1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 #include <linux/workqueue.h> 50 #include <linux/sched/mm.h> 51 52 #include <xen/xen.h> 53 #include <xen/xenbus.h> 54 #include <xen/grant_table.h> 55 #include <xen/events.h> 56 #include <xen/page.h> 57 #include <xen/platform_pci.h> 58 59 #include <xen/interface/grant_table.h> 60 #include <xen/interface/io/blkif.h> 61 #include <xen/interface/io/protocols.h> 62 63 #include <asm/xen/hypervisor.h> 64 65 /* 66 * The minimal size of segment supported by the block framework is PAGE_SIZE. 67 * When Linux is using a different page size than Xen, it may not be possible 68 * to put all the data in a single segment. 69 * This can happen when the backend doesn't support indirect descriptor and 70 * therefore the maximum amount of data that a request can carry is 71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 72 * 73 * Note that we only support one extra request. So the Linux page size 74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 75 * 88KB. 76 */ 77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 78 79 enum blkif_state { 80 BLKIF_STATE_DISCONNECTED, 81 BLKIF_STATE_CONNECTED, 82 BLKIF_STATE_SUSPENDED, 83 }; 84 85 struct grant { 86 grant_ref_t gref; 87 struct page *page; 88 struct list_head node; 89 }; 90 91 enum blk_req_status { 92 REQ_WAITING, 93 REQ_DONE, 94 REQ_ERROR, 95 REQ_EOPNOTSUPP, 96 }; 97 98 struct blk_shadow { 99 struct blkif_request req; 100 struct request *request; 101 struct grant **grants_used; 102 struct grant **indirect_grants; 103 struct scatterlist *sg; 104 unsigned int num_sg; 105 enum blk_req_status status; 106 107 #define NO_ASSOCIATED_ID ~0UL 108 /* 109 * Id of the sibling if we ever need 2 requests when handling a 110 * block I/O request 111 */ 112 unsigned long associated_id; 113 }; 114 115 struct blkif_req { 116 blk_status_t error; 117 }; 118 119 static inline struct blkif_req *blkif_req(struct request *rq) 120 { 121 return blk_mq_rq_to_pdu(rq); 122 } 123 124 static DEFINE_MUTEX(blkfront_mutex); 125 static const struct block_device_operations xlvbd_block_fops; 126 static struct delayed_work blkfront_work; 127 static LIST_HEAD(info_list); 128 129 /* 130 * Maximum number of segments in indirect requests, the actual value used by 131 * the frontend driver is the minimum of this value and the value provided 132 * by the backend driver. 133 */ 134 135 static unsigned int xen_blkif_max_segments = 32; 136 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 137 MODULE_PARM_DESC(max_indirect_segments, 138 "Maximum amount of segments in indirect requests (default is 32)"); 139 140 static unsigned int xen_blkif_max_queues = 4; 141 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 142 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 143 144 /* 145 * Maximum order of pages to be used for the shared ring between front and 146 * backend, 4KB page granularity is used. 147 */ 148 static unsigned int xen_blkif_max_ring_order; 149 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 150 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 151 152 #define BLK_RING_SIZE(info) \ 153 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 154 155 /* 156 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 157 * characters are enough. Define to 20 to keep consistent with backend. 158 */ 159 #define RINGREF_NAME_LEN (20) 160 /* 161 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 162 */ 163 #define QUEUE_NAME_LEN (17) 164 165 /* 166 * Per-ring info. 167 * Every blkfront device can associate with one or more blkfront_ring_info, 168 * depending on how many hardware queues/rings to be used. 169 */ 170 struct blkfront_ring_info { 171 /* Lock to protect data in every ring buffer. */ 172 spinlock_t ring_lock; 173 struct blkif_front_ring ring; 174 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 175 unsigned int evtchn, irq; 176 struct work_struct work; 177 struct gnttab_free_callback callback; 178 struct list_head indirect_pages; 179 struct list_head grants; 180 unsigned int persistent_gnts_c; 181 unsigned long shadow_free; 182 struct blkfront_info *dev_info; 183 struct blk_shadow shadow[]; 184 }; 185 186 /* 187 * We have one of these per vbd, whether ide, scsi or 'other'. They 188 * hang in private_data off the gendisk structure. We may end up 189 * putting all kinds of interesting stuff here :-) 190 */ 191 struct blkfront_info 192 { 193 struct mutex mutex; 194 struct xenbus_device *xbdev; 195 struct gendisk *gd; 196 u16 sector_size; 197 unsigned int physical_sector_size; 198 int vdevice; 199 blkif_vdev_t handle; 200 enum blkif_state connected; 201 /* Number of pages per ring buffer. */ 202 unsigned int nr_ring_pages; 203 struct request_queue *rq; 204 unsigned int feature_flush:1; 205 unsigned int feature_fua:1; 206 unsigned int feature_discard:1; 207 unsigned int feature_secdiscard:1; 208 unsigned int feature_persistent:1; 209 unsigned int discard_granularity; 210 unsigned int discard_alignment; 211 /* Number of 4KB segments handled */ 212 unsigned int max_indirect_segments; 213 int is_ready; 214 struct blk_mq_tag_set tag_set; 215 struct blkfront_ring_info *rinfo; 216 unsigned int nr_rings; 217 unsigned int rinfo_size; 218 /* Save uncomplete reqs and bios for migration. */ 219 struct list_head requests; 220 struct bio_list bio_list; 221 struct list_head info_list; 222 }; 223 224 static unsigned int nr_minors; 225 static unsigned long *minors; 226 static DEFINE_SPINLOCK(minor_lock); 227 228 #define GRANT_INVALID_REF 0 229 230 #define PARTS_PER_DISK 16 231 #define PARTS_PER_EXT_DISK 256 232 233 #define BLKIF_MAJOR(dev) ((dev)>>8) 234 #define BLKIF_MINOR(dev) ((dev) & 0xff) 235 236 #define EXT_SHIFT 28 237 #define EXTENDED (1<<EXT_SHIFT) 238 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 239 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 240 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 241 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 242 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 243 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 244 245 #define DEV_NAME "xvd" /* name in /dev */ 246 247 /* 248 * Grants are always the same size as a Xen page (i.e 4KB). 249 * A physical segment is always the same size as a Linux page. 250 * Number of grants per physical segment 251 */ 252 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 253 254 #define GRANTS_PER_INDIRECT_FRAME \ 255 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 256 257 #define INDIRECT_GREFS(_grants) \ 258 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 259 260 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 261 static void blkfront_gather_backend_features(struct blkfront_info *info); 262 static int negotiate_mq(struct blkfront_info *info); 263 264 #define for_each_rinfo(info, ptr, idx) \ 265 for ((ptr) = (info)->rinfo, (idx) = 0; \ 266 (idx) < (info)->nr_rings; \ 267 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 268 269 static inline struct blkfront_ring_info * 270 get_rinfo(const struct blkfront_info *info, unsigned int i) 271 { 272 BUG_ON(i >= info->nr_rings); 273 return (void *)info->rinfo + i * info->rinfo_size; 274 } 275 276 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 277 { 278 unsigned long free = rinfo->shadow_free; 279 280 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 281 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 282 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 283 return free; 284 } 285 286 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 287 unsigned long id) 288 { 289 if (rinfo->shadow[id].req.u.rw.id != id) 290 return -EINVAL; 291 if (rinfo->shadow[id].request == NULL) 292 return -EINVAL; 293 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 294 rinfo->shadow[id].request = NULL; 295 rinfo->shadow_free = id; 296 return 0; 297 } 298 299 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 300 { 301 struct blkfront_info *info = rinfo->dev_info; 302 struct page *granted_page; 303 struct grant *gnt_list_entry, *n; 304 int i = 0; 305 306 while (i < num) { 307 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 308 if (!gnt_list_entry) 309 goto out_of_memory; 310 311 if (info->feature_persistent) { 312 granted_page = alloc_page(GFP_NOIO); 313 if (!granted_page) { 314 kfree(gnt_list_entry); 315 goto out_of_memory; 316 } 317 gnt_list_entry->page = granted_page; 318 } 319 320 gnt_list_entry->gref = GRANT_INVALID_REF; 321 list_add(&gnt_list_entry->node, &rinfo->grants); 322 i++; 323 } 324 325 return 0; 326 327 out_of_memory: 328 list_for_each_entry_safe(gnt_list_entry, n, 329 &rinfo->grants, node) { 330 list_del(&gnt_list_entry->node); 331 if (info->feature_persistent) 332 __free_page(gnt_list_entry->page); 333 kfree(gnt_list_entry); 334 i--; 335 } 336 BUG_ON(i != 0); 337 return -ENOMEM; 338 } 339 340 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 341 { 342 struct grant *gnt_list_entry; 343 344 BUG_ON(list_empty(&rinfo->grants)); 345 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 346 node); 347 list_del(&gnt_list_entry->node); 348 349 if (gnt_list_entry->gref != GRANT_INVALID_REF) 350 rinfo->persistent_gnts_c--; 351 352 return gnt_list_entry; 353 } 354 355 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 356 const struct blkfront_info *info) 357 { 358 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 359 info->xbdev->otherend_id, 360 gnt_list_entry->page, 361 0); 362 } 363 364 static struct grant *get_grant(grant_ref_t *gref_head, 365 unsigned long gfn, 366 struct blkfront_ring_info *rinfo) 367 { 368 struct grant *gnt_list_entry = get_free_grant(rinfo); 369 struct blkfront_info *info = rinfo->dev_info; 370 371 if (gnt_list_entry->gref != GRANT_INVALID_REF) 372 return gnt_list_entry; 373 374 /* Assign a gref to this page */ 375 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 376 BUG_ON(gnt_list_entry->gref == -ENOSPC); 377 if (info->feature_persistent) 378 