1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 #include <linux/workqueue.h> 50 51 #include <xen/xen.h> 52 #include <xen/xenbus.h> 53 #include <xen/grant_table.h> 54 #include <xen/events.h> 55 #include <xen/page.h> 56 #include <xen/platform_pci.h> 57 58 #include <xen/interface/grant_table.h> 59 #include <xen/interface/io/blkif.h> 60 #include <xen/interface/io/protocols.h> 61 62 #include <asm/xen/hypervisor.h> 63 64 /* 65 * The minimal size of segment supported by the block framework is PAGE_SIZE. 66 * When Linux is using a different page size than Xen, it may not be possible 67 * to put all the data in a single segment. 68 * This can happen when the backend doesn't support indirect descriptor and 69 * therefore the maximum amount of data that a request can carry is 70 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 71 * 72 * Note that we only support one extra request. So the Linux page size 73 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 74 * 88KB. 75 */ 76 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 77 78 enum blkif_state { 79 BLKIF_STATE_DISCONNECTED, 80 BLKIF_STATE_CONNECTED, 81 BLKIF_STATE_SUSPENDED, 82 }; 83 84 struct grant { 85 grant_ref_t gref; 86 struct page *page; 87 struct list_head node; 88 }; 89 90 enum blk_req_status { 91 REQ_WAITING, 92 REQ_DONE, 93 REQ_ERROR, 94 REQ_EOPNOTSUPP, 95 }; 96 97 struct blk_shadow { 98 struct blkif_request req; 99 struct request *request; 100 struct grant **grants_used; 101 struct grant **indirect_grants; 102 struct scatterlist *sg; 103 unsigned int num_sg; 104 enum blk_req_status status; 105 106 #define NO_ASSOCIATED_ID ~0UL 107 /* 108 * Id of the sibling if we ever need 2 requests when handling a 109 * block I/O request 110 */ 111 unsigned long associated_id; 112 }; 113 114 struct blkif_req { 115 blk_status_t error; 116 }; 117 118 static inline struct blkif_req *blkif_req(struct request *rq) 119 { 120 return blk_mq_rq_to_pdu(rq); 121 } 122 123 static DEFINE_MUTEX(blkfront_mutex); 124 static const struct block_device_operations xlvbd_block_fops; 125 static struct delayed_work blkfront_work; 126 static LIST_HEAD(info_list); 127 128 /* 129 * Maximum number of segments in indirect requests, the actual value used by 130 * the frontend driver is the minimum of this value and the value provided 131 * by the backend driver. 132 */ 133 134 static unsigned int xen_blkif_max_segments = 32; 135 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 136 MODULE_PARM_DESC(max_indirect_segments, 137 "Maximum amount of segments in indirect requests (default is 32)"); 138 139 static unsigned int xen_blkif_max_queues = 4; 140 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 141 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 142 143 /* 144 * Maximum order of pages to be used for the shared ring between front and 145 * backend, 4KB page granularity is used. 146 */ 147 static unsigned int xen_blkif_max_ring_order; 148 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 149 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 150 151 #define BLK_RING_SIZE(info) \ 152 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 153 154 /* 155 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 156 * characters are enough. Define to 20 to keep consistent with backend. 157 */ 158 #define RINGREF_NAME_LEN (20) 159 /* 160 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 161 */ 162 #define QUEUE_NAME_LEN (17) 163 164 /* 165 * Per-ring info. 166 * Every blkfront device can associate with one or more blkfront_ring_info, 167 * depending on how many hardware queues/rings to be used. 168 */ 169 struct blkfront_ring_info { 170 /* Lock to protect data in every ring buffer. */ 171 spinlock_t ring_lock; 172 struct blkif_front_ring ring; 173 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 174 unsigned int evtchn, irq; 175 struct work_struct work; 176 struct gnttab_free_callback callback; 177 struct list_head indirect_pages; 178 struct list_head grants; 179 unsigned int persistent_gnts_c; 180 unsigned long shadow_free; 181 struct blkfront_info *dev_info; 182 struct blk_shadow shadow[]; 183 }; 184 185 /* 186 * We have one of these per vbd, whether ide, scsi or 'other'. They 187 * hang in private_data off the gendisk structure. We may end up 188 * putting all kinds of interesting stuff here :-) 189 */ 190 struct blkfront_info 191 { 192 struct mutex mutex; 193 struct xenbus_device *xbdev; 194 struct gendisk *gd; 195 u16 sector_size; 196 unsigned int physical_sector_size; 197 int vdevice; 198 blkif_vdev_t handle; 199 enum blkif_state connected; 200 /* Number of pages per ring buffer. */ 201 unsigned int nr_ring_pages; 202 struct request_queue *rq; 203 unsigned int feature_flush:1; 204 unsigned int feature_fua:1; 205 unsigned int feature_discard:1; 206 unsigned int feature_secdiscard:1; 207 unsigned int feature_persistent:1; 208 unsigned int discard_granularity; 209 unsigned int discard_alignment; 210 /* Number of 4KB segments handled */ 211 unsigned int max_indirect_segments; 212 int is_ready; 213 struct blk_mq_tag_set tag_set; 214 struct blkfront_ring_info *rinfo; 215 unsigned int nr_rings; 216 unsigned int rinfo_size; 217 /* Save uncomplete reqs and bios for migration. */ 218 struct list_head requests; 219 struct bio_list bio_list; 220 struct list_head info_list; 221 }; 222 223 static unsigned int nr_minors; 224 static unsigned long *minors; 225 static DEFINE_SPINLOCK(minor_lock); 226 227 #define GRANT_INVALID_REF 0 228 229 #define PARTS_PER_DISK 16 230 #define PARTS_PER_EXT_DISK 256 231 232 #define BLKIF_MAJOR(dev) ((dev)>>8) 233 #define BLKIF_MINOR(dev) ((dev) & 0xff) 234 235 #define EXT_SHIFT 28 236 #define EXTENDED (1<<EXT_SHIFT) 237 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 238 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 239 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 240 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 241 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 242 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 243 244 #define DEV_NAME "xvd" /* name in /dev */ 245 246 /* 247 * Grants are always the same size as a Xen page (i.e 4KB). 248 * A physical segment is always the same size as a Linux page. 249 * Number of grants per physical segment 250 */ 251 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 252 253 #define GRANTS_PER_INDIRECT_FRAME \ 254 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 255 256 #define INDIRECT_GREFS(_grants) \ 257 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 258 259 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 260 static void blkfront_gather_backend_features(struct blkfront_info *info); 261 static int negotiate_mq(struct blkfront_info *info); 262 263 #define for_each_rinfo(info, ptr, idx) \ 264 for ((ptr) = (info)->rinfo, (idx) = 0; \ 265 (idx) < (info)->nr_rings; \ 266 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 267 268 static inline struct blkfront_ring_info * 269 get_rinfo(const struct blkfront_info *info, unsigned int i) 270 { 271 BUG_ON(i >= info->nr_rings); 272 return (void *)info->rinfo + i * info->rinfo_size; 273 } 274 275 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 276 { 277 unsigned long free = rinfo->shadow_free; 278 279 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 280 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 281 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 282 return free; 283 } 284 285 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 286 unsigned long id) 287 { 288 if (rinfo->shadow[id].req.u.rw.id != id) 289 return -EINVAL; 290 if (rinfo->shadow[id].request == NULL) 291 return -EINVAL; 292 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 293 rinfo->shadow[id].request = NULL; 294 rinfo->shadow_free = id; 295 return 0; 296 } 297 298 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 299 { 300 struct blkfront_info *info = rinfo->dev_info; 301 struct page *granted_page; 302 struct grant *gnt_list_entry, *n; 303 int i = 0; 304 305 while (i < num) { 306 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 307 if (!gnt_list_entry) 308 goto out_of_memory; 309 310 if (info->feature_persistent) { 311 granted_page = alloc_page(GFP_NOIO); 312 if (!granted_page) { 313 kfree(gnt_list_entry); 314 goto out_of_memory; 315 } 316 gnt_list_entry->page = granted_page; 317 } 318 319 gnt_list_entry->gref = GRANT_INVALID_REF; 320 list_add(&gnt_list_entry->node, &rinfo->grants); 321 i++; 322 } 323 324 return 0; 325 326 out_of_memory: 327 list_for_each_entry_safe(gnt_list_entry, n, 328 &rinfo->grants, node) { 329 list_del(&gnt_list_entry->node); 330 if (info->feature_persistent) 331 __free_page(gnt_list_entry->page); 332 kfree(gnt_list_entry); 333 i--; 334 } 335 BUG_ON(i != 0); 336 return -ENOMEM; 337 } 338 339 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 340 { 341 struct grant *gnt_list_entry; 342 343 BUG_ON(list_empty(&rinfo->grants)); 344 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 345 node); 346 list_del(&gnt_list_entry->node); 347 348 if (gnt_list_entry->gref != GRANT_INVALID_REF) 349 rinfo->persistent_gnts_c--; 350 351 return gnt_list_entry; 352 } 353 354 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 355 const struct blkfront_info *info) 356 { 357 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 358 info->xbdev->otherend_id, 359 gnt_list_entry->page, 360 0); 361 } 362 363 static struct grant *get_grant(grant_ref_t *gref_head, 364 unsigned long gfn, 365 struct blkfront_ring_info *rinfo) 366 { 367 struct grant *gnt_list_entry = get_free_grant(rinfo); 368 struct blkfront_info *info = rinfo->dev_info; 369 370 if (gnt_list_entry->gref != GRANT_INVALID_REF) 371 return gnt_list_entry; 372 373 /* Assign a gref to this page */ 374 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 375 BUG_ON(gnt_list_entry->gref == -ENOSPC); 376 if (info->feature_persistent) 377 grant_foreign_access(gnt_list_entry, info); 