(&info->rinfo[i]);
2445 
2446 	device_add_disk(&info->xbdev->dev, info->gd);
2447 
2448 	info->is_ready = 1;
2449 	return;
2450 
2451 fail:
2452 	blkif_free(info, 0);
2453 	return;
2454 }
2455 
2456 /**
2457  * Callback received when the backend's state changes.
2458  */
2459 static void blkback_changed(struct xenbus_device *dev,
2460 			    enum xenbus_state backend_state)
2461 {
2462 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2463 
2464 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2465 
2466 	switch (backend_state) {
2467 	case XenbusStateInitWait:
2468 		if (dev->state != XenbusStateInitialising)
2469 			break;
2470 		if (talk_to_blkback(dev, info))
2471 			break;
2472 	case XenbusStateInitialising:
2473 	case XenbusStateInitialised:
2474 	case XenbusStateReconfiguring:
2475 	case XenbusStateReconfigured:
2476 	case XenbusStateUnknown:
2477 		break;
2478 
2479 	case XenbusStateConnected:
2480 		/*
2481 		 * talk_to_blkback sets state to XenbusStateInitialised
2482 		 * and blkfront_connect sets it to XenbusStateConnected
2483 		 * (if connection went OK).
2484 		 *
2485 		 * If the backend (or toolstack) decides to poke at backend
2486 		 * state (and re-trigger the watch by setting the state repeatedly
2487 		 * to XenbusStateConnected (4)) we need to deal with this.
2488 		 * This is allowed as this is used to communicate to the guest
2489 		 * that the size of disk has changed!
2490 		 */
2491 		if ((dev->state != XenbusStateInitialised) &&
2492 		    (dev->state != XenbusStateConnected)) {
2493 			if (talk_to_blkback(dev, info))
2494 				break;
2495 		}
2496 
2497 		blkfront_connect(info);
2498 		break;
2499 
2500 	case XenbusStateClosed:
2501 		if (dev->state == XenbusStateClosed)
2502 			break;
2503 		/* Missed the backend's Closing state -- fallthrough */
2504 	case XenbusStateClosing:
2505 		if (info)
2506 			blkfront_closing(info);
2507 		break;
2508 	}
2509 }
2510 
2511 static int blkfront_remove(struct xenbus_device *xbdev)
2512 {
2513 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2514 	struct block_device *bdev = NULL;
2515 	struct gendisk *disk;
2516 
2517 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2518 
2519 	blkif_free(info, 0);
2520 
2521 	mutex_lock(&info->mutex);
2522 
2523 	disk = info->gd;
2524 	if (disk)
2525 		bdev = bdget_disk(disk, 0);
2526 
2527 	info->xbdev = NULL;
2528 	mutex_unlock(&info->mutex);
2529 
2530 	if (!bdev) {
2531 		kfree(info);
2532 		return 0;
2533 	}
2534 
2535 	/*
2536 	 * The xbdev was removed before we reached the Closed
2537 	 * state. See if it's safe to remove the disk. If the bdev
2538 	 * isn't closed yet, we let release take care of it.
2539 	 */
2540 
2541 	mutex_lock(&bdev->bd_mutex);
2542 	info = disk->private_data;
2543 
2544 	dev_warn(disk_to_dev(disk),
2545 		 "%s was hot-unplugged, %d stale handles\n",
2546 		 xbdev->nodename, bdev->bd_openers);
2547 
2548 	if (info && !bdev->bd_openers) {
2549 		xlvbd_release_gendisk(info);
2550 		disk->private_data = NULL;
2551 		kfree(info);
2552 	}
2553 
2554 	mutex_unlock(&bdev->bd_mutex);
2555 	bdput(bdev);
2556 
2557 	return 0;
2558 }
2559 
2560 static int blkfront_is_ready(struct xenbus_device *dev)
2561 {
2562 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2563 
2564 	return info->is_ready && info->xbdev;
2565 }
2566 
2567 static int blkif_open(struct block_device *bdev, fmode_t mode)
2568 {
2569 	struct gendisk *disk = bdev->bd_disk;
2570 	struct blkfront_info *info;
2571 	int err = 0;
2572 
2573 	mutex_lock(&blkfront_mutex);
2574 
2575 	info = disk->private_data;
2576 	if (!info) {
2577 		/* xbdev gone */
2578 		err = -ERESTARTSYS;
2579 		goto out;
2580 	}
2581 
2582 	mutex_lock(&info->mutex);
2583 
2584 	if (!info->gd)
2585 		/* xbdev is closed */
2586 		err = -ERESTARTSYS;
2587 
2588 	mutex_unlock(&info->mutex);
2589 
2590 out:
2591 	mutex_unlock(&blkfront_mutex);
2592 	return err;
2593 }
2594 
2595 static void blkif_release(struct gendisk *disk, fmode_t mode)
2596 {
2597 	struct blkfront_info *info = disk->private_data;
2598 	struct block_device *bdev;
2599 	struct xenbus_device *xbdev;
2600 
2601 	mutex_lock(&blkfront_mutex);
2602 
2603 	bdev = bdget_disk(disk, 0);
2604 
2605 	if (!bdev) {
2606 		WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2607 		goto out_mutex;
2608 	}
2609 	if (bdev->bd_openers)
2610 		goto out;
2611 
2612 	/*
2613 	 * Check if we have been instructed to close. We will have
2614 	 * deferred this request, because the bdev was still open.