grant_foreign_access(gnt_list_entry, info); 379 else { 380 /* Grant access to the GFN passed by the caller */ 381 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 382 info->xbdev->otherend_id, 383 gfn, 0); 384 } 385 386 return gnt_list_entry; 387 } 388 389 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 390 struct blkfront_ring_info *rinfo) 391 { 392 struct grant *gnt_list_entry = get_free_grant(rinfo); 393 struct blkfront_info *info = rinfo->dev_info; 394 395 if (gnt_list_entry->gref != GRANT_INVALID_REF) 396 return gnt_list_entry; 397 398 /* Assign a gref to this page */ 399 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 400 BUG_ON(gnt_list_entry->gref == -ENOSPC); 401 if (!info->feature_persistent) { 402 struct page *indirect_page; 403 404 /* Fetch a pre-allocated page to use for indirect grefs */ 405 BUG_ON(list_empty(&rinfo->indirect_pages)); 406 indirect_page = list_first_entry(&rinfo->indirect_pages, 407 struct page, lru); 408 list_del(&indirect_page->lru); 409 gnt_list_entry->page = indirect_page; 410 } 411 grant_foreign_access(gnt_list_entry, info); 412 413 return gnt_list_entry; 414 } 415 416 static const char *op_name(int op) 417 { 418 static const char *const names[] = { 419 [BLKIF_OP_READ] = "read", 420 [BLKIF_OP_WRITE] = "write", 421 [BLKIF_OP_WRITE_BARRIER] = "barrier", 422 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 423 [BLKIF_OP_DISCARD] = "discard" }; 424 425 if (op < 0 || op >= ARRAY_SIZE(names)) 426 return "unknown"; 427 428 if (!names[op]) 429 return "reserved"; 430 431 return names[op]; 432 } 433 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 434 { 435 unsigned int end = minor + nr; 436 int rc; 437 438 if (end > nr_minors) { 439 unsigned long *bitmap, *old; 440 441 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 442 GFP_KERNEL); 443 if (bitmap == NULL) 444 return -ENOMEM; 445 446 spin_lock(&minor_lock); 447 if (end > nr_minors) { 448 old = minors; 449 memcpy(bitmap, minors, 450 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 451 minors = bitmap; 452 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 453 } else 454 old = bitmap; 455 spin_unlock(&minor_lock); 456 kfree(old); 457 } 458 459 spin_lock(&minor_lock); 460 if (find_next_bit(minors, end, minor) >= end) { 461 bitmap_set(minors, minor, nr); 462 rc = 0; 463 } else 464 rc = -EBUSY; 465 spin_unlock(&minor_lock); 466 467 return rc; 468 } 469 470 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 471 { 472 unsigned int end = minor + nr; 473 474 BUG_ON(end > nr_minors); 475 spin_lock(&minor_lock); 476 bitmap_clear(minors, minor, nr); 477 spin_unlock(&minor_lock); 478 } 479 480 static void blkif_restart_queue_callback(void *arg) 481 { 482 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 483 schedule_work(&rinfo->work); 484 } 485 486 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 487 { 488 /* We don't have real geometry info, but let's at least return 489 values consistent with the size of the device */ 490 sector_t nsect = get_capacity(bd->bd_disk); 491 sector_t cylinders = nsect; 492 493 hg->heads = 0xff; 494 hg->sectors = 0x3f; 495 sector_div(cylinders, hg->heads * hg->sectors); 496 hg->cylinders = cylinders; 497 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 498 hg->cylinders = 0xffff; 499 return 0; 500 } 501 502 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 503 unsigned command, unsigned long argument) 504 { 505 struct blkfront_info *info = bdev->bd_disk->private_data; 506 int i; 507 508 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 509 command, (long)argument); 510 511 switch (command) { 512 case CDROMMULTISESSION: 513 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 514 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 515 if (put_user(0, (char __user *)(argument + i))) 516 return -EFAULT; 517 return 0; 518 519 case CDROM_GET_CAPABILITY: { 520 struct gendisk *gd = info->gd; 521 if (gd->flags & GENHD_FL_CD) 522 return 0; 523 return -EINVAL; 524 } 525 526 default: 527 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 528 command);*/ 529 return -EINVAL; /* same return as native Linux */ 530 } 531 532 return 0; 533 } 534 535 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 536 struct request *req, 537 struct blkif_request **ring_req) 538 { 539 unsigned long id; 540 541 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 542 rinfo->ring.req_prod_pvt++; 543 544 id = get_id_from_freelist(rinfo); 545 rinfo->shadow[id].request = req; 546 rinfo->shadow[id].status = REQ_WAITING; 547 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 548 549 (*ring_req)->u.rw.id = id; 550 551 return id; 552 } 553 554 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 555 { 556 struct blkfront_info *info = rinfo->dev_info; 557 struct blkif_request *ring_req; 558 unsigned long id; 559 560 /* Fill out a communications ring structure. */ 561 id = blkif_ring_get_request(rinfo, req, &ring_req); 562 563 ring_req->operation = BLKIF_OP_DISCARD; 564 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 565 ring_req->u.discard.id = id; 566 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 567 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 568 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 569 else 570 ring_req->u.discard.flag = 0; 571 572 /* Keep a private copy so we can reissue requests when recovering. */ 573 rinfo->shadow[id].req = *ring_req; 574 575 return 0; 576 } 577 578 struct setup_rw_req { 579 unsigned int grant_idx; 580 struct blkif_request_segment *segments; 581 struct blkfront_ring_info *rinfo; 582 struct blkif_request *ring_req; 583 grant_ref_t gref_head; 584 unsigned int id; 585 /* Only used when persistent grant is used and it's a read request */ 586 bool need_copy; 587 unsigned int bvec_off; 588 char *bvec_data; 589 590 bool require_extra_req; 591 struct blkif_request *extra_ring_req; 592 }; 593 594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 595 unsigned int len, void *data) 596 { 597 struct setup_rw_req *setup = data; 598 int n, ref; 599 struct grant *gnt_list_entry; 600 unsigned int fsect, lsect; 601 /* Convenient aliases */ 602 unsigned int grant_idx = setup->grant_idx; 603 struct blkif_request *ring_req = setup->ring_req; 604 struct blkfront_ring_info *rinfo = setup->rinfo; 605 /* 606 * We always use the shadow of the first request to store the list 607 * of grant associated to the block I/O request. This made the 608 * completion more easy to handle even if the block I/O request is 609 * split. 610 */ 611 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 612 613 if (unlikely(setup->require_extra_req && 614 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 615 /* 616 * We are using the second request, setup grant_idx 617 * to be the index of the segment array. 618 */ 619 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 620 ring_req = setup->extra_ring_req; 621 } 622 623 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 624 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 625 if (setup->segments) 626 kunmap_atomic(setup->segments); 627 628 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 629 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 630 shadow->indirect_grants[n] = gnt_list_entry; 631 setup->segments = kmap_atomic(gnt_list_entry->page); 632 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 633 } 634 635 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 636 ref = gnt_list_entry->gref; 637 /* 638 * All the grants are stored in the shadow of the first 639 * request. Therefore we have to use the global index. 640 */ 641 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 642 643 if (setup->need_copy) { 644 void *shared_data; 645 646 shared_data = kmap_atomic(gnt_list_entry->page); 647 /* 648 * this does not wipe data stored outside the 649 * range sg->offset..sg->offset+sg->length. 650 * Therefore, blkback *could* see data from 651 * previous requests. This is OK as long as 652 * persistent grants are shared with just one 653 * domain. It may need refactoring if this 654 * changes 655 */ 656 memcpy(shared_data + offset, 657 setup->bvec_data + setup->bvec_off, 658 len); 659 660 kunmap_atomic(shared_data); 661 setup->bvec_off += len; 662 } 663 664 fsect = offset >> 9; 665 lsect = fsect + (len >> 9) - 1; 666 if (ring_req->operation != BLKIF_OP_INDIRECT) { 667 ring_req->u.rw.seg[grant_idx] = 668 (struct blkif_request_segment) { 669 .gref = ref, 670 .first_sect = fsect, 671 .last_sect = lsect }; 672 } else { 673 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 674 (struct blkif_request_segment) { 675 .gref = ref, 676 .first_sect = fsect, 677 .last_sect = lsect }; 678 } 679 680 (setup->grant_idx)++; 681 } 682 683 static void blkif_setup_extra_req(struct blkif_request *first, 684 struct blkif_request *second) 685 { 686 uint16_t nr_segments = first->u.rw.nr_segments; 687 688 /* 689 * The second request is only present when the first request uses 690 * all its segments. It's always the continuity of the first one. 691 */ 692 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 693 694 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 695 second->u.rw.sector_number = first->u.rw.sector_number + 696 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 697 698 second->u.rw.handle = first->u.rw.handle; 699 second->operation = first->operation; 700 } 701 702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 703 { 704 struct blkfront_info *info = rinfo->dev_info; 705 struct blkif_request *ring_req, *extra_ring_req = NULL; 706 unsigned long id, extra_id = NO_ASSOCIATED_ID; 707 bool require_extra_req = false; 708 int i; 709 struct setup_rw_req setup = { 710 .grant_idx = 0, 711 .segments = NULL, 712 .rinfo = rinfo, 713 .need_copy = rq_data_dir(req) && info->feature_persistent, 714 }; 715 716 /* 717 * Used to store if we are able to queue the request by just using 718 * existing persistent grants, or if we have to get new grants, 719 * as there are not sufficiently many free. 720 */ 721 bool new_persistent_gnts = false; 722 struct scatterlist *sg; 723 int num_sg, max_grefs, num_grant; 724 725 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 726 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 727 /* 728 * If we are using indirect segments we need to account 729 * for the indirect grefs used in the request. 