378 else { 379 /* Grant access to the GFN passed by the caller */ 380 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 381 info->xbdev->otherend_id, 382 gfn, 0); 383 } 384 385 return gnt_list_entry; 386 } 387 388 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 389 struct blkfront_ring_info *rinfo) 390 { 391 struct grant *gnt_list_entry = get_free_grant(rinfo); 392 struct blkfront_info *info = rinfo->dev_info; 393 394 if (gnt_list_entry->gref != GRANT_INVALID_REF) 395 return gnt_list_entry; 396 397 /* Assign a gref to this page */ 398 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 399 BUG_ON(gnt_list_entry->gref == -ENOSPC); 400 if (!info->feature_persistent) { 401 struct page *indirect_page; 402 403 /* Fetch a pre-allocated page to use for indirect grefs */ 404 BUG_ON(list_empty(&rinfo->indirect_pages)); 405 indirect_page = list_first_entry(&rinfo->indirect_pages, 406 struct page, lru); 407 list_del(&indirect_page->lru); 408 gnt_list_entry->page = indirect_page; 409 } 410 grant_foreign_access(gnt_list_entry, info); 411 412 return gnt_list_entry; 413 } 414 415 static const char *op_name(int op) 416 { 417 static const char *const names[] = { 418 [BLKIF_OP_READ] = "read", 419 [BLKIF_OP_WRITE] = "write", 420 [BLKIF_OP_WRITE_BARRIER] = "barrier", 421 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 422 [BLKIF_OP_DISCARD] = "discard" }; 423 424 if (op < 0 || op >= ARRAY_SIZE(names)) 425 return "unknown"; 426 427 if (!names[op]) 428 return "reserved"; 429 430 return names[op]; 431 } 432 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 433 { 434 unsigned int end = minor + nr; 435 int rc; 436 437 if (end > nr_minors) { 438 unsigned long *bitmap, *old; 439 440 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 441 GFP_KERNEL); 442 if (bitmap == NULL) 443 return -ENOMEM; 444 445 spin_lock(&minor_lock); 446 if (end > nr_minors) { 447 old = minors; 448 memcpy(bitmap, minors, 449 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 450 minors = bitmap; 451 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 452 } else 453 old = bitmap; 454 spin_unlock(&minor_lock); 455 kfree(old); 456 } 457 458 spin_lock(&minor_lock); 459 if (find_next_bit(minors, end, minor) >= end) { 460 bitmap_set(minors, minor, nr); 461 rc = 0; 462 } else 463 rc = -EBUSY; 464 spin_unlock(&minor_lock); 465 466 return rc; 467 } 468 469 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 470 { 471 unsigned int end = minor + nr; 472 473 BUG_ON(end > nr_minors); 474 spin_lock(&minor_lock); 475 bitmap_clear(minors, minor, nr); 476 spin_unlock(&minor_lock); 477 } 478 479 static void blkif_restart_queue_callback(void *arg) 480 { 481 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 482 schedule_work(&rinfo->work); 483 } 484 485 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 486 { 487 /* We don't have real geometry info, but let's at least return 488 values consistent with the size of the device */ 489 sector_t nsect = get_capacity(bd->bd_disk); 490 sector_t cylinders = nsect; 491 492 hg->heads = 0xff; 493 hg->sectors = 0x3f; 494 sector_div(cylinders, hg->heads * hg->sectors); 495 hg->cylinders = cylinders; 496 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 497 hg->cylinders = 0xffff; 498 return 0; 499 } 500 501 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 502 unsigned command, unsigned long argument) 503 { 504 struct blkfront_info *info = bdev->bd_disk->private_data; 505 int i; 506 507 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 508 command, (long)argument); 509 510 switch (command) { 511 case CDROMMULTISESSION: 512 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 513 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 514 if (put_user(0, (char __user *)(argument + i))) 515 return -EFAULT; 516 return 0; 517 518 case CDROM_GET_CAPABILITY: { 519 struct gendisk *gd = info->gd; 520 if (gd->flags & GENHD_FL_CD) 521 return 0; 522 return -EINVAL; 523 } 524 525 default: 526 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 527 command);*/ 528 return -EINVAL; /* same return as native Linux */ 529 } 530 531 return 0; 532 } 533 534 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 535 struct request *req, 536 struct blkif_request **ring_req) 537 { 538 unsigned long id; 539 540 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 541 rinfo->ring.req_prod_pvt++; 542 543 id = get_id_from_freelist(rinfo); 544 rinfo->shadow[id].request = req; 545 rinfo->shadow[id].status = REQ_WAITING; 546 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 547 548 (*ring_req)->u.rw.id = id; 549 550 return id; 551 } 552 553 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 554 { 555 struct blkfront_info *info = rinfo->dev_info; 556 struct blkif_request *ring_req; 557 unsigned long id; 558 559 /* Fill out a communications ring structure. */ 560 id = blkif_ring_get_request(rinfo, req, &ring_req); 561 562 ring_req->operation = BLKIF_OP_DISCARD; 563 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 564 ring_req->u.discard.id = id; 565 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 566 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 567 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 568 else 569 ring_req->u.discard.flag = 0; 570 571 /* Keep a private copy so we can reissue requests when recovering. */ 572 rinfo->shadow[id].req = *ring_req; 573 574 return 0; 575 } 576 577 struct setup_rw_req { 578 unsigned int grant_idx; 579 struct blkif_request_segment *segments; 580 struct blkfront_ring_info *rinfo; 581 struct blkif_request *ring_req; 582 grant_ref_t gref_head; 583 unsigned int id; 584 /* Only used when persistent grant is used and it's a read request */ 585 bool need_copy; 586 unsigned int bvec_off; 587 char *bvec_data; 588 589 bool require_extra_req; 590 struct blkif_request *extra_ring_req; 591 }; 592 593 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 594 unsigned int len, void *data) 595 { 596 struct setup_rw_req *setup = data; 597 int n, ref; 598 struct grant *gnt_list_entry; 599 unsigned int fsect, lsect; 600 /* Convenient aliases */ 601 unsigned int grant_idx = setup->grant_idx; 602 struct blkif_request *ring_req = setup->ring_req; 603 struct blkfront_ring_info *rinfo = setup->rinfo; 604 /* 605 * We always use the shadow of the first request to store the list 606 * of grant associated to the block I/O request. This made the 607 * completion more easy to handle even if the block I/O request is 608 * split. 609 */ 610 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 611 612 if (unlikely(setup->require_extra_req && 613 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 614 /* 615 * We are using the second request, setup grant_idx 616 * to be the index of the segment array. 617 */ 618 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 619 ring_req = setup->extra_ring_req; 620 } 621 622 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 623 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 624 if (setup->segments) 625 kunmap_atomic(setup->segments); 626 627 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 628 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 629 shadow->indirect_grants[n] = gnt_list_entry; 630 setup->segments = kmap_atomic(gnt_list_entry->page); 631 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 632 } 633 634 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 635 ref = gnt_list_entry->gref; 636 /* 637 * All the grants are stored in the shadow of the first 638 * request. Therefore we have to use the global index. 639 */ 640 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 641 642 if (setup->need_copy) { 643 void *shared_data; 644 645 shared_data = kmap_atomic(gnt_list_entry->page); 646 /* 647 * this does not wipe data stored outside the 648 * range sg->offset..sg->offset+sg->length. 649 * Therefore, blkback *could* see data from 650 * previous requests. This is OK as long as 651 * persistent grants are shared with just one 652 * domain. It may need refactoring if this 653 * changes 654 */ 655 memcpy(shared_data + offset, 656 setup->bvec_data + setup->bvec_off, 657 len); 658 659 kunmap_atomic(shared_data); 660 setup->bvec_off += len; 661 } 662 663 fsect = offset >> 9; 664 lsect = fsect + (len >> 9) - 1; 665 if (ring_req->operation != BLKIF_OP_INDIRECT) { 666 ring_req->u.rw.seg[grant_idx] = 667 (struct blkif_request_segment) { 668 .gref = ref, 669 .first_sect = fsect, 670 .last_sect = lsect }; 671 } else { 672 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 673 (struct blkif_request_segment) { 674 .gref = ref, 675 .first_sect = fsect, 676 .last_sect = lsect }; 677 } 678 679 (setup->grant_idx)++; 680 } 681 682 static void blkif_setup_extra_req(struct blkif_request *first, 683 struct blkif_request *second) 684 { 685 uint16_t nr_segments = first->u.rw.nr_segments; 686 687 /* 688 * The second request is only present when the first request uses 689 * all its segments. It's always the continuity of the first one. 690 */ 691 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 692 693 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 694 second->u.rw.sector_number = first->u.rw.sector_number + 695 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 696 697 second->u.rw.handle = first->u.rw.handle; 698 second->operation = first->operation; 699 } 700 701 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 702 { 703 struct blkfront_info *info = rinfo->dev_info; 704 struct blkif_request *ring_req, *extra_ring_req = NULL; 705 unsigned long id, extra_id = NO_ASSOCIATED_ID; 706 bool require_extra_req = false; 707 int i; 708 struct setup_rw_req setup = { 709 .grant_idx = 0, 710 .segments = NULL, 711 .rinfo = rinfo, 712 .need_copy = rq_data_dir(req) && info->feature_persistent, 713 }; 714 715 /* 716 * Used to store if we are able to queue the request by just using 717 * existing persistent grants, or if we have to get new grants, 718 * as there are not sufficiently many free. 719 */ 720 bool new_persistent_gnts = false; 721 struct scatterlist *sg; 722 int num_sg, max_grefs, num_grant; 723 724 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 725 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 726 /* 727 * If we are using indirect segments we need to account 728 * for the indirect grefs used in the request. 