2615 	 */
2616 
2617 	mutex_lock(&info->mutex);
2618 	xbdev = info->xbdev;
2619 
2620 	if (xbdev && xbdev->state == XenbusStateClosing) {
2621 		/* pending switch to state closed */
2622 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2623 		xlvbd_release_gendisk(info);
2624 		xenbus_frontend_closed(info->xbdev);
2625  	}
2626 
2627 	mutex_unlock(&info->mutex);
2628 
2629 	if (!xbdev) {
2630 		/* sudden device removal */
2631 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2632 		xlvbd_release_gendisk(info);
2633 		disk->private_data = NULL;
2634 		kfree(info);
2635 	}
2636 
2637 out:
2638 	bdput(bdev);
2639 out_mutex:
2640 	mutex_unlock(&blkfront_mutex);
2641 }
2642 
2643 static const struct block_device_operations xlvbd_block_fops =
2644 {
2645 	.owner = THIS_MODULE,
2646 	.open = blkif_open,
2647 	.release = blkif_release,
2648 	.getgeo = blkif_getgeo,
2649 	.ioctl = blkif_ioctl,
2650 };
2651 
2652 
2653 static const struct xenbus_device_id blkfront_ids[] = {
2654 	{ "vbd" },
2655 	{ "" }
2656 };
2657 
2658 static struct xenbus_driver blkfront_driver = {
2659 	.ids  = blkfront_ids,
2660 	.probe = blkfront_probe,
2661 	.remove = blkfront_remove,
2662 	.resume = blkfront_resume,
2663 	.otherend_changed = blkback_changed,
2664 	.is_ready = blkfront_is_ready,
2665 };
2666 
2667 static int __init xlblk_init(void)
2668 {
2669 	int ret;
2670 	int nr_cpus = num_online_cpus();
2671 
2672 	if (!xen_domain())
2673 		return -ENODEV;
2674 
2675 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2676 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2677 
2678 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2679 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2680 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2681 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2682 	}
2683 
2684 	if (xen_blkif_max_queues > nr_cpus) {
2685 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2686 			xen_blkif_max_queues, nr_cpus);
2687 		xen_blkif_max_queues = nr_cpus;
2688 	}
2689 
2690 	if (!xen_has_pv_disk_devices())
2691 		return -ENODEV;
2692 
2693 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2694 		printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2695 		       XENVBD_MAJOR, DEV_NAME);
2696 		return -ENODEV;
2697 	}
2698 
2699 	ret = xenbus_register_frontend(&blkfront_driver);
2700 	if (ret) {
2701 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2702 		return ret;
2703 	}
2704 
2705 	return 0;
2706 }
2707 module_init(xlblk_init);
2708 
2709 
2710 static void __exit xlblk_exit(void)
2711 {
2712 	xenbus_unregister_driver(&blkfront_driver);
2713 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2714 	kfree(minors);
2715 }
2716 module_exit(xlblk_exit);
2717 
2718 MODULE_DESCRIPTION("Xen virtual block device frontend");
2719 MODULE_LICENSE("GPL");
2720 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2721 MODULE_ALIAS("xen:vbd");
2722 MODULE_ALIAS("xenblk");
2723