730 */ 731 max_grefs += INDIRECT_GREFS(max_grefs); 732 733 /* Check if we have enough persistent grants to allocate a requests */ 734 if (rinfo->persistent_gnts_c < max_grefs) { 735 new_persistent_gnts = true; 736 737 if (gnttab_alloc_grant_references( 738 max_grefs - rinfo->persistent_gnts_c, 739 &setup.gref_head) < 0) { 740 gnttab_request_free_callback( 741 &rinfo->callback, 742 blkif_restart_queue_callback, 743 rinfo, 744 max_grefs - rinfo->persistent_gnts_c); 745 return 1; 746 } 747 } 748 749 /* Fill out a communications ring structure. */ 750 id = blkif_ring_get_request(rinfo, req, &ring_req); 751 752 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 753 num_grant = 0; 754 /* Calculate the number of grant used */ 755 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 756 num_grant += gnttab_count_grant(sg->offset, sg->length); 757 758 require_extra_req = info->max_indirect_segments == 0 && 759 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 760 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 761 762 rinfo->shadow[id].num_sg = num_sg; 763 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 764 likely(!require_extra_req)) { 765 /* 766 * The indirect operation can only be a BLKIF_OP_READ or 767 * BLKIF_OP_WRITE 768 */ 769 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 770 ring_req->operation = BLKIF_OP_INDIRECT; 771 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 772 BLKIF_OP_WRITE : BLKIF_OP_READ; 773 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 774 ring_req->u.indirect.handle = info->handle; 775 ring_req->u.indirect.nr_segments = num_grant; 776 } else { 777 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 778 ring_req->u.rw.handle = info->handle; 779 ring_req->operation = rq_data_dir(req) ? 780 BLKIF_OP_WRITE : BLKIF_OP_READ; 781 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 782 /* 783 * Ideally we can do an unordered flush-to-disk. 784 * In case the backend onlysupports barriers, use that. 785 * A barrier request a superset of FUA, so we can 786 * implement it the same way. (It's also a FLUSH+FUA, 787 * since it is guaranteed ordered WRT previous writes.) 788 */ 789 if (info->feature_flush && info->feature_fua) 790 ring_req->operation = 791 BLKIF_OP_WRITE_BARRIER; 792 else if (info->feature_flush) 793 ring_req->operation = 794 BLKIF_OP_FLUSH_DISKCACHE; 795 else 796 ring_req->operation = 0; 797 } 798 ring_req->u.rw.nr_segments = num_grant; 799 if (unlikely(require_extra_req)) { 800 extra_id = blkif_ring_get_request(rinfo, req, 801 &extra_ring_req); 802 /* 803 * Only the first request contains the scatter-gather 804 * list. 805 */ 806 rinfo->shadow[extra_id].num_sg = 0; 807 808 blkif_setup_extra_req(ring_req, extra_ring_req); 809 810 /* Link the 2 requests together */ 811 rinfo->shadow[extra_id].associated_id = id; 812 rinfo->shadow[id].associated_id = extra_id; 813 } 814 } 815 816 setup.ring_req = ring_req; 817 setup.id = id; 818 819 setup.require_extra_req = require_extra_req; 820 if (unlikely(require_extra_req)) 821 setup.extra_ring_req = extra_ring_req; 822 823 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 824 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 825 826 if (setup.need_copy) { 827 setup.bvec_off = sg->offset; 828 setup.bvec_data = kmap_atomic(sg_page(sg)); 829 } 830 831 gnttab_foreach_grant_in_range(sg_page(sg), 832 sg->offset, 833 sg->length, 834 blkif_setup_rw_req_grant, 835 &setup); 836 837 if (setup.need_copy) 838 kunmap_atomic(setup.bvec_data); 839 } 840 if (setup.segments) 841 kunmap_atomic(setup.segments); 842 843 /* Keep a private copy so we can reissue requests when recovering. */ 844 rinfo->shadow[id].req = *ring_req; 845 if (unlikely(require_extra_req)) 846 rinfo->shadow[extra_id].req = *extra_ring_req; 847 848 if (new_persistent_gnts) 849 gnttab_free_grant_references(setup.gref_head); 850 851 return 0; 852 } 853 854 /* 855 * Generate a Xen blkfront IO request from a blk layer request. Reads 856 * and writes are handled as expected. 857 * 858 * @req: a request struct 859 */ 860 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 861 { 862 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 863 return 1; 864 865 if (unlikely(req_op(req) == REQ_OP_DISCARD || 866 req_op(req) == REQ_OP_SECURE_ERASE)) 867 return blkif_queue_discard_req(req, rinfo); 868 else 869 return blkif_queue_rw_req(req, rinfo); 870 } 871 872 static inline void flush_requests(struct blkfront_ring_info *rinfo) 873 { 874 int notify; 875 876 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 877 878 if (notify) 879 notify_remote_via_irq(rinfo->irq); 880 } 881 882 static inline bool blkif_request_flush_invalid(struct request *req, 883 struct blkfront_info *info) 884 { 885 return (blk_rq_is_passthrough(req) || 886 ((req_op(req) == REQ_OP_FLUSH) && 887 !info->feature_flush) || 888 ((req->cmd_flags & REQ_FUA) && 889 !info->feature_fua)); 890 } 891 892 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 893 const struct blk_mq_queue_data *qd) 894 { 895 unsigned long flags; 896 int qid = hctx->queue_num; 897 struct blkfront_info *info = hctx->queue->queuedata; 898 struct blkfront_ring_info *rinfo = NULL; 899 900 rinfo = get_rinfo(info, qid); 901 blk_mq_start_request(qd->rq); 902 spin_lock_irqsave(&rinfo->ring_lock, flags); 903 if (RING_FULL(&rinfo->ring)) 904 goto out_busy; 905 906 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 907 goto out_err; 908 909 if (blkif_queue_request(qd->rq, rinfo)) 910 goto out_busy; 911 912 flush_requests(rinfo); 913 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 914 return BLK_STS_OK; 915 916 out_err: 917 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 918 return BLK_STS_IOERR; 919 920 out_busy: 921 blk_mq_stop_hw_queue(hctx); 922 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 923 return BLK_STS_DEV_RESOURCE; 924 } 925 926 static void blkif_complete_rq(struct request *rq) 927 { 928 blk_mq_end_request(rq, blkif_req(rq)->error); 929 } 930 931 static const struct blk_mq_ops blkfront_mq_ops = { 932 .queue_rq = blkif_queue_rq, 933 .complete = blkif_complete_rq, 934 }; 935 936 static void blkif_set_queue_limits(struct blkfront_info *info) 937 { 938 struct request_queue *rq = info->rq; 939 struct gendisk *gd = info->gd; 940 unsigned int segments = info->max_indirect_segments ? : 941 BLKIF_MAX_SEGMENTS_PER_REQUEST; 942 943 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 944 945 if (info->feature_discard) { 946 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 947 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 948 rq->limits.discard_granularity = info->discard_granularity ?: 949 info->physical_sector_size; 950 rq->limits.discard_alignment = info->discard_alignment; 951 if (info->feature_secdiscard) 952 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 953 } 954 955 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 956 blk_queue_logical_block_size(rq, info->sector_size); 957 blk_queue_physical_block_size(rq, info->physical_sector_size); 958 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 959 960 /* Each segment in a request is up to an aligned page in size. */ 961 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 962 blk_queue_max_segment_size(rq, PAGE_SIZE); 963 964 /* Ensure a merged request will fit in a single I/O ring slot. */ 965 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 966 967 /* Make sure buffer addresses are sector-aligned. */ 968 blk_queue_dma_alignment(rq, 511); 969 } 970 971 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 972 unsigned int physical_sector_size) 973 { 974 struct request_queue *rq; 975 struct blkfront_info *info = gd->private_data; 976 977 memset(&info->tag_set, 0, sizeof(info->tag_set)); 978 info->tag_set.ops = &blkfront_mq_ops; 979 info->tag_set.nr_hw_queues = info->nr_rings; 980 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 981 /* 982 * When indirect descriptior is not supported, the I/O request 983 * will be split between multiple request in the ring. 984 * To avoid problems when sending the request, divide by 985 * 2 the depth of the queue. 986 */ 987 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 988 } else 989 info->tag_set.queue_depth = BLK_RING_SIZE(info); 990 info->tag_set.numa_node = NUMA_NO_NODE; 991 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 992 info->tag_set.cmd_size = sizeof(struct blkif_req); 993 info->tag_set.driver_data = info; 994 995 if (blk_mq_alloc_tag_set(&info->tag_set)) 996 return -EINVAL; 997 rq = blk_mq_init_queue(&info->tag_set); 998 if (IS_ERR(rq)) { 999 blk_mq_free_tag_set(&info->tag_set); 1000 return PTR_ERR(rq); 1001 } 1002 1003 rq->queuedata = info; 1004 info->rq = gd->queue = rq; 1005 info->gd = gd; 1006 info->sector_size = sector_size; 1007 info->physical_sector_size = physical_sector_size; 1008 blkif_set_queue_limits(info); 1009 1010 return 0; 1011 } 1012 1013 static const char *flush_info(struct blkfront_info *info) 1014 { 1015 if (info->feature_flush && info->feature_fua) 1016 return "barrier: enabled;"; 1017 else if (info->feature_flush) 1018 return "flush diskcache: enabled;"; 1019 else 1020 return "barrier or flush: disabled;"; 1021 } 1022 1023 static void xlvbd_flush(struct blkfront_info *info) 1024 { 1025 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 1026 info->feature_fua ? true : false); 1027 pr_info("blkfront: %s: %s %s %s %s %s\n", 1028 info->gd->disk_name, flush_info(info), 1029 "persistent grants:", info->feature_persistent ? 