729 */ 730 max_grefs += INDIRECT_GREFS(max_grefs); 731 732 /* Check if we have enough persistent grants to allocate a requests */ 733 if (rinfo->persistent_gnts_c < max_grefs) { 734 new_persistent_gnts = true; 735 736 if (gnttab_alloc_grant_references( 737 max_grefs - rinfo->persistent_gnts_c, 738 &setup.gref_head) < 0) { 739 gnttab_request_free_callback( 740 &rinfo->callback, 741 blkif_restart_queue_callback, 742 rinfo, 743 max_grefs - rinfo->persistent_gnts_c); 744 return 1; 745 } 746 } 747 748 /* Fill out a communications ring structure. */ 749 id = blkif_ring_get_request(rinfo, req, &ring_req); 750 751 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 752 num_grant = 0; 753 /* Calculate the number of grant used */ 754 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 755 num_grant += gnttab_count_grant(sg->offset, sg->length); 756 757 require_extra_req = info->max_indirect_segments == 0 && 758 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 759 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 760 761 rinfo->shadow[id].num_sg = num_sg; 762 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 763 likely(!require_extra_req)) { 764 /* 765 * The indirect operation can only be a BLKIF_OP_READ or 766 * BLKIF_OP_WRITE 767 */ 768 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 769 ring_req->operation = BLKIF_OP_INDIRECT; 770 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 771 BLKIF_OP_WRITE : BLKIF_OP_READ; 772 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 773 ring_req->u.indirect.handle = info->handle; 774 ring_req->u.indirect.nr_segments = num_grant; 775 } else { 776 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 777 ring_req->u.rw.handle = info->handle; 778 ring_req->operation = rq_data_dir(req) ? 779 BLKIF_OP_WRITE : BLKIF_OP_READ; 780 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 781 /* 782 * Ideally we can do an unordered flush-to-disk. 783 * In case the backend onlysupports barriers, use that. 784 * A barrier request a superset of FUA, so we can 785 * implement it the same way. (It's also a FLUSH+FUA, 786 * since it is guaranteed ordered WRT previous writes.) 787 */ 788 if (info->feature_flush && info->feature_fua) 789 ring_req->operation = 790 BLKIF_OP_WRITE_BARRIER; 791 else if (info->feature_flush) 792 ring_req->operation = 793 BLKIF_OP_FLUSH_DISKCACHE; 794 else 795 ring_req->operation = 0; 796 } 797 ring_req->u.rw.nr_segments = num_grant; 798 if (unlikely(require_extra_req)) { 799 extra_id = blkif_ring_get_request(rinfo, req, 800 &extra_ring_req); 801 /* 802 * Only the first request contains the scatter-gather 803 * list. 804 */ 805 rinfo->shadow[extra_id].num_sg = 0; 806 807 blkif_setup_extra_req(ring_req, extra_ring_req); 808 809 /* Link the 2 requests together */ 810 rinfo->shadow[extra_id].associated_id = id; 811 rinfo->shadow[id].associated_id = extra_id; 812 } 813 } 814 815 setup.ring_req = ring_req; 816 setup.id = id; 817 818 setup.require_extra_req = require_extra_req; 819 if (unlikely(require_extra_req)) 820 setup.extra_ring_req = extra_ring_req; 821 822 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 823 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 824 825 if (setup.need_copy) { 826 setup.bvec_off = sg->offset; 827 setup.bvec_data = kmap_atomic(sg_page(sg)); 828 } 829 830 gnttab_foreach_grant_in_range(sg_page(sg), 831 sg->offset, 832 sg->length, 833 blkif_setup_rw_req_grant, 834 &setup); 835 836 if (setup.need_copy) 837 kunmap_atomic(setup.bvec_data); 838 } 839 if (setup.segments) 840 kunmap_atomic(setup.segments); 841 842 /* Keep a private copy so we can reissue requests when recovering. */ 843 rinfo->shadow[id].req = *ring_req; 844 if (unlikely(require_extra_req)) 845 rinfo->shadow[extra_id].req = *extra_ring_req; 846 847 if (new_persistent_gnts) 848 gnttab_free_grant_references(setup.gref_head); 849 850 return 0; 851 } 852 853 /* 854 * Generate a Xen blkfront IO request from a blk layer request. Reads 855 * and writes are handled as expected. 856 * 857 * @req: a request struct 858 */ 859 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 860 { 861 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 862 return 1; 863 864 if (unlikely(req_op(req) == REQ_OP_DISCARD || 865 req_op(req) == REQ_OP_SECURE_ERASE)) 866 return blkif_queue_discard_req(req, rinfo); 867 else 868 return blkif_queue_rw_req(req, rinfo); 869 } 870 871 static inline void flush_requests(struct blkfront_ring_info *rinfo) 872 { 873 int notify; 874 875 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 876 877 if (notify) 878 notify_remote_via_irq(rinfo->irq); 879 } 880 881 static inline bool blkif_request_flush_invalid(struct request *req, 882 struct blkfront_info *info) 883 { 884 return (blk_rq_is_passthrough(req) || 885 ((req_op(req) == REQ_OP_FLUSH) && 886 !info->feature_flush) || 887 ((req->cmd_flags & REQ_FUA) && 888 !info->feature_fua)); 889 } 890 891 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 892 const struct blk_mq_queue_data *qd) 893 { 894 unsigned long flags; 895 int qid = hctx->queue_num; 896 struct blkfront_info *info = hctx->queue->queuedata; 897 struct blkfront_ring_info *rinfo = NULL; 898 899 rinfo = get_rinfo(info, qid); 900 blk_mq_start_request(qd->rq); 901 spin_lock_irqsave(&rinfo->ring_lock, flags); 902 if (RING_FULL(&rinfo->ring)) 903 goto out_busy; 904 905 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 906 goto out_err; 907 908 if (blkif_queue_request(qd->rq, rinfo)) 909 goto out_busy; 910 911 flush_requests(rinfo); 912 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 913 return BLK_STS_OK; 914 915 out_err: 916 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 917 return BLK_STS_IOERR; 918 919 out_busy: 920 blk_mq_stop_hw_queue(hctx); 921 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 922 return BLK_STS_DEV_RESOURCE; 923 } 924 925 static void blkif_complete_rq(struct request *rq) 926 { 927 blk_mq_end_request(rq, blkif_req(rq)->error); 928 } 929 930 static const struct blk_mq_ops blkfront_mq_ops = { 931 .queue_rq = blkif_queue_rq, 932 .complete = blkif_complete_rq, 933 }; 934 935 static void blkif_set_queue_limits(struct blkfront_info *info) 936 { 937 struct request_queue *rq = info->rq; 938 struct gendisk *gd = info->gd; 939 unsigned int segments = info->max_indirect_segments ? : 940 BLKIF_MAX_SEGMENTS_PER_REQUEST; 941 942 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 943 944 if (info->feature_discard) { 945 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 946 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 947 rq->limits.discard_granularity = info->discard_granularity; 948 rq->limits.discard_alignment = info->discard_alignment; 949 if (info->feature_secdiscard) 950 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 951 } 952 953 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 954 blk_queue_logical_block_size(rq, info->sector_size); 955 blk_queue_physical_block_size(rq, info->physical_sector_size); 956 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 957 958 /* Each segment in a request is up to an aligned page in size. */ 959 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 960 blk_queue_max_segment_size(rq, PAGE_SIZE); 961 962 /* Ensure a merged request will fit in a single I/O ring slot. */ 963 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 964 965 /* Make sure buffer addresses are sector-aligned. */ 966 blk_queue_dma_alignment(rq, 511); 967 } 968 969 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 970 unsigned int physical_sector_size) 971 { 972 struct request_queue *rq; 973 struct blkfront_info *info = gd->private_data; 974 975 memset(&info->tag_set, 0, sizeof(info->tag_set)); 976 info->tag_set.ops = &blkfront_mq_ops; 977 info->tag_set.nr_hw_queues = info->nr_rings; 978 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 979 /* 980 * When indirect descriptior is not supported, the I/O request 981 * will be split between multiple request in the ring. 982 * To avoid problems when sending the request, divide by 983 * 2 the depth of the queue. 984 */ 985 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 986 } else 987 info->tag_set.queue_depth = BLK_RING_SIZE(info); 988 info->tag_set.numa_node = NUMA_NO_NODE; 989 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 990 info->tag_set.cmd_size = sizeof(struct blkif_req); 991 info->tag_set.driver_data = info; 992 993 if (blk_mq_alloc_tag_set(&info->tag_set)) 994 return -EINVAL; 995 rq = blk_mq_init_queue(&info->tag_set); 996 if (IS_ERR(rq)) { 997 blk_mq_free_tag_set(&info->tag_set); 998 return PTR_ERR(rq); 999 } 1000 1001 rq->queuedata = info; 1002 info->rq = gd->queue = rq; 1003 info->gd = gd; 1004 info->sector_size = sector_size; 1005 info->physical_sector_size = physical_sector_size; 1006 blkif_set_queue_limits(info); 1007 1008 return 0; 1009 } 1010 1011 static const char *flush_info(struct blkfront_info *info) 1012 { 1013 if (info->feature_flush && info->feature_fua) 1014 return "barrier: enabled;"; 1015 else if (info->feature_flush) 1016 return "flush diskcache: enabled;"; 1017 else 1018 return "barrier or flush: disabled;"; 1019 } 1020 1021 static void xlvbd_flush(struct blkfront_info *info) 1022 { 1023 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 1024 info->feature_fua ? true : false); 1025 pr_info("blkfront: %s: %s %s %s %s %s\n", 1026 info->gd->disk_name, flush_info(info), 1027 "persistent grants:", info->feature_persistent ? 1028 "enabled;" : "disabled;", "indirect descriptors:", 1029 info->max_indirect_segments ? "enabled;" : "disabled;"); 1030 } 1031 1032 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1033 { 1034 int major; 1035 major = BLKIF_MAJOR(vdevice); 1036 *minor = BLKIF_MINOR(vdevice); 1037 switch (major) { 1038 case XEN_IDE0_MAJOR: 1039 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1040 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1041 EMULATED_HD_DISK_MINOR_OFFSET; 1042 break; 1043 case XEN_IDE1_MAJOR: 1044 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1045 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1046 EMULATED_HD_DISK_MINOR_OFFSET; 1047 break; 1048 case XEN_SCSI_DISK0_MAJOR: 1049 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1050 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1051 break; 1052 case XEN_SCSI_DISK1_MAJOR: 1053 case XEN_SCSI_DISK2_MAJOR: 1054 case XEN_SCSI_DISK3_MAJOR: 1055 case XEN_SCSI_DISK4_MAJOR: 1056 case XEN_SCSI_DISK5_MAJOR: 1057 case XEN_SCSI_DISK6_MAJOR: 1058 case XEN_SCSI_DISK7_MAJOR: 1059 *offset = (*minor / PARTS_PER_DISK) + 1060 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1061 EMULATED_SD_DISK_NAME_OFFSET; 1062 *minor = *minor + 1063 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1064 EMULATED_SD_DISK_MINOR_OFFSET; 1065 break; 1066 case XEN_SCSI_DISK8_MAJOR: 1067 case XEN_SCSI_DISK9_MAJOR: 1068 case XEN_SCSI_DISK10_MAJOR: 1069 case XEN_SCSI_DISK11_MAJOR: 1070 case XEN_SCSI_DISK12_MAJOR: 1071 case XEN_SCSI_DISK13_MAJOR: 1072 case XEN_SCSI_DISK14_MAJOR: 1073 case XEN_SCSI_DISK15_MAJOR: 1074 *offset = (*minor / PARTS_PER_DISK) + 1075 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1076 EMULATED_SD_DISK_NAME_OFFSET; 1077 *minor = *minor + 1078 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1079 EMULATED_SD_DISK_MINOR_OFFSET; 1080 break; 1081 case XENVBD_MAJOR: 1082 *offset = *minor / PARTS_PER_DISK; 1083 break; 1084 default: 1085 printk(KERN_WARNING "blkfront: your disk configuration is " 1086 "incorrect, please use an xvd device instead\n"); 1087 return -ENODEV; 1088 } 1089 return 0; 1090 } 1091 1092 static char *encode_disk_name(char *ptr, unsigned int n) 1093 { 1094 if (n >= 26) 1095 ptr = encode_disk_name(ptr, n / 26 - 1); 1096 *ptr = 'a' + n % 26; 1097 return ptr + 1; 1098 } 1099 1100 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1101 struct blkfront_info *info, 1102 u16 vdisk_info, u16 sector_size, 1103 unsigned int physical_sector_size) 1104 { 1105 struct gendisk *gd; 1106 int nr_minors = 1; 1107 int err; 1108 unsigned int offset; 1109 int minor; 1110 int nr_parts; 1111 char *ptr; 1112 1113 BUG_ON(info->gd != NULL); 1114 BUG_ON(info->rq != NULL); 1115 1116 if ((info->vdevice>>EXT_SHIFT) > 1) { 1117 /* this is above the extended range; something is wrong */ 1118 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1119 return -ENODEV; 1120 } 1121 1122 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1123 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1124 if (err) 1125 return err; 1126 nr_parts = PARTS_PER_DISK; 1127 } else { 1128 minor = BLKIF_MINOR_EXT(info->vdevice); 1129 nr_parts = PARTS_PER_EXT_DISK; 1130 offset = minor / nr_parts; 1131 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1132 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1133 "emulated IDE disks,\n\t choose an xvd device name" 1134 "from xvde on\n", info->vdevice); 1135 } 1136 if (minor >> MINORBITS) { 1137 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1138 info->vdevice, minor); 1139 return -ENODEV; 1140 } 1141 1142 if ((minor % nr_parts) == 0) 1143 nr_minors = nr_parts; 1144 1145 err = xlbd_reserve_minors(minor, nr_minors); 1146 if (err) 1147 goto out; 1148 err = -ENODEV; 1149 1150 gd = alloc_disk(nr_minors); 1151 if (gd == NULL) 1152 goto release; 1153 1154 strcpy(gd->disk_name, DEV_NAME); 1155 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1156 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1157 if (nr_minors > 1) 1158 *ptr = 0; 1159 else 1160 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1161 "%d", minor & (nr_parts - 1)); 1162 1163 gd->major = XENVBD_MAJOR; 1164 gd->first_minor = minor; 1165 gd->fops = &xlvbd_block_fops; 1166 gd->private_data = info; 1167 set_capacity(gd, capacity); 1168 1169 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) { 1170 del_gendisk(gd); 1171 goto release; 1172 } 1173 1174 xlvbd_flush(info); 1175 1176 if (vdisk_info & VDISK_READONLY) 1177 set_disk_ro(gd, 1); 1178 1179 if (vdisk_info & VDISK_REMOVABLE) 1180 gd->flags |= GENHD_FL_REMOVABLE; 1181 1182 if (vdisk_info & VDISK_CDROM) 1183 gd->flags |= GENHD_FL_CD; 1184 1185 return 0; 1186 1187 release: 1188 xlbd_release_minors(minor, nr_minors); 1189 out: 1190 return err; 1191 } 1192 1193 static void xlvbd_release_gendisk(struct blkfront_info *info) 1194 { 1195 unsigned int minor, nr_minors, i; 1196 struct blkfront_ring_info *rinfo; 1197 1198 if (info->rq == NULL) 1199 return; 1200 1201 /* No more blkif_request(). */ 1202 blk_mq_stop_hw_queues(info->rq); 1203 1204 for_each_rinfo(info, rinfo, i) { 1205 /* No more gnttab callback work. */ 1206 gnttab_cancel_free_callback(&rinfo->callback); 1207 1208 /* Flush gnttab callback work. Must be done with no locks held. */ 1209 flush_work(&rinfo->work); 1210 } 1211 1212 del_gendisk(info->gd); 1213 1214 minor = info->gd->first_minor; 1215 nr_minors = info->gd->minors; 1216 xlbd_release_minors(minor, nr_minors); 1217 1218 blk_cleanup_queue(info->rq); 1219 blk_mq_free_tag_set(&info->tag_set); 1220 info->rq = NULL; 1221 1222 put_disk(info->gd); 1223 info->gd = NULL; 1224 } 1225 1226 /* Already hold rinfo->ring_lock. */ 1227 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1228 { 1229 if (!RING_FULL(&rinfo->ring)) 1230 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1231 } 1232 1233 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1234 { 1235 unsigned long flags; 1236 1237 spin_lock_irqsave(&rinfo->ring_lock, flags); 1238 kick_pending_request_queues_locked(rinfo); 1239 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1240 } 1241 1242 static void blkif_restart_queue(struct work_struct *work) 1243 { 1244 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1245 1246 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1247 kick_pending_request_queues(rinfo); 1248 } 1249 1250 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1251 { 1252 struct grant *persistent_gnt, *n; 1253 struct blkfront_info *info = rinfo->dev_info; 1254 int i, j, segs; 1255 1256 /* 1257 * Remove indirect pages, this only happens when using indirect 1258 * descriptors but not persistent grants 1259 */ 1260 if (!list_empty(&rinfo->indirect_pages)) { 1261 struct page *indirect_page, *n; 1262 1263 BUG_ON(info->feature_persistent); 1264 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1265 list_del(&indirect_page->lru); 1266 __free_page(indirect_page); 1267 } 1268 } 1269 1270 /* Remove all persistent grants. */ 1271 if (!list_empty(&rinfo->grants)) { 1272 list_for_each_entry_safe(persistent_gnt, n, 1273 &rinfo->grants, node) { 1274 list_del(&persistent_gnt->node); 1275 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1276 gnttab_end_foreign_access(persistent_gnt->gref, 1277 0, 0UL); 1278 rinfo->persistent_gnts_c--; 1279 } 1280 if (info->feature_persistent) 1281 __free_page(persistent_gnt->page); 1282 kfree(persistent_gnt); 1283 } 1284 } 1285 BUG_ON(rinfo->persistent_gnts_c != 0); 1286 1287 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1288 /* 1289 * Clear persistent grants present in requests already 1290 * on the shared ring 1291 */ 1292 if (!rinfo->shadow[i].request) 1293 goto free_shadow; 1294 1295 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1296 rinfo->shadow[i].req.u.indirect.nr_segments : 1297 rinfo->shadow[i].req.u.rw.nr_segments; 1298 for (j = 0; j < segs; j++) { 1299 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1300 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1301 if (info->feature_persistent) 1302 __free_page(persistent_gnt->page); 1303 kfree(persistent_gnt); 1304 } 1305 1306 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1307 /* 1308 * If this is not an indirect operation don't try to 1309 * free indirect segments 1310 */ 1311 goto free_shadow; 1312 1313 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1314 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1315 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1316 __free_page(persistent_gnt->page); 1317 kfree(persistent_gnt); 1318 } 1319 1320 free_shadow: 1321 kvfree(rinfo->shadow[i].grants_used); 1322 rinfo->shadow[i].grants_used = NULL; 1323 kvfree(rinfo->shadow[i].indirect_grants); 1324 rinfo->shadow[i].indirect_grants = NULL; 1325 kvfree(rinfo->shadow[i].sg); 1326 rinfo->shadow[i].sg = NULL; 1327 } 1328 1329 /* No more gnttab callback work. */ 1330 gnttab_cancel_free_callback(&rinfo->callback); 1331 1332 /* Flush gnttab callback work. Must be done with no locks held. */ 1333 flush_work(&rinfo->work); 1334 1335 /* Free resources associated with old device channel. */ 1336 for (i = 0; i < info->nr_ring_pages; i++) { 1337 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1338 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1339 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1340 } 1341 } 1342 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1343 rinfo->ring.sring = NULL; 1344 1345 if (rinfo->irq) 1346 unbind_from_irqhandler(rinfo->irq, rinfo); 1347 rinfo->evtchn = rinfo->irq = 0; 1348 } 1349 1350 static void blkif_free(struct blkfront_info *info, int suspend) 1351 { 1352 unsigned int i; 1353 struct blkfront_ring_info *rinfo; 1354 1355 /* Prevent new requests being issued until we fix things up. */ 1356 info->connected = suspend ? 