1030 "enabled;" : "disabled;", "indirect descriptors:", 1031 info->max_indirect_segments ? "enabled;" : "disabled;"); 1032 } 1033 1034 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1035 { 1036 int major; 1037 major = BLKIF_MAJOR(vdevice); 1038 *minor = BLKIF_MINOR(vdevice); 1039 switch (major) { 1040 case XEN_IDE0_MAJOR: 1041 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1042 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1043 EMULATED_HD_DISK_MINOR_OFFSET; 1044 break; 1045 case XEN_IDE1_MAJOR: 1046 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1047 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1048 EMULATED_HD_DISK_MINOR_OFFSET; 1049 break; 1050 case XEN_SCSI_DISK0_MAJOR: 1051 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1052 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1053 break; 1054 case XEN_SCSI_DISK1_MAJOR: 1055 case XEN_SCSI_DISK2_MAJOR: 1056 case XEN_SCSI_DISK3_MAJOR: 1057 case XEN_SCSI_DISK4_MAJOR: 1058 case XEN_SCSI_DISK5_MAJOR: 1059 case XEN_SCSI_DISK6_MAJOR: 1060 case XEN_SCSI_DISK7_MAJOR: 1061 *offset = (*minor / PARTS_PER_DISK) + 1062 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1063 EMULATED_SD_DISK_NAME_OFFSET; 1064 *minor = *minor + 1065 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1066 EMULATED_SD_DISK_MINOR_OFFSET; 1067 break; 1068 case XEN_SCSI_DISK8_MAJOR: 1069 case XEN_SCSI_DISK9_MAJOR: 1070 case XEN_SCSI_DISK10_MAJOR: 1071 case XEN_SCSI_DISK11_MAJOR: 1072 case XEN_SCSI_DISK12_MAJOR: 1073 case XEN_SCSI_DISK13_MAJOR: 1074 case XEN_SCSI_DISK14_MAJOR: 1075 case XEN_SCSI_DISK15_MAJOR: 1076 *offset = (*minor / PARTS_PER_DISK) + 1077 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1078 EMULATED_SD_DISK_NAME_OFFSET; 1079 *minor = *minor + 1080 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1081 EMULATED_SD_DISK_MINOR_OFFSET; 1082 break; 1083 case XENVBD_MAJOR: 1084 *offset = *minor / PARTS_PER_DISK; 1085 break; 1086 default: 1087 printk(KERN_WARNING "blkfront: your disk configuration is " 1088 "incorrect, please use an xvd device instead\n"); 1089 return -ENODEV; 1090 } 1091 return 0; 1092 } 1093 1094 static char *encode_disk_name(char *ptr, unsigned int n) 1095 { 1096 if (n >= 26) 1097 ptr = encode_disk_name(ptr, n / 26 - 1); 1098 *ptr = 'a' + n % 26; 1099 return ptr + 1; 1100 } 1101 1102 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1103 struct blkfront_info *info, 1104 u16 vdisk_info, u16 sector_size, 1105 unsigned int physical_sector_size) 1106 { 1107 struct gendisk *gd; 1108 int nr_minors = 1; 1109 int err; 1110 unsigned int offset; 1111 int minor; 1112 int nr_parts; 1113 char *ptr; 1114 1115 BUG_ON(info->gd != NULL); 1116 BUG_ON(info->rq != NULL); 1117 1118 if ((info->vdevice>>EXT_SHIFT) > 1) { 1119 /* this is above the extended range; something is wrong */ 1120 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1121 return -ENODEV; 1122 } 1123 1124 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1125 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1126 if (err) 1127 return err; 1128 nr_parts = PARTS_PER_DISK; 1129 } else { 1130 minor = BLKIF_MINOR_EXT(info->vdevice); 1131 nr_parts = PARTS_PER_EXT_DISK; 1132 offset = minor / nr_parts; 1133 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1134 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1135 "emulated IDE disks,\n\t choose an xvd device name" 1136 "from xvde on\n", info->vdevice); 1137 } 1138 if (minor >> MINORBITS) { 1139 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1140 info->vdevice, minor); 1141 return -ENODEV; 1142 } 1143 1144 if ((minor % nr_parts) == 0) 1145 nr_minors = nr_parts; 1146 1147 err = xlbd_reserve_minors(minor, nr_minors); 1148 if (err) 1149 goto out; 1150 err = -ENODEV; 1151 1152 gd = alloc_disk(nr_minors); 1153 if (gd == NULL) 1154 goto release; 1155 1156 strcpy(gd->disk_name, DEV_NAME); 1157 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1158 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1159 if (nr_minors > 1) 1160 *ptr = 0; 1161 else 1162 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1163 "%d", minor & (nr_parts - 1)); 1164 1165 gd->major = XENVBD_MAJOR; 1166 gd->first_minor = minor; 1167 gd->fops = &xlvbd_block_fops; 1168 gd->private_data = info; 1169 set_capacity(gd, capacity); 1170 1171 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) { 1172 del_gendisk(gd); 1173 goto release; 1174 } 1175 1176 xlvbd_flush(info); 1177 1178 if (vdisk_info & VDISK_READONLY) 1179 set_disk_ro(gd, 1); 1180 1181 if (vdisk_info & VDISK_REMOVABLE) 1182 gd->flags |= GENHD_FL_REMOVABLE; 1183 1184 if (vdisk_info & VDISK_CDROM) 1185 gd->flags |= GENHD_FL_CD; 1186 1187 return 0; 1188 1189 release: 1190 xlbd_release_minors(minor, nr_minors); 1191 out: 1192 return err; 1193 } 1194 1195 static void xlvbd_release_gendisk(struct blkfront_info *info) 1196 { 1197 unsigned int minor, nr_minors, i; 1198 struct blkfront_ring_info *rinfo; 1199 1200 if (info->rq == NULL) 1201 return; 1202 1203 /* No more blkif_request(). */ 1204 blk_mq_stop_hw_queues(info->rq); 1205 1206 for_each_rinfo(info, rinfo, i) { 1207 /* No more gnttab callback work. */ 1208 gnttab_cancel_free_callback(&rinfo->callback); 1209 1210 /* Flush gnttab callback work. Must be done with no locks held. */ 1211 flush_work(&rinfo->work); 1212 } 1213 1214 del_gendisk(info->gd); 1215 1216 minor = info->gd->first_minor; 1217 nr_minors = info->gd->minors; 1218 xlbd_release_minors(minor, nr_minors); 1219 1220 blk_cleanup_queue(info->rq); 1221 blk_mq_free_tag_set(&info->tag_set); 1222 info->rq = NULL; 1223 1224 put_disk(info->gd); 1225 info->gd = NULL; 1226 } 1227 1228 /* Already hold rinfo->ring_lock. */ 1229 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1230 { 1231 if (!RING_FULL(&rinfo->ring)) 1232 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1233 } 1234 1235 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1236 { 1237 unsigned long flags; 1238 1239 spin_lock_irqsave(&rinfo->ring_lock, flags); 1240 kick_pending_request_queues_locked(rinfo); 1241 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1242 } 1243 1244 static void blkif_restart_queue(struct work_struct *work) 1245 { 1246 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1247 1248 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1249 kick_pending_request_queues(rinfo); 1250 } 1251 1252 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1253 { 1254 struct grant *persistent_gnt, *n; 1255 struct blkfront_info *info = rinfo->dev_info; 1256 int i, j, segs; 1257 1258 /* 1259 * Remove indirect pages, this only happens when using indirect 1260 * descriptors but not persistent grants 1261 */ 1262 if (!list_empty(&rinfo->indirect_pages)) { 1263 struct page *indirect_page, *n; 1264 1265 BUG_ON(info->feature_persistent); 1266 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1267 list_del(&indirect_page->lru); 1268 __free_page(indirect_page); 1269 } 1270 } 1271 1272 /* Remove all persistent grants. */ 1273 if (!list_empty(&rinfo->grants)) { 1274 list_for_each_entry_safe(persistent_gnt, n, 1275 &rinfo->grants, node) { 1276 list_del(&persistent_gnt->node); 1277 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1278 gnttab_end_foreign_access(persistent_gnt->gref, 1279 0, 0UL); 1280 rinfo->persistent_gnts_c--; 1281 } 1282 if (info->feature_persistent) 1283 __free_page(persistent_gnt->page); 1284 kfree(persistent_gnt); 1285 } 1286 } 1287 BUG_ON(rinfo->persistent_gnts_c != 0); 1288 1289 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1290 /* 1291 * Clear persistent grants present in requests already 1292 * on the shared ring 1293 */ 1294 if (!rinfo->shadow[i].request) 1295 goto free_shadow; 1296 1297 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1298 rinfo->shadow[i].req.u.indirect.nr_segments : 1299 rinfo->shadow[i].req.u.rw.nr_segments; 1300 for (j = 0; j < segs; j++) { 1301 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1302 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1303 if (info->feature_persistent) 1304 __free_page(persistent_gnt->page); 1305 kfree(persistent_gnt); 1306 } 1307 1308 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1309 /* 1310 * If this is not an indirect operation don't try to 1311 * free indirect segments 1312 */ 1313 goto free_shadow; 1314 1315 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1316 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1317 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1318 __free_page(persistent_gnt->page); 1319 kfree(persistent_gnt); 1320 } 1321 1322 free_shadow: 1323 kvfree(rinfo->shadow[i].grants_used); 1324 rinfo->shadow[i].grants_used = NULL; 1325 kvfree(rinfo->shadow[i].indirect_grants); 1326 rinfo->shadow[i].indirect_grants = NULL; 1327 kvfree(rinfo->shadow[i].sg); 1328 rinfo->shadow[i].sg = NULL; 1329 } 1330 1331 /* No more gnttab callback work. */ 1332 gnttab_cancel_free_callback(&rinfo->callback); 1333 1334 /* Flush gnttab callback work. Must be done with no locks held. */ 1335 flush_work(&rinfo->work); 1336 1337 /* Free resources associated with old device channel. */ 1338 for (i = 0; i < info->nr_ring_pages; i++) { 1339 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1340 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1341 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1342 } 1343 } 1344 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1345 rinfo->ring.sring = NULL; 1346 1347 if (rinfo->irq) 1348 unbind_from_irqhandler(rinfo->irq, rinfo); 1349 rinfo->evtchn = rinfo->irq = 0; 1350 } 1351 1352 static void blkif_free(struct blkfront_info *info, int suspend) 1353 { 1354 unsigned int i; 1355 struct blkfront_ring_info *rinfo; 1356 1357 /* Prevent new requests being issued until we fix things up. */ 1358 info->connected = suspend ? 