1357 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1358 /* No more blkif_request(). */ 1359 if (info->rq) 1360 blk_mq_stop_hw_queues(info->rq); 1361 1362 for_each_rinfo(info, rinfo, i) 1363 blkif_free_ring(rinfo); 1364 1365 kvfree(info->rinfo); 1366 info->rinfo = NULL; 1367 info->nr_rings = 0; 1368 } 1369 1370 struct copy_from_grant { 1371 const struct blk_shadow *s; 1372 unsigned int grant_idx; 1373 unsigned int bvec_offset; 1374 char *bvec_data; 1375 }; 1376 1377 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1378 unsigned int len, void *data) 1379 { 1380 struct copy_from_grant *info = data; 1381 char *shared_data; 1382 /* Convenient aliases */ 1383 const struct blk_shadow *s = info->s; 1384 1385 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1386 1387 memcpy(info->bvec_data + info->bvec_offset, 1388 shared_data + offset, len); 1389 1390 info->bvec_offset += len; 1391 info->grant_idx++; 1392 1393 kunmap_atomic(shared_data); 1394 } 1395 1396 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1397 { 1398 switch (rsp) 1399 { 1400 case BLKIF_RSP_OKAY: 1401 return REQ_DONE; 1402 case BLKIF_RSP_EOPNOTSUPP: 1403 return REQ_EOPNOTSUPP; 1404 case BLKIF_RSP_ERROR: 1405 /* Fallthrough. */ 1406 default: 1407 return REQ_ERROR; 1408 } 1409 } 1410 1411 /* 1412 * Get the final status of the block request based on two ring response 1413 */ 1414 static int blkif_get_final_status(enum blk_req_status s1, 1415 enum blk_req_status s2) 1416 { 1417 BUG_ON(s1 == REQ_WAITING); 1418 BUG_ON(s2 == REQ_WAITING); 1419 1420 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1421 return BLKIF_RSP_ERROR; 1422 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1423 return BLKIF_RSP_EOPNOTSUPP; 1424 return BLKIF_RSP_OKAY; 1425 } 1426 1427 static bool blkif_completion(unsigned long *id, 1428 struct blkfront_ring_info *rinfo, 1429 struct blkif_response *bret) 1430 { 1431 int i = 0; 1432 struct scatterlist *sg; 1433 int num_sg, num_grant; 1434 struct blkfront_info *info = rinfo->dev_info; 1435 struct blk_shadow *s = &rinfo->shadow[*id]; 1436 struct copy_from_grant data = { 1437 .grant_idx = 0, 1438 }; 1439 1440 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1441 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1442 1443 /* The I/O request may be split in two. */ 1444 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1445 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1446 1447 /* Keep the status of the current response in shadow. */ 1448 s->status = blkif_rsp_to_req_status(bret->status); 1449 1450 /* Wait the second response if not yet here. */ 1451 if (s2->status == REQ_WAITING) 1452 return false; 1453 1454 bret->status = blkif_get_final_status(s->status, 1455 s2->status); 1456 1457 /* 1458 * All the grants is stored in the first shadow in order 1459 * to make the completion code simpler. 1460 */ 1461 num_grant += s2->req.u.rw.nr_segments; 1462 1463 /* 1464 * The two responses may not come in order. Only the 1465 * first request will store the scatter-gather list. 1466 */ 1467 if (s2->num_sg != 0) { 1468 /* Update "id" with the ID of the first response. */ 1469 *id = s->associated_id; 1470 s = s2; 1471 } 1472 1473 /* 1474 * We don't need anymore the second request, so recycling 1475 * it now. 1476 */ 1477 if (add_id_to_freelist(rinfo, s->associated_id)) 1478 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1479 info->gd->disk_name, s->associated_id); 1480 } 1481 1482 data.s = s; 1483 num_sg = s->num_sg; 1484 1485 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1486 for_each_sg(s->sg, sg, num_sg, i) { 1487 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1488 1489 data.bvec_offset = sg->offset; 1490 data.bvec_data = kmap_atomic(sg_page(sg)); 1491 1492 gnttab_foreach_grant_in_range(sg_page(sg), 1493 sg->offset, 1494 sg->length, 1495 blkif_copy_from_grant, 1496 &data); 1497 1498 kunmap_atomic(data.bvec_data); 1499 } 1500 } 1501 /* Add the persistent grant into the list of free grants */ 1502 for (i = 0; i < num_grant; i++) { 1503 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1504 /* 1505 * If the grant is still mapped by the backend (the 1506 * backend has chosen to make this grant persistent) 1507 * we add it at the head of the list, so it will be 1508 * reused first. 1509 */ 1510 if (!info->feature_persistent) 1511 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1512 s->grants_used[i]->gref); 1513 list_add(&s->grants_used[i]->node, &rinfo->grants); 1514 rinfo->persistent_gnts_c++; 1515 } else { 1516 /* 1517 * If the grant is not mapped by the backend we end the 1518 * foreign access and add it to the tail of the list, 1519 * so it will not be picked again unless we run out of 1520 * persistent grants. 1521 */ 1522 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1523 s->grants_used[i]->gref = GRANT_INVALID_REF; 1524 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1525 } 1526 } 1527 if (s->req.operation == BLKIF_OP_INDIRECT) { 1528 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1529 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1530 if (!info->feature_persistent) 1531 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1532 s->indirect_grants[i]->gref); 1533 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1534 rinfo->persistent_gnts_c++; 1535 } else { 1536 struct page *indirect_page; 1537 1538 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1539 /* 1540 * Add the used indirect page back to the list of 1541 * available pages for indirect grefs. 1542 */ 1543 if (!info->feature_persistent) { 1544 indirect_page = s->indirect_grants[i]->page; 1545 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1546 } 1547 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1548 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1549 } 1550 } 1551 } 1552 1553 return true; 1554 } 1555 1556 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1557 { 1558 struct request *req; 1559 struct blkif_response *bret; 1560 RING_IDX i, rp; 1561 unsigned long flags; 1562 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1563 struct blkfront_info *info = rinfo->dev_info; 1564 1565 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1566 return IRQ_HANDLED; 1567 1568 spin_lock_irqsave(&rinfo->ring_lock, flags); 1569 again: 1570 rp = rinfo->ring.sring->rsp_prod; 1571 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1572 1573 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1574 unsigned long id; 1575 1576 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1577 id = bret->id; 1578 /* 1579 * The backend has messed up and given us an id that we would 1580 * never have given to it (we stamp it up to BLK_RING_SIZE - 1581 * look in get_id_from_freelist. 1582 */ 1583 if (id >= BLK_RING_SIZE(info)) { 1584 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1585 info->gd->disk_name, op_name(bret->operation), id); 1586 /* We can't safely get the 'struct request' as 1587 * the id is busted. */ 1588 continue; 1589 } 1590 req = rinfo->shadow[id].request; 1591 1592 if (bret->operation != BLKIF_OP_DISCARD) { 1593 /* 1594 * We may need to wait for an extra response if the 1595 * I/O request is split in 2 1596 */ 1597 if (!blkif_completion(&id, rinfo, bret)) 1598 continue; 1599 } 1600 1601 if (add_id_to_freelist(rinfo, id)) { 1602 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1603 info->gd->disk_name, op_name(bret->operation), id); 1604 continue; 1605 } 1606 1607 if (bret->status == BLKIF_RSP_OKAY) 1608 blkif_req(req)->error = BLK_STS_OK; 1609 else 1610 blkif_req(req)->error = BLK_STS_IOERR; 1611 1612 switch (bret->operation) { 1613 case BLKIF_OP_DISCARD: 1614 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1615 struct request_queue *rq = info->rq; 1616 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1617 info->gd->disk_name, op_name(bret->operation)); 1618 blkif_req(req)->error = BLK_STS_NOTSUPP; 1619 info->feature_discard = 0; 1620 info->feature_secdiscard = 0; 1621 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1622 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1623 } 1624 break; 1625 case BLKIF_OP_FLUSH_DISKCACHE: 1626 case BLKIF_OP_WRITE_BARRIER: 1627 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1628 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1629 info->gd->disk_name, op_name(bret->operation)); 1630 blkif_req(req)->error = BLK_STS_NOTSUPP; 1631 } 1632 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1633 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1634 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1635 info->gd->disk_name, op_name(bret->operation)); 1636 blkif_req(req)->error = BLK_STS_NOTSUPP; 1637 } 1638 if (unlikely(blkif_req(req)->error)) { 1639 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1640 blkif_req(req)->error = BLK_STS_OK; 1641 info->feature_fua = 0; 1642 info->feature_flush = 0; 1643 xlvbd_flush(info); 1644 } 1645 /* fall through */ 1646 case BLKIF_OP_READ: 1647 case BLKIF_OP_WRITE: 1648 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1649 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1650 "request: %x\n", bret->status); 1651 1652 break; 1653 default: 1654 BUG(); 1655 } 1656 1657 blk_mq_complete_request(req); 1658 } 1659 1660 rinfo->ring.rsp_cons = i; 1661 1662 if (i != rinfo->ring.req_prod_pvt) { 1663 int more_to_do; 1664 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1665 if (more_to_do) 1666 goto again; 1667 } else 1668 rinfo->ring.sring->rsp_event = i + 1; 1669 1670 kick_pending_request_queues_locked(rinfo); 1671 1672 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1673 1674 return IRQ_HANDLED; 1675 } 1676 1677 1678 static int setup_blkring(struct xenbus_device *dev, 1679 struct blkfront_ring_info *rinfo) 1680 { 1681 struct blkif_sring *sring; 1682 int err, i; 1683 struct blkfront_info *info = rinfo->dev_info; 1684 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1685 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1686 1687 for (i = 0; i < info->nr_ring_pages; i++) 1688 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1689 1690 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1691 get_order(ring_size)); 1692 if (!sring) { 1693 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1694 return -ENOMEM; 1695 } 1696 SHARED_RING_INIT(sring); 1697 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1698 1699 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1700 if (err < 0) { 1701 free_pages((unsigned long)sring, get_order(ring_size)); 1702 rinfo->ring.sring = NULL; 1703 goto fail; 1704 } 1705 for (i = 0; i < info->nr_ring_pages; i++) 1706 rinfo->ring_ref[i] = gref[i]; 1707 1708 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1709 if (err) 1710 goto fail; 1711 1712 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1713 "blkif", rinfo); 1714 if (err <= 0) { 1715 xenbus_dev_fatal(dev, err, 1716 "bind_evtchn_to_irqhandler failed"); 1717 goto fail; 1718 } 1719 rinfo->irq = err; 1720 1721 return 0; 1722 fail: 1723 blkif_free(info, 0); 1724 return err; 1725 } 1726 1727 /* 1728 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1729 * ring buffer may have multi pages depending on ->nr_ring_pages. 1730 */ 1731 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1732 struct blkfront_ring_info *rinfo, const char *dir) 1733 { 1734 int err; 1735 unsigned int i; 1736 const char *message = NULL; 1737 struct blkfront_info *info = rinfo->dev_info; 1738 1739 if (info->nr_ring_pages == 1) { 1740 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1741 if (err) { 1742 message = "writing ring-ref"; 1743 goto abort_transaction; 1744 } 1745 } else { 1746 for (i = 0; i < info->nr_ring_pages; i++) { 1747 char ring_ref_name[RINGREF_NAME_LEN]; 1748 1749 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1750 err = xenbus_printf(xbt, dir, ring_ref_name, 1751 "%u", rinfo->ring_ref[i]); 1752 if (err) { 1753 message = "writing ring-ref"; 1754 goto abort_transaction; 1755 } 1756 } 1757 } 1758 1759 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1760 if (err) { 1761 message = "writing event-channel"; 1762 goto abort_transaction; 1763 } 1764 1765 return 0; 1766 1767 abort_transaction: 1768 xenbus_transaction_end(xbt, 1); 1769 if (message) 1770 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1771 1772 return err; 1773 } 1774 1775 static void free_info(struct blkfront_info *info) 1776 { 1777 list_del(&info->info_list); 1778 kfree(info); 1779 } 1780 1781 /* Common code used when first setting up, and when resuming. */ 1782 static int talk_to_blkback(struct xenbus_device *dev, 1783 struct blkfront_info *info) 1784 { 1785 const char *message = NULL; 1786 struct xenbus_transaction xbt; 1787 int err; 1788 unsigned int i, max_page_order; 1789 unsigned int ring_page_order; 1790 struct blkfront_ring_info *rinfo; 1791 1792 if (!info) 1793 return -ENODEV; 1794 1795 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1796 "max-ring-page-order", 0); 1797 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1798 info->nr_ring_pages = 1 << ring_page_order; 1799 1800 err = negotiate_mq(info); 1801 if (err) 1802 goto destroy_blkring; 1803 1804 for_each_rinfo(info, rinfo, i) { 1805 /* Create shared ring, alloc event channel. */ 1806 err = setup_blkring(dev, rinfo); 1807 if (err) 1808 goto destroy_blkring; 1809 } 1810 1811 again: 1812 err = xenbus_transaction_start(&xbt); 1813 if (err) { 1814 xenbus_dev_fatal(dev, err, "starting transaction"); 1815 goto destroy_blkring; 1816 } 1817 1818 if (info->nr_ring_pages > 1) { 1819 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1820 ring_page_order); 1821 if (err) { 1822 message = "writing ring-page-order"; 1823 goto abort_transaction; 1824 } 1825 } 1826 1827 /* We already got the number of queues/rings in _probe */ 1828 if (info->nr_rings == 1) { 1829 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1830 if (err) 1831 goto destroy_blkring; 1832 } else { 1833 char *path; 1834 size_t pathsize; 1835 1836 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1837 info->nr_rings); 1838 if (err) { 1839 message = "writing multi-queue-num-queues"; 1840 goto abort_transaction; 1841 } 1842 1843 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1844 path = kmalloc(pathsize, GFP_KERNEL); 1845 if (!path) { 1846 err = -ENOMEM; 1847 message = "ENOMEM while writing ring references"; 1848 goto abort_transaction; 1849 } 1850 1851 for_each_rinfo(info, rinfo, i) { 1852 memset(path, 0, pathsize); 1853 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1854 err = write_per_ring_nodes(xbt, rinfo, path); 1855 if (err) { 1856 kfree(path); 1857 goto destroy_blkring; 1858 } 1859 } 1860 kfree(path); 1861 } 1862 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1863 XEN_IO_PROTO_ABI_NATIVE); 1864 if (err) { 1865 message = "writing protocol"; 1866 goto abort_transaction; 1867 } 1868 err = xenbus_printf(xbt, dev->nodename, 1869 "feature-persistent", "%u", 1); 1870 if (err) 1871 dev_warn(&dev->dev, 1872 "writing persistent grants feature to xenbus"); 1873 1874 err = xenbus_transaction_end(xbt, 0); 1875 if (err) { 1876 if (err == -EAGAIN) 1877 goto again; 1878 xenbus_dev_fatal(dev, err, "completing transaction"); 1879 goto destroy_blkring; 1880 } 1881 1882 for_each_rinfo(info, rinfo, i) { 1883 unsigned int j; 1884 1885 for (j = 0; j < BLK_RING_SIZE(info); j++) 1886 rinfo->shadow[j].req.u.rw.id = j + 1; 1887 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1888 } 1889 xenbus_switch_state(dev, XenbusStateInitialised); 1890 1891 return 0; 1892 1893 abort_transaction: 1894 xenbus_transaction_end(xbt, 1); 1895 if (message) 1896 xenbus_dev_fatal(dev, err, "%s", message); 1897 destroy_blkring: 1898 blkif_free(info, 0); 1899 1900 mutex_lock(&blkfront_mutex); 1901 free_info(info); 1902 mutex_unlock(&blkfront_mutex); 1903 1904 dev_set_drvdata(&dev->dev, NULL); 1905 1906 return err; 1907 } 1908 1909 static int negotiate_mq(struct blkfront_info *info) 1910 { 1911 unsigned int backend_max_queues; 1912 unsigned int i; 1913 struct blkfront_ring_info *rinfo; 1914 1915 BUG_ON(info->nr_rings); 1916 1917 /* Check if backend supports multiple queues. */ 1918 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1919 "multi-queue-max-queues", 1); 1920 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1921 /* We need at least one ring. */ 1922 if (!info->nr_rings) 1923 info->nr_rings = 1; 1924 1925 info->rinfo_size = struct_size(info->rinfo, shadow, 1926 BLK_RING_SIZE(info)); 1927 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1928 if (!info->rinfo) { 1929 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1930 info->nr_rings = 0; 1931 return -ENOMEM; 1932 } 1933 1934 for_each_rinfo(info, rinfo, i) { 1935 INIT_LIST_HEAD(&rinfo->indirect_pages); 1936 INIT_LIST_HEAD(&rinfo->grants); 1937 rinfo->dev_info = info; 1938 INIT_WORK(&rinfo->work, blkif_restart_queue); 1939 spin_lock_init(&rinfo->ring_lock); 1940 } 1941 return 0; 1942 } 1943 /** 1944 * Entry point to this code when a new device is created. Allocate the basic 1945 * structures and the ring buffer for communication with the backend, and 1946 * inform the backend of the appropriate details for those. Switch to 1947 * Initialised state. 1948 */ 1949 static int blkfront_probe(struct xenbus_device *dev, 1950 const struct xenbus_device_id *id) 1951 { 1952 int err, vdevice; 1953 struct blkfront_info *info; 1954 1955 /* FIXME: Use dynamic device id if this is not set. */ 1956 err = xenbus_scanf(XBT_NIL, dev->nodename, 1957 "virtual-device", "%i", &vdevice); 1958 if (err != 1) { 1959 /* go looking in the extended area instead */ 1960 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1961 "%i", &vdevice); 1962 if (err != 1) { 1963 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1964 return err; 1965 } 1966 } 1967 1968 if (xen_hvm_domain()) { 1969 char *type; 1970 int len; 1971 /* no unplug has been done: do not hook devices != xen vbds */ 1972 if (xen_has_pv_and_legacy_disk_devices()) { 1973 int major; 1974 1975 if (!VDEV_IS_EXTENDED(vdevice)) 1976 major = BLKIF_MAJOR(vdevice); 1977 else 1978 major = XENVBD_MAJOR; 1979 1980 if (major != XENVBD_MAJOR) { 1981 printk(KERN_INFO 1982 "%s: HVM does not support vbd %d as xen block device\n", 1983 __func__, vdevice); 1984 return -ENODEV; 1985 } 1986 } 1987 /* do not create a PV cdrom device if we are an HVM guest */ 1988 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1989 if (IS_ERR(type)) 1990 return -ENODEV; 1991 if (strncmp(type, "cdrom", 5) == 0) { 1992 kfree(type); 1993 return -ENODEV; 1994 } 1995 kfree(type); 1996 } 1997 info = kzalloc(sizeof(*info), GFP_KERNEL); 1998 if (!info) { 1999 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 2000 return -ENOMEM; 2001 } 2002 2003 info->xbdev = dev; 2004 2005 mutex_init(&info->mutex); 2006 info->vdevice = vdevice; 2007 info->connected = BLKIF_STATE_DISCONNECTED; 2008 2009 /* Front end dir is a number, which is used as the id. */ 2010 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 2011 dev_set_drvdata(&dev->dev, info); 2012 2013 mutex_lock(&blkfront_mutex); 2014 list_add(&info->info_list, &info_list); 2015 mutex_unlock(&blkfront_mutex); 2016 2017 return 0; 2018 } 2019 2020 static int blkif_recover(struct blkfront_info *info) 2021 { 2022 unsigned int r_index; 2023 struct request *req, *n; 2024 int rc; 2025 struct bio *bio; 2026 unsigned int segs; 2027 struct blkfront_ring_info *rinfo; 2028 2029 blkfront_gather_backend_features(info); 2030 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2031 blkif_set_queue_limits(info); 2032 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2033 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2034 2035 for_each_rinfo(info, rinfo, r_index) { 2036 rc = blkfront_setup_indirect(rinfo); 2037 if (rc) 2038 return rc; 2039 } 2040 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2041 2042 /* Now safe for us to use the shared ring */ 2043 info->connected = BLKIF_STATE_CONNECTED; 2044 2045 for_each_rinfo(info, rinfo, r_index) { 2046 /* Kick any other new requests queued since we resumed */ 2047 kick_pending_request_queues(rinfo); 2048 } 2049 2050 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2051 /* Requeue pending requests (flush or discard) */ 2052 list_del_init(&req->queuelist); 2053 BUG_ON(req->nr_phys_segments > segs); 2054 blk_mq_requeue_request(req, false); 2055 } 2056 blk_mq_start_stopped_hw_queues(info->rq, true); 2057 blk_mq_kick_requeue_list(info->rq); 2058 2059 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2060 /* Traverse the list of pending bios and re-queue them */ 2061 submit_bio(bio); 2062 } 2063 2064 return 0; 2065 } 2066 2067 /** 2068 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2069 * driver restart. We tear down our blkif structure and recreate it, but 2070 * leave the device-layer structures intact so that this is transparent to the 2071 * rest of the kernel. 