1359 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1360 /* No more blkif_request(). */ 1361 if (info->rq) 1362 blk_mq_stop_hw_queues(info->rq); 1363 1364 for_each_rinfo(info, rinfo, i) 1365 blkif_free_ring(rinfo); 1366 1367 kvfree(info->rinfo); 1368 info->rinfo = NULL; 1369 info->nr_rings = 0; 1370 } 1371 1372 struct copy_from_grant { 1373 const struct blk_shadow *s; 1374 unsigned int grant_idx; 1375 unsigned int bvec_offset; 1376 char *bvec_data; 1377 }; 1378 1379 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1380 unsigned int len, void *data) 1381 { 1382 struct copy_from_grant *info = data; 1383 char *shared_data; 1384 /* Convenient aliases */ 1385 const struct blk_shadow *s = info->s; 1386 1387 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1388 1389 memcpy(info->bvec_data + info->bvec_offset, 1390 shared_data + offset, len); 1391 1392 info->bvec_offset += len; 1393 info->grant_idx++; 1394 1395 kunmap_atomic(shared_data); 1396 } 1397 1398 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1399 { 1400 switch (rsp) 1401 { 1402 case BLKIF_RSP_OKAY: 1403 return REQ_DONE; 1404 case BLKIF_RSP_EOPNOTSUPP: 1405 return REQ_EOPNOTSUPP; 1406 case BLKIF_RSP_ERROR: 1407 default: 1408 return REQ_ERROR; 1409 } 1410 } 1411 1412 /* 1413 * Get the final status of the block request based on two ring response 1414 */ 1415 static int blkif_get_final_status(enum blk_req_status s1, 1416 enum blk_req_status s2) 1417 { 1418 BUG_ON(s1 == REQ_WAITING); 1419 BUG_ON(s2 == REQ_WAITING); 1420 1421 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1422 return BLKIF_RSP_ERROR; 1423 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1424 return BLKIF_RSP_EOPNOTSUPP; 1425 return BLKIF_RSP_OKAY; 1426 } 1427 1428 static bool blkif_completion(unsigned long *id, 1429 struct blkfront_ring_info *rinfo, 1430 struct blkif_response *bret) 1431 { 1432 int i = 0; 1433 struct scatterlist *sg; 1434 int num_sg, num_grant; 1435 struct blkfront_info *info = rinfo->dev_info; 1436 struct blk_shadow *s = &rinfo->shadow[*id]; 1437 struct copy_from_grant data = { 1438 .grant_idx = 0, 1439 }; 1440 1441 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1442 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1443 1444 /* The I/O request may be split in two. */ 1445 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1446 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1447 1448 /* Keep the status of the current response in shadow. */ 1449 s->status = blkif_rsp_to_req_status(bret->status); 1450 1451 /* Wait the second response if not yet here. */ 1452 if (s2->status == REQ_WAITING) 1453 return false; 1454 1455 bret->status = blkif_get_final_status(s->status, 1456 s2->status); 1457 1458 /* 1459 * All the grants is stored in the first shadow in order 1460 * to make the completion code simpler. 1461 */ 1462 num_grant += s2->req.u.rw.nr_segments; 1463 1464 /* 1465 * The two responses may not come in order. Only the 1466 * first request will store the scatter-gather list. 1467 */ 1468 if (s2->num_sg != 0) { 1469 /* Update "id" with the ID of the first response. */ 1470 *id = s->associated_id; 1471 s = s2; 1472 } 1473 1474 /* 1475 * We don't need anymore the second request, so recycling 1476 * it now. 1477 */ 1478 if (add_id_to_freelist(rinfo, s->associated_id)) 1479 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1480 info->gd->disk_name, s->associated_id); 1481 } 1482 1483 data.s = s; 1484 num_sg = s->num_sg; 1485 1486 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1487 for_each_sg(s->sg, sg, num_sg, i) { 1488 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1489 1490 data.bvec_offset = sg->offset; 1491 data.bvec_data = kmap_atomic(sg_page(sg)); 1492 1493 gnttab_foreach_grant_in_range(sg_page(sg), 1494 sg->offset, 1495 sg->length, 1496 blkif_copy_from_grant, 1497 &data); 1498 1499 kunmap_atomic(data.bvec_data); 1500 } 1501 } 1502 /* Add the persistent grant into the list of free grants */ 1503 for (i = 0; i < num_grant; i++) { 1504 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1505 /* 1506 * If the grant is still mapped by the backend (the 1507 * backend has chosen to make this grant persistent) 1508 * we add it at the head of the list, so it will be 1509 * reused first. 1510 */ 1511 if (!info->feature_persistent) 1512 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1513 s->grants_used[i]->gref); 1514 list_add(&s->grants_used[i]->node, &rinfo->grants); 1515 rinfo->persistent_gnts_c++; 1516 } else { 1517 /* 1518 * If the grant is not mapped by the backend we end the 1519 * foreign access and add it to the tail of the list, 1520 * so it will not be picked again unless we run out of 1521 * persistent grants. 1522 */ 1523 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1524 s->grants_used[i]->gref = GRANT_INVALID_REF; 1525 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1526 } 1527 } 1528 if (s->req.operation == BLKIF_OP_INDIRECT) { 1529 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1530 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1531 if (!info->feature_persistent) 1532 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1533 s->indirect_grants[i]->gref); 1534 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1535 rinfo->persistent_gnts_c++; 1536 } else { 1537 struct page *indirect_page; 1538 1539 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1540 /* 1541 * Add the used indirect page back to the list of 1542 * available pages for indirect grefs. 1543 */ 1544 if (!info->feature_persistent) { 1545 indirect_page = s->indirect_grants[i]->page; 1546 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1547 } 1548 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1549 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1550 } 1551 } 1552 } 1553 1554 return true; 1555 } 1556 1557 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1558 { 1559 struct request *req; 1560 struct blkif_response *bret; 1561 RING_IDX i, rp; 1562 unsigned long flags; 1563 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1564 struct blkfront_info *info = rinfo->dev_info; 1565 1566 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1567 return IRQ_HANDLED; 1568 1569 spin_lock_irqsave(&rinfo->ring_lock, flags); 1570 again: 1571 rp = rinfo->ring.sring->rsp_prod; 1572 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1573 1574 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1575 unsigned long id; 1576 1577 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1578 id = bret->id; 1579 /* 1580 * The backend has messed up and given us an id that we would 1581 * never have given to it (we stamp it up to BLK_RING_SIZE - 1582 * look in get_id_from_freelist. 1583 */ 1584 if (id >= BLK_RING_SIZE(info)) { 1585 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1586 info->gd->disk_name, op_name(bret->operation), id); 1587 /* We can't safely get the 'struct request' as 1588 * the id is busted. */ 1589 continue; 1590 } 1591 req = rinfo->shadow[id].request; 1592 1593 if (bret->operation != BLKIF_OP_DISCARD) { 1594 /* 1595 * We may need to wait for an extra response if the 1596 * I/O request is split in 2 1597 */ 1598 if (!blkif_completion(&id, rinfo, bret)) 1599 continue; 1600 } 1601 1602 if (add_id_to_freelist(rinfo, id)) { 1603 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1604 info->gd->disk_name, op_name(bret->operation), id); 1605 continue; 1606 } 1607 1608 if (bret->status == BLKIF_RSP_OKAY) 1609 blkif_req(req)->error = BLK_STS_OK; 1610 else 1611 blkif_req(req)->error = BLK_STS_IOERR; 1612 1613 switch (bret->operation) { 1614 case BLKIF_OP_DISCARD: 1615 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1616 struct request_queue *rq = info->rq; 1617 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1618 info->gd->disk_name, op_name(bret->operation)); 1619 blkif_req(req)->error = BLK_STS_NOTSUPP; 1620 info->feature_discard = 0; 1621 info->feature_secdiscard = 0; 1622 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1623 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1624 } 1625 break; 1626 case BLKIF_OP_FLUSH_DISKCACHE: 1627 case BLKIF_OP_WRITE_BARRIER: 1628 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1629 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1630 info->gd->disk_name, op_name(bret->operation)); 1631 blkif_req(req)->error = BLK_STS_NOTSUPP; 1632 } 1633 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1634 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1635 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1636 info->gd->disk_name, op_name(bret->operation)); 1637 blkif_req(req)->error = BLK_STS_NOTSUPP; 1638 } 1639 if (unlikely(blkif_req(req)->error)) { 1640 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1641 blkif_req(req)->error = BLK_STS_OK; 1642 info->feature_fua = 0; 1643 info->feature_flush = 0; 1644 xlvbd_flush(info); 1645 } 1646 fallthrough; 1647 case BLKIF_OP_READ: 1648 case BLKIF_OP_WRITE: 1649 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1650 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1651 "request: %x\n", bret->status); 1652 1653 break; 1654 default: 1655 BUG(); 1656 } 1657 1658 if (likely(!blk_should_fake_timeout(req->q))) 1659 blk_mq_complete_request(req); 1660 } 1661 1662 rinfo->ring.rsp_cons = i; 1663 1664 if (i != rinfo->ring.req_prod_pvt) { 1665 int more_to_do; 1666 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1667 if (more_to_do) 1668 goto again; 1669 } else 1670 rinfo->ring.sring->rsp_event = i + 1; 1671 1672 kick_pending_request_queues_locked(rinfo); 1673 1674 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1675 1676 return IRQ_HANDLED; 1677 } 1678 1679 1680 static int setup_blkring(struct xenbus_device *dev, 1681 struct blkfront_ring_info *rinfo) 1682 { 1683 struct blkif_sring *sring; 1684 int err, i; 1685 struct blkfront_info *info = rinfo->dev_info; 1686 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1687 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1688 1689 for (i = 0; i < info->nr_ring_pages; i++) 1690 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1691 1692 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1693 get_order(ring_size)); 1694 if (!sring) { 1695 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1696 return -ENOMEM; 1697 } 1698 SHARED_RING_INIT(sring); 1699 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1700 1701 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1702 if (err < 0) { 1703 free_pages((unsigned long)sring, get_order(ring_size)); 1704 rinfo->ring.sring = NULL; 1705 goto fail; 1706 } 1707 for (i = 0; i < info->nr_ring_pages; i++) 1708 rinfo->ring_ref[i] = gref[i]; 1709 1710 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1711 if (err) 1712 goto fail; 1713 1714 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1715 "blkif", rinfo); 1716 if (err <= 0) { 1717 xenbus_dev_fatal(dev, err, 1718 "bind_evtchn_to_irqhandler failed"); 1719 goto fail; 1720 } 1721 rinfo->irq = err; 1722 1723 return 0; 1724 fail: 1725 blkif_free(info, 0); 1726 return err; 1727 } 1728 1729 /* 1730 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1731 * ring buffer may have multi pages depending on ->nr_ring_pages. 