2072 */ 2073 static int blkfront_resume(struct xenbus_device *dev) 2074 { 2075 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2076 int err = 0; 2077 unsigned int i, j; 2078 struct blkfront_ring_info *rinfo; 2079 2080 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2081 2082 bio_list_init(&info->bio_list); 2083 INIT_LIST_HEAD(&info->requests); 2084 for_each_rinfo(info, rinfo, i) { 2085 struct bio_list merge_bio; 2086 struct blk_shadow *shadow = rinfo->shadow; 2087 2088 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2089 /* Not in use? */ 2090 if (!shadow[j].request) 2091 continue; 2092 2093 /* 2094 * Get the bios in the request so we can re-queue them. 2095 */ 2096 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2097 req_op(shadow[j].request) == REQ_OP_DISCARD || 2098 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2099 shadow[j].request->cmd_flags & REQ_FUA) { 2100 /* 2101 * Flush operations don't contain bios, so 2102 * we need to requeue the whole request 2103 * 2104 * XXX: but this doesn't make any sense for a 2105 * write with the FUA flag set.. 2106 */ 2107 list_add(&shadow[j].request->queuelist, &info->requests); 2108 continue; 2109 } 2110 merge_bio.head = shadow[j].request->bio; 2111 merge_bio.tail = shadow[j].request->biotail; 2112 bio_list_merge(&info->bio_list, &merge_bio); 2113 shadow[j].request->bio = NULL; 2114 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2115 } 2116 } 2117 2118 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2119 2120 err = talk_to_blkback(dev, info); 2121 if (!err) 2122 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2123 2124 /* 2125 * We have to wait for the backend to switch to 2126 * connected state, since we want to read which 2127 * features it supports. 2128 */ 2129 2130 return err; 2131 } 2132 2133 static void blkfront_closing(struct blkfront_info *info) 2134 { 2135 struct xenbus_device *xbdev = info->xbdev; 2136 struct block_device *bdev = NULL; 2137 2138 mutex_lock(&info->mutex); 2139 2140 if (xbdev->state == XenbusStateClosing) { 2141 mutex_unlock(&info->mutex); 2142 return; 2143 } 2144 2145 if (info->gd) 2146 bdev = bdget_disk(info->gd, 0); 2147 2148 mutex_unlock(&info->mutex); 2149 2150 if (!bdev) { 2151 xenbus_frontend_closed(xbdev); 2152 return; 2153 } 2154 2155 mutex_lock(&bdev->bd_mutex); 2156 2157 if (bdev->bd_openers) { 2158 xenbus_dev_error(xbdev, -EBUSY, 2159 "Device in use; refusing to close"); 2160 xenbus_switch_state(xbdev, XenbusStateClosing); 2161 } else { 2162 xlvbd_release_gendisk(info); 2163 xenbus_frontend_closed(xbdev); 2164 } 2165 2166 mutex_unlock(&bdev->bd_mutex); 2167 bdput(bdev); 2168 } 2169 2170 static void blkfront_setup_discard(struct blkfront_info *info) 2171 { 2172 int err; 2173 unsigned int discard_granularity; 2174 unsigned int discard_alignment; 2175 2176 info->feature_discard = 1; 2177 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2178 "discard-granularity", "%u", &discard_granularity, 2179 "discard-alignment", "%u", &discard_alignment, 2180 NULL); 2181 if (!err) { 2182 info->discard_granularity = discard_granularity; 2183 info->discard_alignment = discard_alignment; 2184 } 2185 info->feature_secdiscard = 2186 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2187 0); 2188 } 2189 2190 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2191 { 2192 unsigned int psegs, grants; 2193 int err, i; 2194 struct blkfront_info *info = rinfo->dev_info; 2195 2196 if (info->max_indirect_segments == 0) { 2197 if (!HAS_EXTRA_REQ) 2198 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2199 else { 2200 /* 2201 * When an extra req is required, the maximum 2202 * grants supported is related to the size of the 2203 * Linux block segment. 2204 */ 2205 grants = GRANTS_PER_PSEG; 2206 } 2207 } 2208 else 2209 grants = info->max_indirect_segments; 2210 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2211 2212 err = fill_grant_buffer(rinfo, 2213 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2214 if (err) 2215 goto out_of_memory; 2216 2217 if (!info->feature_persistent && info->max_indirect_segments) { 2218 /* 2219 * We are using indirect descriptors but not persistent 2220 * grants, we need to allocate a set of pages that can be 2221 * used for mapping indirect grefs 2222 */ 2223 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2224 2225 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2226 for (i = 0; i < num; i++) { 2227 struct page *indirect_page = alloc_page(GFP_NOIO); 2228 if (!indirect_page) 2229 goto out_of_memory; 2230 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2231 } 2232 } 2233 2234 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2235 rinfo->shadow[i].grants_used = 2236 kvcalloc(grants, 2237 sizeof(rinfo->shadow[i].grants_used[0]), 2238 GFP_NOIO); 2239 rinfo->shadow[i].sg = kvcalloc(psegs, 2240 sizeof(rinfo->shadow[i].sg[0]), 2241 GFP_NOIO); 2242 if (info->max_indirect_segments) 2243 rinfo->shadow[i].indirect_grants = 2244 kvcalloc(INDIRECT_GREFS(grants), 2245 sizeof(rinfo->shadow[i].indirect_grants[0]), 2246 GFP_NOIO); 2247 if ((rinfo->shadow[i].grants_used == NULL) || 2248 (rinfo->shadow[i].sg == NULL) || 2249 (info->max_indirect_segments && 2250 (rinfo->shadow[i].indirect_grants == NULL))) 2251 goto out_of_memory; 2252 sg_init_table(rinfo->shadow[i].sg, psegs); 2253 } 2254 2255 2256 return 0; 2257 2258 out_of_memory: 2259 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2260 kvfree(rinfo->shadow[i].grants_used); 2261 rinfo->shadow[i].grants_used = NULL; 2262 kvfree(rinfo->shadow[i].sg); 2263 rinfo->shadow[i].sg = NULL; 2264 kvfree(rinfo->shadow[i].indirect_grants); 2265 rinfo->shadow[i].indirect_grants = NULL; 2266 } 2267 if (!list_empty(&rinfo->indirect_pages)) { 2268 struct page *indirect_page, *n; 2269 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2270 list_del(&indirect_page->lru); 2271 __free_page(indirect_page); 2272 } 2273 } 2274 return -ENOMEM; 2275 } 2276 2277 /* 2278 * Gather all backend feature-* 2279 */ 2280 static void blkfront_gather_backend_features(struct blkfront_info *info) 2281 { 2282 unsigned int indirect_segments; 2283 2284 info->feature_flush = 0; 2285 info->feature_fua = 0; 2286 2287 /* 2288 * If there's no "feature-barrier" defined, then it means 2289 * we're dealing with a very old backend which writes 2290 * synchronously; nothing to do. 2291 * 2292 * If there are barriers, then we use flush. 2293 */ 2294 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2295 info->feature_flush = 1; 2296 info->feature_fua = 1; 2297 } 2298 2299 /* 2300 * And if there is "feature-flush-cache" use that above 2301 * barriers. 2302 */ 2303 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2304 0)) { 2305 info->feature_flush = 1; 2306 info->feature_fua = 0; 2307 } 2308 2309 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2310 blkfront_setup_discard(info); 2311 2312 info->feature_persistent = 2313 !!xenbus_read_unsigned(info->xbdev->otherend, 2314 "feature-persistent", 0); 2315 2316 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2317 "feature-max-indirect-segments", 0); 2318 if (indirect_segments > xen_blkif_max_segments) 2319 indirect_segments = xen_blkif_max_segments; 2320 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2321 indirect_segments = 0; 2322 info->max_indirect_segments = indirect_segments; 2323 2324 if (info->feature_persistent) { 2325 mutex_lock(&blkfront_mutex); 2326 schedule_delayed_work(&blkfront_work, HZ * 10); 2327 mutex_unlock(&blkfront_mutex); 2328 } 2329 } 2330 2331 /* 2332 * Invoked when the backend is finally 'ready' (and has told produced 2333 * the details about the physical device - #sectors, size, etc). 2334 */ 2335 static void blkfront_connect(struct blkfront_info *info) 2336 { 2337 unsigned long long sectors; 2338 unsigned long sector_size; 2339 unsigned int physical_sector_size; 2340 unsigned int binfo; 2341 char *envp[] = { "RESIZE=1", NULL }; 2342 int err, i; 2343 struct blkfront_ring_info *rinfo; 2344 2345 switch (info->connected) { 2346 case BLKIF_STATE_CONNECTED: 2347 /* 2348 * Potentially, the back-end may be signalling 2349 * a capacity change; update the capacity. 2350 */ 2351 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2352 "sectors", "%Lu", §ors); 2353 if (XENBUS_EXIST_ERR(err)) 2354 return; 2355 printk(KERN_INFO "Setting capacity to %Lu\n", 2356 sectors); 2357 set_capacity(info->gd, sectors); 2358 revalidate_disk(info->gd); 2359 kobject_uevent_env(&disk_to_dev(info->gd)->kobj, 2360 KOBJ_CHANGE, envp); 2361 2362 return; 2363 case BLKIF_STATE_SUSPENDED: 2364 /* 2365 * If we are recovering from suspension, we need to wait 2366 * for the backend to announce it's features before 2367 * reconnecting, at least we need to know if the backend 2368 * supports indirect descriptors, and how many. 2369 */ 2370 blkif_recover(info); 2371 return; 2372 2373 default: 2374 break; 2375 } 2376 2377 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2378 __func__, info->xbdev->otherend); 2379 2380 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2381 "sectors", "%llu", §ors, 2382 "info", "%u", &binfo, 2383 "sector-size", "%lu", §or_size, 2384 NULL); 2385 if (err) { 2386 xenbus_dev_fatal(info->xbdev, err, 2387 "reading backend fields at %s", 2388 info->xbdev->otherend); 2389 return; 2390 } 2391 2392 /* 2393 * physcial-sector-size is a newer field, so old backends may not 2394 * provide this. Assume physical sector size to be the same as 2395 * sector_size in that case. 2396 */ 2397 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2398 "physical-sector-size", 2399 sector_size); 2400 blkfront_gather_backend_features(info); 2401 for_each_rinfo(info, rinfo, i) { 2402 err = blkfront_setup_indirect(rinfo); 2403 if (err) { 2404 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2405 info->xbdev->otherend); 2406 blkif_free(info, 0); 2407 break; 2408 } 2409 } 2410 2411 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2412 physical_sector_size); 2413 if (err) { 2414 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2415 info->xbdev->otherend); 2416 goto fail; 2417 } 2418 2419 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2420 2421 /* Kick pending requests. */ 2422 info->connected = BLKIF_STATE_CONNECTED; 2423 for_each_rinfo(info, rinfo, i) 2424 kick_pending_request_queues(rinfo); 2425 2426 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2427 2428 info->is_ready = 1; 2429 return; 2430 2431 fail: 2432 blkif_free(info, 0); 2433 return; 2434 } 2435 2436 /** 2437 * Callback received when the backend's state changes. 2438 */ 2439 static void blkback_changed(struct xenbus_device *dev, 2440 enum xenbus_state backend_state) 2441 { 2442 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2443 2444 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2445 2446 switch (backend_state) { 2447 case XenbusStateInitWait: 2448 if (dev->state != XenbusStateInitialising) 2449 break; 2450 if (talk_to_blkback(dev, info)) 2451 break; 2452 case XenbusStateInitialising: 2453 case XenbusStateInitialised: 2454 case XenbusStateReconfiguring: 2455 case XenbusStateReconfigured: 2456 case XenbusStateUnknown: 2457 break; 2458 2459 case XenbusStateConnected: 2460 /* 2461 * talk_to_blkback sets state to XenbusStateInitialised 2462 * and blkfront_connect sets it to XenbusStateConnected 2463 * (if connection went OK). 2464 * 2465 * If the backend (or toolstack) decides to poke at backend 2466 * state (and re-trigger the watch by setting the state repeatedly 2467 * to XenbusStateConnected (4)) we need to deal with this. 2468 * This is allowed as this is used to communicate to the guest 2469 * that the size of disk has changed! 2470 */ 2471 if ((dev->state != XenbusStateInitialised) && 2472 (dev->state != XenbusStateConnected)) { 2473 if (talk_to_blkback(dev, info)) 2474 break; 2475 } 2476 2477 blkfront_connect(info); 2478 break; 2479 2480 case XenbusStateClosed: 2481 if (dev->state == XenbusStateClosed) 2482 break; 2483 /* fall through */ 2484 case XenbusStateClosing: 2485 if (info) 2486 blkfront_closing(info); 2487 break; 2488 } 2489 } 2490 2491 static int blkfront_remove(struct xenbus_device *xbdev) 2492 { 2493 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2494 struct block_device *bdev = NULL; 2495 struct gendisk *disk; 2496 2497 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2498 2499 if (!info) 2500 return 0; 2501 2502 blkif_free(info, 0); 2503 2504 mutex_lock(&info->mutex); 2505 2506 disk = info->gd; 2507 if (disk) 2508 bdev = bdget_disk(disk, 0); 2509 2510 info->xbdev = NULL; 2511 mutex_unlock(&info->mutex); 2512 2513 if (!bdev) { 2514 mutex_lock(&blkfront_mutex); 2515 free_info(info); 2516 mutex_unlock(&blkfront_mutex); 2517 return 0; 2518 } 2519 2520 /* 2521 * The xbdev was removed before we reached the Closed 2522 * state. See if it's safe to remove the disk. If the bdev 2523 * isn't closed yet, we let release take care of it. 2524 */ 2525 2526 mutex_lock(&bdev->bd_mutex); 2527 info = disk->private_data; 2528 2529 dev_warn(disk_to_dev(disk), 2530 "%s was hot-unplugged, %d stale handles\n", 2531 xbdev->nodename, bdev->bd_openers); 2532 2533 if (info && !bdev->bd_openers) { 2534 xlvbd_release_gendisk(info); 2535 disk->private_data = NULL; 2536 mutex_lock(&blkfront_mutex); 2537 free_info(info); 2538 mutex_unlock(&blkfront_mutex); 2539 } 2540 2541 mutex_unlock(&bdev->bd_mutex); 2542 bdput(bdev); 2543 2544 return 0; 2545 } 2546 2547 static int blkfront_is_ready(struct xenbus_device *dev) 2548 { 2549 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2550 2551 return info->is_ready && info->xbdev; 2552 } 2553 2554 static int blkif_open(struct block_device *bdev, fmode_t mode) 2555 { 2556 struct gendisk *disk = bdev->bd_disk; 2557 struct blkfront_info *info; 2558 int err = 0; 2559 2560 mutex_lock(&blkfront_mutex); 2561 2562 info = disk->private_data; 2563 if (!info) { 2564 /* xbdev gone */ 2565 err = -ERESTARTSYS; 2566 goto out; 2567 } 2568 2569 mutex_lock(&info->mutex); 2570 2571 if (!info->gd) 2572 /* xbdev is closed */ 2573 err = -ERESTARTSYS; 2574 2575 mutex_unlock(&info->mutex); 2576 2577 out: 2578 mutex_unlock(&blkfront_mutex); 2579 return err; 2580 } 2581 2582 static void blkif_release(struct gendisk *disk, fmode_t mode) 2583 { 2584 struct blkfront_info *info = disk->private_data; 2585 struct block_device *bdev; 2586 struct xenbus_device *xbdev; 2587 2588 mutex_lock(&blkfront_mutex); 2589 2590 bdev = bdget_disk(disk, 0); 2591 2592 if (!bdev) { 2593 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name); 2594 goto out_mutex; 2595 } 2596 if (bdev->bd_openers) 2597 goto out; 2598 2599 /* 2600 * Check if we have been instructed to close. We will have 2601 * deferred this request, because the bdev was still open. 2602 */ 2603 2604 mutex_lock(&info->mutex); 2605 xbdev = info->xbdev; 2606 2607 if (xbdev && xbdev->state == XenbusStateClosing) { 2608 /* pending switch to state closed */ 2609 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2610 xlvbd_release_gendisk(info); 2611 xenbus_frontend_closed(info->xbdev); 2612 } 2613 2614 mutex_unlock(&info->mutex); 2615 2616 if (!xbdev) { 2617 /* sudden device removal */ 2618 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2619 xlvbd_release_gendisk(info); 2620 disk->private_data = NULL; 2621 free_info(info); 2622 } 2623 2624 out: 2625 bdput(bdev); 2626 out_mutex: 2627 mutex_unlock(&blkfront_mutex); 2628 } 2629 2630 static const struct block_device_operations xlvbd_block_fops = 2631 { 2632 .owner = THIS_MODULE, 2633 .open = blkif_open, 2634 .release = blkif_release, 2635 .getgeo = blkif_getgeo, 2636 .ioctl = blkif_ioctl, 2637 .compat_ioctl = blkdev_compat_ptr_ioctl, 2638 }; 2639 2640 2641 static const struct xenbus_device_id blkfront_ids[] = { 2642 { "vbd" }, 2643 { "" } 2644 }; 2645 2646 static struct xenbus_driver blkfront_driver = { 2647 .ids = blkfront_ids, 2648 .probe = blkfront_probe, 2649 .remove = blkfront_remove, 2650 .resume = blkfront_resume, 2651 .otherend_changed = blkback_changed, 2652 .is_ready = blkfront_is_ready, 2653 }; 2654 2655 static void purge_persistent_grants(struct blkfront_info *info) 2656 { 2657 unsigned int i; 2658 unsigned long flags; 2659 struct blkfront_ring_info *rinfo; 2660 2661 for_each_rinfo(info, rinfo, i) { 2662 struct grant *gnt_list_entry, *tmp; 2663 2664 spin_lock_irqsave(&rinfo->ring_lock, flags); 2665 2666 if (rinfo->persistent_gnts_c == 0) { 2667 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2668 continue; 2669 } 2670 2671 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2672 node) { 2673 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2674 gnttab_query_foreign_access(gnt_list_entry->gref)) 2675 continue; 2676 2677 list_del(&gnt_list_entry->node); 2678 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2679 rinfo->persistent_gnts_c--; 2680 gnt_list_entry->gref = GRANT_INVALID_REF; 2681 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2682 } 2683 2684 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2685 } 2686 } 2687 2688 static void blkfront_delay_work(struct work_struct *work) 2689 { 2690 struct blkfront_info *info; 2691 bool need_schedule_work = false; 2692 2693 mutex_lock(&blkfront_mutex); 2694 2695 list_for_each_entry(info, &info_list, info_list) { 2696 if (info->feature_persistent) { 2697 need_schedule_work = true; 2698 mutex_lock(&info->mutex); 2699 purge_persistent_grants(info); 2700 mutex_unlock(&info->mutex); 2701 } 2702 } 2703 2704 if (need_schedule_work) 2705 schedule_delayed_work(&blkfront_work, HZ * 10); 2706 2707 mutex_unlock(&blkfront_mutex); 2708 } 2709 2710 static int __init xlblk_init(void) 2711 { 2712 int ret; 2713 int nr_cpus = num_online_cpus(); 2714 2715 if (!xen_domain()) 2716 return -ENODEV; 2717 2718 if (!xen_has_pv_disk_devices()) 2719 return -ENODEV; 2720 2721 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2722 pr_warn("xen_blk: can't get major %d with name %s\n", 2723 XENVBD_MAJOR, DEV_NAME); 2724 return -ENODEV; 2725 } 2726 2727 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2728 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2729 2730 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2731 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2732 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2733 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2734 } 2735 2736 if (xen_blkif_max_queues > nr_cpus) { 2737 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2738 xen_blkif_max_queues, nr_cpus); 2739 xen_blkif_max_queues = nr_cpus; 2740 } 2741 2742 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2743 2744 ret = xenbus_register_frontend(&blkfront_driver); 2745 if (ret) { 2746 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2747 return ret; 2748 } 2749 2750 return 0; 2751 } 2752 module_init(xlblk_init); 2753 2754 2755 static void __exit xlblk_exit(void) 2756 { 2757 cancel_delayed_work_sync(&blkfront_work); 2758 2759 xenbus_unregister_driver(&blkfront_driver); 2760 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2761 kfree(minors); 2762 } 2763 module_exit(xlblk_exit); 2764 2765 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2766 MODULE_LICENSE("GPL"); 2767 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2768 MODULE_ALIAS("xen:vbd"); 2769 MODULE_ALIAS("xenblk"); 2770