1732 */ 1733 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1734 struct blkfront_ring_info *rinfo, const char *dir) 1735 { 1736 int err; 1737 unsigned int i; 1738 const char *message = NULL; 1739 struct blkfront_info *info = rinfo->dev_info; 1740 1741 if (info->nr_ring_pages == 1) { 1742 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1743 if (err) { 1744 message = "writing ring-ref"; 1745 goto abort_transaction; 1746 } 1747 } else { 1748 for (i = 0; i < info->nr_ring_pages; i++) { 1749 char ring_ref_name[RINGREF_NAME_LEN]; 1750 1751 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1752 err = xenbus_printf(xbt, dir, ring_ref_name, 1753 "%u", rinfo->ring_ref[i]); 1754 if (err) { 1755 message = "writing ring-ref"; 1756 goto abort_transaction; 1757 } 1758 } 1759 } 1760 1761 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1762 if (err) { 1763 message = "writing event-channel"; 1764 goto abort_transaction; 1765 } 1766 1767 return 0; 1768 1769 abort_transaction: 1770 xenbus_transaction_end(xbt, 1); 1771 if (message) 1772 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1773 1774 return err; 1775 } 1776 1777 static void free_info(struct blkfront_info *info) 1778 { 1779 list_del(&info->info_list); 1780 kfree(info); 1781 } 1782 1783 /* Common code used when first setting up, and when resuming. */ 1784 static int talk_to_blkback(struct xenbus_device *dev, 1785 struct blkfront_info *info) 1786 { 1787 const char *message = NULL; 1788 struct xenbus_transaction xbt; 1789 int err; 1790 unsigned int i, max_page_order; 1791 unsigned int ring_page_order; 1792 struct blkfront_ring_info *rinfo; 1793 1794 if (!info) 1795 return -ENODEV; 1796 1797 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1798 "max-ring-page-order", 0); 1799 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1800 info->nr_ring_pages = 1 << ring_page_order; 1801 1802 err = negotiate_mq(info); 1803 if (err) 1804 goto destroy_blkring; 1805 1806 for_each_rinfo(info, rinfo, i) { 1807 /* Create shared ring, alloc event channel. */ 1808 err = setup_blkring(dev, rinfo); 1809 if (err) 1810 goto destroy_blkring; 1811 } 1812 1813 again: 1814 err = xenbus_transaction_start(&xbt); 1815 if (err) { 1816 xenbus_dev_fatal(dev, err, "starting transaction"); 1817 goto destroy_blkring; 1818 } 1819 1820 if (info->nr_ring_pages > 1) { 1821 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1822 ring_page_order); 1823 if (err) { 1824 message = "writing ring-page-order"; 1825 goto abort_transaction; 1826 } 1827 } 1828 1829 /* We already got the number of queues/rings in _probe */ 1830 if (info->nr_rings == 1) { 1831 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1832 if (err) 1833 goto destroy_blkring; 1834 } else { 1835 char *path; 1836 size_t pathsize; 1837 1838 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1839 info->nr_rings); 1840 if (err) { 1841 message = "writing multi-queue-num-queues"; 1842 goto abort_transaction; 1843 } 1844 1845 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1846 path = kmalloc(pathsize, GFP_KERNEL); 1847 if (!path) { 1848 err = -ENOMEM; 1849 message = "ENOMEM while writing ring references"; 1850 goto abort_transaction; 1851 } 1852 1853 for_each_rinfo(info, rinfo, i) { 1854 memset(path, 0, pathsize); 1855 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1856 err = write_per_ring_nodes(xbt, rinfo, path); 1857 if (err) { 1858 kfree(path); 1859 goto destroy_blkring; 1860 } 1861 } 1862 kfree(path); 1863 } 1864 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1865 XEN_IO_PROTO_ABI_NATIVE); 1866 if (err) { 1867 message = "writing protocol"; 1868 goto abort_transaction; 1869 } 1870 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1871 info->feature_persistent); 1872 if (err) 1873 dev_warn(&dev->dev, 1874 "writing persistent grants feature to xenbus"); 1875 1876 err = xenbus_transaction_end(xbt, 0); 1877 if (err) { 1878 if (err == -EAGAIN) 1879 goto again; 1880 xenbus_dev_fatal(dev, err, "completing transaction"); 1881 goto destroy_blkring; 1882 } 1883 1884 for_each_rinfo(info, rinfo, i) { 1885 unsigned int j; 1886 1887 for (j = 0; j < BLK_RING_SIZE(info); j++) 1888 rinfo->shadow[j].req.u.rw.id = j + 1; 1889 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1890 } 1891 xenbus_switch_state(dev, XenbusStateInitialised); 1892 1893 return 0; 1894 1895 abort_transaction: 1896 xenbus_transaction_end(xbt, 1); 1897 if (message) 1898 xenbus_dev_fatal(dev, err, "%s", message); 1899 destroy_blkring: 1900 blkif_free(info, 0); 1901 1902 mutex_lock(&blkfront_mutex); 1903 free_info(info); 1904 mutex_unlock(&blkfront_mutex); 1905 1906 dev_set_drvdata(&dev->dev, NULL); 1907 1908 return err; 1909 } 1910 1911 static int negotiate_mq(struct blkfront_info *info) 1912 { 1913 unsigned int backend_max_queues; 1914 unsigned int i; 1915 struct blkfront_ring_info *rinfo; 1916 1917 BUG_ON(info->nr_rings); 1918 1919 /* Check if backend supports multiple queues. */ 1920 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1921 "multi-queue-max-queues", 1); 1922 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1923 /* We need at least one ring. */ 1924 if (!info->nr_rings) 1925 info->nr_rings = 1; 1926 1927 info->rinfo_size = struct_size(info->rinfo, shadow, 1928 BLK_RING_SIZE(info)); 1929 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1930 if (!info->rinfo) { 1931 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1932 info->nr_rings = 0; 1933 return -ENOMEM; 1934 } 1935 1936 for_each_rinfo(info, rinfo, i) { 1937 INIT_LIST_HEAD(&rinfo->indirect_pages); 1938 INIT_LIST_HEAD(&rinfo->grants); 1939 rinfo->dev_info = info; 1940 INIT_WORK(&rinfo->work, blkif_restart_queue); 1941 spin_lock_init(&rinfo->ring_lock); 1942 } 1943 return 0; 1944 } 1945 1946 /* Enable the persistent grants feature. */ 1947 static bool feature_persistent = true; 1948 module_param(feature_persistent, bool, 0644); 1949 MODULE_PARM_DESC(feature_persistent, 1950 "Enables the persistent grants feature"); 1951 1952 /* 1953 * Entry point to this code when a new device is created. Allocate the basic 1954 * structures and the ring buffer for communication with the backend, and 1955 * inform the backend of the appropriate details for those. Switch to 1956 * Initialised state. 1957 */ 1958 static int blkfront_probe(struct xenbus_device *dev, 1959 const struct xenbus_device_id *id) 1960 { 1961 int err, vdevice; 1962 struct blkfront_info *info; 1963 1964 /* FIXME: Use dynamic device id if this is not set. */ 1965 err = xenbus_scanf(XBT_NIL, dev->nodename, 1966 "virtual-device", "%i", &vdevice); 1967 if (err != 1) { 1968 /* go looking in the extended area instead */ 1969 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1970 "%i", &vdevice); 1971 if (err != 1) { 1972 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1973 return err; 1974 } 1975 } 1976 1977 if (xen_hvm_domain()) { 1978 char *type; 1979 int len; 1980 /* no unplug has been done: do not hook devices != xen vbds */ 1981 if (xen_has_pv_and_legacy_disk_devices()) { 1982 int major; 1983 1984 if (!VDEV_IS_EXTENDED(vdevice)) 1985 major = BLKIF_MAJOR(vdevice); 1986 else 1987 major = XENVBD_MAJOR; 1988 1989 if (major != XENVBD_MAJOR) { 1990 printk(KERN_INFO 1991 "%s: HVM does not support vbd %d as xen block device\n", 1992 __func__, vdevice); 1993 return -ENODEV; 1994 } 1995 } 1996 /* do not create a PV cdrom device if we are an HVM guest */ 1997 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1998 if (IS_ERR(type)) 1999 return -ENODEV; 2000 if (strncmp(type, "cdrom", 5) == 0) { 2001 kfree(type); 2002 return -ENODEV; 2003 } 2004 kfree(type); 2005 } 2006 info = kzalloc(sizeof(*info), GFP_KERNEL); 2007 if (!info) { 2008 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 2009 return -ENOMEM; 2010 } 2011 2012 info->xbdev = dev; 2013 2014 mutex_init(&info->mutex); 2015 info->vdevice = vdevice; 2016 info->connected = BLKIF_STATE_DISCONNECTED; 2017 2018 info->feature_persistent = feature_persistent; 2019 2020 /* Front end dir is a number, which is used as the id. */ 2021 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 2022 dev_set_drvdata(&dev->dev, info); 2023 2024 mutex_lock(&blkfront_mutex); 2025 list_add(&info->info_list, &info_list); 2026 mutex_unlock(&blkfront_mutex); 2027 2028 return 0; 2029 } 2030 2031 static int blkif_recover(struct blkfront_info *info) 2032 { 2033 unsigned int r_index; 2034 struct request *req, *n; 2035 int rc; 2036 struct bio *bio; 2037 unsigned int segs; 2038 struct blkfront_ring_info *rinfo; 2039 2040 blkfront_gather_backend_features(info); 2041 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2042 blkif_set_queue_limits(info); 2043 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2044 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2045 2046 for_each_rinfo(info, rinfo, r_index) { 2047 rc = blkfront_setup_indirect(rinfo); 2048 if (rc) 2049 return rc; 2050 } 2051 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2052 2053 /* Now safe for us to use the shared ring */ 2054 info->connected = BLKIF_STATE_CONNECTED; 2055 2056 for_each_rinfo(info, rinfo, r_index) { 2057 /* Kick any other new requests queued since we resumed */ 2058 kick_pending_request_queues(rinfo); 2059 } 2060 2061 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2062 /* Requeue pending requests (flush or discard) */ 2063 list_del_init(&req->queuelist); 2064 BUG_ON(req->nr_phys_segments > segs); 2065 blk_mq_requeue_request(req, false); 2066 } 2067 blk_mq_start_stopped_hw_queues(info->rq, true); 2068 blk_mq_kick_requeue_list(info->rq); 2069 2070 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2071 /* Traverse the list of pending bios and re-queue them */ 2072 submit_bio(bio); 2073 } 2074 2075 return 0; 2076 } 2077 2078 /* 2079 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2080 * driver restart. We tear down our blkif structure and recreate it, but 2081 * leave the device-layer structures intact so that this is transparent to the 2082 * rest of the kernel. 2083 */ 2084 static int blkfront_resume(struct xenbus_device *dev) 2085 { 2086 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2087 int err = 0; 2088 unsigned int i, j; 2089 struct blkfront_ring_info *rinfo; 2090 2091 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2092 2093 bio_list_init(&info->bio_list); 2094 INIT_LIST_HEAD(&info->requests); 2095 for_each_rinfo(info, rinfo, i) { 2096 struct bio_list merge_bio; 2097 struct blk_shadow *shadow = rinfo->shadow; 2098 2099 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2100 /* Not in use? */ 2101 if (!shadow[j].request) 2102 continue; 2103 2104 /* 2105 * Get the bios in the request so we can re-queue them. 2106 */ 2107 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2108 req_op(shadow[j].request) == REQ_OP_DISCARD || 2109 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2110 shadow[j].request->cmd_flags & REQ_FUA) { 2111 /* 2112 * Flush operations don't contain bios, so 2113 * we need to requeue the whole request 2114 * 2115 * XXX: but this doesn't make any sense for a 2116 * write with the FUA flag set.. 2117 */ 2118 list_add(&shadow[j].request->queuelist, &info->requests); 2119 continue; 2120 } 2121 merge_bio.head = shadow[j].request->bio; 2122 merge_bio.tail = shadow[j].request->biotail; 2123 bio_list_merge(&info->bio_list, &merge_bio); 2124 shadow[j].request->bio = NULL; 2125 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2126 } 2127 } 2128 2129 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2130 2131 err = talk_to_blkback(dev, info); 2132 if (!err) 2133 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2134 2135 /* 2136 * We have to wait for the backend to switch to 2137 * connected state, since we want to read which 2138 * features it supports. 2139 */ 2140 2141 return err; 2142 } 2143 2144 static void blkfront_closing(struct blkfront_info *info) 2145 { 2146 struct xenbus_device *xbdev = info->xbdev; 2147 struct block_device *bdev = NULL; 2148 2149 mutex_lock(&info->mutex); 2150 2151 if (xbdev->state == XenbusStateClosing) { 2152 mutex_unlock(&info->mutex); 2153 return; 2154 } 2155 2156 if (info->gd) 2157 bdev = bdgrab(info->gd->part0); 2158 2159 mutex_unlock(&info->mutex); 2160 2161 if (!bdev) { 2162 xenbus_frontend_closed(xbdev); 2163 return; 2164 } 2165 2166 mutex_lock(&bdev->bd_mutex); 2167 2168 if (bdev->bd_openers) { 2169 xenbus_dev_error(xbdev, -EBUSY, 2170 "Device in use; refusing to close"); 2171 xenbus_switch_state(xbdev, XenbusStateClosing); 2172 } else { 2173 xlvbd_release_gendisk(info); 2174 xenbus_frontend_closed(xbdev); 2175 } 2176 2177 mutex_unlock(&bdev->bd_mutex); 2178 bdput(bdev); 2179 } 2180 2181 static void blkfront_setup_discard(struct blkfront_info *info) 2182 { 2183 info->feature_discard = 1; 2184 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2185 "discard-granularity", 2186 0); 2187 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2188 "discard-alignment", 0); 2189 info->feature_secdiscard = 2190 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2191 0); 2192 } 2193 2194 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2195 { 2196 unsigned int psegs, grants, memflags; 2197 int err, i; 2198 struct blkfront_info *info = rinfo->dev_info; 2199 2200 memflags = memalloc_noio_save(); 2201 2202 if (info->max_indirect_segments == 0) { 2203 if (!HAS_EXTRA_REQ) 2204 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2205 else { 2206 /* 2207 * When an extra req is required, the maximum 2208 * grants supported is related to the size of the 2209 * Linux block segment. 2210 */ 2211 grants = GRANTS_PER_PSEG; 2212 } 2213 } 2214 else 2215 grants = info->max_indirect_segments; 2216 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2217 2218 err = fill_grant_buffer(rinfo, 2219 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2220 if (err) 2221 goto out_of_memory; 2222 2223 if (!info->feature_persistent && info->max_indirect_segments) { 2224 /* 2225 * We are using indirect descriptors but not persistent 2226 * grants, we need to allocate a set of pages that can be 2227 * used for mapping indirect grefs 2228 */ 2229 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2230 2231 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2232 for (i = 0; i < num; i++) { 2233 struct page *indirect_page = alloc_page(GFP_KERNEL); 2234 if (!indirect_page) 2235 goto out_of_memory; 2236 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2237 } 2238 } 2239 2240 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2241 rinfo->shadow[i].grants_used = 2242 kvcalloc(grants, 2243 sizeof(rinfo->shadow[i].grants_used[0]), 2244 GFP_KERNEL); 2245 rinfo->shadow[i].sg = kvcalloc(psegs, 2246 sizeof(rinfo->shadow[i].sg[0]), 2247 GFP_KERNEL); 2248 if (info->max_indirect_segments) 2249 rinfo->shadow[i].indirect_grants = 2250 kvcalloc(INDIRECT_GREFS(grants), 2251 sizeof(rinfo->shadow[i].indirect_grants[0]), 2252 GFP_KERNEL); 2253 if ((rinfo->shadow[i].grants_used == NULL) || 2254 (rinfo->shadow[i].sg == NULL) || 2255 (info->max_indirect_segments && 2256 (rinfo->shadow[i].indirect_grants == NULL))) 2257 goto out_of_memory; 2258 sg_init_table(rinfo->shadow[i].sg, psegs); 2259 } 2260 2261 memalloc_noio_restore(memflags); 2262 2263 return 0; 2264 2265 out_of_memory: 2266 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2267 kvfree(rinfo->shadow[i].grants_used); 2268 rinfo->shadow[i].grants_used = NULL; 2269 kvfree(rinfo->shadow[i].sg); 2270 rinfo->shadow[i].sg = NULL; 2271 kvfree(rinfo->shadow[i].indirect_grants); 2272 rinfo->shadow[i].indirect_grants = NULL; 2273 } 2274 if (!list_empty(&rinfo->indirect_pages)) { 2275 struct page *indirect_page, *n; 2276 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2277 list_del(&indirect_page->lru); 2278 __free_page(indirect_page); 2279 } 2280 } 2281 2282 memalloc_noio_restore(memflags); 2283 2284 return -ENOMEM; 2285 } 2286 2287 /* 2288 * Gather all backend feature-* 2289 */ 2290 static void blkfront_gather_backend_features(struct blkfront_info *info) 2291 { 2292 unsigned int indirect_segments; 2293 2294 info->feature_flush = 0; 2295 info->feature_fua = 0; 2296 2297 /* 2298 * If there's no "feature-barrier" defined, then it means 2299 * we're dealing with a very old backend which writes 2300 * synchronously; nothing to do. 2301 * 2302 * If there are barriers, then we use flush. 2303 */ 2304 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2305 info->feature_flush = 1; 2306 info->feature_fua = 1; 2307 } 2308 2309 /* 2310 * And if there is "feature-flush-cache" use that above 2311 * barriers. 2312 */ 2313 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2314 0)) { 2315 info->feature_flush = 1; 2316 info->feature_fua = 0; 2317 } 2318 2319 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2320 blkfront_setup_discard(info); 2321 2322 if (info->feature_persistent) 2323 info->feature_persistent = 2324 !!xenbus_read_unsigned(info->xbdev->otherend, 2325 "feature-persistent", 0); 2326 2327 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2328 "feature-max-indirect-segments", 0); 2329 if (indirect_segments > xen_blkif_max_segments) 2330 indirect_segments = xen_blkif_max_segments; 2331 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2332 indirect_segments = 0; 2333 info->max_indirect_segments = indirect_segments; 2334 2335 if (info->feature_persistent) { 2336 mutex_lock(&blkfront_mutex); 2337 schedule_delayed_work(&blkfront_work, HZ * 10); 2338 mutex_unlock(&blkfront_mutex); 2339 } 2340 } 2341 2342 /* 2343 * Invoked when the backend is finally 'ready' (and has told produced 2344 * the details about the physical device - #sectors, size, etc). 2345 */ 2346 static void blkfront_connect(struct blkfront_info *info) 2347 { 2348 unsigned long long sectors; 2349 unsigned long sector_size; 2350 unsigned int physical_sector_size; 2351 unsigned int binfo; 2352 int err, i; 2353 struct blkfront_ring_info *rinfo; 2354 2355 switch (info->connected) { 2356 case BLKIF_STATE_CONNECTED: 2357 /* 2358 * Potentially, the back-end may be signalling 2359 * a capacity change; update the capacity. 2360 */ 2361 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2362 "sectors", "%Lu", §ors); 2363 if (XENBUS_EXIST_ERR(err)) 2364 return; 2365 printk(KERN_INFO "Setting capacity to %Lu\n", 2366 sectors); 2367 set_capacity_and_notify(info->gd, sectors); 2368 2369 return; 2370 case BLKIF_STATE_SUSPENDED: 2371 /* 2372 * If we are recovering from suspension, we need to wait 2373 * for the backend to announce it's features before 2374 * reconnecting, at least we need to know if the backend 2375 * supports indirect descriptors, and how many. 2376 */ 2377 blkif_recover(info); 2378 return; 2379 2380 default: 2381 break; 2382 } 2383 2384 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2385 __func__, info->xbdev->otherend); 2386 2387 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2388 "sectors", "%llu", §ors, 2389 "info", "%u", &binfo, 2390 "sector-size", "%lu", §or_size, 2391 NULL); 2392 if (err) { 2393 xenbus_dev_fatal(info->xbdev, err, 2394 "reading backend fields at %s", 2395 info->xbdev->otherend); 2396 return; 2397 } 2398 2399 /* 2400 * physical-sector-size is a newer field, so old backends may not 2401 * provide this. Assume physical sector size to be the same as 2402 * sector_size in that case. 2403 */ 2404 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2405 "physical-sector-size", 2406 sector_size); 2407 blkfront_gather_backend_features(info); 2408 for_each_rinfo(info, rinfo, i) { 2409 err = blkfront_setup_indirect(rinfo); 2410 if (err) { 2411 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2412 info->xbdev->otherend); 2413 blkif_free(info, 0); 2414 break; 2415 } 2416 } 2417 2418 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2419 physical_sector_size); 2420 if (err) { 2421 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2422 info->xbdev->otherend); 2423 goto fail; 2424 } 2425 2426 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2427 2428 /* Kick pending requests. */ 2429 info->connected = BLKIF_STATE_CONNECTED; 2430 for_each_rinfo(info, rinfo, i) 2431 kick_pending_request_queues(rinfo); 2432 2433 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2434 2435 info->is_ready = 1; 2436 return; 2437 2438 fail: 2439 blkif_free(info, 0); 2440 return; 2441 } 2442 2443 /* 2444 * Callback received when the backend's state changes. 2445 */ 2446 static void blkback_changed(struct xenbus_device *dev, 2447 enum xenbus_state backend_state) 2448 { 2449 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2450 2451 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2452 2453 switch (backend_state) { 2454 case XenbusStateInitWait: 2455 if (dev->state != XenbusStateInitialising) 2456 break; 2457 if (talk_to_blkback(dev, info)) 2458 break; 2459 break; 2460 case XenbusStateInitialising: 2461 case XenbusStateInitialised: 2462 case XenbusStateReconfiguring: 2463 case XenbusStateReconfigured: 2464 case XenbusStateUnknown: 2465 break; 2466 2467 case XenbusStateConnected: 2468 /* 2469 * talk_to_blkback sets state to XenbusStateInitialised 2470 * and blkfront_connect sets it to XenbusStateConnected 2471 * (if connection went OK). 2472 * 2473 * If the backend (or toolstack) decides to poke at backend 2474 * state (and re-trigger the watch by setting the state repeatedly 2475 * to XenbusStateConnected (4)) we need to deal with this. 2476 * This is allowed as this is used to communicate to the guest 2477 * that the size of disk has changed! 2478 */ 2479 if ((dev->state != XenbusStateInitialised) && 2480 (dev->state != XenbusStateConnected)) { 2481 if (talk_to_blkback(dev, info)) 2482 break; 2483 } 2484 2485 blkfront_connect(info); 2486 break; 2487 2488 case XenbusStateClosed: 2489 if (dev->state == XenbusStateClosed) 2490 break; 2491 fallthrough; 2492 case XenbusStateClosing: 2493 if (info) 2494 blkfront_closing(info); 2495 break; 2496 } 2497 } 2498 2499 static int blkfront_remove(struct xenbus_device *xbdev) 2500 { 2501 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2502 struct block_device *bdev = NULL; 2503 struct gendisk *disk; 2504 2505 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2506 2507 if (!info) 2508 return 0; 2509 2510 blkif_free(info, 0); 2511 2512 mutex_lock(&info->mutex); 2513 2514 disk = info->gd; 2515 if (disk) 2516 bdev = bdgrab(disk->part0); 2517 2518 info->xbdev = NULL; 2519 mutex_unlock(&info->mutex); 2520 2521 if (!bdev) { 2522 mutex_lock(&blkfront_mutex); 2523 free_info(info); 2524 mutex_unlock(&blkfront_mutex); 2525 return 0; 2526 } 2527 2528 /* 2529 * The xbdev was removed before we reached the Closed 2530 * state. See if it's safe to remove the disk. If the bdev 2531 * isn't closed yet, we let release take care of it. 2532 */ 2533 2534 mutex_lock(&bdev->bd_mutex); 2535 info = disk->private_data; 2536 2537 dev_warn(disk_to_dev(disk), 2538 "%s was hot-unplugged, %d stale handles\n", 2539 xbdev->nodename, bdev->bd_openers); 2540 2541 if (info && !bdev->bd_openers) { 2542 xlvbd_release_gendisk(info); 2543 disk->private_data = NULL; 2544 mutex_lock(&blkfront_mutex); 2545 free_info(info); 2546 mutex_unlock(&blkfront_mutex); 2547 } 2548 2549 mutex_unlock(&bdev->bd_mutex); 2550 bdput(bdev); 2551 2552 return 0; 2553 } 2554 2555 static int blkfront_is_ready(struct xenbus_device *dev) 2556 { 2557 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2558 2559 return info->is_ready && info->xbdev; 2560 } 2561 2562 static int blkif_open(struct block_device *bdev, fmode_t mode) 2563 { 2564 struct gendisk *disk = bdev->bd_disk; 2565 struct blkfront_info *info; 2566 int err = 0; 2567 2568 mutex_lock(&blkfront_mutex); 2569 2570 info = disk->private_data; 2571 if (!info) { 2572 /* xbdev gone */ 2573 err = -ERESTARTSYS; 2574 goto out; 2575 } 2576 2577 mutex_lock(&info->mutex); 2578 2579 if (!info->gd) 2580 /* xbdev is closed */ 2581 err = -ERESTARTSYS; 2582 2583 mutex_unlock(&info->mutex); 2584 2585 out: 2586 mutex_unlock(&blkfront_mutex); 2587 return err; 2588 } 2589 2590 static void blkif_release(struct gendisk *disk, fmode_t mode) 2591 { 2592 struct blkfront_info *info = disk->private_data; 2593 struct xenbus_device *xbdev; 2594 2595 mutex_lock(&blkfront_mutex); 2596 if (disk->part0->bd_openers) 2597 goto out_mutex; 2598 2599 /* 2600 * Check if we have been instructed to close. We will have 2601 * deferred this request, because the bdev was still open. 2602 */ 2603 2604 mutex_lock(&info->mutex); 2605 xbdev = info->xbdev; 2606 2607 if (xbdev && xbdev->state == XenbusStateClosing) { 2608 /* pending switch to state closed */ 2609 dev_info(disk_to_dev(disk), "releasing disk\n"); 2610 xlvbd_release_gendisk(info); 2611 xenbus_frontend_closed(info->xbdev); 2612 } 2613 2614 mutex_unlock(&info->mutex); 2615 2616 if (!xbdev) { 2617 /* sudden device removal */ 2618 dev_info(disk_to_dev(disk), "releasing disk\n"); 2619 xlvbd_release_gendisk(info); 2620 disk->private_data = NULL; 2621 free_info(info); 2622 } 2623 2624 out_mutex: 2625 mutex_unlock(&blkfront_mutex); 2626 } 2627 2628 static const struct block_device_operations xlvbd_block_fops = 2629 { 2630 .owner = THIS_MODULE, 2631 .open = blkif_open, 2632 .release = blkif_release, 2633 .getgeo = blkif_getgeo, 2634 .ioctl = blkif_ioctl, 2635 .compat_ioctl = blkdev_compat_ptr_ioctl, 2636 }; 2637 2638 2639 static const struct xenbus_device_id blkfront_ids[] = { 2640 { "vbd" }, 2641 { "" } 2642 }; 2643 2644 static struct xenbus_driver blkfront_driver = { 2645 .ids = blkfront_ids, 2646 .probe = blkfront_probe, 2647 .remove = blkfront_remove, 2648 .resume = blkfront_resume, 2649 .otherend_changed = blkback_changed, 2650 .is_ready = blkfront_is_ready, 2651 }; 2652 2653 static void purge_persistent_grants(struct blkfront_info *info) 2654 { 2655 unsigned int i; 2656 unsigned long flags; 2657 struct blkfront_ring_info *rinfo; 2658 2659 for_each_rinfo(info, rinfo, i) { 2660 struct grant *gnt_list_entry, *tmp; 2661 2662 spin_lock_irqsave(&rinfo->ring_lock, flags); 2663 2664 if (rinfo->persistent_gnts_c == 0) { 2665 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2666 continue; 2667 } 2668 2669 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2670 node) { 2671 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2672 gnttab_query_foreign_access(gnt_list_entry->gref)) 2673 continue; 2674 2675 list_del(&gnt_list_entry->node); 2676 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2677 rinfo->persistent_gnts_c--; 2678 gnt_list_entry->gref = GRANT_INVALID_REF; 2679 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2680 } 2681 2682 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2683 } 2684 } 2685 2686 static void blkfront_delay_work(struct work_struct *work) 2687 { 2688 struct blkfront_info *info; 2689 bool need_schedule_work = false; 2690 2691 mutex_lock(&blkfront_mutex); 2692 2693 list_for_each_entry(info, &info_list, info_list) { 2694 if (info->feature_persistent) { 2695 need_schedule_work = true; 2696 mutex_lock(&info->mutex); 2697 purge_persistent_grants(info); 2698 mutex_unlock(&info->mutex); 2699 } 2700 } 2701 2702 if (need_schedule_work) 2703 schedule_delayed_work(&blkfront_work, HZ * 10); 2704 2705 mutex_unlock(&blkfront_mutex); 2706 } 2707 2708 static int __init xlblk_init(void) 2709 { 2710 int ret; 2711 int nr_cpus = num_online_cpus(); 2712 2713 if (!xen_domain()) 2714 return -ENODEV; 2715 2716 if (!xen_has_pv_disk_devices()) 2717 return -ENODEV; 2718 2719 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2720 pr_warn("xen_blk: can't get major %d with name %s\n", 2721 XENVBD_MAJOR, DEV_NAME); 2722 return -ENODEV; 2723 } 2724 2725 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2726 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2727 2728 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2729 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2730 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2731 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2732 } 2733 2734 if (xen_blkif_max_queues > nr_cpus) { 2735 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2736 xen_blkif_max_queues, nr_cpus); 2737 xen_blkif_max_queues = nr_cpus; 2738 } 2739 2740 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2741 2742 ret = xenbus_register_frontend(&blkfront_driver); 2743 if (ret) { 2744 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2745 return ret; 2746 } 2747 2748 return 0; 2749 } 2750 module_init(xlblk_init); 2751 2752 2753 static void __exit xlblk_exit(void) 2754 { 2755 cancel_delayed_work_sync(&blkfront_work); 2756 2757 xenbus_unregister_driver(&blkfront_driver); 2758 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2759 kfree(minors); 2760 } 2761 module_exit(xlblk_exit); 2762 2763 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2764 MODULE_LICENSE("GPL"); 2765 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2766 MODULE_ALIAS("xen:vbd"); 2767 MODULE_ALIAS("xenblk"); 2768